1
|
Meléndez DC, Laniewski N, Jusko TA, Qiu X, Paige Lawrence B, Rivera-Núñez Z, Brunner J, Best M, Macomber A, Leger A, Kannan K, Miller RK, Barrett ES, O'Connor TG, Scheible K. In utero exposure to per - and polyfluoroalkyl substances (PFAS) associates with altered human infant T helper cell development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317489. [PMID: 39606350 PMCID: PMC11601683 DOI: 10.1101/2024.11.18.24317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Environmental exposures to chemical toxicants during gestation and infancy can dysregulate multiple developmental processes, causing lifelong effects. There is compelling evidence of PFAS-associated immunotoxicity in adults and children. However, the effect of developmental PFAS exposure on infant T-cell immunity is unreported, and, if present, could be implicated in immune-related health outcomes. Objectives We seek to model longitudinal changes in CD4+ T-cell subpopulations from birth through 12 months and their association with in-utero PFAS exposure and postnatal CD4+ T-cell frequencies and functions. Methods Maternal-infant dyads were recruited as part of the UPSIDE-ECHO cohort during the first trimester between 2015 and 2019 in Rochester, New York; dyads were followed through the infant's first birthday. Maternal PFAS concentrations (PFOS, PFOA, PFNA, and PFHXS) were quantified in serum during the second trimester using high-performance liquid chromatography and tandem mass spectrometry. Infant lymphocyte frequencies were assessed at birth, 6- and 12-months using mass cytometry and high-dimensional clustering methods. Linear mixed-effects models were employed to analyze the relationship between maternal PFAS concentrations and CD4+ T-cell subpopulations (n=200). All models included a PFAS and age interaction and were adjusted for parity, infant sex, and pre-pregnancy body mass index. Results In-utero PFAS exposure correlated with multiple CD4+ T-cell subpopulations in infants. The greatest effect sizes were seen in T-follicular helper (Tfh) and T-helper 2 (Th2) cells at 12 months. A log 2 -unit increase in PFOS was associated with lower Tfh [0.17% (95%CI: -0.30, -0.40)] and greater Th2 [0.27% (95%CI: 0.18, 0.35)] cell percentages at 12 months. Similar trends were observed for PFOA, PFNA, and PFHXS. Discussion Maternal PFAS exposures correlate with cell-specific changes in the infant T-cell compartment, including key CD4+ T-cell subpopulations that play central roles in coordinating well-regulated, protective immunity. Future studies into the role of PFAS-associated T-cell distribution and risk of adverse immune-related health outcomes in children are warranted.
Collapse
|
2
|
Ding Q, Xu Q, Hong Y, Zhou H, He X, Niu C, Tian Z, Li H, Zeng P, Liu J. Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis. Front Immunol 2024; 15:1399856. [PMID: 38962008 PMCID: PMC11219584 DOI: 10.3389/fimmu.2024.1399856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Rheumatoid arthritis (RA) is a systemic disease that attacks the joints and causes a heavy economic burden on humans worldwide. T cells regulate RA progression and are considered crucial targets for therapy. Therefore, we aimed to integrate multiple datasets to explore the mechanisms of RA. Moreover, we established a T cell-related diagnostic model to provide a new method for RA immunotherapy. Methods scRNA-seq and bulk-seq datasets for RA were obtained from the Gene Expression Omnibus (GEO) database. Various methods were used to analyze and characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR) and expression quantitative trait loci (eQTL), we screened for potential pathogenic T cell marker genes in RA. Subsequently, we selected an optimal machine learning approach by comparing the nine types of machine learning in predicting RA to identify T cell-related diagnostic features to construct a nomogram model. Patients with RA were divided into different T cell-related clusters using the consensus clustering method. Finally, we performed immune cell infiltration and clinical correlation analyses of T cell-related diagnostic features. Results By analyzing the scRNA-seq dataset, we obtained 10,211 cells that were annotated into 7 different subtypes based on specific marker genes. By integrating the eQTL from blood and RA GWAS, combined with XGB machine learning, we identified a total of 8 T cell-related diagnostic features (MIER1, PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus clustering analysis showed that RA could be classified into two different T-cell patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than Cluster 1. The two clusters involved different pathways and had different immune cell infiltration states. There was no difference in age or sex between the two different T cell patterns. In addition, ICOS and IL6ST were negatively correlated with age in RA patients. Conclusion Our findings elucidate the heterogeneity of T cells in RA and the communication role of these cells in an RA immune microenvironment. The construction of T cell-related diagnostic models provides a resource for guiding RA immunotherapeutic strategies.
