1
|
Orssatto LBR, Blazevich AJ, Trajano GS. Ageing reduces persistent inward current contribution to motor neurone firing: Potential mechanisms and the role of exercise. J Physiol 2023; 601:3705-3716. [PMID: 37488952 DOI: 10.1113/jp284603] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023] Open
Abstract
Nervous system deterioration is a primary driver of age-related motor impairment. The motor neurones, which act as the interface between the central nervous system and the muscles, play a crucial role in amplifying excitatory synaptic input to produce the desired motor neuronal firing output. For this, they utilise their ability to generate persistent (long-lasting) depolarising currents that increase cell excitability, and both amplify and prolong the output activity of motor neurones for a given synaptic input. Modulation of these persistent inward currents (PICs) contributes to the motor neurones' capacities to attain the required firing frequencies and rapidly modulate them to competently complete most tasks. Thus, PICs are crucial for adequate movement generation. Impairments in intrinsic motor neurone properties can impact motor unit firing capacity, with convincing evidence indicating that the PIC contribution to motor neurone firing is reduced in older adults. Indeed, this could be an important mechanism underpinning the age-related reductions in strength and physical function. Furthermore, resistance training has emerged as a promising intervention to counteract age-associated PIC impairments, with changes in PICs being correlated with improvements in muscular strength and physical function after training. In this review, we present the current knowledge of the PIC magnitude decline during ageing and discuss whether reduced serotonergic and noradrenergic input onto the motor neurones, voltage-gated calcium channel dysfunction or inhibitory input impairments are candidates that: (i) explain age-related reductions in the PIC contribution to motor neurone firing and (ii) underpin the enhanced PIC contribution to motor neurone firing following resistance training in older adults.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Anthony J Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, WA, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
2
|
Saini J, Faroni A, Reid AJ, Mouly V, Butler-Browne G, Lightfoot AP, McPhee JS, Degens H, Al-Shanti N. Cross-talk between motor neurons and myotubes via endogenously secreted neural and muscular growth factors. Physiol Rep 2021; 9:e14791. [PMID: 33931983 PMCID: PMC8087923 DOI: 10.14814/phy2.14791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular junction (NMJ) research is vital to advance the understanding of neuromuscular patho‐physiology and development of novel therapies for diseases associated with NM dysfunction. In vivo, the micro‐environment surrounding the NMJ has a significant impact on NMJ formation and maintenance via neurotrophic and differentiation factors that are secreted as a result of cross‐talk between muscle fibers and motor neurons. Recently we showed the formation of functional NMJs in vitro in a co‐culture of immortalized human myoblasts and motor neurons from rat‐embryo spinal‐cord explants, using a culture medium free from serum and neurotrophic or growth factors. The aim of this study was to assess how functional NMJs were established in this co‐culture devoid of exogenous neural growth factors. To investigate this, an ELISA‐based microarray was used to compare the composition of soluble endogenously secreted growth factors in this co‐culture with an a‐neural muscle culture. The levels of seven neurotrophic factors brain‐derived neurotrophic factor (BDNF), glial‐cell‐line‐derived neurotrophic factor (GDNF), insulin‐like growth factor‐binding protein‐3 (IGFBP‐3), insulin‐like growth factor‐1 (IGF‐1), neurotrophin‐3 (NT‐3), neurotrophin‐4 (NT‐4), and vascular endothelial growth factor (VEGF) were higher (p < 0.05) in the supernatant of NMJ culture compared to those in the supernatant of the a‐neural muscle culture. This indicates that the cross‐talk between muscle and motor neurons promotes the secretion of soluble growth factors contributing to the local microenvironment thereby providing a favourable regenerative niche for NMJs formation and maturation.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Dept. of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Dept. of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | | | - Adam P Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Institute of Sport Science and Innovations, Kaunas, Lithuania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
3
|
Grönholdt‐Klein M, Altun M, Becklén M, Dickman Kahm E, Fahlström A, Rullman E, Ulfhake B. Muscle atrophy and regeneration associated with behavioural loss and recovery of function after sciatic nerve crush. Acta Physiol (Oxf) 2019; 227:e13335. [PMID: 31199566 DOI: 10.1111/apha.13335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
AIM To resolve timing and coordination of denervation atrophy and the re-innervation recovery process to discern correlations indicative of common programs governing these processes. METHODS Female Sprague-Dawley (SD) rats had a unilateral sciatic nerve crush. Based on longitudinal behavioural observations, the triceps surae muscle was analysed at different time points post-lesion. RESULTS Crush results in a loss of muscle function and mass (-30%) followed by a recovery to almost pre-lesion status at 30 days post-crush (dpc). There was no loss of fibres nor any significant change in the number of nuclei per fibre but a shift in fibres expressing myosins I and II that reverted back to control levels at 30 dpc. A residual was the persistence of hybrid fibres. Early on a CHNR -ε to -γ switch and a re-expression of embryonic MyHC showed as signs of denervation. Foxo1, Smad3, Fbxo32 and Trim63 transcripts were upregulated but not Myostatin, InhibinA and ActivinR2B. Combined this suggests that the mechanism instigating atrophy provides a selectivity of pathway(s) activated. The myogenic differentiation factors (MDFs: Myog, Myod1 and Myf6) were upregulated early on suggesting a role also in the initial atrophy. The regulation of these transcripts returned towards baseline at 30 dpc. The examined genes showed a strong baseline covariance in transcript levels which dissolved in the response to crush driven mainly by the MDFs. At 30 dpc the naïve expression pattern was re-established. CONCLUSION Peripheral nerve crush offers an excellent model to assess and interfere with muscle adaptions to denervation and re-innervation.
