1
|
Pi BK, Chung YH, Kim HS, Nam SH, Lee AJ, Nam DE, Park HJ, Kim SB, Chung KW, Choi BO. Compound Heterozygous Mutations of SACS in a Korean Cohort Study of Charcot-Marie-Tooth Disease Concurrent Cerebellar Ataxia and Spasticity. Int J Mol Sci 2024; 25:6378. [PMID: 38928084 PMCID: PMC11204044 DOI: 10.3390/ijms25126378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations in the SACS gene are associated with autosomal recessive spastic ataxia of Charlevoix-Saguenay disease (ARSACS) or complex clinical phenotypes of Charcot-Marie-Tooth disease (CMT). This study aimed to identify SACS mutations in a Korean CMT cohort with cerebellar ataxia and spasticity by whole exome sequencing (WES). As a result, eight pathogenic SACS mutations in four families were identified as the underlying causes of these complex phenotypes. The prevalence of CMT families with SACS mutations was determined to be 0.3%. All the patients showed sensory, motor, and gait disturbances with increased deep tendon reflexes. Lower limb magnetic resonance imaging (MRI) was performed in four patients and all had fatty replacements. Of note, they all had similar fatty infiltrations between the proximal and distal lower limb muscles, different from the neuromuscular imaging feature in most CMT patients without SACS mutations who had distal dominant fatty involvement. Therefore, these findings were considered a characteristic feature in CMT patients with SACS mutations. Although further studies with more cases are needed, our results highlight lower extremity MRI findings in CMT patients with SACS mutations and broaden the clinical spectrum. We suggest screening for SACS in recessive CMT patients with complex phenotypes of ataxia and spasticity.
Collapse
Affiliation(s)
- Byung Kwon Pi
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Yeon Hak Chung
- Department of Neurology, Korea University Guro Hospital, College of Medicine, Korea University, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea;
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Soo Hyun Nam
- Cell and Gene Therapy Institute, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Da Eun Nam
- Department of Domestic Business, Macrogen, Inc., 238 Teheran-ro, Gangnam-gu, Seoul 06221, Republic of Korea;
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea;
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea;
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea; (B.K.P.); (A.J.L.)
| | - Byung-Ok Choi
- Cell and Gene Therapy Institute, Samsung Medical Center, Gangnam-gu, Seoul 06351, Republic of Korea;
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81 Irwonr-ro, Gangnam-gu, Seoul 06351, Republic of Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
2
|
El Massry M, Msheik Z, El Masri T, Ntoutoume GMAN, Vignaud L, Richard L, Pinault E, Faye PA, Bregier F, Marquet P, Favreau F, Vallat JM, Billet F, Sol V, Sturtz F, Desmouliere A. Improvement of Charcot-Marie-Tooth Phenotype with a Nanocomplex Treatment in Two Transgenic Models of CMT1A. Biomater Res 2024; 28:0009. [PMID: 38560579 PMCID: PMC10981932 DOI: 10.34133/bmr.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
Curcumin has been shown to exert beneficial effects in peripheral neuropathies. Despite its known biological activities, curcumin has unfavorable pharmacokinetics. Its instability has been linked to its failure in clinical trials of curcumin for the treatment of human pathologies. For this reason, we developed curcumin-loaded cyclodextrin/cellulose nanocrystals (NanoCur) to improve its pharmacokinetics. The present study aims to assess the potency of a low dose of NanoCur in 2 Charcot-Marie-Tooth disease type 1A (CMT1A) rodent models at different stages of the disease. The efficiency of NanoCur is also compared to that of Theracurmin (Thera), a commercially available curcumin formulation. The toxicity of a short-term and chronic exposure to the treatment is investigated both in vitro and in vivo, respectively. Furthermore, the entry route, the mechanism of action and the effect on the nerve phenotype are dissected in this study. Overall, the data support an improvement in sensorimotor functions, associated with amelioration in peripheral myelination in NanoCur-treated animals; an effect that was not evident in the Thera-treated group. That was combined with a high margin of safety both in vivo and in vitro. Furthermore, NanoCur appears to inhibit inflammatory pathways that normally include macrophage recruitment to the diseased nerve. This study shows that NanoCur shows therapeutic benefits with minimal systemic toxicity, suggesting that it is a potential therapeutic candidate for CMT1A and, possibly, for other neuropathies.
Collapse
Affiliation(s)
- Mohamed El Massry
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Zeina Msheik
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Tarek El Masri
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Anatomy, Cell Biology & Physiological Sciences, Faculty of Medicine,
American University of Beirut, Beirut, Lebanon
| | | | - Laetitia Vignaud
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Laurence Richard
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Reference Center for Rare Peripheral Neuropathies, Department of Neurology,
University Hospital of Limoges, Limoges, France
| | - Emilie Pinault
- BISCEm (Biologie Intégrative Santé Chimie Environnement) Platform, US 42 Inserm/UAR 2015 CNRS,
University of Limoges, Limoges, France
| | - Pierre-Antoine Faye
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Biochemistry,
University Hospital of Limoges, Limoges, France
| | | | - Pierre Marquet
- INSERM U1248 Pharmacology & Transplantation, CBRS, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Pharmacology and Toxicology,
CHU Limoges, Limoges, France
| | - Frédéric Favreau
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Biochemistry,
University Hospital of Limoges, Limoges, France
| | - Jean-Michel Vallat
- Reference Center for Rare Peripheral Neuropathies, Department of Neurology,
University Hospital of Limoges, Limoges, France
| | - Fabrice Billet
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| | - Vincent Sol
- LABCiS UR22722,
University of Limoges, F-87000 Limoges, France
| | - Franck Sturtz
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
- Department of Biochemistry,
University Hospital of Limoges, Limoges, France
| | - Alexis Desmouliere
- NeurIT UR20218, Faculty of Medicine and Pharmacy,
University of Limoges, Limoges, France
| |
Collapse
|
3
|
Sivera Mascaró R, García Sobrino T, Horga Hernández A, Pelayo Negro AL, Alonso Jiménez A, Antelo Pose A, Calabria Gallego MD, Casasnovas C, Cemillán Fernández CA, Esteban Pérez J, Fenollar Cortés M, Frasquet Carrera M, Gallano Petit MP, Giménez Muñoz A, Gutiérrez Gutiérrez G, Gutiérrez Martínez A, Juntas Morales R, Ciano-Petersen NL, Martínez Ulloa PL, Mederer Hengstl S, Millet Sancho E, Navacerrada Barrero FJ, Navarrete Faubel FE, Pardo Fernández J, Pascual Pascual SI, Pérez Lucas J, Pino Mínguez J, Rabasa Pérez M, Sánchez González M, Sotoca J, Rodríguez Santiago B, Rojas García R, Turon-Sans J, Vicent Carsí V, Sevilla Mantecón T. Clinical practice guidelines for the diagnosis and management of Charcot-Marie-Tooth disease. Neurologia 2024:S2173-5808(24)00047-6. [PMID: 38431252 DOI: 10.1016/j.nrleng.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Charcot-Marie-Tooth (CMT) disease is classified considering the neurophysiological and histological findings, the inheritance pattern and the underlying genetic defect. In recent years, with the advent of next generation sequencing, genetic complexity has increased exponentially, expanding the knowledge about disease pathways, and having an impact in clinical management. The aim of this guide is to offer recommendations for the diagnosis, prognosis, monitoring and treatment of this disease in Spain. MATERIAL AND METHODS This consensus guideline has been developed by a multidisciplinary panel encompassing a broad group of professionals including neurologists, neuropediatricians, geneticists, rehabilitators, and orthopaedic surgeons. RECOMMENDATIONS The diagnosis is based in the clinical characterization, usually presenting with a common phenotype. It should be followed by an appropriate neurophysiological study that allows for a correct classification, specific recommendations are established for the parameters that should be included. Genetic diagnosis must be approached in sequentially, once the PMP22 duplication has been ruled out if appropriate, a next generation sequencing should be considered taking into account the limitations of the available techniques. To date, there is no pharmacological treatment that modifies the course of the disease, but symptomatic management is important, as are the rehabilitation and orthopaedic considerations. The latter should be initiated early to identify and improve the patient's functional impairments, including individualised exercise guidelines, orthotic adaptation, and assessment of conservative surgeries such as tendon transpositions. The follow-up of patients with CMT is exclusively clinical, ancillary testing are not necessary in routine clinical practice.
Collapse
Affiliation(s)
- R Sivera Mascaró
- Servicio de Neurología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - T García Sobrino
- Servicio de Neurología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain.
| | - A Horga Hernández
- Servicio de Neurología, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - A L Pelayo Negro
- Servicio de Neurología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Madrid, Spain
| | - A Alonso Jiménez
- Neuromuscular Reference Center, Neurology Department, University Hospital of Antwerp, Amberes, Belgium
| | - A Antelo Pose
- Servicio de Rehabilitación, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | | | - C Casasnovas
- Unitat de Neuromuscular, Servicio de Neurología, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | | | - J Esteban Pérez
- Servicio de Neurología, Unidad de ELA y Enfermedades Neuromusculares, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M Fenollar Cortés
- Genética Clínica, Servicio de Análisis Clínicos, Instituto de Medicina del Laboratorio, IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - M Frasquet Carrera
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital Universitari Dr. Peset, Valencia, Spain
| | - M P Gallano Petit
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - A Giménez Muñoz
- Servicio de Neurología, Hospital Royo Villanova, Zaragoza, Spain
| | - G Gutiérrez Gutiérrez
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain; Facultad de Medicina, Universidad Europea de Madrid, Madrid, Spain
| | - A Gutiérrez Martínez
- Servicio de Neurología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - R Juntas Morales
- Servicio de Neurología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - N L Ciano-Petersen
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - P L Martínez Ulloa
- Servicio de Neurología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - S Mederer Hengstl
- Servicio de Neurología, Complejo Hospitalario de Pontevedra, Pontevedra, Spain
| | - E Millet Sancho
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurofisiología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - F J Navacerrada Barrero
- Servicio de Neurología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | - F E Navarrete Faubel
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - J Pardo Fernández
- Servicio de Neurología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | | | - J Pérez Lucas
- Servicio de Neurología, Hospital del Tajo, Aranjuez, Madrid, Spain
| | - J Pino Mínguez
- Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | - M Rabasa Pérez
- Servicio de Neurología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - M Sánchez González
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - J Sotoca
- Servicio de Neurología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - R Rojas García
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital de la Santa Creu i Sant Pau, Departamento de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - J Turon-Sans
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurofisiología, Hospital de la Santa Creu i Sant Pau, Departamento de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - V Vicent Carsí
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - T Sevilla Mantecón
- Servicio de Neurología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Universidad de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Cao L, Yang J, Zhang X, Wang X, Chen Z, Tan S, Yang J. Clinical, neurophysiological evaluation and genetic features of axonal Charcot-Marie-Tooth disease in a Chinese family. Front Neurol 2024; 14:1337065. [PMID: 38371303 PMCID: PMC10870769 DOI: 10.3389/fneur.2023.1337065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a group of inherited peripheral neuropathies related to variants in the mitochondrial transfer RNA (mt-tRNAval) gene. Here, we report a Chinese family harboring the m.1661A>G variant in the mt-tRNAval gene. Clinical evaluation, neuroelectrodiagnostic testing, and nerve biopsy were performed on four affected family members. Weakness, spasms, and pain in the limbs (especially in the lower limbs) were the main complaints of the proband. Physical examination revealed atrophy and weakness in the distal limbs, increased muscle tone, and hyperreflexia in four limbs. Neuroelectrodiagnostic tests and nerve biopsy supported an axonal polyneuropathy. This study furthers the understanding of phenotype diversity caused by variants in the mt-tRNAval gene in CMT.