Collapse
Affiliation(s)
- Qiang Ding
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Qingyuan Xu
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Yini Hong
- Gynecology Department, The First People’s Hospital of Guangzhou, Guangzhou, China
| | - Honghai Zhou
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyu He
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Chicheng Niu
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Zhao Tian
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Hao Li
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Ping Zeng
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Jinfu Liu
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Guangxi, China
| |
Collapse
|
3
|
Park J, Lee J, Hur Y, Kim CJ, Kim HB, Um D, Kim DS, Lee JY, Park S, Park Y, Kim TK, Im SH, Kim SW, Kwok SK, Lee Y. ETV5 promotes lupus pathogenesis and follicular helper T cell differentiation by inducing osteopontin expression. Proc Natl Acad Sci U S A 2024; 121:e2322009121. [PMID: 38843187 PMCID: PMC11181037 DOI: 10.1073/pnas.2322009121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.
Collapse
Affiliation(s)
- Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Chan-Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Han Bit Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Da Som Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Sungjun Park
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon34114, Republic of Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| |
Collapse
|
4
|
Haltaufderhyde K, Roberts BJ, Khan S, Terry F, Boyle CM, McAllister M, Martin W, Rosenberg A, De Groot AS. Immunoinformatic Risk Assessment of Host Cell Proteins During Process Development for Biologic Therapeutics. AAPS J 2023; 25:87. [PMID: 37697150 DOI: 10.1208/s12248-023-00852-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
The identification and removal of host cell proteins (HCPs) from biologic products is a critical step in drug development. Despite recent improvements to purification processes, biologics such as monoclonal antibodies, enzyme replacement therapies, and vaccines that are manufactured in a range of cell lines and purified using diverse processes may contain HCP impurities, making it necessary for developers to identify and quantify impurities during process development for each drug product. HCPs that contain sequences that are less conserved with human homologs may be more immunogenic than those that are more conserved. We have developed a computational tool, ISPRI-HCP, that estimates the immunogenic potential of HCP sequences by evaluating and quantifying T cell epitope density and relative conservation with similar T cell epitopes in the human proteome. Here we describe several case studies that support the use of this method for classifying candidate HCP impurities according to their immunogenicity risk.
Collapse
Affiliation(s)
| | - Brian J Roberts
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Sundos Khan
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Frances Terry
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | | | | | - William Martin
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Amy Rosenberg
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Anne S De Groot
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA.
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Law H, Mach M, Howe A, Obeid S, Milner B, Carey C, Elfis M, Fsadni B, Ognenovska K, Phan TG, Carey D, Xu Y, Venturi V, Zaunders J, Kelleher AD, Munier CML. Early expansion of CD38+ICOS+ GC Tfh in draining lymph nodes during influenza vaccination immune response. iScience 2022; 25:103656. [PMID: 35028536 PMCID: PMC8741621 DOI: 10.1016/j.isci.2021.103656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
T follicular helper (Tfh) cells provide critical help to B cells during the germinal center (GC) reaction to facilitate generation of protective humoral immunity. Accessing the human lymph node (LN) to study the commitment of CD4 T cells to GC Tfh cell differentiation during in vivo vaccine responses is difficult. We used ultrasound guided fine needle biopsy to monitor recall responses in axillary LNs to seasonal influenza vaccination in healthy volunteers. Specific expansion of GC cell subsets occurred exclusively within draining LNs five days postvaccination. Draining LN GC Tfh and precursor-Tfh cells express higher levels of CD38, ICOS, and Ki67, indicating they were significantly more activated, motile, and proliferating, compared to contralateral LN cells. These observations provide insight into the early expansion phase of the human Tfh lineage within LNs during a vaccine induced memory response and highlights early LN immune responses may not be reflected in the periphery. Early response to influenza vaccine is characterized by expansion of GC cell subsets Specific expansion of CD38+ ICOS+ GC Tfh and Pre-Tfh occurs in draining LNs only Activated GC Tfh and Pre-Tfh are also proliferating, expressing high levels of Ki67 Correlation between activated Pre-Tfh and activated c-Tfh suggests a potential origin