Collapse
Affiliation(s)
| | - Mikael Altun
- Department of Laboratory Medicine Karolinska Institutet Huddinge Sweden
| | - Meneca Becklén
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| | | | - Andreas Fahlström
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neuroscience, Neurosurgery Uppsala University Uppsala Sweden
| | - Eric Rullman
- Department of Laboratory Medicine Karolinska Institutet Huddinge Sweden
| | - Brun Ulfhake
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| |
Collapse
|
4
|
Carson RG. Get a grip: individual variations in grip strength are a marker of brain health. Neurobiol Aging 2018; 71:189-222. [PMID: 30172220 DOI: 10.1016/j.neurobiolaging.2018.07.023] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/06/2018] [Accepted: 07/29/2018] [Indexed: 02/06/2023]
Abstract
Demonstrations that grip strength has predictive power in relation to a range of health conditions-even when these are assessed decades later-has motivated claims that hand-grip dynamometry has the potential to serve as a "vital sign" for middle-aged and older adults. Central to this belief has been the assumption that grip strength is a simple measure of physical performance that provides a marker of muscle status in general, and sarcopenia in particular. It is now evident that while differences in grip strength between individuals are influenced by musculoskeletal factors, "lifespan" changes in grip strength within individuals are exquisitely sensitive to integrity of neural systems that mediate the control of coordinated movement. The close and pervasive relationships between age-related declines in maximum grip strength and expressions of cognitive dysfunction can therefore be understood in terms of the convergent functional and structural mediation of cognitive and motor processes by the human brain. In the context of aging, maximum grip strength is a discriminating measure of neurological function and brain health.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Australia.
| |
Collapse
|
5
|
Yon HM, Naidu M. Activation of Akt and the signaling of phosphorylated Akt in the L5 dorsal root ganglia in aging rats. J ANAT SOC INDIA 2017. [DOI: 10.1016/j.jasi.2017.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. MEMBRANES 2014; 4:642-77. [PMID: 25295627 PMCID: PMC4289860 DOI: 10.3390/membranes4040642] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC) and p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.
Collapse
|
7
|
Allen EN, Cavanaugh JE. Loss of motor coordination in an aging mouse model. Behav Brain Res 2014; 267:119-25. [PMID: 24675158 DOI: 10.1016/j.bbr.2014.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
With age, there is an increase in motor deficits that leads to an increased incidence of slips and falls. As the elderly population continues to grow, there is a need for aging models and research that focus on behavioral deficits that occur with normal, non-diseased aging. The present study was designed to examine the appropriateness of C57Bl/6 male mice as aging animal models using the challenging beam and cylinder tests to measure motor coordination and spontaneous activity, respectively. Using young (2-4 mo), middle-aged (10-12 mo), and aged (22-24 mo) mice, we observed that aged C57Bl/6 male mice make more errors on the challenging beam task and take fewer hind limb steps as compared to young and middle-aged mice. Body weight and food intake were also measured to determine if these parameters were confounding factors in the interpretation of the behavioral data. Increases in body weight and food consumption were not observed in the oldest group that made the most errors. Together these data indicate that aged C57BL/6 mice display age-related motor deficits similar to those seen in humans and are an appropriate model of motor deficits that occur with age.
Collapse
Affiliation(s)
- Erika N Allen
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Jane E Cavanaugh
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
8
|
Age-related changes of neurochemically different subpopulations of cardiac spinal afferent neurons in rats. Exp Gerontol 2013; 48:774-7. [PMID: 23624182 DOI: 10.1016/j.exger.2013.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/20/2022]
Abstract
This study investigated the effect of aging on cardiac spinal afferent neurons in the rat. A patch loaded with retrograde tracer Fast Blue (FB) was applied to all chambers of the rat heart. Morphological and neurochemical characteristics of labeled cardiac spinal afferent neurons were assessed in young (2 months) and old (2 years) rats using markers for likely unmyelinated (isolectin B4; IB4) and myelinated (neurofilament 200; N52) neurons. The number of cardiac spinal afferent neurons decreased in senescence to 15% of that found in young rats (1604 vs. 248). The size of neuronal soma as well as proportion of IB4+ neurons increased significantly, whereas the proportion of N52+ neurons decreased significantly in senescence. Unlike somatic spinal afferents, neurochemically different populations of cardiac spinal afferent neurons experience morphological and neurochemical changes related to aging. A major decrease in total number of cardiac spinal afferent neurons occurs in senescence. The proportion of N52+ neurons decreased in senescence, but it seems that nociceptive innervation is preserved due to increased proportion and size of IB4+ unmyelinated neurons.
