1
|
Behrouzi A, Sakhaee F, Ghazanfari Jajin M, Ahmadi I, Anvari E, Sotoodehnejadnematalahi F, Fateh A. The surfactant protein B polymorphisms (rs7316 and rs1130866) and their correlation with disease progression of COVID-19. Cytokine 2024; 184:156775. [PMID: 39368228 DOI: 10.1016/j.cyto.2024.156775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/15/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND It is critical to examine the pathogenic pathways in coronavirus disease 2019 (COVID-19) that resulted in the development of severe lung injury. Surfactant protein B (SFTPB) is a vital component for sustaining life and serves pivotal functions in the host's defensive mechanisms and alveolar surface tension reduction. Our study aimed to determine the effect of SFTPB rs7316 and rs1130866 variants on the course of disease in COVID-19 patients. METHODS The study cohort comprised 3,184 individuals diagnosed with COVID-19. We employed the RFLP approach to determine the variations of the SFTPB genes. RESULTS SFTPB rs7316 did not exhibit a statistically significant correlation with COVID-19 mortality across different inheritance models. But, after making more changes for SARS-CoV-2 variants, it was found that there was a strong link between the TT and TC genotypes of SFTPB rs7316 and death rates, especially for the Delta variant. Furthermore, our study's findings indicate a significant association between the SFTPB rs1130866 G allele and an elevated risk of mortality in COVID-19 across all variants of SARS-CoV-2. CONCLUSIONS The use of the SFTPB rs1130866 marker has the potential to facilitate the prediction of COVID-19 severity. On the other hand, for SFTPB rs7316, this kind of prediction seems to depend on the particular SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Amir Behrouzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Enayat Anvari
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | | | - Abolfazl Fateh
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Rachman MP, Bamidele O, Dessie T, Smith J, Hanotte O, Gheyas AA. Genomic analysis of Nigerian indigenous chickens reveals their genetic diversity and adaptation to heat-stress. Sci Rep 2024; 14:2209. [PMID: 38278850 PMCID: PMC10817956 DOI: 10.1038/s41598-024-52569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Indigenous poultry breeds from Africa can survive in harsh tropical environments (such as long arid seasons, excessive rain and humidity, and extreme heat) and are resilient to disease challenges, but they are not productive compared to their commercial counterparts. Their adaptive characteristics are in response to natural selection or to artificial selection for production traits that have left selection signatures in the genome. Identifying these signatures of positive selection can provide insight into the genetic bases of tropical adaptations observed in indigenous poultry and thereby help to develop robust and high-performing breeds for extreme tropical climates. Here, we present the first large-scale whole-genome sequencing analysis of Nigerian indigenous chickens from different agro-climatic conditions, investigating their genetic diversity and adaptation to tropical hot climates (extreme arid and extreme humid conditions). The study shows a large extant genetic diversity but low level of population differentiation. Using different selection signature analyses, several candidate genes for adaptation were detected, especially in relation to thermotolerance and immune response (e.g., cytochrome P450 2B4-like, TSHR, HSF1, CDC37, SFTPB, HIF3A, SLC44A2, and ILF3 genes). These results have important implications for conserving valuable genetic resources and breeding improvement of chickens for thermotolerance.
Collapse
Affiliation(s)
- Mifta P Rachman
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| | - Oladeji Bamidele
- African Chicken Genetic Gains (ACGG), Department of Animal Sciences, Obafemi Awolowo University, Ile Ife, 220282, Nigeria
| | - Tadelle Dessie
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Jacqueline Smith
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Olivier Hanotte
- LiveGene-CTLGH, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Almas A Gheyas
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
3
|
Fishchuk L, Rossokha Z, Pokhylko V, Cherniavska Y, Popova O, Vershyhora V, Kovtun S, Gorovenko N. SFTPB (rs11130866) and NR3C1 (rs41423247) gene variants as potential clinical biomarkers for personalized treatment strategy selection in patients with severe COVID-19 pneumonia. Respir Investig 2023; 61:103-109. [PMID: 36460583 PMCID: PMC9663752 DOI: 10.1016/j.resinv.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Exploring the pathogenetic mechanisms behind severe lung damage in COVID-19 is crucial. In this study, we decided to focus on two molecular markers that affect surfactant metabolism and lung development: the surfactant protein B (SFTPB) and the glucocorticoid receptor (NR3C1) genes. The aim of our study was to determine the effect of SFTPB (rs11130866) and NR3C1 (rs41423247) gene variants on the course of the disease in patients with COVID-19, and the treatment measures they required. METHODS The study group included 58 patients with a diagnosis of severe "viral COVID-19 pneumonia." Determination of SFTPB and NR3C1 gene variants was performed using the PCR-RFLP method. RESULTS Our results indicate that the presence of the SFTPB gene CC genotype increases the risk of developing acute respiratory distress syndrome in patients with COVID-19 (χ2 = 4.03, p = 0.045, OR = 3.90 [1.19-12.78]). However, patients with the SFTPB gene TT genotype required respiratory support for a shorter period of time. Patients with the NR3C1 gene CC genotype underwent a longer glucocorticoid therapy. Moreover, for patients with the CC genotype, a longer stay in the intensive care unit was detected before lethal outcome. CONCLUSIONS The obtained results confirm the influence of the SFTPB (rs11130866) and NR3C1 (rs41423247) gene variants on the therapy, course, and severity of the disease in patients with COVID-19. Of course, these results require further study, analysis, and larger, complex, systematic research.
Collapse
Affiliation(s)
- Liliia Fishchuk
- Department of Genetic Diagnostics, State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; State Institution "Reference-centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine.
| | - Zoia Rossokha
- State Institution "Reference-centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Valeriy Pokhylko
- Department of Pediatrics No 1 with Propedeutics and Neonatology, Poltava State Medical University, Poltava, Ukraine
| | - Yuliia Cherniavska
- Department of Pediatrics No 1 with Propedeutics and Neonatology, Poltava State Medical University, Poltava, Ukraine
| | - Olena Popova
- State Institution "Reference-centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Viktoriia Vershyhora
- State Institution "Reference-centre for Molecular Diagnostic of Public Health Ministry of Ukraine", Kyiv, Ukraine
| | - Serhii Kovtun
- Poltava Regional Clinical Infectious Diseases Hospital of Poltava Regional Council, Poltava, Ukraine
| | - Nataliia Gorovenko
- Department of Genetic Diagnostics, State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
AYBEK SD, ATEŞ Ö, SEZER SONDAŞ S, GÜL A, TAKÇI Ş, ALTINTAŞ SEYYAH B. Association between surfactant protein B gene locus and acute bronchiolitis in infants. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1124468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: The aim of this study was to investigate whether there is a relationship between surfactant protein B (SFTPB) C1580T polymorphism and acute bronchiolitis.
Materials and Methods: The study analyzed the allele frequency and genotype distribution for the SFTPB C1580T polymorphism using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique in 103 acute bronchiolitis infants and 102 healthy infants.