Collapse
Affiliation(s)
- Hannah Law
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Melanie Mach
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,The University of Sydney, Sydney 2006, NSW, Australia
| | - Annett Howe
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Solange Obeid
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Brad Milner
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Cate Carey
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Maxine Elfis
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Bertha Fsadni
- St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | | | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney 2010, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney 2010, NSW, Australia
| | - Diane Carey
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Yin Xu
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Vanessa Venturi
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - John Zaunders
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | - Anthony D Kelleher
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia.,St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | | |
Collapse
|
6
|
Rascle P, Jacquelin B, Petitdemange C, Contreras V, Planchais C, Lazzerini M, Dereuddre-Bosquet N, Le Grand R, Mouquet H, Huot N, Müller-Trutwin M. NK-B cell cross talk induces CXCR5 expression on natural killer cells. iScience 2021; 24:103109. [PMID: 34622162 PMCID: PMC8479784 DOI: 10.1016/j.isci.2021.103109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 09/08/2021] [Indexed: 01/21/2023] Open
Abstract
B cell follicles (BCFs) in lymph nodes (LNs) are generally exempt of CD8+ T and NK cells. African green monkeys (AGMs), a natural host of simian immunodeficiency virus (SIV), display NK cell-mediated viral control in BCF. NK cell migration into BCF in chronically SIVagm-infected AGM is associated with CXCR5+ NK cells. We aimed to identify the mechanism leading to CXCR5 expression on NK cells. We show that CXCR5+ NK cells in LN were induced following SIVagm infection. CXCR5+ NK cells accumulated preferentially in BCF with proliferating B cells. Autologous NK-B cell co-cultures in transwell chambers induced CXCR5+ NK cells. Transcriptome analysis of CXCR5+ NK cells revealed expression of bcl6 and IL6R. IL-6 induced CXCR5 on AGM and human NK cells. IL6 mRNA was detected in LN at higher levels during SIVagm than SIVmac infection and often produced by plasma cells. Our study reveals a mechanism of B cell-dependent NK cell regulation. IL-6 can induce CXCR5 on NK cells CXCR5+ NK cells expressed high levels of bcl6 and IL6R More IL-6+ plasmablast/plasma cells in lymph nodes in SIVagm than SIVmac infection B cells participate in the regulation of NK cell migration into BCF
Collapse
Affiliation(s)
- Philippe Rascle
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Béatrice Jacquelin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Caroline Petitdemange
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Vanessa Contreras
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Cyril Planchais
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Marie Lazzerini
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Nathalie Dereuddre-Bosquet
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Roger Le Grand
- CEA, Université Paris-Saclay, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT, IBFJ, CEA, Fontenay-aux-Roses, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Laboratory of Humoral Immunology, Paris, France.,INSERM U1222, Paris, France
| | - Nicolas Huot
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, HIV Inflammation and Persistence Unit, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
7
|
Stavropoulou E, Kantartzi K, Tsigalou C, Konstantinidis T, Voidarou C, Konstantinidis T, Bezirtzoglou E. Unraveling the Interconnection Patterns Across Lung Microbiome, Respiratory Diseases, and COVID-19. Front Cell Infect Microbiol 2021; 10:619075. [PMID: 33585285 PMCID: PMC7876344 DOI: 10.3389/fcimb.2020.619075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Albeit the lungs were thought to be sterile, recent scientific data reported a microbial microbiota in the lungs of healthy individuals. Apparently, new developments in technological approachesincluding genome sequencing methodologies contributed in the identification of the microbiota and shed light on the role of the gut and lung microbiomes in the development of respiratory diseases. Moreover, knowledge of the human microbiome in health may act as a tool for evaluating characteristic shifts in the case of disease. This review paper discusses the development of respiratory disease linked to the intestinal dysbiosis which influences the lung immunity and microbiome. The gastrointestinal-lung dialogue provides interesting aspects in the pathogenesis of the respiratory diseases. Lastly, we were further interested on the role of this interconnection in the progression and physiopathology of newly emergedCOVID-19.