Collapse
|
9
|
Ranson RN, Connelly JH, Santer RM, Watson AHD. Nuclear expression of PG-21, SRC-1, and pCREB in regions of the lumbosacral spinal cord involved in pelvic innervation in young adult and aged rats. Anat Cell Biol 2012; 45:241-58. [PMID: 23301192 PMCID: PMC3531588 DOI: 10.5115/acb.2012.45.4.241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 11/29/2022] Open
Abstract
In rats, ageing results in dysfunctional patterns of micturition and diminished sexual reflexes that may reflect degenerative changes within spinal circuitry. In both sexes the dorsal lateral nucleus and the spinal nucleus of the bulbospongiosus, which lie in the L5-S1 spinal segments, contain motor neurons that innervate perineal muscles, and the external anal and urethral sphincters. Neurons in the sacral parasympathetic nucleus of these segments provide autonomic control of the bladder, cervix and penis and other lower urinary tract structures. Interneurons in the dorsal gray commissure and dorsal horn have also been implicated in lower urinary tract function. This study investigates the cellular localisation of PG-21 androgen receptors, steroid receptor co-activator one (SRC-1) and the phosphorylated form of c-AMP response element binding protein (pCREB) within these spinal nuclei. These are components of signalling pathways that mediate cellular responses to steroid hormones and neurotrophins. Nuclear expression of PG-21 androgen receptors, SRC-1 and pCREB in young and aged rats was quantified using immunohistochemistry. There was a reduction in the number of spinal neurons expressing these molecules in the aged males while in aged females, SRC-1 and pCREB expression was largely unchanged. This suggests that the observed age-related changes may be linked to declining testosterone levels. Acute testosterone therapy restored expression of PG-21 androgen receptor in aged and orchidectomised male rats, however levels of re-expression varied within different nuclei suggesting a more prolonged period of hormone replacement may be required for full restoration.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK. ; School of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
10
|
Evolving concepts on the age-related changes in "muscle quality". J Cachexia Sarcopenia Muscle 2012; 3:95-109. [PMID: 22476917 PMCID: PMC3374023 DOI: 10.1007/s13539-011-0054-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/26/2011] [Indexed: 01/06/2023] Open
Abstract
The deterioration of skeletal muscle with advancing age has long been anecdotally recognized and has been of scientific interest for more than 150 years. Over the past several decades, the scientific and medical communities have recognized that skeletal muscle dysfunction (e.g., muscle weakness, poor muscle coordination, etc.) is a debilitating and life-threatening condition in the elderly. For example, the age-associated loss of muscle strength is highly associated with both mortality and physical disability. It is well-accepted that voluntary muscle force production is not solely dependent upon muscle size, but rather results from a combination of neurologic and skeletal muscle factors, and that biologic properties of both of these systems are altered with aging. Accordingly, numerous scientists and clinicians have used the term "muscle quality" to describe the relationship between voluntary muscle strength and muscle size. In this review article, we discuss the age-associated changes in the neuromuscular system-starting at the level of the brain and proceeding down to the subcellular level of individual muscle fibers-that are potentially influential in the etiology of dynapenia (age-related loss of muscle strength and power).
Collapse
|
11
|
Arthur ST, Cooley ID. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int J Biol Sci 2012; 8:731-60. [PMID: 22701343 PMCID: PMC3371570 DOI: 10.7150/ijbs.4262] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/06/2012] [Indexed: 12/17/2022] Open
Abstract
The age-related loss of skeletal muscle mass and function that is associated with sarcopenia can result in ultimate consequences such as decreased quality of life. The causes of sarcopenia are multifactorial and include environmental and biological factors. The purpose of this review is to synthesize what the literature reveals in regards to the cellular regulation of sarcopenia, including impaired muscle regenerative capacity in the aged, and to discuss if physiological stimuli have the potential to slow the loss of myogenic potential that is associated with sarcopenia. In addition, this review article will discuss the effect of aging on Notch and Wnt signaling, and whether physiological stimuli have the ability to restore Notch and Wnt signaling resulting in rejuvenated aged muscle repair. The intention of this summary is to bring awareness to the benefits of consistent physiological stimulus (exercise) to combating sarcopenia as well as proclaiming the usefulness of contraction-induced injury models to studying the effects of local and systemic influences on aged myogenic capability.
Collapse
Affiliation(s)
- Susan Tsivitse Arthur
- Department of Kinesiology, Laboratory of Systems Physiology, University North Carolina - Charlotte, Charlotte, NC 28223, USA.
| | | |
Collapse
|
12
|
Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One 2011; 6:e28090. [PMID: 22164231 PMCID: PMC3229526 DOI: 10.1371/journal.pone.0028090] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/01/2011] [Indexed: 01/06/2023] Open
Abstract
Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1–L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ∼2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia.
Collapse
|
13
|
The recent understanding of the neurotrophin's role in skeletal muscle adaptation. J Biomed Biotechnol 2011; 2011:201696. [PMID: 21960735 PMCID: PMC3179880 DOI: 10.1155/2011/201696] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/24/2011] [Indexed: 12/31/2022] Open
Abstract
This paper summarizes the various effects of neurotrophins in skeletal muscle and how these proteins act as potential regulators of the maintenance, function, and regeneration of skeletal muscle fibers. Increasing evidence suggests that this family of neurotrophic factors influence not only the survival and function of innervating motoneurons but also the development and differentiation of myoblasts and muscle fibers. Muscle contractions (e.g., exercise) produce BDNF mRNA and protein in skeletal muscle, and the BDNF seems to play a role in enhancing glucose metabolism and may act for myokine to improve various brain disorders (e.g., Alzheimer's disease and major depression). In adults with neuromuscular disorders, variations in neurotrophin expression are found, and the role of neurotrophins under such conditions is beginning to be elucidated. This paper provides a basis for a better understanding of the role of these factors under such pathological conditions and for treatment of human neuromuscular disease.