Collapse
Affiliation(s)
- Li Cao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohuan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Xu Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Zhangyuwei Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiyun Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center of Medical Genetics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
5
|
Coller J, Ignatova Z. tRNA therapeutics for genetic diseases. Nat Rev Drug Discov 2024; 23:108-125. [PMID: 38049504 DOI: 10.1038/s41573-023-00829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/06/2023]
Abstract
Transfer RNAs (tRNAs) have a crucial role in protein synthesis, and in recent years, their therapeutic potential for the treatment of genetic diseases - primarily those associated with a mutation altering mRNA translation - has gained significant attention. Engineering tRNAs to readthrough nonsense mutation-associated premature termination of mRNA translation can restore protein synthesis and function. In addition, supplementation of natural tRNAs can counteract effects of missense mutations in proteins crucial for tRNA biogenesis and function in translation. This Review will present advances in the development of tRNA therapeutics with high activity and safety in vivo and discuss different formulation approaches for single or chronic treatment modalities. The field of tRNA therapeutics is still in its early stages, and a series of challenges related to tRNA efficacy and stability in vivo, delivery systems with tissue-specific tropism, and safe and efficient manufacturing need to be addressed.
Collapse
Affiliation(s)
- Jeff Coller
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
6
|
Abi Chahine NH, Mansour VJ, Nemer LI, Najjoum CF, El Asmar EA, Boulos RT. The Regentime stem cell procedure, successful treatment for a Charcot-Marie-Tooth disease case. Clin Case Rep 2024; 12:e8358. [PMID: 38161636 PMCID: PMC10753632 DOI: 10.1002/ccr3.8358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
This report highlights the successful treatment of a Charcot-Marie-Tooth disease case using the Regentime stem cell procedure, suggesting its potential as a promising therapeutic approach for patients suffering from this challenging condition.
Collapse
|
7
|
Ueda H, Tran QTH, Tran LNT, Higasa K, Ikeda Y, Kondo N, Hashiyada M, Sato C, Sato Y, Ashida A, Nishio S, Iwata Y, Iida H, Matsuoka D, Hidaka Y, Fukui K, Itami S, Kawashita N, Sugimoto K, Nozu K, Hattori M, Tsukaguchi H. Characterization of cytoskeletal and structural effects of INF2 variants causing glomerulopathy and neuropathy. Sci Rep 2023; 13:12003. [PMID: 37491439 PMCID: PMC10368640 DOI: 10.1038/s41598-023-38588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common glomerular injury leading to end-stage renal disease. Monogenic FSGS is primarily ascribed to decreased podocyte integrity. Variants between residues 184 and 245 of INF2, an actin assembly factor, produce the monogenic FSGS phenotype. Meanwhile, variants between residues 57 and 184 cause a dual-faceted disease involving peripheral neurons and podocytes (Charcot-Marie-Tooth CMT/FSGS). To understand the molecular basis for INF2 disorders, we compared structural and cytoskeletal effects of INF2 variants classified into two subgroups: One (G73D, V108D) causes the CMT/FSGS phenotype, and the other (T161N, N202S) produces monogenic FSGS. Molecular dynamics analysis revealed that all INF2 variants show distinct flexibility compared to the wild-type INF2 and could affect stability of an intramolecular interaction between their N- and C-terminal segments. Immunocytochemistry of cells expressing INF2 variants showed fewer actin stress fibers, and disorganization of cytoplasmic microtubule arrays. Notably, CMT/FSGS variants caused more prominent changes in mitochondrial distribution and fragmentation than FSGS variants and these changes correlated with the severity of cytoskeletal disruption. Our results indicate that CMT/FSGS variants are associated with more severe global cellular defects caused by disrupted cytoskeleton-organelle interactions than are FSGS variants. Further study is needed to clarify tissue-specific pathways and/or cellular functions implicated in FSGS and CMT phenotypes.
Collapse
Affiliation(s)
- Hiroko Ueda
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Quynh Thuy Huong Tran
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Linh Nguyen Truc Tran
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Kansai Medical University, Hirakata, Japan
| | - Masaki Hashiyada
- Department of Legal Medicine, Kansai Medical University, Hirakata, Japan
| | - Chika Sato
- Department of Gynecology and Obstetrics, Kansai Medical University, Hirakata, Japan
| | - Yoshinori Sato
- Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Kanagawa, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Iida
- Department of Internal Medicine, Toyama Prefectural Central Hospital, Toyama, Japan
- Toyama Transplantation Promotion Foundation, Toyama, Japan
| | - Daisuke Matsuoka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshihiko Hidaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Suzu Itami
- Major in Science, Graduate School of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Norihito Kawashita
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Keisuke Sugimoto
- Department of Pediatrics, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyasu Tsukaguchi
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan.
| |
Collapse
|
8
|
El-Bazzal L, Ghata A, Estève C, Gadacha J, Quintana P, Castro C, Roeckel-Trévisiol N, Lembo F, Lenfant N, Mégarbané A, Borg JP, Lévy N, Bartoli M, Poitelon Y, Roubertoux PL, Delague V, Bernard-Marissal N. Imbalance of NRG1-ERBB2/3 signalling underlies altered myelination in Charcot-Marie-Tooth disease 4H. Brain 2023; 146:1844-1858. [PMID: 36314052 PMCID: PMC10151191 DOI: 10.1093/brain/awac402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/30/2022] [Accepted: 10/02/2022] [Indexed: 11/12/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.
Collapse
Affiliation(s)
- Lara El-Bazzal
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Adeline Ghata
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | | | - Jihane Gadacha
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | | | | | | | - Frédérique Lembo
- Aix Marseille Univ, INSERM, CNRS, CRCM, Institut Paoli-Calmettes, Marseille, France
| | | | - André Mégarbané
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Jean-Paul Borg
- Aix Marseille Univ, INSERM, CNRS, CRCM, Institut Paoli-Calmettes, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, INSERM, MMG, U 1251, Marseille, France
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
9
|
Beloribi-Djefaflia S, Attarian S. Treatment of Charcot-Marie-Tooth neuropathies. Rev Neurol (Paris) 2023; 179:35-48. [PMID: 36588067 DOI: 10.1016/j.neurol.2022.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/31/2022]
Abstract
Charcot-Marie-Tooth (CMT) is a heterogeneous group of inherited neuropathies that affect the peripheral nerves and slowly cause progressive disability. Currently, there is no effective therapy. Patients' management is based on rehabilitation and occupational therapy, fatigue, and pain treatment with regular follow-up according to the severity of the disease. In the last three decades, much progress has been made to identify mutations involved in the different types of CMT, decipher the pathophysiology of the disease, and identify key genes and pathways that could be targeted to propose new therapeutic strategies. Genetic therapy is one of the fields of interest to silence genes such as PMP22 in CMT1A or to express GJB1 in CMT1X. Among the most promising molecules, inhibitors of the NRG-1 axis and modulators of UPR or the HDACs enzyme family could be used in different types of CMT.
Collapse
Affiliation(s)
- S Beloribi-Djefaflia
- Reference center for neuromuscular disorders and ALS, AP-HM, CHU La Timone, Marseille, France
| | - S Attarian
- Reference center for neuromuscular disorders and ALS, AP-HM, CHU La Timone, Marseille, France; FILNEMUS, European Reference Network for Rare Diseases (ERN), Marseille, France; Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005 Marseille, France.
| |
Collapse
|
10
|
Pazzaglia C, Padua L, Stancanelli C, Fusco A, Loreti C, Castelli L, Imbimbo I, Giovannini S, Coraci D, Vita GL, Vita G. Role of Sport Activity on Quality of Life in Charcot-Marie-Tooth 1A Patients. J Clin Med 2022; 11:jcm11237032. [PMID: 36498606 PMCID: PMC9740468 DOI: 10.3390/jcm11237032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aims to investigate the benefits induced by physical activity/practiced sport in Charcot-Marie-Tooth 1A (CMT1A). Patients were divided into sport and no-sport groups according to their sports performance habit. Thirty-one patients were enrolled, of which 14 practiced sports and 17 did not. Clinical assessments were administered to evaluate disability, self-esteem, depression, quality of life, and pain. Statistical analysis revealed significant differences in terms of gender in the no-sport group compared to the sport group (p = 0.04). Regarding the quality of life, physical function (p = 0.001), general health (p = 0.03), social function (p = 0.04), and mental health (p = 0.006) showed better patterns in the sport group than no-sport group. Moreover, neuropathic pain was reduced in the sport group according to the Neuropathic Pain Symptom Inventory (p = 0.001) and ID-PAIN (p = 0.03). The other administered questionnaires showed no significant differences. Our study confirms that CMT1A patients, who practice sports, with a similar severity of disability, may have a better physical quality of life while suffering less neuropathic pain than their peers who do not practice sports. Results recommend the prescription of sport in CMT1A patients.
Collapse
Affiliation(s)
- Costanza Pazzaglia
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luca Padua
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudia Stancanelli
- Nemo Sud Clinical Centre for Neuromuscular Disorders, 98125 Messina, Italy
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Messina, 98100 Messina, Italy
| | - Augusto Fusco
- UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudia Loreti
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Letizia Castelli
- Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Isabella Imbimbo
- UOS Psicologia Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Silvia Giovannini
- Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOS Riabilitazione Post-Acuzie, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: (S.G.); (D.C.); Tel.: +39-06-3015-4382 (S.G.)
| | - Daniele Coraci
- Department of Neuroscience, University of Padua, 35121 Padua, Italy
- Correspondence: (S.G.); (D.C.); Tel.: +39-06-3015-4382 (S.G.)
| | - Gian Luca Vita
- Unit of Neurology, Department of Emergency, P.O. Piemonte, IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy
| | - Giuseppe Vita
- Nemo Sud Clinical Centre for Neuromuscular Disorders, 98125 Messina, Italy
- Department of Clinical and Experimental Medicine, Unit of Neurology, University of Messina, 98100 Messina, Italy
| |
Collapse
|
11
|
Ferreira LA, Fitz FF, Gimenez MM, Matias MM, Bortolini MA, Castro RA. Management of Stress Urinary Incontinence With Pelvic Floor Muscle Training for a Woman With Charcot-Marie-Tooth Disease: A Case Report. J Chiropr Med 2022; 21:220-224. [PMID: 36118110 PMCID: PMC9479200 DOI: 10.1016/j.jcm.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022] Open
Abstract
Objective The purpose of this report is to describe the effects of pelvic floor muscle training (PFMT) in stress urinary incontinence (SUI) of a woman with Charcot-Marie-Tooth (CMT) disease. Clinical Features A 50-year-old female patient with a diagnosis of type II CMT disease was referred to treatment as a result of a complaint of urinary loss upon effort (ie, coughing and sneezing). She reported that the symptoms started about 36 months prior. The urodynamic study revealed SUI with a Valsalva leak point pressure of 84 cmH2O. Intervention and Outcome The treatment of SUI was carried out through a PFMT program for 12 weeks (with supervision) and exercises at home for another 12 weeks. A specialized physiotherapist measured symptoms and severity of SUI (3-day urinary diary, 1-hour pad test), pelvic floor muscle function (digital palpation, manometry and dynamometry), effect of the SUI on quality of life (Incontinence Quality of Life Questionnaire), and adherence to the outpatient sessions and to home exercise sets, which also were assessed (exercise diary). Conclusion In this patient with CMT disease, improvements in urinary symptoms and severity of SUI, pelvic floor muscle function, and effect of SUI on quality of life were noted after PFMT.