Results: The results showed no association between SFTPB C1580T polymorphism and clinical characteristics of acute bronchiolitis. The distribution of the CT genotype was higher in acute bronchiolitis infants (43%) than in healthy subjects (39%) and distribution of the TT genotype was found lower in acute bronchiolitis infants (38%) than in healthy subjects (41%). No significant differences in genotype distribution and allele frequency for the SFTPB C1580T polymorphism were found between case group and control group
Conclusion: SFTPB C1580T gene polymorphism plays no important role in susceptibility to acute bronchiolitis. Further work on the relevance of SFTPB C1580T polymorphism in larger cohorts will require validating our results.
Collapse
Affiliation(s)
| | | | | | - Ali GÜL
- TOKAT GAZİOSMANPAŞA ÜNİVERSİTESİ
| | | | | |
Collapse
|
5
|
Abstract
Annual seasonal influenza epidemics of variable severity caused by influenza A and B virus infections result in substantial disease burden worldwide. Seasonal influenza virus circulation declined markedly in 2020-21 after SARS-CoV-2 emerged but increased in 2021-22. Most people with influenza have abrupt onset of respiratory symptoms and myalgia with or without fever and recover within 1 week, but some can experience severe or fatal complications. Prevention is primarily by annual influenza vaccination, with efforts underway to develop new vaccines with improved effectiveness. Sporadic zoonotic infections with novel influenza A viruses of avian or swine origin continue to pose pandemic threats. In this Seminar, we discuss updates of key influenza issues for clinicians, in particular epidemiology, virology, and pathogenesis, diagnostic testing including multiplex assays that detect influenza viruses and SARS-CoV-2, complications, antiviral treatment, influenza vaccines, infection prevention, and non-pharmaceutical interventions, and highlight gaps in clinical management and priorities for clinical research.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - David S Hui
- Division of Respiratory Medicine and Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Maria Zambon
- Virology Reference Department, UK Health Security Agency, London, UK
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnold S Monto
- Center for Respiratory Research and Response, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Dimka J, van Doren TP, Battles HT. Pandemics, past and present: The role of biological anthropology in interdisciplinary pandemic studies. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022. [PMCID: PMC9082061 DOI: 10.1002/ajpa.24517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biological anthropologists are ideally suited for the study of pandemics given their strengths in human biology, health, culture, and behavior, yet pandemics have historically not been a major focus of research. The COVID‐19 pandemic has reinforced the need to understand pandemic causes and unequal consequences at multiple levels. Insights from past pandemics can strengthen the knowledge base and inform the study of current and future pandemics through an anthropological lens. In this paper, we discuss the distinctive social and epidemiological features of pandemics, as well as the ways in which biological anthropologists have previously studied infectious diseases, epidemics, and pandemics. We then review interdisciplinary research on three pandemics–1918 influenza, 2009 influenza, and COVID‐19–focusing on persistent social inequalities in morbidity and mortality related to sex and gender; race, ethnicity, and Indigeneity; and pre‐existing health and disability. Following this review of the current state of pandemic research on these topics, we conclude with a discussion of ways biological anthropologists can contribute to this field moving forward. Biological anthropologists can add rich historical and cross‐cultural depth to the study of pandemics, provide insights into the biosocial complexities of pandemics using the theory of syndemics, investigate the social and health impacts of stress and stigma, and address important methodological and ethical issues. As COVID‐19 is unlikely to be the last global pandemic, stronger involvement of biological anthropology in pandemic studies and public health policy and research is vital.
Collapse
Affiliation(s)
- Jessica Dimka
- Centre for Research on Pandemics and Society Oslo Metropolitan University Oslo Norway
| | | | - Heather T. Battles
- Anthropology, School of Social Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
7
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
8
|
Fong CHY, Lu L, Chen LL, Yeung ML, Zhang AJ, Zhao H, Yuen KY, To KKW. Interferon-gamma inhibits influenza A virus cellular attachment by reducing sialic acid cluster size. iScience 2022; 25:104037. [PMID: 35330686 PMCID: PMC8938289 DOI: 10.1016/j.isci.2022.104037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
The mucosal antiviral role of type I and III interferon in influenza virus infection is well established. However, much less is known about the antiviral mechanism of type II interferon (interferon-gamma). Here, we revealed an antiviral mechanism of interferon-gamma by inhibiting influenza A virus (IAV) attachment. By direct stochastic optical reconstruction microscopy, confocal microscopy, and flow cytometry, we have shown that interferon-gamma reduced the size of α-2,3 and α-2,6-linked sialic acid clusters, without changing the sialic acid or epidermal growth factor receptor expression levels, or the sialic acid density within cluster on the cell surface of A549 cells. Reversing the effect of interferon-gamma on sialic acid clustering by jasplakinolide reverted the cluster size, improved IAV attachment and replication. Our findings showed the importance of sialic acid clustering in IAV attachment and infection. We also demonstrated the interference of sialic acid clustering as an anti-IAV mechanism of IFN-gamma for IAV infection. IFN-γ inhibits IAV replication IFN-γ reduces IAV attachment and infection by reducing sialic acid cluster size Reduction of sialic acid cluster size partially depends on F-actin depolymerization Higher sialic acid expression level does not correlate with increase IAV attachment
Collapse
Affiliation(s)
- Carol Ho-Yan Fong
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Corresponding author
| | - Lu Lu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Lin-Lei Chen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Man-Lung Yeung
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Anna Jinxia Zhang
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Hanjun Zhao
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Island, People’s Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Island, People’s Republic of China
- Corresponding author
| |
Collapse
|
9
|
Santos TM, Lisboa ABP, Rodrigues W, Gomes H, Abrahão J, Del-Bem LE. Human variation in the protein receptor ACE2 affects its binding affinity to SARS-CoV-2 in a variant-dependent manner. J Biomol Struct Dyn 2022; 41:2947-2955. [PMID: 35196964 DOI: 10.1080/07391102.2022.2042387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SARS-CoV-2 infection depend on the binding of the viral Spike glycoprotein (S) to the human receptor Angiotensin Converting Enzyme 2 (ACE2) to induce virus-cell membrane fusion. S protein evolved diverse amino acid changes that are possibly linked to more efficient binding to human ACE2, which might explain part of the increase in frequency of SARS-CoV-2 Variants Of Concern (VOCs). In this work, we investigated the role of ACE2 protein variations that are naturally found in human populations and its binding affinity with S protein from SARS-CoV-2 representative genotypes, based on a series of in silico approaches involving molecular modelling, docking and molecular dynamics simulations. Our results indicate that SARS-CoV-2 VOCs bind more efficiently to the human receptor ACE2 than the ancestral Wuhan genotype. Additionally, variations in the ACE2 protein can affect SARS-CoV-2 binding and protein-protein stability, mostly making the interaction weaker and unstable in some cases. We show that some VOCs, such as B.1.1.7 and P.1 are much less sensitive to ACE2 variants, while others like B.1.351 appear to be specifically optimized to bind to the widespread wild-type ACE2 protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thiago M Santos
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ayrton B P Lisboa
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Wenderson Rodrigues
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Helena Gomes
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Jônatas Abrahão
- Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz-Eduardo Del-Bem
- Department of Botany, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
10
|
Van Goethem N, Danwang C, Bossuyt N, Van Oyen H, Roosens NHC, Robert A. A systematic review and meta-analysis of host genetic factors associated with influenza severity. BMC Genomics 2021; 22:912. [PMID: 34930124 PMCID: PMC8686082 DOI: 10.1186/s12864-021-08240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The severity of influenza disease can range from mild symptoms to severe respiratory failure and can partly be explained by host genetic factors that predisposes the host to severe influenza. Here, we aimed to summarize the current state of evidence that host genetic variants play a role in the susceptibility to severe influenza infection by conducting a systematic review and performing a meta-analysis for all markers with at least three or more data entries. RESULTS A total of 34 primary human genetic association studies were identified that investigated a total of 20 different genes. The only significant pooled ORs were retrieved for the rs12252 polymorphism: an overall OR of 1.52 (95% CI [1.06-2.17]) for the rs12252-C allele compared to the rs12252-T allele. A stratified analysis by ethnicity revealed opposite effects in different populations. CONCLUSION With exception for the rs12252 polymorphism, we could not identify specific genetic polymorphisms to be associated with severe influenza infection in a pooled meta-analysis. This advocates for the use of large, hypothesis-free, genome-wide association studies that account for the polygenic nature and the interactions with other host, pathogen and environmental factors.