Collapse
Affiliation(s)
- Elisavet Stavropoulou
- CHUV (Centre HospitalierUniversitaire Vaudois), Lausanne, Switzerland
- Department of Infectious Diseases, Central Institute, Valais Hospital, Sion, Switzerland
| | - Konstantia Kantartzi
- Nephrology Clinic, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theocharis Konstantinidis
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Theodoros Konstantinidis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
8
|
Zhou X, Liu Y, Jin Y, Wang Y, Miao M, Chen J, Cheng Y, Liu Y, He J, Li Z. Immune responses after influenza vaccination in patients of primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:224-230. [PMID: 32671409 DOI: 10.1093/rheumatology/keaa243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Influenza vaccination is effective in preventing infections in most people. This study aimed to assess the changes of immune responses in primary Sjögren's Syndrome (pSS) patients after influenza vaccination and determine the safety of influenza vaccination. METHODS A total of 17 patients with pSS and 16 healthy controls (HCs) were included. Peripheral mononuclear cells were analysed by flow cytometry. Vaccine-specific antibodies were determined by ELISA. Clinical features and serological responses were monitored. RESULTS The percentages of T follicular helper cell (Tfh) were significantly elevated in HCs after vaccination (P=0.0005), while no significant differences in the levels of Tfh in pSS patients were identified (P=0.1748). The proportions of Th2 cells were significantly decreased after vaccination in both pSS patients and HCs (P<0.05). In contrast, the percentages of Th1 cells and Th17 cells were significantly increased after vaccination in pSS patients (P<0.05), while no significant differences in the percentages of Th1 and Th17 cells were identified in HCs (P>0.05), although a trend towards higher levels of Th1 cells was observed (P=0.0830). No significant changes in the proportions of memory B cells and plasmablasts were observed after vaccination. Patients with pSS developed higher levels of vaccine-specific IgGs compared with HCs (P=0.001). No significant changes in disease manifestations and laboratory parameters were observed after vaccination. No increased vaccination related adverse effect was observed in pSS. CONCLUSION Our findings suggest the feasibility of applying influenza vaccines to patients with pSS, raising awareness for vaccination among the rheumatology community and involved healthcare professionals.
Collapse
Affiliation(s)
| | - Yisi Liu
- Department of Infectious Disease
| | - Yuebo Jin
- Department of Rheumatology and Immunology
| | - Yifan Wang
- Department of Rheumatology and Immunology
| | - Miao Miao
- Department of Rheumatology and Immunology
| | - Jiali Chen
- Department of Rheumatology and Immunology
| | | | - Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology and Immunology
| | - Zhanguo Li
- Department of Rheumatology and Immunology
| |
Collapse
|
9
|
Otsuka K, Yamada A, Saito M, Ushio A, Sato M, Kisoda S, Shao W, Tsunematsu T, Kudo Y, Arakaki R, Ishimaru N. Achaete-Scute Homologue 2–Regulated Follicular Helper T Cells Promote Autoimmunity in a Murine Model for Sjögren Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2414-2427. [DOI: 10.1016/j.ajpath.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
|
10
|
Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Dębska-Ślizień A, Witkowski JM. T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol 2019; 23:291-303. [PMID: 30406499 PMCID: PMC6394565 DOI: 10.1007/s10157-018-1665-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN), the most frequent cause of primary glomerulonephritis worldwide, is an autoimmune disease with complex pathogenesis. In this review, we focus on T cells and summarize knowledge about their involvement in pathophysiology and treatment of IgAN METHODS: We reviewed the literature for (1) alterations of T cell subpopulations in IgAN, (2) experimental and clinical proofs for T cells' participation in IgAN pathogenesis, (3) clinical correlations with T cell-associated alterations, and (4) influence of drugs used in IgAN therapy on T cell subpopulations. RESULTS We found that IgAN is characterized by higher proportions of circulatory Th2, Tfh, Th17, Th22 and γδ T cells, but lower Th1 and Treg cells. We discuss genetic and epigenetic makeup that may contribute to this immunological phenotype. We found that Th2, Th17 and Tfh-type interleukins contribute to elevated synthesis of galactose-deficient IgA1 (Gd-IgA1) and that the production of anti-Gd-IgA1 autoantibodies may be stimulated by Tfh cells. We described the roles of Th2, Th17, Th22 and Treg cells in the renal injury and summarized correlations between T cell-associated alterations and clinical features of IgAN (proteinuria, reduced GFR, hematuria). We detailed the impact of immunosuppressive drugs on T cell subpopulations and found that the majority of drugs have nonoptimal influence on T cells in IgAN patients. CONCLUSIONS T cells play an important role in IgAN pathogenesis and are correlated with its clinical severity. Clinical trials with the drugs targeting the reported alterations of the T-cell compartment are highly desirable.