Collapse
|
14
|
Kovacic U, Zele T, Mars T, Sketelj J, Bajrović FF. Aging impairs collateral sprouting of nociceptive axons in the rat. Neurobiol Aging 2010; 31:339-50. [PMID: 18499304 DOI: 10.1016/j.neurobiolaging.2008.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/25/2008] [Accepted: 03/29/2008] [Indexed: 01/15/2023]
Abstract
Sprouting of uninjured nociceptive axons was examined in young adult, middle aged and aged rats. Axon sprouting from the spared sural nerve, both into adjacent denervated skin and into end-to-side coapted nerve graft, was significantly higher in young rats than in aged rats. Cross-transplantations of the end-to-side coapted nerve grafts between young and aged rats demonstrated that axon sprouting from young recipient nerves into aged donor nerve grafts was significantly deteriorated, whereas the axon sprouting from aged recipient nerves into young donor nerve grafts was not statistically significantly affected. The levels of laminin polypeptides in peripheral nerves were 50-100% higher in young adult than in aged rats. However, the levels of peripherin, NGF isoforms and TrkA in skin, peripheral nerves and DRG, respectively, were not significantly reduced in aged rats. Therefore, impaired sprouting of nociceptive axons in aged rats is due rather to the alterations in peripheral neural pathways, than to the limited sprouting capacity of aged sensory neurons. Decreased levels of extracellular matrix components might be important in this respect.
Collapse
Affiliation(s)
- Uros Kovacic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
15
|
Phillips RJ, Walter GC, Powley TL. Age-related changes in vagal afferents innervating the gastrointestinal tract. Auton Neurosci 2010; 153:90-8. [PMID: 19665435 PMCID: PMC2818053 DOI: 10.1016/j.autneu.2009.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/11/2009] [Accepted: 07/13/2009] [Indexed: 12/16/2022]
Abstract
Recent progress in understanding visceral afferents, some of it reviewed in the present issue, serves to underscore how little is known about the aging of the visceral afferents in the gastrointestinal (GI) tract. In spite of the clinical importance of the issue-with age, GI function often becomes severely compromised-only a few initial observations on age-related structural changes of visceral afferents are available. Primary afferent cell bodies in both the nodose ganglia and dorsal root ganglia lose Nissl material and accumulate lipofucsin, inclusions, aggregates, and tangles. Additionally, in changes that we focus on in the present review, vagal visceral afferent terminals in both the muscle wall and the mucosa of the GI tract exhibit age-related structural changes. In aged animals, both of the vagal terminal types examined, namely intraganglionic laminar endings and villus afferents, exhibit dystrophic or regressive morphological changes. These neuropathies are associated with age-related changes in the structural integrity of the target organs of the affected afferents, suggesting that local changes in trophic environment may give rise to the aging of GI innervation. Given the clinical relevance of GI tract aging, a more complete understanding both of how aging alters the innervation of the gut and of how such changes might be mitigated should be made research priorities.
Collapse
Affiliation(s)
- Robert J Phillips
- Purdue University, Ingestive Behavior Research Center, Department of Psychological Sciences, West Lafayette, IN 47907-2081, USA.
| | | | | |
Collapse
|
16
|
Fahlström A, Yu Q, Ulfhake B. Behavioral changes in aging female C57BL/6 mice. Neurobiol Aging 2009; 32:1868-80. [PMID: 20005598 DOI: 10.1016/j.neurobiolaging.2009.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 10/21/2009] [Accepted: 11/03/2009] [Indexed: 12/22/2022]
Abstract
Using a range of tests we have studied alterations in behavior with advancing age in female C57BL/6 (of Jackson origin), the golden standard on which most genetically engineered mice are back-crossed. In parallel, growth and survival data were collected. In a protected environment the 90% and 75% cohort survival age was 20 and 25 months, respectively, and the 50% cohort survival was 32 months. In mice, body weight increases continuously until 15-20 months of age, while in advanced age whole body weight drops. The body mass loss in senescence is associated with emergence of other aged phenotype features such as kyphosis, balding and loss of fur-color. Our behavioral data show that aging modulates certain aspects of basic behavior in a continuous manner, like explorative and locomotor activities. Advanced age associates with an acceleration of behavioral impairments evident in most of the tests used, including motor skill acquisition and memory consolidation. However, certain domains of mouse behavior were well preserved also in advanced age such as thermal noxious threshold and working memory as assessed by an object recognition task. The decreased drive to explore is suggested to be a key factor underlying many aspects of reduced performance including cognitive capacity during aging. Behavioral aging affects genetically closely related individuals housed under strictly standardized conditions differentially (Collier, T.J., Coleman, P.D., 1991. Divergence of biological and chronological aging: evidence from rodent studies. Neurobiol. Aging, 12, 685-693; Ingram, D.K., 1988. Motor performance variability during aging in rodents. Assessment of reliability and validity of individual differences. Ann. N.Y. Acad. Sci., 515, 70-96). Consistent with this a subpopulation of the 28-month-old mice showed an explorative activity similar to young-adult mice and a significantly stronger preference for a novel object than aged mice with a less explorative behavior. Thus, subtle environmental factors and epigenetic modifications may be important modulators of aging.
Collapse
Affiliation(s)
- Andreas Fahlström
- Experimental Neurogerontology, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Augustin H, Partridge L. Invertebrate models of age-related muscle degeneration. Biochim Biophys Acta Gen Subj 2009; 1790:1084-94. [PMID: 19563864 DOI: 10.1016/j.bbagen.2009.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/12/2009] [Accepted: 06/20/2009] [Indexed: 12/26/2022]
Abstract
Functional and structural deterioration of muscles is an inevitable consequence of ageing in a wide variety of animal species. What underlies these changes is a complex network of interactions between the muscle-intrinsic and muscle-extrinsic factors, making it very difficult to distinguish between the cause and the consequence. Many of the genes, structures, and processes implicated in mammalian skeletal muscle ageing are preserved in invertebrate species Drosophila melanogaster and Caenorhabditis elegans. The absence in these organisms of mechanisms that promote muscle regeneration, and substantially different hormonal environment, warrant caution when extrapolating experimental data from studies conducted in invertebrates to mammalian species. The simplicity and accessibility of these models, however, offer ample opportunities for studying age-related myopathologies as well as investigating drugs and therapies to alleviate them.