Collapse
Affiliation(s)
- Nina Van Goethem
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Célestin Danwang
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Nathalie Bossuyt
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| |
Collapse
|
11
|
Regulatory Roles of Human Surfactant Protein B Variants on Genetic Susceptibility to Pseudomonas Aeruginosa Pneumonia-Induced Sepsis. Shock 2021; 54:507-519. [PMID: 31851120 DOI: 10.1097/shk.0000000000001494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Surfactant protein B (SP-B) is essential for life and plays critical roles in host defense and lowering alveolar surface tension. A single-nucleotide polymorphism (SNP rs1130866) of human SP-B (hSP-B) alters the N-linked glycosylation, thus presumably affecting SP-B function. This study has investigated the regulatory roles of hSP-B genetic variants on lung injury in pneumonia-induced sepsis. METHODS Wild-type (WT) FVB/NJ and humanized transgenic SP-B-T and SP-B-C mice (expressing either hSP-B C or T allele without mouse SP-B gene) were infected intratracheally with 50 μL (4 × 10 colony-forming units [CFUs]/mouse) Pseudomonas aeruginosa Xen5 or saline, and then killed 24 or 48 h after infection. Bacterial dynamic growths were monitored from 0 to 48 h postinfection by in vivo imaging. Histopathological, cellular, and molecular changes of lung tissues and bronchoalveolar lavage fluid (BALF) were analyzed. Surface tension of surfactants was determined with constrained drop surfactometry. RESULTS SP-B-C mice showed higher bioluminescence and CFUs, increased inflammation and mortality, the higher score of lung injury, and reduced numbers of lamellar bodies in type II cells compared with SP-B-T or WT (P < 0.05). Minimum surface tension increased dramatically in infected mice (P < 0.01) with the order of SP-B-C > SP-B-T > WT. Levels of multiple cytokines in the lung of infected SP-B-C were higher than those of SP-B-T and WT (P < 0.01). Furthermore, compared with SP-B-T or WT, SP-B-C exhibited lower SP-B, higher NF-κB and NLRP3 inflammasome activation, and higher activated caspase-3. CONCLUSIONS hSP-B variants differentially regulate susceptibility through modulating the surface activity of surfactant, cell death, and inflammatory signaling in sepsis.
Collapse
|
12
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Li M, Chen Y, Chen T, Hu S, Chen L, Shen L, Li F, Yang J, Sun Y, Wang D, He L, Qin S, Shu Y. A host-based whole genome sequencing study reveals novel risk loci associated with severity of influenza A(H1N1)pdm09 infection. Emerg Microbes Infect 2021; 10:123-131. [PMID: 33393450 PMCID: PMC7832503 DOI: 10.1080/22221751.2020.1870412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Influenza A(H1N1)pdm09 virus has remained in a seasonal circulation since being recognized in 2009. Although it followed a mild course in most patients, in others it caused a series of severe clinical illnesses. Epidemiologic studies have implicated that host factors have a major influence on the disease severity of influenza A(H1N1)pdm09 infection. However, an understanding of relevant genetic variations and the underlying mechanisms is still limited. In this present study, we used a host-based whole genome sequencing (WGS) method to comprehensively explore the genetic risk loci associated with severity of influenza A(H1N1)pdm09 infection. From the common single-nucleotide variants (SNVs) analysis, we identified the abnormal nominally significant (P < 1 × 10−4) common SNVs enriched in PTBP3 gene. The results of rare functional SNVs analysis supported that there were several novel candidate genes might confer risk of severe influenza A(H1N1)pdm09 diseases, such as FTSJ3, CPVL, BST2, NOD2 and MAVS. Moreover, our results of gene set based analysis indicated that the HIF-1 transcription factor and IFN-γ pathway might play an important role in the underlying mechanism of severe influenza A(H1N1)pdm09. These findings will increase our knowledge about biological mechanism underlying the severe influenza A(H1N1)pdm09 and facilitate to design novel personalized treatments.
Collapse
Affiliation(s)
- Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yongkun Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Tao Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, People's Republic of China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fangcai Li
- Hunan Provincial Center for Disease Control and Prevention, Changsha, People's Republic of China
| | - Jing Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yan Sun
- Changsha Central Hospital, Changsha 410004, People's Republic of China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
14
|
Ghafouri-Fard S, Noroozi R, Vafaee R, Branicki W, Poṡpiech E, Pyrc K, Łabaj PP, Omrani MD, Taheri M, Sanak M. Effects of host genetic variations on response to, susceptibility and severity of respiratory infections. Biomed Pharmacother 2020; 128:110296. [PMID: 32480226 PMCID: PMC7258806 DOI: 10.1016/j.biopha.2020.110296] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
The recent outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global crisis, necessitating the identification of genetic factors that modulate the risk of disorder or its severity. The current data about the role of genetic risk factors in determination of rate of SARS-CoV-2 infection in each ethnic group and the severity of disorder is limited. Moreover, several confounding parameters such as the number of tests performed in each country, the structure of the population especially the age distribution, the presence of risk factors for respiratory disorders such as smoking and other environmental factors might be involved in the variability in disease course or prevalence of infection among different ethnic groups. However, assessment of the role of genetic variants in determination of the course of other respiratory infections might help in recognition of possible candidate for further analysis in patients affected with SARS-CoV-2. In the current review, we summarize the data showing the association between genomic variants and risk of acute respiratory distress syndrome, respiratory infections or severity of these conditions with an especial focus on the SARS-CoV-2.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewelina Poṡpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Pyrc
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
15
|
Zhao B, Chen Y, Li M, Zhou J, Teng Z, Chen J, Zhao X, Wu H, Bai T, Mao S, Fang F, Chu W, Huang H, Huai C, Shen L, Zhou W, Sun L, Zheng X, Cheng G, Sun Y, Wang D, He L, Shu Y, Zhang X, Qin S. Novel susceptibility loci for A(H7N9) infection identified by next generation sequencing and functional analysis. Sci Rep 2020; 10:11768. [PMID: 32678187 PMCID: PMC7366728 DOI: 10.1038/s41598-020-68675-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
The A(H7N9) virus strain that emerged in 2013 was associated with a high fatality rate and may become a long-term threat to public health. A(H7N9) disease incidence is disproportionate to viral exposure, suggesting that host genetic factors may significantly influence susceptibility to A(H7N9) infection. Human genome variation in conferring risk for A(H7N9) infection in Chinese populations was identified by a two-stage investigation involving 121 A(H7N9) patients and 187 healthy controls using next generation sequencing followed by functional analysis. As a result, a low frequency variant (rs189256251; P = 0.0303, OR = 3.45, 95% CI 1.05–11.35, chi-square test) and three HLA alleles (DQB1*06:01, DQA1*05:05 and C*12:02) were identified in A(H7N9) infected volunteers. In an A549 cell line carrying the rs189256251 variant CT genotype, A(H7N9) infection incidence was elevated 6.665-fold over control cells carrying the CC genotype. Serum levels of interferon alpha were significantly lower in patients with the CT genotype compared to the CC genotype (P = 0.01). The study findings of genetic predisposition to A(H7N9) in the Chinese population may be valuable in systematic investigations of A(H7N9) disease etiology.
