1
|
Nasrolahi A, Azizidoost S, Radoszkiewicz K, Najafi S, Ghaedrahmati F, Anbiyaee O, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing glioma cancer stem cells behavior. Cell Signal 2023; 101:110493. [PMID: 36228964 DOI: 10.1016/j.cellsig.2022.110493] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
Abstract
Glioma is the most common malignant brain tumor that develops in the glial tissue. Several studies have identified that glioma cancer stem cells (GCSCs) play important roles in tumor-initiating features in malignant gliomas. GCSCs are a small population in the brain that presents an essential role in the metastasis of glioma cells to other organs. These cells can self-renew and differentiate, which are thought to be involved in the pathogenesis of glioma. Therefore, targeting GCSCs might be a novel strategy for the treatment of glioma. Accumulating evidence revealed that several signaling pathways, including Notch, TGF-β, Wnt, STAT3, AKT, and EGFR mediated GCSC growth, proliferation, migration, and invasion. Besides, non-coding RNAs (ncRNAs), including miRNAs, circular RNAs, and long ncRNAs have been found to play pivotal roles in the regulation of GCSC pathogenesis and drug resistance. Therefore, targeting these pathways could open a new avenue for glioma management. In this review, we summarized critical signaling pathways involved in the stimulation or prevention of GCSCs tumorigenesis and invasiveness.
Collapse
Affiliation(s)
- Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Poland
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
2
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Tsoporis JN, Ektesabi AM, Gupta S, Izhar S, Salpeas V, Rizos IK, Kympouropoulos SP, Dos Santos CC, Parker TG, Rizos E. A longitudinal study of alterations of circulating DJ-1 and miR203a-3p in association to olanzapine medication in a sample of first episode patients with schizophrenia. J Psychiatr Res 2022; 146:109-117. [PMID: 34971908 DOI: 10.1016/j.jpsychires.2021.12.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Among different proposed pathophysiological mechanisms, redox imbalance has been suggested to be a potential contributor in the pathogenesis of schizophrenia. DJ-1 is a redox-sensitive protein that has been shown to have neuroprotective function in the brain in Parkinson's disease and other neurodegenerative diseases. However, a role for DJ-1 in schizophrenia is unknown. Bioinformatic analysis suggested that microRNA (miR)-203a-3p could target the 3' untranslated region (UTR) of DJ-1. In whole blood and blood-derived exosomes of 11 first episode antipsychotic naïve schizophrenia patients, DJ-1 protein and mRNA demonstrated decreased DJ-1 mRNA and protein and increased miR203a-3p levels compared to healthy controls. In whole blood, antipsychotic monotherapy with olanzapine for 6 weeks increased DJ-1 and attenuated miR203a-3p levels, whereas in blood derived exosomes, olanzapine returned DJ-1 and miR203a-3p to levels seen healthy controls. Consistent with this finding, we showed that human umbilical vein endothelial cells (HUVACs) transfected with a DJ-1-3' UTR luciferase reporter construct displayed reduced gene expression when subjected to the oxidative stressor H2O2. Transfection of a miR203a-3p mimic into HUVACs reduced DJ-1-3 'UTR reporter gene expression, while transfection of an anti miR-203a-3p prevented the H2O2-induced downregulation of the reporter gene. We conclude that miR-203a-3p is an essential mediator of oxidative stress in schizophrenia via its ability to target the 3' UTR of DJ-1 and antipsychotic monotherapy restores DJ-1 antioxidant levels by regulating miR203a-3p expression. miR-203a-3p and DJ-1 might represent attractive targets for the treatment of pathologies such as schizophrenia that has underlying oxidative stress.
Collapse
Affiliation(s)
- James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Sahil Gupta
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Shehla Izhar
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Vasileios Salpeas
- 2(nd) Department of Cardiology, University General Hospital "ATTIKON", School of Medicine National & Kapodistrian University of Athens, Athens, Greece
| | - Ioannis K Rizos
- 2(nd) Department of Cardiology, University General Hospital "ATTIKON", School of Medicine National & Kapodistrian University of Athens, Athens, Greece
| | - Stylianos P Kympouropoulos
- 2(nd) Department of Psychiatry, University General Hospital "ATTIKON", School of Medicine, National & Kapodistrian University of Athens, Greece
| | - Claudia C Dos Santos
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Thomas G Parker
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Emmanouil Rizos
- 2(nd) Department of Psychiatry, University General Hospital "ATTIKON", School of Medicine, National & Kapodistrian University of Athens, Greece.