Collapse
Affiliation(s)
- Hrvoje Augustin
- Institute of Healthy Ageing and GEE, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
18
|
Kovacic U, Sketelj J, Bajrović FF. Chapter 26: Age-related differences in the reinnervation after peripheral nerve injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:465-82. [PMID: 19682655 DOI: 10.1016/s0074-7742(09)87026-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous and extensive functional, structural, and biochemical changes characterize intact aged peripheral nervous system. Functional recovery after peripheral nerve injury depends on survival of injured neurons and functional reinnervation of target tissue by regeneration of injured axons and collateral sprouting of uninjured (intact) adjacent axons. The rate of axonal regeneration becomes slower and its extent (density and number of regenerating axons) decreases in aged animals. Aging also impairs terminal sprouting of regenerated axons and collateral sprouting of intact adjacent axons, thus further limiting target reinnervation and its functional recovery. Decreased survival of aged noninjured and injured neurons, limited intrinsic growth potential of neuron, alteration in its responsiveness to stimulatory or inhibitory environmental factors, and changes in the peripheral neural pathways and target tissues are possible reasons for impaired reinnervation after peripheral nerve injury in old age. The review of present data suggests that this impairment is mostly due to the age-related changes in the peripheral neural pathways and target tissues, and not due to the limited intrinsic growth capacity of neurons or their reduced responsiveness to trophic factors. Age-related alterations in the soluble target derived neurotrophic factors, like nerve growth factor, and nonsoluble extracellular matrix components of neural pathways, like laminin, might be important in this respect.
Collapse
Affiliation(s)
- Uros Kovacic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
19
|
Granacher U, Zahner L, Gollhofer A. Strength, power, and postural control in seniors: Considerations for functional adaptations and for fall prevention. Eur J Sport Sci 2008. [DOI: 10.1080/17461390802478066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Altun M, Bergman E, Edström E, Johnson H, Ulfhake B. Behavioral impairments of the aging rat. Physiol Behav 2007; 92:911-23. [PMID: 17675121 DOI: 10.1016/j.physbeh.2007.06.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 11/24/2022]
Abstract
Several disturbances occurring during aging of humans and rodents alike stem from changes in sensory and motor functions. Using a battery of behavioral tests we have studied alterations in performance with advancing age in female and male rats of some frequently used strains. In parallel, we collected survival and body weight data. The median survival age was similar for female and male Sprague-Dawley rats, inbred female Lewis and outbred male Wistar rats (29-30 months). In contrast, male Fisher 344 had a significantly shorter median life span. During aging there is a gradual decline in locomotor activity and explorative behavior while disturbances of coordination and balance first became evident at more advanced age. In old age, also weight carrying capacity, limb movement and temperature threshold were impaired. While whole body weight continues to increase over the better part of a rats' life span, the behavioral changes in old age associated with a decrease in both total body weight and muscle mass. Dietary restriction increases median life span expectancy; retards the pace of behavioral aging and impedes sarcopenia. Housing in enriched environment did not improve the scoring in the behavioral tests but tended to increase median life span. Finally, there was an agreement between behavioral data collected from longitudinal age-cohorts and those obtained from multiple age-cohorts.
Collapse
Affiliation(s)
- Mikael Altun
- Experimental Neurogerontology, Department of Neuroscience, Karolinska Institutet, Retziusväg 8, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Ai J, Gozal D, Li L, Wead WB, Chapleau MW, Wurster R, Yang B, Li H, Liu R, Cheng Z. Degeneration of vagal efferent axons and terminals in cardiac ganglia of aged rats. J Comp Neurol 2007; 504:74-88. [PMID: 17614301 DOI: 10.1002/cne.21431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Baroreflex control of the heart rate is significantly reduced during aging. However, neural mechanisms that underlie such a functional reduction are not fully understood. We injected the tracer DiI into the left nucleus ambiguus (NA), then used confocal microscopy and a Neurolucida Digitization System to examine qualitatively and quantitatively vagal efferent projections to cardiac ganglia of young adult (5-6 months) and aged (24-25 months) rats (Sprague Dawley). Fluoro-Gold was injected intraperitoneally to counterstain cardiac ganglionic principal neurons (PNs). In aged, as in young rats, NA axons projected to all cardiac ganglia and formed numerous basket endings around PNs in the hearts. However, significant structural changes were found in aged rats compared with young rats. Vagal efferent axons contained abnormally swollen axonal segments and exhibited reduced or even absent synaptic-like terminals around PNs, such that the numbers of vagal fibers and basket endings around PNs were substantially reduced (P < 0.01). Furthermore, synaptic-like varicose contacts of vagal cardiac axons with PNs were significantly reduced by approximately 50% (P < 0.01). These findings suggest that vagal efferents continue to maintain homeostatic control over the heart during aging. However, the marked morphological reorganization of vagal efferent axons and terminals in cardiac ganglia may represent the structural substrate for reduced vagal control of the heart rate and attenuated baroreflex function during aging.