Collapse
Affiliation(s)
- Baihui Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.,Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Yongkun Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 510275, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, China
| | - Zheng Teng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Jian Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Xue Zhao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Hao Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, China
| | - Shenghua Mao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Fanghao Fang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China
| | - Wei Chu
- Shanghai Huangpu District Center for Disease Control and Prevention, Shanghai, 200023, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Liangdan Sun
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xiaodong Zheng
- Department of Dermatology, No. 1 Hospital and Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | | | - Ye Sun
- Jinan Infectious Disease Hospital, Jinan, 250021, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention China CDC, Beijing, 102206, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 510275, China. .,National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health Commission, Beijing, 102206, China.
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200036, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Collaborative Innovation Center, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
16
|
Misra RS, Nayak JL. The Importance of Vaccinating Children and Pregnant Women against Influenza Virus Infection. Pathogens 2019; 8:pathogens8040265. [PMID: 31779153 PMCID: PMC6963306 DOI: 10.3390/pathogens8040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus infection is responsible for significant morbidity and mortality in the pediatric and pregnant women populations, with deaths frequently caused by severe influenza-associated lower respiratory tract infection and acute respiratory distress syndrome (ARDS). An appropriate immune response requires controlling the viral infection through activation of antiviral defenses, which involves cells of the lung and immune system. High levels of viral infection or high levels of inflammation in the lower airways can contribute to ARDS. Pregnant women and young children, especially those born prematurely, may develop serious complications if infected with influenza virus. Vaccination against influenza will lead to lower infection rates and fewer complications, even if the vaccine is poorly matched to circulating viral strains, with maternal vaccination offering infants protection via antibody transmission through the placenta and breast milk. Despite the health benefits of the influenza vaccine, vaccination rates around the world remain well below targets. Trust in the use of vaccines among the public must be restored in order to increase vaccination rates and decrease the public health burden of influenza.
Collapse
Affiliation(s)
- Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14623, USA
- Correspondence:
| | - Jennifer L Nayak
- Department of Pediatrics Division of Pediatric Infectious Diseases, The University of Rochester Medical Center, Rochester, NY 14623, USA;
| |
Collapse
|
17
|
Gounder AP, Boon ACM. Influenza Pathogenesis: The Effect of Host Factors on Severity of Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:341-350. [PMID: 30617115 DOI: 10.4049/jimmunol.1801010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses continue to be a major global health threat. Severity and clinical outcome of influenza disease is determined by both viral and host factors. Viral factors have long been the subject of intense research and many molecular determinants have been identified. However, research into the host factors that protect or predispose to severe and fatal influenza A virus infections is lagging. The goal of this review is to highlight the recent insights into host determinants of influenza pathogenesis.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; .,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
18
|
Clohisey S, Baillie JK. Host susceptibility to severe influenza A virus infection. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:303. [PMID: 31488196 PMCID: PMC6729070 DOI: 10.1186/s13054-019-2566-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
Abstract
Most people exposed to a new flu virus do not notice any symptoms. A small minority develops critical illness. Some of this extremely broad variation in susceptibility is explained by the size of the initial inoculum or the influenza exposure history of the individual; some is explained by generic host factors, such as frailty, that decrease resilience following any systemic insult. Some demographic factors (pregnancy, obesity, and advanced age) appear to confer a more specific susceptibility to severe illness following infection with influenza viruses. As with other infectious diseases, a substantial component of susceptibility is determined by host genetics. Several genetic susceptibility variants have now been reported with varying levels of evidence. Susceptible hosts may have impaired intracellular controls of viral replication (e.g. IFITM3, TMPRS22 variants), defective interferon responses (e.g. GLDC, IRF7/9 variants), or defects in cell-mediated immunity with increased baseline levels of systemic inflammation (obesity, pregnancy, advanced age). These mechanisms may explain the prolonged viral replication reported in critically ill patients with influenza: patients with life-threatening disease are, by definition, abnormal hosts. Understanding these molecular mechanisms of susceptibility may in the future enable the design of host-directed therapies to promote resilience.
Collapse
Affiliation(s)
- Sara Clohisey
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK
| | - John Kenneth Baillie
- Division of Genetics and Genomics, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK. .,Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK.
| |
Collapse
|
19
|
Short KR, Kedzierska K, van de Sandt CE. Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Front Cell Infect Microbiol 2018; 8:343. [PMID: 30349811 PMCID: PMC6187080 DOI: 10.3389/fcimb.2018.00343] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
2018 marks the 100-year anniversary of the 1918 influenza pandemic, which killed ~50 million people worldwide. The severity of this pandemic resulted from a complex interplay between viral, host, and societal factors. Here, we review the viral, genetic and immune factors that contributed to the severity of the 1918 pandemic and discuss the implications for modern pandemic preparedness. We address unresolved questions of why the 1918 influenza H1N1 virus was more virulent than other influenza pandemics and why some people survived the 1918 pandemic and others succumbed to the infection. While current studies suggest that viral factors such as haemagglutinin and polymerase gene segments most likely contributed to a potent, dysregulated pro-inflammatory cytokine storm in victims of the pandemic, a shift in case-fatality for the 1918 pandemic toward young adults was most likely associated with the host's immune status. Lack of pre-existing virus-specific and/or cross-reactive antibodies and cellular immunity in children and young adults likely contributed to the high attack rate and rapid spread of the 1918 H1N1 virus. In contrast, lower mortality rate in in the older (>30 years) adult population points toward the beneficial effects of pre-existing cross-reactive immunity. In addition to the role of humoral and cellular immunity, there is a growing body of evidence to suggest that individual genetic differences, especially involving single-nucleotide polymorphisms (SNPs), contribute to differences in the severity of influenza virus infections. Co-infections with bacterial pathogens, and possibly measles and malaria, co-morbidities, malnutrition or obesity are also known to affect the severity of influenza disease, and likely influenced 1918 H1N1 disease severity and outcomes. Additionally, we also discuss the new challenges, such as changing population demographics, antibiotic resistance and climate change, which we will face in the context of any future influenza virus pandemic. In the last decade there has been a dramatic increase in the number of severe influenza virus strains entering the human population from animal reservoirs (including highly pathogenic H7N9 and H5N1 viruses). An understanding of past influenza virus pandemics and the lessons that we have learnt from them has therefore never been more pertinent.