| |
Collapse
|
4
|
HOTAIR Contributes to Stemness Acquisition of Cervical Cancer through Regulating miR-203 Interaction with ZEB1 on Epithelial-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2021; 2021:4190764. [PMID: 34539782 PMCID: PMC8448614 DOI: 10.1155/2021/4190764] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023]
Abstract
Cervical cancer stem cells contribute respond to considerable recurrence and metastasis of patients with cervical cancer. The stemness properties were partly regulated by the interaction of lncRNAs and miRNAs. HOTAIR functions as an oncogenic lncRNA. Previous research studies revealed its role in regulating stemness properties in various cancers. However, the role of HOTAIR in cervical cancer stem cells is still unknown. Here, cisplatin-resistant and serum-free cultured cells exhibited stem cells properties. Cervical cancer stem cells exhibited greater invasion and migration compared with their parental cells, which was similar to cells overexpressing HOTAIR. HOTAIR was significantly overexpressed in cervical cancer stem cells, and knockdown of HOTAIR generated statistical downregulation of stemness markers. Additionally, HOTAIR expression was negatively correlated with the level of miR-203, which was found to be an inhibitory miRNA in regulating the expressions of stemness markers. Also, miR-203 expression was negatively correlated with ZEB1. These findings suggested that HOTAIR should be a positive contributor in stemness acquisition of cervical cancer cells, and this effect should correlate with the interaction with miR-203, which can be suppressed by ZEB1.
Collapse
|
5
|
Glioblastoma and MiRNAs. Cancers (Basel) 2021; 13:cancers13071581. [PMID: 33808106 PMCID: PMC8037240 DOI: 10.3390/cancers13071581] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GB) is one of the most common types of lethal brain tumors. Although several treatment options are available including surgery, along with adjuvant chemo and radiotherapy, the disease has a poor prognosis and patients generally die within 14 months of diagnosis. GB is chemo and radio resistant. Thus, there is a critical need for new insights into GB treatment to increase the chance of therapeutic success. This is why microRNA (miRNA) is being potentially considered in the diagnosis and treatment of glioblastoma. The objective of our review is to provide a holistic picture of GB up-regulated and down-regulated miRNA, in relationship with the expression of other genes, cell signaling pathways, and their role in GB diagnosis and treatment. MiRNA treatment is being considered to be used against GB together with radiotherapy and chemotherapy. Moreover, the use of miRNA as a diagnostic tool has also begun. Knowing that miRNAs are isolated in almost all human body fluids and that there are more than 3000 miRNAs in the human genome, plus the fact that each miRNA controls hundreds of different mRNAs, there is still much study needed to explore how miRNAs relate to GB for its proliferation, progression, and inhibition.
Collapse
|
6
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
7
|
Rezaei O, Honarmand K, Nateghinia S, Taheri M, Ghafouri-Fard S. miRNA signature in glioblastoma: Potential biomarkers and therapeutic targets. Exp Mol Pathol 2020; 117:104550. [PMID: 33010295 DOI: 10.1016/j.yexmp.2020.104550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are transcripts with sizes of about 22 nucleotides, which are produced through a multistep process in the nucleus and cytoplasm. These transcripts modulate the expression of their target genes through binding with certain target regions, particularly 3' suntranslated regions. They are involved in the pathogenesis of several kinds of cancers, such as glioblastoma. Several miRNAs, including miR-10b, miR-21, miR-17-92-cluster, and miR-93, have been up-regulated in glioblastoma cell lines and clinical samples. On the other hand, expression of miR-7, miR-29b, miR-32, miR-34, miR-181 family members, and a number of other miRNAs have been decreased in this type of cancer. In the current review, we explain the role of miRNAs in the pathogenesis of glioblastoma through providing a summary of studies that reported dysregulation of these epigenetic effectors in this kind of brain cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Hassn Mesrati M, Behrooz AB, Y. Abuhamad A, Syahir A. Understanding Glioblastoma Biomarkers: Knocking a Mountain with a Hammer. Cells 2020; 9:E1236. [PMID: 32429463 PMCID: PMC7291262 DOI: 10.3390/cells9051236] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.H.M.); (A.B.B.); (A.Y.A.)