Collapse
Affiliation(s)
- Jing Ai
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Leonard RB, Kevetter GA. Structural and functional changes in the cristae ampullares of aged gerbils. Neuroscience 2007; 147:794-802. [PMID: 17561351 DOI: 10.1016/j.neuroscience.2007.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/17/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
We have reported that calretinin and calbindin staining of calyxes in the apical region of the cristae is reduced or absent in old gerbils (>or=35 months) that had normal numbers of hair cells [Kevetter GA, Leonard RB (2002) Decreased expression of calretinin and calbindin in the labyrinth of old gerbils. Brain Res 957:362-365]. Here we examine the ability of primary afferents in aged gerbils to carry a tracer injected into the vestibular nuclear complex to their terminals in the cristae. Calyxes throughout the cristae were well labeled in a young animal with such an injection. In the aged animals, many calyxes were only partially filled or not filled at all. In some cases labeled axons were also missing from the stroma underlying the missing calyxes. There is a strong correspondence between the region where the calyxes were not filled and the absence of calretinin immunostaining. To determine if afferents from the cristae are functionally abnormal, we recorded from their axons and attempted to activate them with natural stimulation. Among afferents that could be activated, we encountered many afferents that had spontaneous activity but could not be modulated with natural stimulation. When tested, the firing rate of these afferents could be modulated with galvanic stimulation, and/or they could be activated by pulsed electrical stimulation. We also encountered afferents that had no spontaneous activity. The presence of these axons was revealed by an injury discharge that could not be modulated with natural stimulation. When tested, these axons could be activated with pulsed electrical stimulation. In some instances we encountered two or more such afferents in a row, an event we have not seen in young animals. We suggest that the simplest explanation for these observations is that calyxes are being lost in old animals.
Collapse
Affiliation(s)
- R B Leonard
- Departments of Neuroscience and Cell Biology and Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA.
| | | |
Collapse
|
23
|
Edström E, Altun M, Bergman E, Johnson H, Kullberg S, Ramírez-León V, Ulfhake B. Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiol Behav 2007; 92:129-35. [PMID: 17585972 DOI: 10.1016/j.physbeh.2007.05.040] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Motor disturbances and wasting of skeletal muscles (sarcopenia) causes significant impairment of daily life activities and is a major underlying cause for hospitalization in senescence. Herein we review data and present new findings on aging-specific changes in motoneurons, skeletal muscle and the interplay between motoneurons and target muscle fibers. Although many of the changes occurring during aging may be specific to motoneurons and myofibers, respectively, evidence indicates that myofiber regeneration in sarcopenic muscle is halted at the point where reinnervation is critical for the final differentiation into mature myofibers. Combined, evidence suggests that sarcopenia to a significant extent depend on a decreased capacity among motoneurons to innervate regenerating fibers. There are also conspicuous changes in the expression of several cytokines known to play important roles in establishing and maintaining neuromuscular connectivity during development and adulthood. We also present data showing the usefulness of rodent models in studies of successful and unsuccessful patterns of aging. Finally, we show that not only dietary restriction (DR) but also activity and social environment may modulate the pattern of aging.
Collapse
Affiliation(s)
- Erik Edström
- Karolinska Institutet, Department of Neuroscience, Retzius Laboratory, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Fargo KN, Iwema CL, Clark-Phelps MC, Sengelaub DR. Exogenous testosterone reverses age-related atrophy in a spinal neuromuscular system. Horm Behav 2007; 51:20-30. [PMID: 16952361 DOI: 10.1016/j.yhbeh.2006.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 07/21/2006] [Accepted: 07/25/2006] [Indexed: 11/27/2022]
Abstract
Aging is associated with a variety of pathologies, including motor dysfunctions and reductions in sexual behavior. In male rats, declines in sexual behavior during the aging process may be caused in part by the loss of the lumbar spinal cord motoneurons that innervate the penile musculature. Alternatively, declining sexual behavior may be caused by the precipitous reductions in circulating testosterone that occur during aging. In this paper, we report two experiments examining these issues. In Experiment 1, we counted motoneurons in the lumbar motor nuclei and measured several androgen-sensitive morphological properties of the penile muscles and their innervating motoneurons at several time points during the aging process. Motoneuron number in the lumbar nuclei did not change over time, even with very advanced age. In contrast, the penile muscles and their innervating motoneurons underwent profound atrophy, with muscle weight and motoneuron dendritic length declining to less than 50% of young adult levels. In Experiment 2, we treated aged animals with exogenous testosterone, and then examined their penile neuromuscular systems for morphological changes. Testosterone treatment, both acute and chronic, completely reversed age-related declines in the weight of the penile muscles and in the soma size and dendritic length of their innervating motoneurons. Together, these data suggest that reductions in male sexual behavior during the aging process are caused primarily by declines in testosterone levels rather than motoneuron loss. Furthermore, they raise the possibility that testosterone treatment could play an important role in maintaining neuronal connectivity in the aging body.
Collapse
Affiliation(s)
- Keith N Fargo
- Department of Psychological and Brain Sciences, and Program in Neuroscience, Indiana University, 1101 East 10th Street, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
25
|
Edström E, Altun M, Hägglund M, Ulfhake B. Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci 2006; 61:663-74. [PMID: 16870627 DOI: 10.1093/gerona/61.7.663] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Muscle atrophy in many conditions share a common mechanism in the upregulation of the muscle-specific ubiquitin E3-ligases atrophy gene-1/muscle atrophy F-box (Atrogin-1/MAFbx) and muscle ring-finger protein 1 (MuRF1). E3-ligases are part of the ubiquitin proteasome pathway utilized for protein degradation during muscle atrophy. In this study, we provide new data to show that this is not the case in age-related loss of muscle mass (sarcopenia). On the contrary, Atrogin-1/MAFbx and MuRF1 are downregulated in skeletal muscle of 30-month-old rats, and our results suggest that AKT (protein kinase B)-mediated inactivation of forkhead box O 4 (FOXO4) underlies this suppression. The data also suggest that activation of AKT is mediated through the insulin-like growth factor-1 (IGF-1) receptor, signaling via ShcA-Grb2-GAB. Using dietary restriction, we find that it impedes sarcopenia as well as the effects of aging on AKT phosphorylation, FOXO4 phosphorylation, and Atrogin-1/MAFbx and MuRF1 transcript regulation. We conclude that sarcopenia is mechanistically different from acute atrophies induced by disuse, disease, and denervation.