Collapse
Affiliation(s)
- Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
20
|
Lin Z, Thorenoor N, Wu R, DiAngelo SL, Ye M, Thomas NJ, Liao X, Lin TR, Warren S, Floros J. Genetic Association of Pulmonary Surfactant Protein Genes, SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD With Cystic Fibrosis. Front Immunol 2018; 9:2256. [PMID: 30333828 PMCID: PMC6175982 DOI: 10.3389/fimmu.2018.02256] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
Surfactant proteins (SP) are involved in surfactant function and innate immunity in the human lung. Both lung function and innate immunity are altered in CF, and altered SP levels and genetic association are observed in Cystic Fibrosis (CF). We hypothesized that single nucleotide polymorphisms (SNPs) within the SP genes associate with CF or severity subgroups, either through single SNP or via SNP-SNP interactions between two SNPs of a given gene (intragenic) and/or between two genes (intergenic). We genotyped a total of 17 SP SNPs from 72 case-trio pedigree (SFTPA1 (5), SFTPA2 (4), SFTPB (4), SFTPC (2), and SFTPD (2)), and identified SP SNP associations by applying quantitative genetic principles. The results showed (a) Two SNPs, SFTPB rs7316 (p = 0.0083) and SFTPC rs1124 (p = 0.0154), each associated with CF. (b) Three intragenic SNP-SNP interactions, SFTPB (rs2077079, rs3024798), and SFTPA1 (rs1136451, rs1059057 and rs4253527), associated with CF. (c) A total of 34 intergenic SNP-SNP interactions among the 4 SP genes to be associated with CF. (d) No SNP-SNP interaction was observed between SFTPA1 or SFTPA2 and SFTPD. (e) Equal number of SNP-SNP interactions were observed between SFTPB and SFTPA1/SFTPA2 (n = 7) and SP-B and SFTPD (n = 7). (f) SFTPC exhibited significant SNP-SNP interactions with SFTPA1/SFTPA2 (n = 11), SFTPB (n = 4) and SFTPD (n = 3). (g) A single SFTPB SNP was associated with mild CF after Bonferroni correction, and several intergenic interactions that are associated (p < 0.01) with either mild or moderate/severe CF were observed. These collectively indicate that complex SNP-SNP interactions of the SP genes may contribute to the pulmonary disease in CF patients. We speculate that SPs may serve as modifiers for the varied progression of pulmonary disease in CF and/or its severity.
Collapse
Affiliation(s)
- Zhenwu Lin
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Susan L. DiAngelo
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Meixia Ye
- Public Health Science, College of Medicine, Pennsylvania State University, Hershey, PA, United States
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Neal J. Thomas
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Xiaojie Liao
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Tony R. Lin
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Stuart Warren
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University, Hershey, PA, United States
- Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
21
|
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018; 41:218-233. [PMID: 30348265 PMCID: PMC6197993 DOI: 10.1016/j.bj.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.
Collapse
Affiliation(s)
- Laura Denney
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
22
|
Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: a diagnostic validity study. Clin Microbiol Infect 2018; 25:372-378. [PMID: 29906597 DOI: 10.1016/j.cmi.2018.06.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Automated point-of-care molecular assays have greatly shortened the turnaround time of respiratory virus testing. One of the major bottlenecks now lies at the specimen collection step, especially in a busy clinical setting. Saliva is a convenient specimen type that can be provided easily by adult patients. This study assessed the diagnostic validity, specimen collection time and cost associated with the use of saliva. METHODS This was a prospective diagnostic validity study comparing the detection rate of respiratory viruses between saliva and nasopharyngeal aspirate (NPA) among adult hospitalized patients using Xpert® Xpress Flu/RSV. The cost and time associated with the collection of saliva and nasopharyngeal specimens were also estimated. RESULTS Between July and October 2017, 214 patients were recruited. The overall agreement between saliva and NPA was 93.3% (196/210, κ 0.851, 95% CI 0.776-0.926). There was no significant difference in the detection rate of respiratory viruses between saliva and NPA (32.9% (69/210) versus 35.7% (75/210); p 0.146). The overall sensitivity and specificity were 90.8% (81.9%-96.2%) and 100% (97.3%-100%), respectively, for saliva, and were 96.1% (88.9%-99.2%) and 98.5% (94.7%-99.8%), respectively, for NPA. The time and cost associated with the collection of saliva were 2.26-fold and 2.59-fold lower, respectively, than those of NPA. CONCLUSIONS Saliva specimens have high sensitivity and specificity in the detection of respiratory viruses by an automated multiplex Clinical Laboratory Improvement Amendments-waived point-of-care molecular assay when compared with those of NPA. The use of saliva also reduces the time and cost associated with specimen collection.
Collapse
|
23
|
Detecting Early Warning Signal of Influenza A Disease Using Sample-Specific Dynamical Network Biomarkers. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6807059. [PMID: 29662893 PMCID: PMC5831949 DOI: 10.1155/2018/6807059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/30/2017] [Accepted: 12/25/2017] [Indexed: 11/17/2022]
Abstract
Aims/Introduction. Evidences have shown that the deteriorated procession of disease is not a smooth change with time and conditions, in which a critical transition point denoted as predisease state drives the state from normal to disease. Considering individual differences, this paper provides a sample-specific method that constructs an index with individual-specific dynamical network biomarkers (DNB) which are defined as early warning index (EWI) for detecting predisease state of individual sample. Based on microarray data of influenza A disease, 144 genes are selected as DNB and the 7th time period is defined as predisease state. In addition, according to functional analysis of the discovered DNB, it is relevant with experience data, which can illustrate the effectiveness of our sample-specific method.
Collapse
|
24
|
To KKW, Lu L, Fong CHY, Wu AKL, Mok KY, Yip CCY, Ke YH, Sze KH, Lau SKP, Hung IFN, Yuen KY. Rhinovirus respiratory tract infection in hospitalized adult patients is associated with T H2 response irrespective of asthma. J Infect 2018; 76:465-474. [PMID: 29454786 DOI: 10.1016/j.jinf.2018.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We assessed the immunological response of hospitalized adult patients with rhinovirus infection, including critically-ill patients. METHODS The differential white blood cell (WBC) count and the levels of 29 plasma cytokines/chemokines were compared between 50 adult hospitalized patients with rhinovirus infection and 100 age-matched controls with influenza virus infection. RESULTS The demographics and comorbidities were similar between rhinovirus and influenza patients, but severe disease was more common for the rhinovirus cohort. Rhinovirus patients had significantly higher WBC counts than influenza patients, especially for eosinophil (P = 3.1 × 10-8). The level of the TH2 cytokine IL-5 was significantly higher among rhinovirus patients, while the levels of 9 other cytokines/chemokines were significantly lower among rhinovirus patients. The levels of CXCL-10 (IP-10), CCL-2 (MCP-1), IFN-α2, IFN-γ, IL-10, and IL-15 remained significantly lower among rhinovirus patients after correction for multiple comparisons. Notably, CXCL-10 had the highest area under the receiver operating characteristic curve (AUC) in differentiating rhinovirus from influenza patients (AUC, 0.918). In the patient subgroup without asthma, the difference in the WBC count and cytokine/chemokine levels between rhinovirus and influenza patients remained statistically significant. CONCLUSIONS Rhinovirus infection was characterized by a prominent TH2 response, even in patients without asthma. CXCL-10 (IP-10) is a potential biomarker in differentiating rhinovirus from influenza infection.