Collapse
Affiliation(s)
- Letícia A. Ferreira
- Corresponding author: Letícia A. Ferreira, PT, MSc. Rua Napoleão de Barros, 608 – Vila Clementino, CEP 04024-002, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Jung NY, Kwon HM, Nam DE, Tamanna N, Lee AJ, Kim SB, Choi BO, Chung KW. Peripheral Myelin Protein 22 Gene Mutations in Charcot-Marie-Tooth Disease Type 1E Patients. Genes (Basel) 2022; 13:genes13071219. [PMID: 35886002 PMCID: PMC9321036 DOI: 10.3390/genes13071219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Duplication and deletion of the peripheral myelin protein 22 (PMP22) gene cause Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP), respectively, while point mutations or small insertions and deletions (indels) usually cause CMT type 1E (CMT1E) or HNPP. This study was performed to identify PMP22 mutations and to analyze the genotype−phenotype correlation in Korean CMT families. By the application of whole-exome sequencing (WES) and targeted gene panel sequencing (TS), we identified 14 pathogenic or likely pathogenic PMP22 mutations in 21 families out of 850 CMT families who were negative for 17p12 (PMP22) duplication. Most mutations were located in the well-conserved transmembrane domains. Of these, eight mutations were not reported in other populations. High frequencies of de novo mutations were observed, and the mutation sites of c.68C>G and c.215C>T were suggested as the mutational hotspots. Affected individuals showed an early onset-severe phenotype and late onset-mild phenotype, and more than 40% of the CMT1E patients showed hearing loss. Physical and electrophysiological symptoms of the CMT1E patients were more severely damaged than those of CMT1A while similar to CMT1B caused by MPZ mutations. Our results will be useful for the reference data of Korean CMT1E and the molecular diagnosis of CMT1 with or without hearing loss.
Collapse
Affiliation(s)
- Na Young Jung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Nasrin Tamanna
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Ah Jin Lee
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul 05278, Korea;
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Korea
- Correspondence: (B.-O.C.); (K.W.C.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-41-850-8506 (K.W.C.)
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju 32588, Korea; (N.Y.J.); (D.E.N.); (N.T.); (A.J.L.)
- Correspondence: (B.-O.C.); (K.W.C.); Tel.: +82-2-3410-1296 (B.-O.C.); +82-41-850-8506 (K.W.C.)
| |
Collapse
|
13
|
Su X, Kong X, Lu Z, Wang L, Zheng C. A Rare Phenotype of Uncommon Charcot–Marie–Tooth Genotypes Complicated With Inflammation Evaluated by Genetics and Magnetic Resonance Neurography. Front Genet 2022; 13:873641. [PMID: 35873478 PMCID: PMC9302481 DOI: 10.3389/fgene.2022.873641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of Charcot–Marie–Tooth (CMT) disease, an inherited peripheral neuropathy, is associated with more than 60 nuclear genes. We reported a rare phenotype of the uncommon CMT genotype complicated with neuroinflammation, that is, an MPZ mutation, NC_000001.11 (NM_000530.6): c.308G > C detected by next-generation sequencing. Moreover, we present a case of the CMT type 1B, with atypical presentation as two patterns of hypertrophy in the brachial and lumbosacral plexus, as well as enhancement in the cauda equina and nerve roots on multimodal magnetic resonance neurography (MRN). MRN assessment facilitated the identification of coexisting neuroinflammation and provided more evidence, especially for patients with atypical symptoms in hereditary sensory and motor neuropathy, who could benefit from immunotherapy.
Collapse
Affiliation(s)
- Xiaoyun Su
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangquan Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zuneng Lu
- Department of Neurology, Renming Hospital of Wuhan University, Wuhan, China
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- *Correspondence: Chuansheng Zheng, ; Lixia Wang,
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- *Correspondence: Chuansheng Zheng, ; Lixia Wang,
| |
Collapse
|
14
|
Du K, Chu X, Tang Y, Zhao X, Yu M, Zheng Y, Deng J, Lv H, Zhang W, Wang Z, Yuan Y, Meng L. Patterns of myelinated nerve fibers loss in transthyretin amyloid polyneuropathy and mimics. Ann Clin Transl Neurol 2022; 9:1059-1068. [PMID: 35665499 PMCID: PMC9268867 DOI: 10.1002/acn3.51599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Objective The present study was intended to analyze the characteristics of myelinated nerve fibers density (MFD) of transthyretin amyloid polyneuropathy (ATTR‐PN) and other similar neuropathies. Methods A total of 41 patients with ATTR‐PN, 58 patients of other common peripheral neuropathies, and 17 age‐and gender‐matched controls who visited the First Hospital of Peking University and performed sural nerve biopsy between June 2007 and August 2021 were included for analysis of MFD. Results Except the vasculitic neuropathy group, the total and small MFD of patients in the ATTR‐PN group were significantly lower than those of other disease groups. There was an obvious negative correlation between the total MFD and the disease course in the ATTR‐PN group. The disease course of early‐onset and late‐onset symptoms was similar, but the loss of large myelinated nerve fibers (MF) was more severe for the latter. In addition, all late‐onset and most early‐onset patients had severely reduced MFD after a 2 years' disease course. The MFD in ATTR‐PN patients was negatively correlated with Neuropathy Impairment Score (NIS) and Norfolk Quality of life‐diabetic neuropathy (Norfolk QOL‐DN) score. Conclusion MF is lost differently in ATTR‐PN and in other common peripheral neuropathies. The late‐onset and early‐onset ATTR‐PN patients have different patterns of loss of large and small MF.
Collapse
Affiliation(s)
- Kang Du
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - Xujun Chu
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - Yuwei Tang
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - Xutong Zhao
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - Meng Yu
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - Yiming Zheng
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - Jianwen Deng
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - He Lv
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - Wei Zhang
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - Zhaoxia Wang
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
| | - Yun Yuan
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
- Beijing Key Laboratory of Neurovascular Disease Discovery Beijing 100034 China
| | - Lingchao Meng
- Department of Neurology Peking University First Hospital 8 Xishiku Street, Xicheng District Beijing 100034 China
- Beijing Key Laboratory of Neurovascular Disease Discovery Beijing 100034 China
| |
Collapse
|
15
|
Identification and clinical characterization of Charcot-Marie-Tooth disease type 1C patients with LITAF p.G112S mutation. Genes Genomics 2022; 44:1007-1016. [PMID: 35608774 DOI: 10.1007/s13258-022-01253-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1C (CMT1C) is a rare subtype associated with LITAF gene mutations. Until now, only a few studies have reported the clinical features of CMT1C. OBJECTIVE This study was performed to find CMT1C patients with mutation of LITAF in a Korean CMT cohort and to characterize their clinical features. METHODS In total, 1,143 unrelated Korean families with CMT were enrolled in a cohort. We performed whole exome sequencing to identify LITAF mutations, and examined clinical phenotypes including electrophysiological and MRI features for the identified CMT1C patients. RESULTS We identified 10 CMT1C patients from three unrelated families with p.G112S mutation in LITAF. The frequency of CMT1C among CMT1 patients was 0.59%, which is similar to reports from Western populations. CMT1C patients showed milder symptoms than CMT1A patients. The mean CMT neuropathy score version 2 was 7.7, and the mean functional disability scale was 1.0. Electrophysiological findings showed a conduction block in 22% of affected individuals. Lower extremity MRIs showed that the superficial posterior and anterolateral compartments of the calf were predominantly affected. CONCLUSIONS We found a conduction block in Korean CMT1C patients with p.G112S mutation and first described the characteristic MRI findings of the lower extremities in patients with LITAF mutation. These findings will be helpful for genotype-phenotype correlation and will widen understanding about the clinical spectrum of CMT1C.
Collapse
|
16
|
Concomitant MPZ and MFN2 Gene Variants and Charcot Marie Tooth Disease in a Boy: Clinical and Genetic Analysis—Literature Review. Case Rep Pediatr 2022; 2022:3793226. [PMID: 35449525 PMCID: PMC9017559 DOI: 10.1155/2022/3793226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Charcot- Marie- Tooth (CMT) disease includes a group of clinically and genetically heterogeneous neuropathic disorders with an estimated frequency of 1 on 2.500 individuals. CMTs are differently classified according to the age of onset, type of inheritance, and type of inheritance plus clinical features. For these disorders, more than 100 genes have been implicated as causal factors, with mutations in the PMP22 being one of the most common. The demyelinating type (CMT1) affects more than 30% of the CMTs patients and manifests with motor and sensory dysfunctions of the peripheral nervous system mainly starting with slow progressive weakness of the lower extremities. We report here a 12 year- old boy presenting with typical features of CMT1 type, hearing impairment, and inguinal hernia who at the next-generation sequence analysis displayed a concomitant presence of two variants: the c.233 C>T p.Ser 78Leu of the MPZ gene (NM_000530.6) characterized as pathogenetic and the c.1403 G>A p.Arg 468His of the MFN2 gene (NM_014874.3) characterized as VUS. Concomitant variant mutations in CMTs have been uncommonly reported. The role of these gene mutations on the clinical expression and a literature review on this topic is discussed.
Collapse
|
17
|
Poovaiah P, Rajasekaran AK, Yuvraj P, Belur YK, Atchayaram N. Audiovestibular Dysfunction in Siblings with Charcot-Marie-Tooth Disease 4F: A Case Series. J Am Acad Audiol 2022; 32:616-624. [PMID: 35176805 DOI: 10.1055/s-0042-1744105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 4F (CMT4F) is an autosomal recessive disorder with symptoms presenting in early adulthood. This clinical case series demonstrates atypical findings in cervical and ocular vestibular evoked myogenic potentials (VEMP) in siblings with CMT4F. PURPOSE The aim of this study was to highlight the audiovestibular test findings in CMT4F. RESEARCH DESIGN Case series study sample: 4 siblings, 3 of whom diagnosed with CMT4F. DATA COLLECTION AND ANALYSIS Audiological test battery and electrophysiological tests comprising auditory brainstem response (ABR) and VEMP (both cervical and ocular) were performed in our patient population. RESULTS Older siblings, in whom the hearing loss was present, manifested prolonged peak V latencies in ABR. Three out of four siblings with CMT4F showed prolongation of latencies on cervical and ocular VEMP. CONCLUSIONS In many neurodegenerative conditions, prolongation of ABR peak latencies has often been reported in the literature. There have also been a few reports of prolonged VEMP peak latencies. This article reports prolongation of only VEMP peak latencies (in both cervical and ocular recordings). The youngest sibling had prolongation of VEMP latencies, with ABR peak latencies being normal. The assumption we put forth that CMT4F may affect the vestibular pathway first requires to be tested on a larger sample and by longitudinally studying the individuals with disease condition.
Collapse
Affiliation(s)
- Prashasti Poovaiah
- Department of Speech Pathology & Audiology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Aravind Kumar Rajasekaran
- Department of Speech Pathology & Audiology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Pradeep Yuvraj
- Department of Speech Pathology & Audiology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Yamini K Belur
- Department of Speech Pathology & Audiology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| | - Nalini Atchayaram
- Department of Neurology, National Institute of Mental Health & Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
18
|
Jacobson RD, Glantz M. Electrodiagnostic Testing for Diagnosing Polyneuropathy. JAMA 2021; 326:1966-1967. [PMID: 34783857 DOI: 10.1001/jama.2021.19286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ryan D Jacobson
- Department of Neurological Sciences, Rush University, Chicago, Illinois
| | - Michelle Glantz
- Department of Neurological Sciences, Rush University, Chicago, Illinois
| |
Collapse
|
19
|
Zhao Y, Zhang H, Wang H, Ye M, Jin X. Role of formin INF2 in human diseases. Mol Biol Rep 2021; 49:735-746. [PMID: 34698992 DOI: 10.1007/s11033-021-06869-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Formin proteins catalyze actin nucleation and microfilament polymerization. Inverted formin 2 (INF2) is an atypical diaphanous-related formin characterized by polymerization and depolymerization of actin. Accumulating evidence showed that INF2 is associated with kidney disease focal segmental glomerulosclerosis and cancers, such as colorectal and thyroid cancer where it functions as a tumor suppressor, glioblastoma, breast, prostate, and gastric cancer, via its oncogenic function. However, studies on the underlying molecular mechanisms of the different roles of INF2 in diverse cancers are limited. This review comprehensively describes the structure, biochemical features, and primary pathogenic mutations of INF2.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Hui Zhang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Haibiao Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China. .,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
20
|
Attarian S, Young P, Brannagan TH, Adams D, Van Damme P, Thomas FP, Casanovas C, Kafaie J, Tard C, Walter MC, Péréon Y, Walk D, Stino A, de Visser M, Verhamme C, Amato A, Carter G, Magy L, Statland JM, Felice K. A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A. Orphanet J Rare Dis 2021; 16:433. [PMID: 34656144 PMCID: PMC8520617 DOI: 10.1186/s13023-021-02040-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1A (CMT1A) is a rare, orphan, hereditary neuromuscular disorder with no cure and for which only symptomatic treatment is currently available. A previous phase 2 trial has shown preliminary evidence of efficacy for PXT3003 in treating CMT1A. This phase 3, international, randomized, double-blind, placebo-controlled study further investigated the efficacy and safety of high- or low-dose PXT3003 (baclofen/naltrexone/D-sorbitol [mg]: 6/0.70/210 or 3/0.35/105) in treating subjects with mild to moderate CMT1A. METHODS In this study, 323 subjects with mild-to-moderate CMT1A were randomly assigned in a 1:1:1 ratio to receive 5 mL of high- or low-dose PXT3003, or placebo, orally twice daily for up to 15 months. Efficacy was assessed using the change in Overall Neuropathy Limitations Scale total score from baseline to months 12 and 15 (primary endpoint). Secondary endpoints included the 10-m walk test and other assessments. The high-dose group was discontinued early due to unexpected crystal formation in the high-dose formulation, which resulted in an unanticipated high discontinuation rate, overall and especially in the high-dose group. The statistical analysis plan was adapted to account for the large amount of missing data before database lock, and a modified full analysis set was used in the main analyses. Two sensitivity analyses were performed to check the interpretation based on the use of the modified full analysis set. RESULTS High-dose PXT3003 demonstrated significant improvement in the Overall Neuropathy Limitations Scale total score vs placebo (mean difference: - 0.37 points; 97.5% CI [- 0.68 to - 0.06]; p = 0.008), and consistent treatment effects were shown in the sensitivity analyses. Both PXT3003 doses were safe and well-tolerated. CONCLUSION The high-dose group demonstrated a statistically significant improvement in the primary endpoint and a good safety profile. Overall, high-dose PXT3003 is a promising treatment option for patients with Charcot-Marie-Tooth disease type 1A.