Collapse
Affiliation(s)
- Erik Edström
- Department of Neuroscience, Karolinska Institutet, Neuroscience, A3:4, Stockholm, Sweden 17177.
| | | | | | | |
Collapse
|
26
|
Abstract
Sarcopenia, loss of skeletal muscle mass, is a hallmark of aging commonly attributed to a decreased capacity to maintain muscle tissue in senescence, yet the mechanism behind the muscle wasting remains unresolved. To address these issues we have explored a rodent model of sarcopenia and age-related sensorimotor impairment, allowing us to discriminate between successfully and unsuccessfully aged cohort members. Immunohistochemistry and staining of cell nuclei revealed that senescent muscle has an increased density of cell nuclei, occurrence of aberrant fibers and fibers expressing embryonic myosin. Using real-time PCR we extend the findings of increased myogenic regulatory factor mRNA to show that very high levels are found in unsuccessfully aged cohort members. This pattern is also reflected in the number of embryonic myosin-positive fibers, which increase with the degree of sarcopenia. In addition, we confirm that there is no local down-regulation of IGF-I and IGF-IR mRNA in aged muscle tissue; on the contrary, the most sarcopenic individuals showed significantly higher local expression of IGF-I mRNA. Combined, our results show that the initial drive to regenerate myofibers is most marked in cases with the most advanced loss of muscle mass, a pattern that may have its origin in differences in the rate of tissue deterioration and/or that regenerating myofibers in these cases fail to mature into functional fibers. Importantly, the genetic background is a determinant of the pace of progression of sarcopenia.
Collapse
Affiliation(s)
- Erik Edström
- Experimntal Neurogerontology, Department of Neuroscience, Karolinska Institutet, S171 77 Stockholm, Sweden.
| | | |
Collapse
|
27
|
Gatzinsky KP, Thrasivoulou C, Campioni-Noack M, Underwood C, Cowen T. The role of NGF uptake in selective vulnerability to cell death in ageing sympathetic neurons. Eur J Neurosci 2005; 20:2848-56. [PMID: 15579138 DOI: 10.1111/j.1460-9568.2004.03780.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have examined the hypothesis that differences in nerve growth factor (NGF) uptake and transport determine vulnerability to age-related neurodegeneration. Neurons projecting to cerebral blood vessels (CV) in aged rats are more vulnerable to age-related degeneration than those projecting to the iris. Uptake of NGF was therefore examined in sympathetic neurons projecting from the superior cervical ganglion (SCG) to CV and iris in young and old rats by treating the peripheral processes of these neurons with different doses of I125-NGF. Total uptake of I125-NGF was reduced in old CV-projecting, but not iris-projecting, neurons. Numbers of radiolabelled neurons projecting to each target were counted in sectioned ganglia. The data showed age-related reductions in numbers of labelled neurons projecting to CV, but no change in numbers of neurons projecting to the iris. Calculation of uptake of I125-NGF per neuron unexpectedly showed no major age-related differences in either of the two neuron populations. However, uptake per neuron was considerably lower for young and old CV-projecting, compared to iris-projecting, SCG neurons. We hypothesized that variations in NGF uptake might affect neuronal survival in old age. Counts of SCG neurons using a physical disector following retrograde tracing with Fluorogold confirmed the selective vulnerability of CV-projecting neurons by showing a significant 37% loss of these neurons in the period between 15 and 24 months. In contrast, there was no significant loss of iris-projecting neurons. We conclude that vulnerability to, or protection from, age-related neurodegeneration and neuronal cell death are associated with life-long low, or high, levels of NGF uptake, respectively.
Collapse
Affiliation(s)
- Kliment P Gatzinsky
- Department of Clinical Neuroscience, University of Göteborg, Sahlgrenska University Hospital, 413 45 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Edström E, Kullberg S, Ming Y, Zheng H, Ulfhake B. MHC class I, beta2 microglobulin, and the INF-gamma receptor are upregulated in aged motoneurons. J Neurosci Res 2004; 78:892-900. [PMID: 15505791 DOI: 10.1002/jnr.20341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During aging, spinal cord motoneurons show characteristic changes including the loss of afferent boutons, a selective process that associates with gliosis and behavioral motor impairment. Evidence suggests that the major histocompatibility complex Class I (MHC I) system may be involved in synaptic plasticity of neurons during development and regeneration. In search of a mechanism governing senescent changes in synaptic connectivity, we report evidence for increased expression of MHC I and beta2 microglobulin (beta2M) in motoneurons and glial-like profiles of 30-month-old rats. The regulatory signal(s) for MHC I expression in normal neurons remains unresolved but among tentative molecules are cytokines such as interferon-gamma (INF-gamma) and tumor necrosis factor alpha (TNF-alpha). Interestingly, aged motoneurons, overlapping with those showing increased levels of MHC I, contained increased levels of INF-gamma receptor message. INF-gamma mRNA was detected at low levels in most (8/9) of the aged spinal cords but only infrequently (2/9) in young adult spinal cords; however, the cellular localization of INF-gamma mRNA could not be determined. Our data also indicates that TNF-alpha is upregulated in the senescent spinal cord but that TNF-alpha immunoreactive protein does not associate with motoneurons. We report evidence for an increased expression of MHC I and beta2M in senescent spinal motoneurons and discuss the possibility that this regulation associates with INF-gamma or changes in neurotrophin signaling and neuron activity in senescence.