| |
Collapse
|
9
|
Janaki Ramaiah M, Divyapriya K, Kartik Kumar S, Rajesh YBRD. Drug-induced modifications and modulations of microRNAs and long non-coding RNAs for future therapy against Glioblastoma Multiforme. Gene 2019; 723:144126. [PMID: 31589963 DOI: 10.1016/j.gene.2019.144126] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs are known to participate in cancer initiation, progression, and metastasis by regulating the status of chromatin epigenetics and gene expression. Although these non-coding RNAs do not possess defined protein-coding potential, they are involved in the expression and stability of messenger RNA (mRNA). The length of microRNAs (miRs) ranges between 20 and 22 nt, whereas, long non-coding RNAs (lncRNAs) length ranges between 200 nt to 1 Kb. In the case of circular RNAs (circRNAs), the size varies depending upon the length of the exon from where they were derived. Epigenetic regulations of miR and lncRNA genes will influence the gene expression by modulating histone acetylation and methylation patterns. Especially, lncRNAs will act as a scaffold for various epigenetic proteins, such as EZH2 and LSD1, and influence the chromatin epigenetic state at various genomic loci involved at silencing. Thus investigations on the expression of lncRNAs and designing drugs to modulate the expression of these genes will have a profound impact on future therapeutics against cancers such as Glioblastoma Multiforme (GBM) and also against various other diseases. With the recent advancements in genome-wide transcriptomic studies, scientists are focused on the non-coding RNAs and their regulations on various cellular processes involved in GBM and on other types of cancer as well as trying to understand possible epigenetic modulations that help in generating promising therapeutics for the future generations. In this review, the involvement of epigenetic proteins, enzymes that change chromatin architecture and epigenetic landscape and new roles of lncRNAs that are involved in GBM progression are elaborately discussed.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India.
| | - Karthikeyan Divyapriya
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Sarwareddy Kartik Kumar
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Y B R D Rajesh
- Organic Synthesis and Catalysis Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
10
|
Lai HT, Tseng WK, Huang SW, Chao TC, Su Y. MicroRNA-203 diminishes the stemness of human colon cancer cells by suppressing GATA6 expression. J Cell Physiol 2019; 235:2866-2880. [PMID: 31544978 DOI: 10.1002/jcp.29192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
The interaction between hyaluronan and CD44, an important cancer stem-cell marker, stimulates various tumor cell-specific functions such as the stemness of tumor cells. microRNA-203 (miR-203) can be downregulated by this interaction in human colorectal cancer (CRC) cells, which increases their stemness; however, the underlying mechanism is not yet defined. Here, we show that overexpression and sequestration of miR-203 in HCT-116 and HT-29 human CRC cells reduces and enhances their stemness, respectively. We also show that GATA-binding factor 6 (GATA6) is a direct target of miR-203. Our results indicate that upregulated expression of this transcription factor not only restores the self-renewal abilities of miR-203-overexpressing HCT-116 and HT-29 cells but also promotes the stemness properties of their parental counterparts. More important, we show that silencing the expression of either LRH-1 or Hes-1 is sufficient to diminish the stemness-promoting effects of GATA6 in human CRC cells. Together, our findings delineate the stemness-inhibitory mechanism of miR-203 in human CRC cells and suggest that this miR is a potential therapeutic agent for colorectal cancer.