Collapse
Affiliation(s)
- Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, CHU La Timone, Marseille, France.
| | - Peter Young
- Department of Neurology, Medical Park Bad Feilnbach, Bad Feilnbach, Germany
| | - Thomas H Brannagan
- Columbia University Medical Center, The Neurological Institute, New York, USA
| | - David Adams
- French Reference Center for Rare Peripheral Neuropathies, Service de Neurologie Adulte, APHP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, KU, Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Florian P Thomas
- Department of Neurology, Hackensack University Medical Center, Hackensack, USA
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Carlos Casanovas
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
- Neurometabolic Diseases Group, Bellvitge Research Institute (IDIBELL) and CIBERER, Barcelona, Spain
| | - Jafar Kafaie
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Céline Tard
- U1171, Centre de référence des maladies neuromusculaires Nord Est Ile de France, Hôpital Salengro CHU de Lille, Lille, France
| | - Maggie C Walter
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, CHU Nantes, Hôtel-Dieu, Nantes, France
| | - David Walk
- Clinical Neuroscience Research Unit, University of Minnesota, Minneapolis, USA
| | - Amro Stino
- University of Michigan Health System, Ann Arbor, MI, USA
| | - Marianne de Visser
- Department of Neurology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Camiel Verhamme
- Department of Neurology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Anthony Amato
- Department of Neurology, Brigham and Women's Hospital, Boston, USA
| | - Gregory Carter
- St. Luke's Rehabilitation Institute, Physical Medicine and Rehabilitation, Spokane, USA
| | | | | | - Kevin Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, USA
| |
Collapse
|
21
|
Morant L, Erfurth ML, Jordanova A. Drosophila Models for Charcot-Marie-Tooth Neuropathy Related to Aminoacyl-tRNA Synthetases. Genes (Basel) 2021; 12:1519. [PMID: 34680913 PMCID: PMC8536177 DOI: 10.3390/genes12101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot-Marie-Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by "dying back" axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.
Collapse
Affiliation(s)
- Laura Morant
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
22
|
Uchôa Cavalcanti EB, Santos SCDL, Martins CES, de Carvalho DR, Rizzo IMPDO, Freitas MCDNB, da Silva Freitas D, de Souza FS, Junior AM, do Nascimento OJM. Charcot-Marie-Tooth disease: Genetic profile of patients from a large Brazilian neuromuscular reference center. J Peripher Nerv Syst 2021; 26:290-297. [PMID: 34190362 DOI: 10.1111/jns.12458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to describe the clinical, genetic, and epidemiological features of Charcot-Marie-Tooth disease (CMT) in Brazilian patients from a tertiary center, and to compare our data with previously published findings. This retrospective observational study conducted between February 2015 and July 2020 evaluated 503 patients (94 families and 192 unrelated individuals), diagnosed with CMT. Clinical and neurophysiological data were obtained from electronic medical records and blood samples were used for genetic analyses. Multiplex ligation-dependent probe amplification was used to assess duplications/deletions in PMP22. Sanger sequencing of GJB1 was performed in cases of suspected demyelinating CMT. Targeted gene panel sequencing was used for the remaining negative demyelinating cases and all axonal CMT cases. The first decade of life was the most common period of disease onset. In all, 353 patients had demyelinating CMT, 39 had intermediate CMT, and 111 had axonal CMT. Pathogenic or likely pathogenic variants were identified in 197 index cases. The most common causative genes among probands were PMP22 (duplication) (n = 116, 58.88%), GJB1 (n = 23, 11.67%), MFN2 (n = 12, 6.09%), GDAP1 (n = 7, 3.55%), MPZ (n = 6, 3.05%), PMP22 (point mutation) (n = 6, 3.05%), NEFL (n = 3, 1.52%), SBF2 (n = 3, 1.52%), and SH3TC2 (n = 3, 1.52%). Other identified variants were ≤1% of index cases. This study provides further data on the frequency of CMT subtypes in a Brazilian clinical-based population and highlights the importance of rarer and previously undiagnosed variants in clinical practice.
Collapse
|
23
|
Kang JH. Quantitative Analysis of Electrophysiological Characteristics of CIDP and CMT Type 1: Sensory Nerve Research. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2021. [DOI: 10.15324/kjcls.2021.53.2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ji-Hyuk Kang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Daejeon University, Daejeon, Korea
| |
Collapse
|
24
|
Villar-Quiles RN, Le VT, Leonard-Louis S, Trang NT, Huong NT, Laddada L, Francou B, Maisonobe T, Azzedine H, Stojkovic T. Leukoencephalopathy and conduction blocks in PLEKHG5-associated intermediate CMT disease. Neuromuscul Disord 2021; 31:756-764. [PMID: 34244018 DOI: 10.1016/j.nmd.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023]
Abstract
Biallelic variants in PLEKHG5 have been reported so far associated with different clinical phenotypes including Lower motor neuron disease (LMND) [also known as distal hereditary motor neuropathies (dHMN or HMN) or distal spinal muscular atrophy (DSMA4)] and intermediate Charcot-Marie-Tooth disease (CMT). We report four patients from two families presenting with intermediate CMT and atypical clinical and para-clinical findings. Patients presented with predominant distal weakness with none or mild sensory involvement and remain ambulant at last examination (22-36 years). Nerve conduction studies revealed, in all patients, intermediate motor nerve conduction velocities, reduced sensory amplitudes and multiple conduction blocks in upper limbs, outside of typical nerve compression sites. CK levels were strikingly elevated (1611-3867 U/L). CSF protein content was mildly elevated in two patients. Diffuse bilateral white matter lesions were detected in one patient. Genetic analysis revealed three novel frameshift variants c.1835_1860del and c.2308del (family 1) and c.104del (family 2). PLEKHG5-associated disease ranges from pure motor phenotypes with predominantly proximal involvement to intermediate CMT with predominant distal motor involvement and mild sensory symptoms. Leukoencephalopathy, elevated CK levels and the presence of conduction blocks associated with intermediate velocities in NCS are part of the phenotype and may arise suspicion of the disease, thus avoiding misdiagnosis and unnecessary therapeutics in these patients.
Collapse
Affiliation(s)
- Rocio-Nur Villar-Quiles
- Reference Center for Neuromuscular Disorders, APHP(,) Pitié-Salpêtrière Hospital, Paris, France; Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, Paris(,) France
| | - Van Thuy Le
- Neurology department, Hanoi Medical University Hospital, Hanoi, Viet Nam
| | - Sarah Leonard-Louis
- Reference Center for Neuromuscular Disorders, APHP(,) Pitié-Salpêtrière Hospital, Paris, France
| | - Nguyen Thi Trang
- Genetics department, Hanoi Medical University Hospital, Hanoi Medical University Hanoi, Viet Nam
| | - Nguyen Thi Huong
- Neurology department, Hanoi Medical University Hospital, Hanoi, Viet Nam; Vinmec International Hospital, Hanoi, Viet Nam
| | - Lilia Laddada
- Department of Molecular Genetics Pharmacogenomics and Hormonology, APHP, Bicêtre Hospital, Paris, France; Plateforme d'expertise maladies rares AP-HP. Université Paris-Saclay(,) Le Kremlin Bicêtre(,) France
| | - Bruno Francou
- Department of Molecular Genetics Pharmacogenomics and Hormonology, APHP, Bicêtre Hospital, Paris, France
| | - Thierry Maisonobe
- Department of Neurophysiology, APHP, Hôpital Pitié Salpêtrière, Paris, France
| | - Hamid Azzedine
- Department of Pathology and Neuropathology, AMC, Amsterdam, Netherlands
| | - Tanya Stojkovic
- Reference Center for Neuromuscular Disorders, APHP(,) Pitié-Salpêtrière Hospital, Paris, France; Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, Paris(,) France.
| |
Collapse
|
25
|
Stone EJ, Kolb SJ, Brown A. A review and analysis of the clinical literature on Charcot-Marie-Tooth disease caused by mutations in neurofilament protein L. Cytoskeleton (Hoboken) 2021; 78:97-110. [PMID: 33993654 PMCID: PMC10174713 DOI: 10.1002/cm.21676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders and can be caused by mutations in over 100 different genes. One of the causative genes is NEFL on chromosome 8 which encodes neurofilament light protein (NEFL), one of five proteins that co-assemble to form neurofilaments. At least 34 different CMT-causing mutations in NEFL have been reported which span the head, rod, and tail domains of the protein. The majority of these mutations are inherited dominantly, but some are inherited recessively. The resulting disease is classified variably in clinical reports based on electrodiagnostic studies as either axonal (type 2; CMT2E), demyelinating (type 1; CMT1F), or a form intermediate between the two (dominant intermediate; DI-CMTG). In this article, we first present a brief introduction to CMT and neurofilaments. We then collate and analyze the data from the clinical literature on the disease classification, age of onset and electrodiagnostic test results for the various mutations. We find that mutations in the head, rod, and tail domains can all cause disease with early onset and profound neurological impairment, with a trend toward greater severity for head domain mutations. We also find that the disease classification does not correlate with specific mutation or domain. In fact, different individuals with the same mutation can be classified as having axonal, demyelinating, or dominant intermediate forms of the disease. This suggests that the classification of the disease as CMT2E, CMT1F or DI-CMTG has more to do with variable disease presentation than to differences in the underlying disease mechanism, which is most likely primarily axonal in all cases.