Collapse
Affiliation(s)
- Jakub Ruszkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | - Katarzyna A Lisowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Małgorzata Pindel
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Zbigniew Heleniak
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek M Witkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| |
Collapse
|
11
|
Saito M, Otsuka K, Ushio A, Yamada A, Arakaki R, Kudo Y, Ishimaru N. Unique Phenotypes and Functions of Follicular Helper T Cells and Regulatory T Cells in Sjögren's Syndrome. Curr Rheumatol Rev 2019; 14:239-245. [PMID: 28124612 PMCID: PMC6225342 DOI: 10.2174/1573397113666170125122858] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Sjogren’s syndrome (SS) is a T cell-mediated autoimmune disease of the systemic exocrine glands, such as salivary and lacrimal glands. A variety of T-cell subpopulations maintain immune tolerance in the thymus and periphery through complex immune responses including cellular and humoral immunity. The T-cell subpopulations exhibiting abnormal or unique phenotypes and impaired functionality have been reported to play important roles in the cellular mechanisms of autoimmunity in SS patients and animal models of SS. In this review, we focused on follicular helper T cells related to antibody production and regulatory T cells to control immune tolerance in the pathogenesis of SS. The unique roles of these T-cell subpopulations in the process of the onset or development of SS have been demonstrated in this review of recent publications. The clinical application of these T-cell subpopulations will be helpful for the development of new techniques for diagnosis or treatment of SS in the future.
Collapse
Affiliation(s)
- Masako Saito
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Kunihiro Otsuka
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Aya Ushio
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Akiko Yamada
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| |
Collapse
|
12
|
Moise L, M Biron B, Boyle CM, Kurt Yilmaz N, Jang H, Schiffer C, M Ross T, Martin WD, De Groot AS. T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response. Hum Vaccin Immunother 2018; 14:2203-2207. [PMID: 30015562 PMCID: PMC6183197 DOI: 10.1080/21645515.2018.1495303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4+ T cell epitopes – without perturbing native antigen structure – by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4+ T cell memory to influenza immunity, (ii) the essential role CD4+ T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4+ T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets.