Collapse
Affiliation(s)
- Kelvin K W To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, Hong Kong, China
| | - Lu Lu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carol H Y Fong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alan K L Wu
- Department of Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Ka-Yi Mok
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cyril C Y Yip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, Hong Kong, China
| | - Yi-Hong Ke
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kong-Hung Sze
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Susanna K P Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, Hong Kong, China
| | - Ivan F N Hung
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
25
|
Tsui NBY, Cheng G, Chung T, Lam CWK, Yee A, Chung PKC, Kwan TK, Ko E, He D, Wong WT, Lau JYN, Lau LT, Fok M. Population-Wide Genetic Risk Prediction of Complex Diseases: A Pilot Feasibility Study in Macau Population for Precision Public Healthcare Planning. Sci Rep 2018; 8:1853. [PMID: 29382849 PMCID: PMC5789865 DOI: 10.1038/s41598-017-19017-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/20/2017] [Indexed: 02/01/2023] Open
Abstract
The genetic bases of many common diseases have been identified through genome-wide association studies in the past decade. However, the application of this approach on public healthcare planning has not been well established. Using Macau with population of around 650,000 as a basis, we conducted a pilot study to evaluate the feasibility of population genomic research and its potential on public health decisions. By performing genome-wide SNP genotyping of over a thousand Macau individuals, we evaluated the population genetic risk profiles of 47 non-communicable diseases and traits, as well as two traits associated with influenza infection. We found that for most of the diseases, the genetic risks of Macau population were different from those of Caucasian, but with similar profile with mainland Chinese. We also identified a panel of diseases that Macau population may have a high or elevated genetic risks. This pilot study showed that (1) population genomic study is feasible in Asian regions like Macau; (2) Macau may have different profile of population-based genetic risks than Caucasians, (3) the different prevalence of genetic risk profile indicates the importance of Asian-specific studies for Asian populations; and (4) the results generated may have an impact for going forward healthcare planning.
Collapse
Affiliation(s)
- Nancy B Y Tsui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.,Avalon Genomics (Hong Kong) Limited, Shatin, Hong Kong
| | - Gregory Cheng
- Faculty of Health Sciences, Macau University of Science and Technology, Taipa, Macau
| | - Teresa Chung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Christopher W K Lam
- Faculty of Health Sciences, Macau University of Science and Technology, Taipa, Macau
| | - Anita Yee
- Avalon Genomics (Hong Kong) Limited, Shatin, Hong Kong
| | | | - Tsz-Ki Kwan
- Avalon Genomics (Hong Kong) Limited, Shatin, Hong Kong
| | - Elaine Ko
- Avalon Genomics (Hong Kong) Limited, Shatin, Hong Kong
| | - Daihai He
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Johnson Y N Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Lok Ting Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Manson Fok
- Faculty of Health Sciences, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
26
|
Kenney AD, Dowdle JA, Bozzacco L, McMichael TM, St Gelais C, Panfil AR, Sun Y, Schlesinger LS, Anderson MZ, Green PL, López CB, Rosenberg BR, Wu L, Yount JS. Human Genetic Determinants of Viral Diseases. Annu Rev Genet 2017; 51:241-263. [PMID: 28853921 DOI: 10.1146/annurev-genet-120116-023425] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Much progress has been made in the identification of specific human gene variants that contribute to enhanced susceptibility or resistance to viral diseases. Herein we review multiple discoveries made with genome-wide or candidate gene approaches that have revealed significant insights into virus-host interactions. Genetic factors that have been identified include genes encoding virus receptors, receptor-modifying enzymes, and a wide variety of innate and adaptive immunity-related proteins. We discuss a range of pathogenic viruses, including influenza virus, respiratory syncytial virus, human immunodeficiency virus, human T cell leukemia virus, human papilloma virus, hepatitis B and C viruses, herpes simplex virus, norovirus, rotavirus, parvovirus, and Epstein-Barr virus. Understanding the genetic underpinnings that affect infectious disease outcomes should allow tailored treatment and prevention approaches in the future.
Collapse
Affiliation(s)
- Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - James A Dowdle
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.,Current affiliation: Target Information Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, USA;
| | - Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Corine St Gelais
- Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Amanda R Panfil
- Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Yan Sun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , , .,Texas Biomedical Research Institute, San Antonio, Texas 78227, USA;
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Patrick L Green
- Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Brad R Rosenberg
- Program in Immunogenomics, John C. Whitehead Presidential Fellows Program, The Rockefeller University, New York, NY 10065, USA.,Current affiliation: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Li Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , , .,Center of Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210, USA; , , ,
| |
Collapse
|
27
|
Principi N, Esposito S. Severe influenza in children: incidence and risk factors. Expert Rev Anti Infect Ther 2016; 14:961-8. [PMID: 27560100 DOI: 10.1080/14787210.2016.1227701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/19/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The identification of factors that can predispose to the development of severe influenza is essential to enable the implementation of optimal prevention and control measures for vulnerable populations. AREAS COVERED Unfortunately, data in the pediatric age group remain difficult to interpret. However, epidemiological data seem to suggest that the most severe influenza cases, those who are hospitalized, those who are admitted to the intensive care unit, and those who died, occur in children in the first 2 years of life and in school age patients. Expert commentary: Immaturity of the immune system, and in particular of the mechanisms that usually recognize influenza viruses and activate cytokine and chemokine responses to reduce viral replication, might explain the high hospitalization rate observed in the youngest patients. Some underlying chronic conditions favour the development of the severe cases, sometime leading to death, although both admission to the intensive care unit and death can occur in otherwise healthy subjects.
Collapse
Affiliation(s)
- Nicola Principi
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Susanna Esposito
- a Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation , Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
28
|
Protein profiling of nasopharyngeal aspirates of hospitalized and outpatients revealed cytokines associated with severe influenza A(H1N1)pdm09 virus infections: A pilot study. Cytokine 2016; 86:10-14. [DOI: 10.1016/j.cyto.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
29
|
Ciancanelli MJ, Abel L, Zhang SY, Casanova JL. Host genetics of severe influenza: from mouse Mx1 to human IRF7. Curr Opin Immunol 2016; 38:109-20. [PMID: 26761402 PMCID: PMC4733643 DOI: 10.1016/j.coi.2015.12.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 12/22/2022]
Abstract
Influenza viruses cause mild to moderate respiratory illness in most people, and only rarely devastating or fatal infections. The virulence factors encoded by viral genes can explain seasonal or geographic differences at the population level but are unlikely to account for inter-individual clinical variability. Inherited or acquired immunodeficiencies may thus underlie severe cases of influenza. The crucial role of host genes was first demonstrated by forward genetics in inbred mice, with the identification of interferon (IFN)-α/β-inducible Mx1 as a canonical influenza susceptibility gene. Reverse genetics has subsequently characterized the in vivo role of other mouse genes involved in IFN-α/β and -λ immunity. A series of in vitro studies with mouse and human cells have also refined the cell-intrinsic mechanisms of protection against influenza viruses. Population-based human genetic studies have not yet uncovered variants with a significant impact. Interestingly, human primary immunodeficiencies affecting T and B cells were also not found to predispose to severe influenza. Recently however, human IRF7 was shown to be essential for IFN-α/β- and IFN-λ-dependent protective immunity against primary influenza in vivo, as inferred from a patient with life-threatening influenza revealed to be IRF7-deficient by whole exome sequencing. Next generation sequencing of human exomes and genomes will facilitate the analysis of the human genetic determinism of severe influenza.