Collapse
Affiliation(s)
- Elizabeth J Stone
- Department of Neuroscience, Ohio State University, Columbus, Ohio, USA.,Neuroscience Graduate Program, Ohio State University, Columbus, Ohio, USA
| | - Stephen J Kolb
- Department of Neurology, Ohio State University, Columbus, Ohio, USA.,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio, USA
| | - Anthony Brown
- Department of Neuroscience, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
26
|
Bähr FS, Gess B, Müller M, Romanzetti S, Gadermayr M, Kuhl C, Nebelung S, Schulz JB, Dohrn MF. Semi-Automatic MRI Muscle Volumetry to Diagnose and Monitor Hereditary and Acquired Polyneuropathies. Brain Sci 2021; 11:brainsci11020202. [PMID: 33562055 PMCID: PMC7914808 DOI: 10.3390/brainsci11020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
With emerging treatment approaches, it is crucial to correctly diagnose and monitor hereditary and acquired polyneuropathies. This study aimed to assess the validity and accuracy of magnet resonance imaging (MRI)-based muscle volumetry.Using semi-automatic segmentations of upper- and lower leg muscles based on whole-body MRI and axial T1-weighted turbo spin-echo sequences, we compared and correlated muscle volumes, and clinical and neurophysiological parameters in demyelinating Charcot-Marie-Tooth disease (CMT) (n = 13), chronic inflammatory demyelinating polyneuropathy (CIDP) (n = 27), and other neuropathy (n = 17) patients.The muscle volumes of lower legs correlated with foot dorsiflexion strength (p < 0.0001), CMT Neuropathy Score 2 (p < 0.0001), early gait disorders (p = 0.0486), and in CIDP patients with tibial nerve conduction velocities (p = 0.0092). Lower (p = 0.0218) and upper (p = 0.0342) leg muscles were significantly larger in CIDP compared to CMT patients. At one-year follow-up (n = 15), leg muscle volumes showed no significant decrease.MRI muscle volumetry is a promising method to differentiate and characterize neuropathies in clinical practice.
Collapse
Affiliation(s)
- Friederike S. Bähr
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
| | - Burkhard Gess
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
| | - Madlaine Müller
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
- Department of Neurology, Inselspital Bern, CH-3010 Bern, Switzerland
| | - Sandro Romanzetti
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
| | - Michael Gadermayr
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52074 Aachen, Germany;
- Salzburg University of Applied Sciences, 5020 Salzburg, Austria
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (C.K.); (S.N.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (C.K.); (S.N.)
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg B. Schulz
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, ForschungszentrumJülich GmbH and RWTH Aachen University, 52425 Jülich, Germany
| | - Maike F. Dohrn
- Department of Neurology, Medical Faculty of the RWTH Aachen University, 52074 Aachen, Germany; (F.S.B.); (B.G.); (M.M.); (S.R.); (J.B.S.)
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
27
|
Cannarella R, Burgio G, Vicari ES, La Vignera S, Condorelli RA, Calogero AE. Urogenital dysfunction in male patients with Charcot-Marie-Tooth: a systematic review. Aging Male 2020; 23:377-381. [PMID: 30064288 DOI: 10.1080/13685538.2018.1491543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
INTRODUCTION Charcot-Marie-Tooth (CMT) is the most common inherited polyneuropathy. Polyneuropathies are likely to affect the urogenital system. Urogenital dysfunction is rarely investigated and may be underestimated in CMT patients. AIM The aim of the present study was to perform a systematic review of the literature to collect all the available evidence on the presence of urogenital dysfunction and in patients with CMT. METHODS Data sources were MEDLINE, Pubmed, Scopus, and Google Scholar. All types of studies describing the presence of lower urinary tract dysfunction, erectile dysfunction (ED), anejaculation, and other sexual disorders in male patients with CMT were included. RESULTS Among 131 records identified, five articles were included in the qualitative synthesis. Lower urinary tract dysfunction, neurogenic bladder, ED, and other sexual dysfunctions have been reported in patients with CMT. One case of anejaculation has been described. CONCLUSION Urogenital dysfunction occurs in patients with CMT. Therefore, uro-andrologic counseling should be performed in the aging male with CMT. This might positively impact on his quality of life.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Burgio
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enzo S Vicari
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
28
|
Taniguchi T, Ando M, Okamoto Y, Yoshimura A, Higuchi Y, Hashiguchi A, Shiga K, Hayashida A, Hatano T, Ishiura H, Mitsui J, Hattori N, Mizuno T, Nakagawa M, Tsuji S, Takashima H. Genetic spectrum of Charcot-Marie-Tooth disease associated with myelin protein zero gene variants in Japan. Clin Genet 2020; 99:359-375. [PMID: 33179255 PMCID: PMC7898366 DOI: 10.1111/cge.13881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
We aimed to reveal the genetic features associated with MPZ variants in Japan. From April 2007 to August 2017, 64 patients with 23 reported MPZ variants and 21 patients with 17 novel MPZ variants were investigated retrospectively. Variation in MPZ variants and the pathogenicity of novel variants was examined according to the American College of Medical Genetics standards and guidelines. Age of onset, cranial nerve involvement, serum creatine kinase (CK), and cerebrospinal fluid (CSF) protein were also analyzed. We identified 64 CMT patients with reported MPZ variants. The common variants observed in Japan were different from those observed in other countries. We identified 11 novel pathogenic variants from 13 patients. Six novel MPZ variants in eight patients were classified as likely benign or uncertain significance. Cranial nerve involvement was confirmed in 20 patients. Of 30 patients in whom serum CK levels were evaluated, eight had elevated levels. Most of the patients had age of onset >20 years. In another subset of 30 patients, 18 had elevated CSF protein levels; four of these patients had spinal diseases and two had enlarged nerve root or cauda equina. Our results suggest genetic diversity across patients with MPZ variants.
Collapse
Affiliation(s)
- Takaki Taniguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kensuke Shiga
- Department of Neurology, Matsushita Memorial Hospital, Osaka, Japan.,Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Arisa Hayashida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Masanori Nakagawa
- Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan.,North Medical Center, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
29
|
Skedsmo FS, Espenes A, Tranulis MA, Matiasek K, Gunnes G, Bjerkås I, Moe L, Røed SS, Berendt M, Fredholm M, Rohdin C, Shelton GD, Bruheim P, Stafsnes MH, Bartosova Z, Hermansen LC, Stigen Ø, Jäderlund KH. Impaired NDRG1 functions in Schwann cells cause demyelinating neuropathy in a dog model of Charcot-Marie-Tooth type 4D. Neuromuscul Disord 2020; 31:56-68. [PMID: 33334662 DOI: 10.1016/j.nmd.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
Mutations in the N-myc downstream-regulated gene 1 (NDRG1) cause degenerative polyneuropathy in ways that are poorly understood. We have investigated Alaskan Malamute dogs with neuropathy caused by a missense mutation in NDRG1. In affected animals, nerve levels of NDRG1 protein were reduced by more than 70% (p< 0.03). Nerve fibers were thinly myelinated, loss of large myelinated fibers was pronounced and teased fiber preparations showed both demyelination and remyelination. Inclusions of filamentous material containing actin were present in adaxonal Schwann cell cytoplasm and Schmidt-Lanterman clefts. This condition strongly resembles the human Charcot-Marie-Tooth type 4D. However, the focally folded myelin with adaxonal infoldings segregating the axon found in this study are ultrastructural changes not described in the human disease. Furthermore, lipidomic analysis revealed a profound loss of peripheral nerve lipids. Our data suggest that the low levels of mutant NDRG1 is insufficient to support Schwann cells in maintaining myelin homeostasis.
Collapse
Affiliation(s)
- Fredrik S Skedsmo
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, Veterinärstr. 13, D-80539 Munich, Germany
| | - Gjermund Gunnes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Inge Bjerkås
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Lars Moe
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Susan Skogtvedt Røed
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg C, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | - Cecilia Rohdin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Ultunaalléen 5A, 756 51 Uppsala, Sweden; Anicura Albano Small Animal Hospital, Rinkebyvägen 21, 182 36 Danderyd, Sweden
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0709, United States of America
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Sem Sælands vei 6, 7034 Trondheim, Norway
| | - Marit H Stafsnes
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Sem Sælands vei 6, 7034 Trondheim, Norway
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Sem Sælands vei 6, 7034 Trondheim, Norway
| | - Lene C Hermansen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway
| | - Øyvind Stigen
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Karin H Jäderlund
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| |
Collapse
|
30
|
Prada V, Robbiano G, Mennella G, Hamedani M, Bellone E, Grandis M, Schenone A, Zuccarino R. Validation of a new hand function outcome measure in individuals with Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2020; 25:413-422. [PMID: 33140522 DOI: 10.1111/jns.12421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022]
Abstract
The symptomatology of Charcot-Marie-Tooth (CMT) disease mainly involves the feet and the hands. To date, there is no consensus on how to evaluate hand function in CMT. The aim of this study is to correlate the data of the engineered glove Hand Test System (HTS) with specific tests and the CMT examination score (CMTES). We analyzed 45 patients with the diagnosis of CMT using HTS, which measures the hand dexterity by specific sequences performed at maximum velocity. We completed the evaluation with the CMTES, tripod pinch and hand grip strength tested by a dynamometer, thumb opposition test (TOT), and Sollerman Hand function test (SHFT), and we conducted a test-retest with 20 normal subjects. Finger tapping (FT) and index-medium-ring-little (IMRL) sequence showed a significant correlation with CMTES (FT: dominant hand (DH): P = .036; non-dominant hand (NDH): P = .033; IMRL: DH: P = .009; NDH: P = .046). TOT correlated with CMTES significantly in both hands (P < .0001). tripod pinch showed a statistically significant correlation with CMTES (DH: P = .002; NDH: P = .005). Correlation between the hand grip and CMTES was significant only in DH (DH: P = .002). SHFT had a significant correlation with the CMTES (DH: P = .002). Test-retest showed a good reliability. HTS parameters correlate with CMTES confirming that this tool is sensitive to the hand deficits. In conclusion, we can state that HTS is a good, simple to use, and objective instrument to evaluate the hand function of CMT patients, but more studies on responsiveness and sensitivity are needed.
Collapse
Affiliation(s)
- Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy
| | - Giulia Robbiano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy
| | - Giulia Mennella
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy
| | - Mehrnaz Hamedani
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy
| | - Emilia Bellone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Infantile Sciences (DINOGMI), University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Riccardo Zuccarino
- University of Iowa, Iowa City, Iowa, USA.,Fondazione Serena Onlus, Centro Clinico Nemo, Arenzano, Italy
| |
Collapse
|
31
|
Shiraishi T, Masumoto K, Nakamura M, Hidano G. Enlarged Brachial Plexus Nerve Found During Ultrasound-Guided Peripheral Nerve Block Diagnosed as Charcot-Marie-Tooth Disease: A Case Report. Local Reg Anesth 2020; 13:141-146. [PMID: 33116812 PMCID: PMC7585548 DOI: 10.2147/lra.s270189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
Ultrasound-guided peripheral nerve block (PNB) has become a popular anesthetic procedure. We report a case of an enlarged brachial plexus nerve noted on ultrasonographic images, as part of PNB, which was diagnosed postoperatively as Charcot-Marie-Tooth disease (CMTD), an inherited neurological disorder of the peripheral nerves. Although nerve enlargement is characteristic of demyelinating diseases such as CMTD, the use of ultrasonography in the diagnosis of neurological disorders is a developing area for neurologists and anesthesiologists can lack knowledge in this emerging field. Unusual nerve presentation on ultrasonographic images during PNB anesthetic procedures should be recognized as being indicative of underlying neurologic disorders. This case highlights that increased awareness of the diagnosis of underlying neurologic disorders by ultrasonography would assist the general practice of PNB in anesthetic medicine. This is especially important as underlying neurological conditions can have important consequences for patient-appropriate anesthesia and may inform best anesthetic practice. A new category, “neurological disorder on ultrasound image”, should be introduced to PNB knowledge in anesthetic field.