Collapse
Affiliation(s)
- Leonard Moise
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA.,c Department of Cell and Molecular Biology , University of Rhode Island , Providence , RI , USA
| | | | | | - Nese Kurt Yilmaz
- d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA
| | - Hyesun Jang
- e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA
| | - Celia Schiffer
- d Department of Biochemistry and Molecular Pharmacology , UMass Medical School , Worcester , MA , USA
| | - Ted M Ross
- e Center for Vaccines and Immunology , University of Georgia , Athens , GA , USA.,f Department of Infectious Diseases , University of Georgia , Athens , GA , USA
| | | | - Anne S De Groot
- a EpiVax, Inc ., Providence , RI , USA.,b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA.,c Department of Cell and Molecular Biology , University of Rhode Island , Providence , RI , USA
| |
Collapse
|
13
|
Panneton V, Bagherzadeh Yazdchi S, Witalis M, Chang J, Suh WK. ICOS Signaling Controls Induction and Maintenance of Collagen-Induced Arthritis. THE JOURNAL OF IMMUNOLOGY 2018; 200:3067-3076. [PMID: 29581356 DOI: 10.4049/jimmunol.1701305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/02/2018] [Indexed: 01/23/2023]
Abstract
ICOS is a key costimulatory receptor facilitating differentiation and function of follicular helper T cells and inflammatory T cells. Rheumatoid arthritis patients were shown to have elevated levels of ICOS+ T cells in the synovial fluid, suggesting a potential role of ICOS-mediated T cell costimulation in autoimmune joint inflammation. In this study, using ICOS knockout and knockin mouse models, we found that ICOS signaling is required for the induction and maintenance of collagen-induced arthritis (CIA), a murine model of rheumatoid arthritis. For the initiation of CIA, the Tyr181-based SH2-binding motif of ICOS that is known to activate PI3K was critical for Ab production and expansion of inflammatory T cells. Furthermore, we found that Tyr181-dependent ICOS signaling is important for maintenance of CIA in an Ab-independent manner. Importantly, we found that a small molecule inhibitor of glycolysis, 3-bromopyruvate, ameliorates established CIA, suggesting an overlap between ICOS signaling, PI3K signaling, and glucose metabolism. Thus, we identified ICOS as a key costimulatory pathway that controls induction and maintenance of CIA and provide evidence that T cell glycolytic pathways can be potential therapeutic targets for rheumatoid arthritis.
Collapse
Affiliation(s)
- Vincent Panneton
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sahar Bagherzadeh Yazdchi
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and
| | - Mariko Witalis
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Molecular Biology Program, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Jinsam Chang
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada.,Molecular Biology Program, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| | - Woong-Kyung Suh
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada; .,Department of Microbiology, Infectiology, and Immunology, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; and.,Molecular Biology Program, University of Montreal, Montreal, Quebec H1T 2M4, Canada
| |
Collapse
|
14
|
Cárdeno A, Magnusson MK, Quiding-Järbrink M, Lundgren A. Activated T follicular helper-like cells are released into blood after oral vaccination and correlate with vaccine specific mucosal B-cell memory. Sci Rep 2018; 8:2729. [PMID: 29426881 PMCID: PMC5807513 DOI: 10.1038/s41598-018-20740-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
T follicular helper (Tfh)-like cells with potent B-cell helping ability are mobilized into human circulation after parenteral vaccination and are generally held to reflect ongoing germinal center reactions. However, whether mucosal vaccination induces systemic Tfh responses and how such responses may relate to IgA production are unknown. We investigated the frequencies, phenotype and function of circulating Tfh-like CD4+CXCR5+ T cells (cTfh) in adults receiving an oral inactivated enterotoxigenic Escherichia coli vaccine. Subjects were classified as vaccine responders or weak/non-responders based on their intestine-derived antibody-secreting cell (ASC) IgA responses to major vaccine antigens. Oral immunization induced significantly increased proportions of cTfh cells expressing the cTfh activation marker inducible costimulator (ICOS) in ASC responders, but not in weak/non-responders. Vaccination also enhanced the expression of IL-21, Th17 markers and integrin β7 by activated cTfh cells, supporting functionality and gut homing potential. cTfh cells promoted total and vaccine specific IgA production from cocultured B cells. Magnitudes of cTfh responses assessed within a week after primary vaccinations correlated with memory intestine-derived vaccine specific IgA responses 1-2 years later. We conclude that activated ICOS+ Tfh-like cells are mobilized into blood after oral vaccination and may be used as biomarkers of vaccine specific mucosal memory in humans.