Collapse
Affiliation(s)
- Erik Edström
- Experimental Neurogerontology, Department of Neuroscience, Retzius Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
29
|
Jiang X, Edstrom E, Altun M, Ulfhake B. Differential regulation of Shc adaptor proteins in skeletal muscle, spinal cord and forebrain of aged rats with sensorimotor impairment. Aging Cell 2003; 2:47-57. [PMID: 12882334 DOI: 10.1046/j.1474-9728.2003.00030.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Shc family of proteins participates in mitogenic and survival signalling through binding to receptor tyrosine kinases. We report here on the expression of Shc in forebrain, spinal cord and hind limb muscles from 30-month-old rats with different degrees of sensorimotor impairment. ShcA (mRNA and protein) is up-regulated in skeletal muscles and spinal cord of aged rats, and this change relates to biological age, i.e. degree of behavioural incapacitation, rather than to chronological age. Western blot and RT-PCR revealed that the increase in ShcA selectively affected the p46 isoform in the spinal cord, whereas in muscle tissue a robust increase of p66(ShcA) was also evident. Furthermore, in parallel with the up-regulation of ShcA, an increase of p75(NTR) mRNA in the aged animals was observed. ShcB mRNA showed a tendency for down-regulation in both spinal cord and skeletal muscles, whereas the expression of ShcC was unaltered. Our data show that the regulation of Shc mRNAs in senescence is region as well as isoform specific. The regulatory changes may reflect changes in mitogenic/survival signalling induced by age-related cell and tissue damage. The coup-regulation of p66(ShcA) and p75(NTR) is interesting since both molecules have been associated with apoptosis.
Collapse
Affiliation(s)
- Xiaogang Jiang
- Experimental Neurogerontology, Department of Neuroscience, Retzius Laboratory, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
30
|
Mendell LM, Arvanian VL. Diversity of neurotrophin action in the postnatal spinal cord. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 40:230-9. [PMID: 12589921 DOI: 10.1016/s0165-0173(02)00205-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The expression of neurotrophins and their receptors in the adult spinal cord indicates that they have postnatal actions in addition to their well-known prenatal ones on axonal growth and cell survival. In this review we summarize evidence in support of mechanisms by which neurotrophins acutely modulate the response both of sensory neurons and of synapses within the spinal cord. The selective action of neurotrophins is achieved via restricted expression of high affinity trk receptors through which the neurotrophins act. Activation of trk receptors enhances the response of the vanilloid VR-1 receptor in nociceptive neurons leading to peripheral sensitization of the response to capsaicin or noxious heat. At synapses on motoneurons trk receptor activation enhances the response of NMDA receptors that in turn can increase the response of AMPA/kainate receptors on the same cell. Both of these sensitizing actions have a very rapid onset that is contrasted with slower neurotrophin effects on growth of axotomized afferents. It is likely that these different functional effects of neurotrophins reflect activation of different intracellular signaling pathways. These studies suggest mechanisms by which neurotrophins might be used to improve function of the damaged spinal cord.
Collapse
Affiliation(s)
- Lorne M Mendell
- Department of Neurobiology and Behaviour, State University of New York, Stony Brook, NY 11794-5230, USA.
| | | |
Collapse
|
31
|
Abstract
Impaired sensory perception is a well-established stigma of aging and whereas loss of dorsal root ganglion (DRG) neurons is marginal there is a specific pattern of reduced peripheral sensory innervation. To resolve if similar regressive processes occur in the central innervation, peripheral nerves were injected with markers for unmyelinated (isolectin B4) or myelinated (cholera toxin B subunit; CTB) DRG neurons. The results were a dramatic decrease of primary sensory endings in the spinal cord of aged rats following transganglionic labeling with CTB, and also to a lesser degree with B4. Profile counting and frequency estimates showed that the reduction of CTB labeled profiles not was caused by impaired axonal uptake, slowed axonal transport of CTB, or by a loss of myelinated fibers in the peripheral nerve. At the ultrastructural level, peripheral nerves showed the classical hallmarks of aging, with more pronounced alterations in myelinated than unmyelinated axons. Taken together, sensory deprivation in senescence appears to be a distal process in DRG neurons involving both peripheral and central target disconnection. Finally, preliminary data indicates that the substantial reduction in mechanoreceptive input to the central nervous system co-varies with the degree of sensorimotor impairment of the aged individuals.
Collapse
Affiliation(s)
- Esbjörn Bergman
- Department of Neuroscience, Karolinska Institutet, S-171 77, Stockholm, Sweden.
| | | |
Collapse
|
32
|
Abstract
Sensorimotor disturbances are common among elderly and one of the main factors depreciating life quality in senescence. Mechanistically sensory deficits during aging include not only degenerative and regressive events but also phenotypic switches among sensory neurons as well as remodeling of sensory innervation. The pattern of changes suggests that an underlying mechanism is a sustained dependence of sensory neurons on target tissues, and that this dependence, at least in part, appears to be mediated through signaling by target-derived trophic factors. This review presents and discusses evidence supporting this notion.
Collapse
Affiliation(s)
- B Ulfhak
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|