Collapse
Affiliation(s)
- Toshie Shiraishi
- Minimally Invasive Surgery Center, Department of Anesthesiology, Yotsuya Medical Cube, Tokyo, Japan
| | - Kentaro Masumoto
- Minimally Invasive Surgery Center, Department of Anesthesiology, Yotsuya Medical Cube, Tokyo, Japan
| | - Mitsuyo Nakamura
- Minimally Invasive Surgery Center, Department of Anesthesiology, Yotsuya Medical Cube, Tokyo, Japan
| | - Gumi Hidano
- Minimally Invasive Surgery Center, Department of Anesthesiology, Yotsuya Medical Cube, Tokyo, Japan
| |
Collapse
|
32
|
Moldovan M, Pisciotta C, Pareyson D, Krarup C. Myelin protein zero gene dose dependent axonal ion-channel dysfunction in a family with Charcot-Marie-Tooth disease. Clin Neurophysiol 2020; 131:2440-2451. [PMID: 32829291 DOI: 10.1016/j.clinph.2020.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/29/2020] [Accepted: 06/28/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The myelin impairment in demyelinating Charcot-Marie-Tooth (CMT) disease leads to various degrees of axonal degeneration, the ultimate cause of disability. We aimed to assess the pathophysiological changes in axonal function related to the neuropathy severity in hypo-/demyelinating CMT patients associated with myelin protein zero gene (MPZ) deficiency. METHODS We investigated four family members (two parents and two sons) harboring a frameshift mutation (c.306delA, p.Asp104ThrfsTer14) in the MPZ gene, predicted to result in a nonfunctional P0, by conventional conduction studies and multiple measures of motor axon excitability. In addition to the conventional excitability studies of the median nerve at the wrist, we tested the spinal accessory nerves. Control measures were obtained from 14 healthy volunteers. RESULTS The heterozygous parents (aged 56 and 63) had a mild CMT1B whereas their two homozygous sons (aged 31 and 39 years) had a severe Dejerine-Sottas disease phenotype. The spinal accessory nerve excitability could be measured in all patients. The sons showed reduced deviations during depolarizing threshold electrotonus and other depolarizing features which were not apparent in the accessory and median nerve studies of the parents. Mathematical modeling indicated impairment in voltage-gated sodium channels. This interpretation was supported by comparative modeling of excitability measurements in MPZ deficient mice. CONCLUSION Our data suggest that axonal depolarization in the context of abnormal voltage-gated sodium channels precedes axonal degeneration in severely hypo-/demyelinating CMT as previously reported in the mouse models. SIGNIFICANCE Measures of the accessory nerve excitability could provide pathophysiological markers of neurotoxicity in severe demyelinating neuropathies.
Collapse
Affiliation(s)
- Mihai Moldovan
- Department of Neuroscience, University of Copenhagen, Denmark; Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Christian Krarup
- Department of Neuroscience, University of Copenhagen, Denmark; Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
33
|
Hartmannsberger B, Doppler K, Stauber J, Schlotter-Weigel B, Young P, Sereda MW, Sommer C. Intraepidermal nerve fibre density as biomarker in Charcot-Marie-Tooth disease type 1A. Brain Commun 2020; 2:fcaa012. [PMID: 32954280 PMCID: PMC7425304 DOI: 10.1093/braincomms/fcaa012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Accepted: 01/24/2020] [Indexed: 01/03/2023] Open
Abstract
Charcot-Marie-Tooth disease type 1A, caused by a duplication of the gene peripheral myelin protein 22 kDa, is the most frequent subtype of hereditary peripheral neuropathy with an estimated prevalence of 1:5000. Patients suffer from sensory deficits, muscle weakness and foot deformities. There is no treatment approved for this disease. Outcome measures in clinical trials were based mainly on clinical features but did not evaluate the actual nerve damage. In our case-control study, we aimed to provide objective and reproducible outcome measures for future clinical trials. We collected skin samples from 48 patients with Charcot-Marie-Tooth type 1A, 7 patients with chronic inflammatory demyelinating polyneuropathy, 16 patients with small fibre neuropathy and 45 healthy controls. To analyse skin innervation, 40-µm cryosections of glabrous skin taken from the lateral index finger were double-labelled by immunofluorescence. The disease severity of patients with Charcot-Marie-Tooth type 1A was assessed by the Charcot-Marie-Tooth neuropathy version 2 score, which ranged from 3 (mild) to 27 (severe) and correlated with age (P < 0.01, R = 0.4). Intraepidermal nerve fibre density was reduced in patients with Charcot-Marie-Tooth type 1A compared with the healthy control group (P < 0.01) and negatively correlated with disease severity (P < 0.05, R = -0.293). Meissner corpuscle (MC) density correlated negatively with age in patients with Charcot-Marie-Tooth type 1A (P < 0.01, R = -0.45) but not in healthy controls (P = 0.07, R = 0.28). The density of Merkel cells was reduced in patients with Charcot-Marie-Tooth type 1A compared with healthy controls (P < 0.05). Furthermore, in patients with Charcot-Marie-Tooth type 1A, the fraction of denervated Merkel cells was highly increased and correlated with age (P < 0.05, R = 0.37). Analysis of nodes of Ranvier revealed shortened paranodes and a reduced fraction of long nodes in patients compared with healthy controls (both P < 0.001). Langerhans cell density was increased in chronic inflammatory demyelinating polyneuropathy, but not different in Charcot-Marie-Tooth type 1A compared with healthy controls. Our data suggest that intraepidermal nerve fibre density might be used as an outcome measure in Charcot-Marie-Tooth type 1A disease, as it correlates with disease severity. The densities of Meissner corpuscles and Merkel cells might be an additional tool for the evaluation of the disease progression. Analysis of follow-up biopsies will clarify the effects of Charcot-Marie-Tooth type 1A disease progression on cutaneous innervation.
Collapse
Affiliation(s)
| | - Kathrin Doppler
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| | - Julia Stauber
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Beate Schlotter-Weigel
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Peter Young
- Medical Park Bad Feilnbach Reithofpark, Department of Neurology, 83075 Bad Feilnbach, Germany
| | - Michael W Sereda
- Department of Clinical Neurophysiology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
34
|
Nagappa M, Sharma S, Govindaraj P, Chickabasaviah YT, Siram R, Shroti A, Debnath M, Sinha S, Bindu PS, Taly AB. PMP22 Gene-Associated Neuropathies: Phenotypic Spectrum in a Cohort from India. J Mol Neurosci 2020; 70:778-789. [PMID: 31993930 DOI: 10.1007/s12031-020-01488-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
Reports of spectrum of clinical manifestations in PMP22 gene-associated neuropathies (duplication/mutations) are scarce. To identify the frequency of PMP22 gene variations and establish their genotype-phenotype correlation. Patients with suspected genetic demyelinating neuropathy (n = 128) underwent evaluation for copy number variations and point mutations in PMP22 gene by multiplex ligation-dependent probe amplification (MLPA) and direct sequencing respectively. Of these, only 27 patients (M:F:19:8) from 18 families had PMP22 gene-associated neuropathy; they were subsequently analyzed for genotype-phenotype correlation. Twenty-five patients had PMP22 duplication while two patients had PMP22 missense mutations (p.A114V and p.L80P). Age at onset of neuropathy ranged from infancy to 63 years and symptom duration ranged from 2 to 32 years. Cranial nerve dysfunction in the form of ptosis, ophthalmoplegia, bifacial weakness, and sensorineural hearing loss was observed in addition to a number of systemic features. Three patients were asymptomatic. All except one patient were ambulant. Velocity of median nerve and amplitude of evoked motor responses from common peroneal nerve were significantly reduced in male patients. There was significantly worse disability in the late-onset group as compared with the early-onset group. Otherwise, the mean age at onset, frequency of skeletal deformities, patterns of motor weakness, muscle stretch reflexes, sensory impairment, disability rating scales, and electrophysiological parameters were comparable irrespective of gender, onset age, family history and ulnar nerve conduction velocities. The relatively low frequency of PMP22 duplication in the present cohort warrants a more comprehensive search to establish the genetic etiology. Further research into the role of other genetic variants as well as modifier genes and their effect on phenotypic heterogeneity is indicated.
Collapse
Affiliation(s)
- Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India. .,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.
| | - Shivani Sharma
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Periyasamy Govindaraj
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Yasha T Chickabasaviah
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Ramesh Siram
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Akhilesh Shroti
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Parayil S Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India.,Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India
| |
Collapse
|
35
|
Pridmore M, Castoro R, McCollum MS, Kang H, Li J, Dortch R. Length-dependent MRI of hereditary neuropathy with liability to pressure palsies. Ann Clin Transl Neurol 2020; 7:15-25. [PMID: 31872979 PMCID: PMC6952310 DOI: 10.1002/acn3.50953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Hereditary neuropathy with liability to pressure palsies (HNPP) is caused by heterozygous deletion of the peripheral myelin protein 22 (PMP22) gene. Patients with HNPP present multifocal, reversible sensory/motor deficits due to increased susceptibility to mechanical pressure. Additionally, age-dependent axonal degeneration is reported. We hypothesize that length-dependent axonal loss can be revealed by MRI, irrespective of the multifocal phenotype in HNPP. METHODS Nerve and muscle MRI data were acquired in the proximal and distal leg of patients with HNPP (n = 10) and matched controls (n = 7). More specifically, nerve magnetization transfer ratios (MTR) were evaluated to assay proximal-to-distal gradients in nerve degeneration, while intramuscular fat percentages (Fper ) were evaluated to assay muscle fat replacement following denervation. Neurological disabilities were assessed via the Charcot-Marie-Tooth neuropathy score (CMTNS) for correlation with MRI. RESULTS Fper values were elevated in HNPP proximal muscle (9.8 ± 2.2%, P = 0.01) compared to controls (6.9 ± 1.0%). We observed this same elevation of HNPP distal muscles (10.5 ± 2.5%, P < 0.01) relative to controls (6.3 ± 1.1%). Additionally, the amplitude of the proximal-to-distal gradient in Fper was more significant in HNPP patients than controls (P < 0.01), suggesting length-dependent axonal loss. In contrast, nerve MTR values were similar between HNPP subjects (sciatic/tibial nerves = 39.4 ± 2.0/34.2 ± 2.5%) and controls (sciatic/tibial nerves = 37.6 ± 3.8/35.5 ± 1.2%). Proximal muscle Fper values were related to CMTNS (r = 0.69, P = 0.03), while distal muscle Fper and sciatic/tibial nerve MTR values were not related to disability. INTERPRETATION Despite the multifocal nature of the HNPP phenotype, muscle Fper measurements relate to disability and exhibit a proximal-to-distal gradient consistent with length-dependent axonal loss, suggesting that Fper may be a viable biomarker of disease progression in HNPP.
Collapse
Affiliation(s)
- Michael Pridmore
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ryan Castoro
- Department of NeurologyDivision of Neuromuscular MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | - Hakmook Kang
- Department of BiostatisticsVanderbilt UniversityNashvilleTennesseeUSA
| | - Jun Li
- Department of NeurologyWayne State University School of MedicineDetroitMichiganUSA
| | - Richard Dortch
- Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
36
|
Ong CF, Geijtenbeek T, Hicks JL, Delp SL. Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations. PLoS Comput Biol 2019; 15:e1006993. [PMID: 31589597 PMCID: PMC6797212 DOI: 10.1371/journal.pcbi.1006993] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/17/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
Deficits in the ankle plantarflexor muscles, such as weakness and contracture, occur commonly in conditions such as cerebral palsy, stroke, muscular dystrophy, Charcot-Marie-Tooth disease, and sarcopenia. While these deficits likely contribute to observed gait pathologies, determining cause-effect relationships is difficult due to the often co-occurring biomechanical and neural deficits. To elucidate the effects of weakness and contracture, we systematically introduced isolated deficits into a musculoskeletal model and generated simulations of walking to predict gait adaptations due to these deficits. We trained a planar model containing 9 degrees of freedom and 18 musculotendon actuators to walk using a custom optimization framework through which we imposed simple objectives, such as minimizing cost of transport while avoiding falling and injury, and maintaining head stability. We first generated gaits at prescribed speeds between 0.50 m/s and 2.00 m/s that reproduced experimentally observed kinematic, kinetic, and metabolic trends for walking. We then generated a gait at self-selected walking speed; quantitative comparisons between our simulation and experimental data for joint angles, joint moments, and ground reaction forces showed root-mean-squared errors of less than 1.6 standard deviations and normalized cross-correlations above 0.8 except for knee joint moment trajectories. Finally, we applied mild, moderate, and severe levels of muscle weakness or contracture to either the soleus (SOL) or gastrocnemius (GAS) or both of these major plantarflexors (PF) and retrained the model to walk at a self-selected speed. The model was robust to all deficits, finding a stable gait in all cases. Severe PF weakness caused the model to adopt a slower, "heel-walking" gait. Severe contracture of only SOL or both PF yielded similar results: the model adopted a "toe-walking" gait with excessive hip and knee flexion during stance. These results highlight how plantarflexor weakness and contracture may contribute to observed gait patterns.