Collapse
Affiliation(s)
- Ana Cárdeno
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | | | - Anna Lundgren
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
15
|
Brummelman J, Pilipow K, Lugli E. The Single-Cell Phenotypic Identity of Human CD8+ and CD4+ T Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:63-124. [DOI: 10.1016/bs.ircmb.2018.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
The Intricate Link among Gut "Immunological Niche," Microbiota, and Xenobiotics in Intestinal Pathology. Mediators Inflamm 2017; 2017:8390595. [PMID: 29118468 PMCID: PMC5651127 DOI: 10.1155/2017/8390595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are diseases characterized by various degrees of inflammation involving the gastrointestinal tract. Ulcerative colitis and Crohn's disease are characterized by a dysregulated immune response leading to structural gut alterations in genetically predisposed individuals. Diverticular disease is characterized by abnormal immune response to normal gut microbiota. IBDs are linked to a lack of physiological tolerance of the mucosal immune system to resident gut microbiota and pathogens. The disruption of immune tolerance involves inflammatory pathways characterized by an unbalance between the anti-inflammatory regulatory T cells and the proinflammatory Th1/Th17 cells. The interaction among T cell subpopulations and their related cytokines, mediators of inflammation, gut microbiota, and the intestinal mucosa constitute the gut “immunological niche.” Several evidences have shown that xenobiotics, such as rifaximin, can positively modulate the inflammatory pathways at the site of gut immunological niche, acting as anti-inflammatory agents. Xenobiotics may interfere with components of the immunological niche, leading to activation of anti-inflammatory pathways and inhibition of several mediators of inflammation. In summary, xenobiotics may reduce disease-related gut mucosal alterations and clinical symptoms. Studying the complex interplay between gut immunological niche and xenobiotics will certainly open new horizons in the knowledge and therapy of intestinal pathologies.
Collapse
|
17
|
Alam S, Chan C, Qiu X, Shannon I, White CL, Sant AJ, Nayak JL. Selective pre-priming of HA-specific CD4 T cells restores immunological reactivity to HA on heterosubtypic influenza infection. PLoS One 2017; 12:e0176407. [PMID: 28493882 PMCID: PMC5426616 DOI: 10.1371/journal.pone.0176407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/09/2017] [Indexed: 01/07/2023] Open
Abstract
A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- Epitopes/immunology
- Hemagglutinins, Viral/immunology
- Humans
- Immunologic Memory
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Pandemics
- Vaccination
Collapse
Affiliation(s)
- Shabnam Alam
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Cory Chan
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Ian Shannon
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chantelle L. White
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jennifer L. Nayak
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Pathogenesis of the inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) and Crohn's disease (CD), involve proinflammatory changes within the microbiota, chronic immune-mediated inflammatory responses, and epithelial dysfunction. Converging data from genome-wide association studies, mouse models of IBD, and clinical trials indicate that cytokines are key effectors of both normal homeostasis and chronic inflammation in the gut. Yet many questions remain concerning the role of specific cytokines in different IBDs within distinct regions of the gut, and regarding cellular mechanisms of action. In this article, we review current and emerging concepts concerning the role of cytokines in IBD with a focus on immune regulation, T cell subsets, and potential clinical applications.
Collapse
|
19
|
Abstract
Pathogenesis of the inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) and Crohn's disease (CD), involve proinflammatory changes within the microbiota, chronic immune-mediated inflammatory responses, and epithelial dysfunction. Converging data from genome-wide association studies, mouse models of IBD, and clinical trials indicate that cytokines are key effectors of both normal homeostasis and chronic inflammation in the gut. Yet many questions remain concerning the role of specific cytokines in different IBDs within distinct regions of the gut, and regarding cellular mechanisms of action. In this article, we review current and emerging concepts concerning the role of cytokines in IBD with a focus on immune regulation, T cell subsets, and potential clinical applications.
Collapse
Affiliation(s)
- Mei Lan Chen
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Mark S. Sundrud
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458 USA
| |
Collapse
|
20
|
Mesquita D, Cruvinel WM, Resende LS, Mesquita FV, Silva NP, Câmara NOS, Andrade LEC. Follicular helper T cell in immunity and autoimmunity. ACTA ACUST UNITED AC 2016; 49:e5209. [PMID: 27096200 PMCID: PMC4843212 DOI: 10.1590/1414-431x20165209] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/27/2016] [Indexed: 11/22/2022]
Abstract
The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- D Mesquita
- Divisão de Reumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - W M Cruvinel
- Divisão de Reumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - L S Resende
- Divisão de Farmacologia, Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F V Mesquita
- Divisão de Reumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - N P Silva
- Divisão de Reumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - N O S Câmara
- Divisão de Imunologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - L E C Andrade
- Divisão de Reumatologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
21
|
Adaptive immunity in the liver. Cell Mol Immunol 2016; 13:354-68. [PMID: 26996069 PMCID: PMC4856810 DOI: 10.1038/cmi.2016.4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023] Open
Abstract
The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver.