Collapse
Affiliation(s)
- Michael J Ciancanelli
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Necker Hospital for Sick Children, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
30
|
PExFInS: An Integrative Post-GWAS Explorer for Functional Indels and SNPs. Sci Rep 2015; 5:17302. [PMID: 26612672 PMCID: PMC4661514 DOI: 10.1038/srep17302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
Expression quantitative trait loci (eQTLs) mapping and linkage disequilibrium (LD) analysis have been widely employed to interpret findings of genome-wide association studies (GWAS). With the availability of deep sequencing data of 423 lymphoblastoid cell lines (LCLs) from six global populations and the microarray expression data, we performed eQTL analysis, identified more than 228 K SNP cis-eQTLs and 21 K indel cis-eQTLs and generated a LCL cis-eQTL database. We demonstrate that the percentages of population-shared and population-specific cis-eQTLs are comparable; while indel cis-eQTLs in the population-specific subsection make more contribution to gene expression variations than those in the population-shared subsection. We found cis-eQTLs, especially the population-shared cis-eQTLs are significantly enriched toward transcription start site. Moreover, the National Human Genome Research Institute cataloged GWAS SNPs are enriched for LCL cis-eQTLs. Specifically, 32.8% GWAS SNPs are LCL cis-eQTLs, among which 12.5% can be tagged by indel cis-eQTLs, suggesting the fundamental contribution of indel cis-eQTLs to GWAS association signals. To search for functional indels and SNPs tagging GWAS SNPs, a pipeline Post-GWAS Explorer for Functional Indels and SNPs (PExFInS) has been developed, integrating LD analysis, functional annotation from public databases, cis-eQTL mapping with our LCL cis-eQTL database and other published cis-eQTL datasets.
Collapse
|
31
|
To KKW, Zhou J, Chan JFW, Yuen KY. Host genes and influenza pathogenesis in humans: an emerging paradigm. Curr Opin Virol 2015; 14:7-15. [PMID: 26079652 PMCID: PMC7102748 DOI: 10.1016/j.coviro.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
The emergence of the pandemic influenza virus A(H1N1)pdm09 in 2009 and avian influenza virus A(H7N9) in 2013 provided unique opportunities for assessing genetic predispositions to severe disease because many patients did not have any underlying risk factor or neutralizing antibody against these agents, in contrast to seasonal influenza viruses. High-throughput screening platforms and large human or animal databases from international collaborations allow rapid selection of potential candidate genes for confirmatory functional studies. In the last 2 years, at least seven new human susceptibility genes have been identified in genetic association studies. Integration of knowledge from genetic and phenotypic studies is essential to identify important gene targets for treatment and prevention of influenza virus infection.
Collapse
Affiliation(s)
- Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jie Zhou
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Research Centre of Infection and Immunology, Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Kebaabetswe LP, Haick AK, Gritsenko MA, Fillmore TL, Chu RK, Purvine SO, Webb-Robertson BJ, Matzke MM, Smith RD, Waters KM, Metz TO, Miura TA. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. Virology 2015; 483:96-107. [PMID: 25965799 DOI: 10.1016/j.virol.2015.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/13/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Infection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation. Proteins involved in mitochondrial membrane permeability, energy metabolism, and chromatin formation had reduced levels in PR8-infected cells. Phenotypic markers of ATII cells in vivo were identified, confirming the differentiation status of the cultures. Surfactant protein B had decreased levels in PR8-infected cells, which was confirmed by immunoblotting and immunofluorescence assays. Analysis of ATII cell protein profiles will elucidate cellular processes in IAV pathogenesis, which may provide insight into potential therapies to modulate disease severity.
Collapse
Affiliation(s)
- Lemme P Kebaabetswe
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Anoria K Haick
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas L Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bobbie-Jo Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Melissa M Matzke
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
33
|
Qin Y, Horby PW, Tsang TK, Chen E, Gao L, Ou J, Nguyen TH, Duong TN, Gasimov V, Feng L, Wu P, Jiang H, Ren X, Peng Z, Li S, Li M, Zheng J, Liu S, Hu S, Hong R, Farrar JJ, Leung GM, Gao GF, Cowling BJ, Yu H. Differences in the Epidemiology of Human Cases of Avian Influenza A(H7N9) and A(H5N1) Viruses Infection. Clin Infect Dis 2015; 61:563-71. [PMID: 25940354 DOI: 10.1093/cid/civ345] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The pandemic potential of avian influenza viruses A(H5N1) and A(H7N9) remains an unresolved but critically important question. METHODS We compared the characteristics of sporadic and clustered cases of human H5N1 and H7N9 infection, estimated the relative risk of infection in blood-related contacts, and the reproduction number (R). RESULTS We assembled and analyzed data on 720 H5N1 cases and 460 H7N9 cases up to 2 November 2014. The severity and average age of sporadic/index cases of H7N9 was greater than secondary cases (71% requiring intensive care unit admission vs 33%, P = .007; median age 59 years vs 31, P < .001). We observed no significant differences in the age and severity between sporadic/index and secondary H5N1 cases. The upper limit of the 95% confidence interval (CI) for R was 0.12 for H5N1 and 0.27 for H7N9. A higher proportion of H5N1 infections occurred in clusters (20%) compared to H7N9 (8%). The relative risk of infection in blood-related contacts of cases compared to unrelated contacts was 8.96 for H5N1 (95% CI, 1.30, 61.86) and 0.80 for H7N9 (95% CI, .32, 1.97). CONCLUSIONS The results are consistent with an ascertainment bias towards severe and older cases for sporadic H7N9 but not for H5N1. The lack of evidence for ascertainment bias in sporadic H5N1 cases, the more pronounced clustering of cases, and the higher risk of infection in blood-related contacts, support the hypothesis that susceptibility to H5N1 may be limited and familial. This analysis suggests the potential pandemic risk may be greater for H7N9 than H5N1.