Collapse
Affiliation(s)
- Carmichael F. Ong
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Thomas Geijtenbeek
- Department of Biomechatronics & Human-Machine Control, Delft University of Technology, Delft, The Netherlands
| | - Jennifer L. Hicks
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Scott L. Delp
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Charcot-Marie-Tooth: From Molecules to Therapy. Int J Mol Sci 2019; 20:ijms20143419. [PMID: 31336816 PMCID: PMC6679156 DOI: 10.3390/ijms20143419] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) is the most prevalent category of inherited neuropathy. The most common inheritance pattern is autosomal dominant, though there also are X-linked and autosomal recessive subtypes. In addition to a variety of inheritance patterns, there are a myriad of genes associated with CMT, reflecting the heterogeneity of this disorder. Next generation sequencing (NGS) has expanded and simplified the diagnostic yield of genes/molecules underlying and/or associated with CMT, which is of paramount importance in providing a substrate for current and future targeted disease-modifying treatment options. Considerable research attention for disease-modifying therapy has been geared towards the most commonly encountered genetic mutations (PMP22, GJB1, MPZ, and MFN2). In this review, we highlight the clinical background, molecular understanding, and therapeutic investigations of these CMT subtypes, while also discussing therapeutic research pertinent to the remaining less common CMT subtypes.
Collapse
|
38
|
Pazzaglia C, Padua L, Pareyson D, Schenone A, Aiello A, Fabrizi GM, Cavallaro T, Santoro L, Manganelli F, Coraci D, Gemignani F, Vitetta F, Quattrone A, Mazzeo A, Russo M, Vita G. Are novel outcome measures for Charcot–Marie–Tooth disease sensitive to change? The 6-minute walk test and StepWatch™ Activity Monitor in a 12-month longitudinal study. Neuromuscul Disord 2019; 29:310-316. [DOI: 10.1016/j.nmd.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 11/25/2022]
|
39
|
Monfrini E, Straniero L, Bonato S, Monzio Compagnoni G, Bordoni A, Dilena R, Rinchetti P, Silipigni R, Ronchi D, Corti S, Comi GP, Bresolin N, Duga S, Di Fonzo A. Neurofascin (NFASC) gene mutation causes autosomal recessive ataxia with demyelinating neuropathy. Parkinsonism Relat Disord 2019; 63:66-72. [PMID: 30850329 DOI: 10.1016/j.parkreldis.2019.02.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Neurofascin, encoded by NFASC, is a transmembrane protein that plays an essential role in nervous system development and node of Ranvier function. Anti-Neurofascin autoantibodies cause a specific type of chronic inflammatory demyelinating polyneuropathy (CIDP) often characterized by cerebellar ataxia and tremor. Recently, homozygous NFASC mutations were recently associated with a neurodevelopmental disorder in two families. METHODS A combined approach of linkage analysis and whole-exome sequencing was performed to find the genetic cause of early-onset cerebellar ataxia and demyelinating neuropathy in two siblings from a consanguineous Italian family. Functional studies were conducted on neurons from induced pluripotent stem cells (iPSCs) generated from the patients. RESULTS Genetic analysis revealed a homozygous p.V1122E mutation in NFASC. This mutation, affecting a highly conserved hydrophobic transmembrane domain residue, led to significant loss of Neurofascin protein in the iPSC-derived neurons of affected siblings. CONCLUSIONS The identification of NFASC mutations paves the way for genetic research in the developing field of nodopathies, an emerging pathological entity involving the nodes of Ranvier, which are associated for the first time with a hereditary ataxia syndrome with neuropathy.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sara Bonato
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Monzio Compagnoni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Andreina Bordoni
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Robertino Dilena
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurofisiopatologia Pediatrica, UOC Neurofisiopatologia, Milan, Italy
| | - Paola Rinchetti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Rosamaria Silipigni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Laboratory of Medical Genetics, Milan, Italy
| | - Dario Ronchi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Corti
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo P Comi
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nereo Bresolin
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy; Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
40
|
Genetic neuromuscular disorders: living the era of a therapeutic revolution. Part 1: peripheral neuropathies. Neurol Sci 2019; 40:661-669. [DOI: 10.1007/s10072-019-03778-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/16/2019] [Indexed: 12/17/2022]
|
41
|
Juneja M, Burns J, Saporta MA, Timmerman V. Challenges in modelling the Charcot-Marie-Tooth neuropathies for therapy development. J Neurol Neurosurg Psychiatry 2019; 90:58-67. [PMID: 30018047 PMCID: PMC6327864 DOI: 10.1136/jnnp-2018-318834] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
Much has been achieved in terms of understanding the complex clinical and genetic heterogeneity of Charcot-Marie-Tooth neuropathy (CMT). Since the identification of mutations in the first CMT associated gene, PMP22, the technological advancement in molecular genetics and gene technology has allowed scientists to generate diverse animal models expressing monogenetic mutations that closely resemble the CMT phenotype. Additionally, one can now culture patient-derived neurons in a dish using cellular reprogramming and differentiation techniques. Nevertheless, despite the fact that finding a disease-causing mutation offers a precise diagnosis, there is no cure for CMT at present. This review will shed light on the exciting advancement in CMT disease modelling, the breakthroughs, pitfalls, current challenges for scientists and key considerations to move the field forward towards successful therapies.
Collapse
Affiliation(s)
- Manisha Juneja
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium.,Neurogenetics Labatory, Institute Born Bunge, Antwerp, Belgium
| | - Joshua Burns
- University of Sydney, Faculty of Health Sciences & Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Mario A Saporta
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, University of Antwerp, Antwerp, Belgium .,Neurogenetics Labatory, Institute Born Bunge, Antwerp, Belgium
| |
Collapse
|
42
|
McCorquodale D, Smith AG. Clinical electrophysiology of axonal polyneuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:217-240. [PMID: 31307603 DOI: 10.1016/b978-0-444-64142-7.00051-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Axonal neuropathies encompass a wide range of acquired and inherited disorders with electrophysiologic characteristics that arise from the unique neurophysiology of the axon. Accurate interpretation of nerve conduction studies and electromyography requires an in-depth understanding of the pathophysiology of the axon. Here we review the unique neurophysiologic properties of the axon and how they relate to clinical electrodiagnostic features. We review the length-dependent Wallerian or "dying-back" processes as well as the emerging body of literature from acquired axonal neuropathies that highlights the importance of axonal disease at the nodes of Ranvier. Neurophysiologic features of individual inherited and acquired axonal diseases, including primary nerve disease as well as systemic immune mediated, metabolic, and toxic diseases involving the peripheral nerve, are reviewed. This comprehensive review of electrodiagnostic findings coupled with the current understanding of pathophysiology will aid the clinician in the evaluation of axonal polyneuropathies.
Collapse
Affiliation(s)
- Donald McCorquodale
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - A Gordon Smith
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
43
|
Al-Kheraif AA, Hashem M, Al Esawy MSS. Developing Charcot-Marie-Tooth Disease Recognition System Using Bacterial Foraging Optimization Algorithm Based Spiking Neural Network. J Med Syst 2018; 42:192. [PMID: 30203246 DOI: 10.1007/s10916-018-1049-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022]
Abstract
In the developing technology Charcot-Marie-Tooth (CMT) disease is one of the teeth diseases which are occurred due to the genetic reason. The CMT disease affects the muscle tissue which reduces the progressive growth of the muscle. So, the CMT disease needs to be recognized carefully for eliminating the risk factors in the early stage. At the time of this process, the system handles the difficulties while performing feature extraction and classification part. So, the teeth images are processed by applying the normalization method which eliminates the salt and pepper noise from data. From that, modified group delay function along with Cepstral coefficient features are extracted with effective manner. After that Bacterial Foraging Optimization Algorithm based features are selected. Then the selected features are examined by applying the Bacterial Foraging Optimization Algorithm based spiking neural network which successfully recognizes the CMT disease. At that point the productivity of the framework is assessed with the assistance of exploratory outcomes.
Collapse
Affiliation(s)
- Abdulaziz Abdullah Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O Box 10219, Riyadh, 11433, Saudi Arabia.
| | - Mohamed Hashem
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O Box 10219, Riyadh, 11433, Saudi Arabia
| | | |
Collapse
|
44
|
Nerve ultrasound findings differentiate Charcot-Marie-Tooth disease (CMT) 1A from other demyelinating CMTs. Clin Neurophysiol 2018; 129:2259-2267. [PMID: 30216910 DOI: 10.1016/j.clinph.2018.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/04/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Ulnar/median motor nerve conduction velocity (MNCV) is ≤38 m/s in demyelinating Charcot-Marie-Tooth disease (CMT). Previous nerve high resolution ultrasound (HRUS) studies explored demyelinating CMT assuming it as a homogeneous genetic/pathological entity or focused on CMT1A. METHODS To explore the spectrum of nerve HRUS findings in demyelinating CMTs, we recruited patients with CMT1A (N = 44), CMT1B (N = 9), CMTX (N = 8) and CMT4C (N = 4). They underwent nerve conduction study (NCS) and HRUS of the median, ulnar, peroneal nerve, and the brachial plexus. RESULTS Median, ulnar and peroneal MNCV significantly differed across CMT subtypes. Cross sectional area (CSA) was markedly and diffusely enlarged at all sites, except entrapment ones, in CMT1A, while it was slightly enlarged or within normal range in the other CMTs. No significant right-to-left difference was found. Age had limited effect on CSA. CSAs of some CMT1A patients largely overlapped with those of other demyelinating CMTs. A combination of three median CSA measures could separate CMT1A from other demyelinating CMTs. CONCLUSIONS Nerve HRUS findings are heterogeneous in demyelinating CMTs. SIGNIFICANCE Nerve HRUS may separate CMT1A from other demyelinating CMTs. The large demyelinating CMTs HRUS spectrum may be related to its pathophysiological variability.
Collapse
|
45
|
Quadros Santos Monteiro Fonseca AT, Zanoteli E. Charcot-Marie-Tooth disease. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
46
|
Fledrich R, Abdelaal T, Rasch L, Bansal V, Schütza V, Brügger B, Lüchtenborg C, Prukop T, Stenzel J, Rahman RU, Hermes D, Ewers D, Möbius W, Ruhwedel T, Katona I, Weis J, Klein D, Martini R, Brück W, Müller WC, Bonn S, Bechmann I, Nave KA, Stassart RM, Sereda MW. Targeting myelin lipid metabolism as a potential therapeutic strategy in a model of CMT1A neuropathy. Nat Commun 2018; 9:3025. [PMID: 30072689 PMCID: PMC6072747 DOI: 10.1038/s41467-018-05420-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/28/2018] [Indexed: 01/17/2023] Open
Abstract
In patients with Charcot-Marie-Tooth disease 1A (CMT1A), peripheral nerves display aberrant myelination during postnatal development, followed by slowly progressive demyelination and axonal loss during adult life. Here, we show that myelinating Schwann cells in a rat model of CMT1A exhibit a developmental defect that includes reduced transcription of genes required for myelin lipid biosynthesis. Consequently, lipid incorporation into myelin is reduced, leading to an overall distorted stoichiometry of myelin proteins and lipids with ultrastructural changes of the myelin sheath. Substitution of phosphatidylcholine and phosphatidylethanolamine in the diet is sufficient to overcome the myelination deficit of affected Schwann cells in vivo. This treatment rescues the number of myelinated axons in the peripheral nerves of the CMT rats and leads to a marked amelioration of neuropathic symptoms. We propose that lipid supplementation is an easily translatable potential therapeutic approach in CMT1A and possibly other dysmyelinating neuropathies.