Collapse
|
22
|
DiPiazza A, Richards KA, Knowlden ZAG, Nayak JL, Sant AJ. The Role of CD4 T Cell Memory in Generating Protective Immunity to Novel and Potentially Pandemic Strains of Influenza. Front Immunol 2016; 7:10. [PMID: 26834750 PMCID: PMC4725218 DOI: 10.3389/fimmu.2016.00010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 11/24/2022] Open
Abstract
Recent events have made it clear that potentially pandemic strains of influenza regularly pose a threat to human populations. Therefore, it is essential that we develop better strategies to enhance vaccine design and evaluation to predict those that will be poor responders to vaccination and to identify those that are at particular risk of disease-associated complications following infection. Animal models have revealed the discrete functions that CD4 T cells play in developing immune response and to influenza immunity. However, humans have a complex immunological history with influenza through periodic infection and vaccination with seasonal variants, leading to the establishment of heterogeneous memory populations of CD4 T cells that participate in subsequent responses. The continual evolution of the influenza-specific CD4 T cell repertoire involves both specificity and function and overlays other restrictions on CD4 T cell activity derived from viral antigen handling and MHC class II:peptide epitope display. Together, these complexities in the influenza-specific CD4 T cell repertoire constitute a formidable obstacle to predicting protective immune response to potentially pandemic strains of influenza and in devising optimal vaccine strategies to potentiate these responses. We suggest that more precise efforts to identify and enumerate both the positive and negative contributors within the CD4 T cell compartment will aid significantly in the achievement of these goals.
Collapse
Affiliation(s)
- Anthony DiPiazza
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Katherine A Richards
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Zackery A G Knowlden
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Jennifer L Nayak
- Department of Pediatrics, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| | - Andrea J Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center , Rochester, NY , USA
| |
Collapse
|
23
|
Vargas-Inchaustegui DA, Demers A, Shaw JM, Kang G, Ball D, Tuero I, Musich T, Mohanram V, Demberg T, Karpova TS, Li Q, Robert-Guroff M. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2016; 196:1700-10. [PMID: 26773147 DOI: 10.4049/jimmunol.1502137] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/10/2015] [Indexed: 12/24/2022]
Abstract
Measurement of Ag-specific T follicular helper (TFH) cell activity in rhesus macaques has not previously been reported. Given that rhesus macaques are the animal model of choice for evaluating protective efficacy of HIV/SIV vaccine candidates and that TFH cells play a pivotal role in aiding B cell maturation, quantifying vaccine induction of HIV/SIV-specific TFH cells would greatly benefit vaccine development. In this study, we quantified SIV Env-specific IL-21-producing TFH cells for the first time, to our knowledge, in a nonhuman primate vaccine study. Macaques were primed twice mucosally with adenovirus 5 host range mutant recombinants encoding SIV Env, Rev, Gag, and Nef followed by two i.m. boosts with monomeric SIV gp120 or oligomeric SIV gp140 proteins. At 2 wk after the second protein boost, we obtained lymph node biopsy specimens and quantified the frequency of total and SIV Env-specific IL-21(+) TFH cells and total germinal center B cells, the size and number of germinal centers, and the frequency of SIV-specific Ab-secreting cells in B cell zones. Multiple correlation analyses established the importance of TFH for development of B cell responses in systemic and mucosally localized compartments, including blood, bone marrow, and rectum. Our results suggest that the SIV-specific TFH cells, initially induced by replicating adenovirus-recombinant priming, are long lived. The multiple correlations of SIV Env-specific TFH cells with systemic and mucosal SIV-specific B cell responses indicate that this cell population should be further investigated in HIV vaccine development as a novel correlate of immunity.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Andrew Demers
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583; and
| | - Julia M Shaw
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Guobin Kang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583; and
| | - David Ball
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Iskra Tuero
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thomas Musich
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Venkatramanan Mohanram
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thorsten Demberg
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tatiana S Karpova
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583; and
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|