Collapse
Affiliation(s)
- Ying Qin
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peter W Horby
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, United Kingdom Singapore Infectious Disease Initiative
| | - Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha
| | - Jianming Ou
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | | | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Luzhao Feng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Hui Jiang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiang Ren
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhibin Peng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sa Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ming Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiandong Zheng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shelan Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha
| | - Rongtao Hong
- Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Jeremy J Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, United Kingdom Singapore Infectious Disease Initiative ISARIC, Centre for Tropical Medicine, University of Oxford, Churchill Hospital, United Kingdom
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences Office of Director-General, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
34
|
Cheng Z, Zhou J, To KKW, Chu H, Li C, Wang D, Yang D, Zheng S, Hao K, Bossé Y, Obeidat M, Brandsma CA, Song YQ, Chen Y, Zheng BJ, Li L, Yuen KY. Identification of TMPRSS2 as a Susceptibility Gene for Severe 2009 Pandemic A(H1N1) Influenza and A(H7N9) Influenza. J Infect Dis 2015; 212:1214-21. [PMID: 25904605 PMCID: PMC7107393 DOI: 10.1093/infdis/jiv246] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/27/2015] [Indexed: 01/25/2023] Open
Abstract
The genetic predisposition to severe A(H1N1)2009 (A[H1N1]pdm09) influenza was evaluated in 409 patients, including 162 cases with severe infection and 247 controls with mild infection. We prioritized candidate variants based on the result of a pilot genome-wide association study and a lung expression quantitative trait locus data set. The GG genotype of rs2070788, a higher-expression variant of TMPRSS2, was a risk variant (odds ratio, 2.11; 95% confidence interval, 1.18-3.77; P = .01) to severe A(H1N1)pdm09 influenza. A potentially functional single-nucleotide polymorphism, rs383510, accommodated in a putative regulatory region was identified to tag rs2070788. Luciferase assay results showed the putative regulatory region was a functional element, in which rs383510 regulated TMPRSS2 expression in a genotype-specific manner. Notably, rs2070788 and rs383510 were significantly associated with the susceptibility to A(H7N9) influenza in 102 patients with A(H7N9) influenza and 106 healthy controls. Therefore, we demonstrate that genetic variants with higher TMPRSS2 expression confer higher risk to severe A(H1N1)pdm09 influenza. The same variants also increase susceptibility to human A(H7N9) influenza.
Collapse
Affiliation(s)
| | - Jie Zhou
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases
| | - Kelvin Kai-Wang To
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection
| | - Hin Chu
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases
| | - Cun Li
- Department of Microbiology
| | | | | | - Shufa Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
| | - Yohan Bossé
- Department of Molecular Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University
| | - Ma'en Obeidat
- University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, The Netherlands
| | - You-Qiang Song
- Department of Biochemistry, The University of Hong Kong, Pok Fu Lam
| | - Yu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Bo-Jian Zheng
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Kwok-Yung Yuen
- Department of Microbiology Research Centre of Infection and Immunology State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection
| |
Collapse
|
35
|
Functional variants regulating LGALS1 (Galectin 1) expression affect human susceptibility to influenza A(H7N9). Sci Rep 2015; 5:8517. [PMID: 25687228 PMCID: PMC4649671 DOI: 10.1038/srep08517] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/21/2015] [Indexed: 01/01/2023] Open
Abstract
The fatality of avian influenza A(H7N9) infection in humans was over 30%. To identify human genetic susceptibility to A(H7N9) infection, we performed a genome-wide association study (GWAS) involving 102 A(H7N9) patients and 106 heavily-exposed healthy poultry workers, a sample size critically restricted by the small number of human A(H7N9) cases. To tackle the stringent significance cutoff of GWAS, we utilized an artificial imputation program SnipSnip to improve the association signals. In single-SNP analysis, one of the top SNPs was rs13057866 of LGALS1. The artificial imputation (AI) identified three non-genotyped causal variants, which can be represented by three anchor/partner SNP pairs rs13057866/rs9622682 (AI P = 1.81 × 10−7), rs4820294/rs2899292 (2.13 × 10−7) and rs62236673/rs2899292 (4.25 × 10−7) respectively. Haplotype analysis of rs4820294 and rs2899292 could simulate the signal of a causal variant. The rs4820294/rs2899292 haplotype GG, in association with protection from A(H7N9) infection (OR = 0.26, P = 5.92 × 10−7) correlated to significantly higher levels of LGALS1 mRNA (P = 0.050) and protein expression (P = 0.025) in lymphoblast cell lines. Additionally, rs4820294 was mapped as an eQTL in human primary monocytes and lung tissues. In conclusion, functional variants of LGALS1 causing the expression variations are contributable to the differential susceptibility to influenza A(H7N9).
Collapse
|
36
|
To KKW, Chan JFW, Tsang AKL, Cheng VCC, Yuen KY. Ebola virus disease: a highly fatal infectious disease reemerging in West Africa. Microbes Infect 2014; 17:84-97. [PMID: 25456100 PMCID: PMC7110538 DOI: 10.1016/j.micinf.2014.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Ebolavirus can cause a highly fatal and panic-generating human disease which may jump from bats to other mammals and human. High viral loads in body fluids allow efficient transmission by contact. Lack of effective antivirals, vaccines and public health infrastructures in parts of Africa make it difficult to health workers to contain the outbreak.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Alan K L Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Vincent C C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China; Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Scholand MB, Liou TG. Genetic discovery, rigorous statistics, and pandemic influenza. Chest 2014; 145:1186-1188. [PMID: 24889428 DOI: 10.1378/chest.14-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Mary Beth Scholand
- Department of Internal Medicine, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Theodore G Liou
- Department of Internal Medicine, Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, School of Medicine, University of Utah, Salt Lake City, UT.
| |
Collapse
|
38
|
Hui DS, Hayden FG. Editorial commentary: Host and viral factors in emergent influenza virus infections. Clin Infect Dis 2014; 58:1104-6. [PMID: 24488976 PMCID: PMC3967827 DOI: 10.1093/cid/ciu054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- David S Hui
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Shatin
| | | |
Collapse
|
39
|
To KKW, Tsang AKL, Chan JFW, Cheng VCC, Chen H, Yuen KY. Emergence in China of human disease due to avian influenza A(H10N8)--cause for concern? J Infect 2014; 68:205-15. [PMID: 24406432 DOI: 10.1016/j.jinf.2013.12.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 12/11/2022]
Abstract
In December 2013, China reported the first human case of avian influenza A(H10N8). A 73-year-old female with chronic diseases who had visited a live poultry market succumbed with community-acquired pneumonia. While human infections with avian influenza viruses are usually associated with subtypes prevalent in poultries, A(H10N8) isolates were mostly found in migratory birds and only recently in poultries. Although not possible to predict whether this single intrusion by A(H10N8) is an accident or the start of another epidemic like the preceding A(H7N9) and A(H5N1), several features suggest that A(H10N8) is a potential threat to humans. Recombinant H10 could attach to human respiratory epithelium, and A(H10N4) virus could cause severe infections in minks and chickens. A(H10N8) viruses contain genetic markers for mammalian adaptation and virulence in the haemagglutinin (A135T, S138A[H3 numbering]), M1(N30D, T215A), NS1(P42S) and PB2(E627K) protein. Studies on this human A(H10N8) isolate will reveal its adaptability to humans. Clinicians should alert the laboratory to test for A(H5,6,7,9,10) viruses in patients with epidemiological exposure in endemic geographical areas especially when human influenza A(H1,3) and B are negative. Vigilant virological and serological surveillance for A(H10N8) in human, poultry and wild bird is important for following the trajectory of this emerging influenza virus.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Alan K L Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Vincent C C Cheng
- Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong Special Administrative Region; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong Special Administrative Region; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|