Collapse
Affiliation(s)
- R Fledrich
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
- Institute of Anatomy, University of Leipzig, Leipzig, 04103, Germany.
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany.
| | - T Abdelaal
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Division, National Research Centre, Giza, 12622, Egypt
| | - L Rasch
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - V Bansal
- Center for Molecular Neurobiology, Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - V Schütza
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany
| | - B Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, 69120, Germany
| | - C Lüchtenborg
- Heidelberg University Biochemistry Center (BZH), Heidelberg, 69120, Germany
| | - T Prukop
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - J Stenzel
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - R U Rahman
- Center for Molecular Neurobiology, Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - D Hermes
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - D Ewers
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - W Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, 37075, Germany
| | - T Ruhwedel
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany
| | - I Katona
- Institute of Neuropathology, University Hospital Aachen, Aachen, 52074, Germany
| | - J Weis
- Institute of Neuropathology, University Hospital Aachen, Aachen, 52074, Germany
| | - D Klein
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, 97080, Germany
| | - R Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, Wuerzburg, 97080, Germany
| | - W Brück
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - W C Müller
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany
| | - S Bonn
- Center for Molecular Neurobiology, Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
- German Center for Neurodegenerative Diseases, Tübingen, 72076, Germany
| | - I Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, 04103, Germany
| | - K A Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
| | - R M Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
- Department of Neuropathology, University Hospital Leipzig, Leipzig, 04103, Germany.
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| | - M W Sereda
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, 37075, Germany.
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| |
Collapse
|
47
|
Prada V, Schizzi S, Poggi I, Mori L, Gemelli C, Hamedani M, Accogli S, Maggi G, Grandis M, Mancardi GL, Schenone A. Hand Rehabilitation Treatment for Charcot-Marie-Tooth Disease: An Open Label Pilot Study. JOURNAL OF NEUROLOGY & NEUROPHYSIOLOGY 2018; 9:465. [PMID: 30305981 PMCID: PMC6175056 DOI: 10.4172/2155-9562.1000465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Charcot-Marie-Tooth neuropathy affects mainly and early the lower limbs, but hands deformities are a relevant problem, which involves the quality of life of the patients. Unfortunately, there are few studies about the evaluation of the upper limbs and very rare works about the rehabilitation. A treatment study at the moment is missing and it is important to search rehabilitation exercises to improve the dexterity and the quality of life of the patients. METHODS We recruited 9 patients with clinical and genetic diagnosis of CMT and we proposed a rehabilitation protocol which includes muscle recruitment, stretching and proprioceptive exercises for the hand with the duration of 4 weeks (two sessions for week). We evaluated the patients before and one week after the treatment with Thumb Opposition Test, Sollerman Hand Function Scale, dynamometry (tripod pinch and hand grip). RESULTS The rehabilitation protocol has been well tolerated and there were not dropouts. We did not observe any worsening in every scale we used. Every parameter tested showed an improvement especially in the right/dominant hand. CONCLUSION This study demonstrates that this three phases treatment is well tolerated by patients, it is not detrimental for the hands status and perfectly reproducible by professionals. Moreover, this could be the basis for future randomized single blind projects.
Collapse
Affiliation(s)
- Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Italy
| | - S Schizzi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Italy
| | - I Poggi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Italy
| | - L Mori
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Italy
- Ospedale Policlinico San Martino IRCCS, Dipartimento di Neurologia, Genova, Italy
| | - C Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Italy
| | - M Hamedani
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Italy
| | - S Accogli
- Ospedale Policlinico San Martino IRCCS, Dipartimento di Neurologia, Genova, Italy
| | - G Maggi
- Ospedale Policlinico San Martino IRCCS, Dipartimento di Neurologia, Genova, Italy
| | - M Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Italy
- Ospedale Policlinico San Martino IRCCS, Dipartimento di Neurologia, Genova, Italy
| | - GL Mancardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Italy
- Ospedale Policlinico San Martino IRCCS, Dipartimento di Neurologia, Genova, Italy
| | - A Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Italy
- Ospedale Policlinico San Martino IRCCS, Dipartimento di Neurologia, Genova, Italy
| |
Collapse
|
48
|
DHTKD1 Deficiency Causes Charcot-Marie-Tooth Disease in Mice. Mol Cell Biol 2018; 38:MCB.00085-18. [PMID: 29661920 DOI: 10.1128/mcb.00085-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/08/2018] [Indexed: 01/20/2023] Open
Abstract
DHTKD1, a part of 2-ketoadipic acid dehydrogenase complex, is involved in lysine and tryptophan catabolism. Mutations in DHTKD1 block the metabolic pathway and cause 2-aminoadipic and 2-oxoadipic aciduria (AMOXAD), an autosomal recessive inborn metabolic disorder. In addition, a nonsense mutation in DHTKD1 that we identified previously causes Charcot-Marie-Tooth disease (CMT) type 2Q, one of the most common inherited neurological disorders affecting the peripheral nerves in the musculature. However, the comprehensive molecular mechanism underlying CMT2Q remains elusive. Here, we show that Dhtkd1-/- mice mimic the major aspects of CMT2 phenotypes, characterized by progressive weakness and atrophy in the distal parts of limbs with motor and sensory dysfunctions, which are accompanied with decreased nerve conduction velocity. Moreover, DHTKD1 deficiency causes severe metabolic abnormalities and dramatically increased levels of 2-ketoadipic acid (2-KAA) and 2-aminoadipic acid (2-AAA) in urine. Further studies revealed that both 2-KAA and 2-AAA could stimulate insulin biosynthesis and secretion. Subsequently, elevated insulin regulates myelin protein zero (Mpz) transcription in Schwann cells via upregulating the expression of early growth response 2 (Egr2), leading to myelin structure damage and axonal degeneration. Finally, 2-AAA-fed mice do reproduce phenotypes similar to CMT2Q phenotypes. In conclusion, we have demonstrated that loss of DHTKD1 causes CMT2Q-like phenotypes through dysregulation of Mpz mRNA and protein zero (P0) which are closely associated with elevated DHTKD1 substrate and insulin levels. These findings further indicate an important role of metabolic disorders in addition to mitochondrial insufficiency in the pathogenesis of peripheral neuropathies.
Collapse
|
49
|
de França Costa IMP, Nunes PS, de Aquino Neves EL, Lima Santos Barreto LC, Garcez CA, Souza CC, Pereira Oliveira PM, Sales Ferreira LA, Brandão Lima VN, de Souza Araújo AA. Evaluation of muscle strength, balance and functionality of individuals with type 2 Charcot-Marie-Tooth Disease. Gait Posture 2018; 62:463-467. [PMID: 29674285 DOI: 10.1016/j.gaitpost.2018.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is part of a group of genetically determined neuropathies. The intrinsic muscles of the feet and legs are affected early in the disease, impacting balance and mobility. RESEARCH QUESTION The purpose of this study was to evaluate individuals with type 2 Charcot-Marie-Tooth disease to understand how motor changes interfere in balance and function. METHODS The sample comprised 15 individuals with CMT2 from the same family (CMT2G) and a control group (CG) of healthy individuals matched for age and gender. The CMT individuals were classified using the Charcot-Marie-Tooth Neuropathy Score (CMTNS). Muscle strength of the ankle was assessed using a manual dynamometer. Balance was measured using a stabilometer and Berg's Balance Scale (BBS). Functional performance was measured by the Timed Up and Go Test (TUG). RESULTS There was a statistically significant difference between the CMT2G and the CG for right side (RS) and left side (LS) muscle strength (dorsiflexors-RS and LS: p < 0,0001; invertors-RS and LS: p < 0.0001; plantarflexors-RS: p < 0.0001; plantarflexors-LS: p = 0.0019; evertors-RS: p = 0.0016; evertors-LS: p<0.0001) in the parameters for the velocity and displacement of center of pressure (CoP) anterior-posterior (AP) in the stabilometry tests with eyes open (EO) and closed (EC) (VCoPAP-EO and VCoPAP-EC: p = 0.0123; DCoPAP-OE: p = 0.0183 and DCoPAP-EC: p = 0.0129), the Berg Balance Scale (p = 0.0066) and the TUG test (p = 0.0003). SIGNIFICANCE Thus when the severity of the disease is mild the instability is caused by the weakness of the dorsiflexors and plantarflexors. In patients considered moderate/severe, in addition to weakness of the leg muscles, loss of proprioception will contribute to impaired balance.
Collapse
Affiliation(s)
| | - Paula Santos Nunes
- Department of Morphology, Federal University of Sergipe, Marechal Rondon Avenue s/n, 49100-000, São Cristóvão, SE, Brazil
| | - Eduardo Luis de Aquino Neves
- Center for Postgraduate Health Sciences, Federal University of Sergipe-UFS, Claudio Batista Sts/n, 49060-100, Aracaju, SE, Brazil
| | | | - Catarina Andrade Garcez
- Center for Postgraduate Health Sciences, Federal University of Sergipe-UFS, Claudio Batista Sts/n, 49060-100, Aracaju, SE, Brazil
| | - Cynthia Coelho Souza
- Center for Postgraduate Health Sciences, Federal University of Sergipe-UFS, Claudio Batista Sts/n, 49060-100, Aracaju, SE, Brazil
| | - Paulo Márcio Pereira Oliveira
- Department of Physiotherapy, Federal University of Sergipe, Marcelo Deda Governor Avenue 330, 49400-000, Lagarto, SE, Brazil
| | - Luiz Augusto Sales Ferreira
- Department of Morphology, Federal University of Sergipe, Marechal Rondon Avenue s/n, 49100-000, São Cristóvão, SE, Brazil
| | | | - Adriano Antunes de Souza Araújo
- Center for Postgraduate Health Sciences, Federal University of Sergipe-UFS, Claudio Batista Sts/n, 49060-100, Aracaju, SE, Brazil
| |
Collapse
|
50
|
Bas J, Delmont E, Fatehi F, Salort-Campana E, Verschueren A, Pouget J, Lefebvre MN, Grapperon AM, Attarian S. Motor unit number index correlates with disability in Charcot-Marie-Tooth disease. Clin Neurophysiol 2018; 129:1390-1396. [PMID: 29729594 DOI: 10.1016/j.clinph.2018.04.359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 03/11/2018] [Accepted: 04/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to assess the usefulness of motor unit number index (MUNIX) technique in Charcot-Marie-Tooth disease and test the correlation between MUNIX and clinical impairment. METHODS MUNIX technique was performed in the abductor pollicis brevis (APB), the abductor digiti minimi (ADM) and the tibialis anterior (TA) muscles in the nondominant side. A MUNIX sum score was calculated by adding the MUNIX of these 3 muscles. Muscle strength was measured using the MRC (medical research council) scale. Disability was evaluated using several functional scales, including CMT neuropathy score version 2 (CMTNSv2) and overall neuropathy limitation scale (ONLS). RESULTS A total of 56 CMT patients were enrolled. The MUNIX scores of the ADM, APB and TA muscles correlated with the MRC score of the corresponding muscle (p < 0.01). The MUNIX sum score correlated with the clinical scales CMTNSv2 (r = -0.65, p < 0.01) and ONLS (r = -0.57, p < 0.01). CONCLUSION MUNIX correlates with muscle strength and clinical measurements of disability in patients with CMT disease. SIGNIFICANCE The MUNIX technique evaluates motor axonal loss and correlates with disability. The MUNIX sum score may be a useful outcome measure of disease progression in CMT.
Collapse
Affiliation(s)
- Joachim Bas
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Emilien Delmont
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, UMR 7286, Medicine Faculty, Marseille, France
| | - Farzad Fatehi
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Emmanuelle Salort-Campana
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, Inserm, GMGF, Marseille, France
| | - Annie Verschueren
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Jean Pouget
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, Inserm, GMGF, Marseille, France
| | - Marie-Noëlle Lefebvre
- CIC-CPCET, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Aude-Marie Grapperon
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Shahram Attarian
- Referral Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France; Aix-Marseille University, Inserm, GMGF, Marseille, France.
| |
Collapse
|