Collapse
Affiliation(s)
- Hung-Tzi Lai
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University, Shi-Pai, Taipei, Taiwan, R.O.C
| | - Wen-Ko Tseng
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Shi-Pai, Taipei, Taiwan, R.O.C.,Colorectal Surgery Department, Chung-Gung Memorial Hospital, Keelung Branch, Keelung, Taipei, Taiwan, R.O.C
| | - Shi-Wei Huang
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University, Shi-Pai, Taipei, Taiwan, R.O.C
| | - Ta-Chung Chao
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Shi-Pai, Taipei, Taiwan, R.O.C
| | - Yeu Su
- Institute of Biopharmaceutical Sciences, School of Pharmaceutical Sciences, National Yang-Ming University, Shi-Pai, Taipei, Taiwan, R.O.C.,Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University, Shi-Pai, Taipei, Taiwan, R.O.C
| |
Collapse
|
11
|
Diana A, Gaido G, Murtas D. MicroRNA Signature in Human Normal and Tumoral Neural Stem Cells. Int J Mol Sci 2019; 20:ijms20174123. [PMID: 31450858 PMCID: PMC6747235 DOI: 10.3390/ijms20174123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs, also called miRNAs or simply miR-, represent a unique class of non-coding RNAs that have gained exponential interest during recent years because of their determinant involvement in regulating the expression of several genes. Despite the increasing number of mature miRNAs recognized in the human species, only a limited proportion is engaged in the ontogeny of the central nervous system (CNS). miRNAs also play a pivotal role during the transition of normal neural stem cells (NSCs) into tumor-forming NSCs. More specifically, extensive studies have identified some shared miRNAs between NSCs and neural cancer stem cells (CSCs), namely miR-7, -124, -125, -181 and miR-9, -10, -130. In the context of NSCs, miRNAs are intercalated from embryonic stages throughout the differentiation pathway in order to achieve mature neuronal lineages. Within CSCs, under a different cellular context, miRNAs perform tumor suppressive or oncogenic functions that govern the homeostasis of brain tumors. This review will draw attention to the most characterizing studies dealing with miRNAs engaged in neurogenesis and in the tumoral neural stem cell context, offering the reader insight into the power of next generation miRNA-targeted therapies against brain malignances.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| | - Giuseppe Gaido
- Department of Surgery, Cottolengo Mission Hospital Charia, 60200 Meru, Kenya
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| |
Collapse
|
12
|
Aghajani M, Mansoori B, Mohammadi A, Asadzadeh Z, Baradaran B. New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation. J Cell Physiol 2019; 234:21642-21661. [PMID: 31102292 DOI: 10.1002/jcp.28824] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSC) are rare immortal cells within a tumor that are able to initiate tumor progression, development, and resistance. Advances studies show that, like normal stem cells, CSCs can be both self-renewed and given rise to many cell types, therefore form tumors. A number of cell surface markers, such as CD44, CD24, and CD133 are frequently used to identify CSCs. CD133, a transmembrane glycoprotein, either alone or in collaboration with other markers, has been mainly considered to identify CSCs from different solid tumors. However, the exactness of CD133 as a cancer stem cell biomarker has not been approved yet. The clinical importance of CD133 is as a CSC marker in many cancers. Also, it contributes to shorter survival, tumor progression, and tumor recurrence. The expression of CD133 is controlled by many extracellular or intracellular factors, such as tumor microenvironment, epigenetic factors, signaling pathways, and miRNAs. In this study, it was attempted to determine: 1) CD133 function; 2) the role of CD133 in cancer; 3) CD133 regulation; 4) the therapeutic role of CD133 in cancers.
Collapse
Affiliation(s)
- Marjan Aghajani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Sahranavardfard P, Firouzi J, Azimi M, Khosravani P, Heydari R, Emami Razavi A, Dorraj M, Keighobadi F, Ebrahimi M. MicroRNA-203 reinforces stemness properties in melanoma and augments tumorigenesis in vivo. J Cell Physiol 2019; 234:20193-20205. [PMID: 31016725 DOI: 10.1002/jcp.28619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
Abstract
One of the challenges encountered in microRNA (miRNA) studies is to observe their dual role in different conditions and cells. This leads to a tougher prediction of their behavior as gene expression regulators. miR-203 has been identified to play a negative role in the progression of malignant melanoma; however, it has been reported, with dual effect, as both an oncomiR and tumor suppressor miRNA in some malignancies, such as breast cancer, meanwhile, the role of miR-203 in melanoma stem cells or even metastatic cells is unclear. In the present study, after observation of upregulation of miR-203 in melanoma patient's serum and also melanospheres as cancer stem cells model, we examined its overexpression on the stemness potential and migration ability of melanoma cells. Our data demonstrated that the increased miR-203 level was significantly associated with significant increase in the ability of proliferation, colony and spheres formation, migration, and tumorigenesis in A375 and NA8 cells. All of these changes were associated with enhancement of BRAF, several epithelial to mesenchymal transition factors, and stemness genes. In conclusion, our results clearly determined that miR-203 could be down-regulateddownregulated in melanoma tissues but be overexpressed in melanoma stem cells. It has an important role as oncomiR and promote repopulation, tumorigenicity, self-renewal, and migration. Therefore, we suggested overexpression of miR-203 as biomarker for early detection of metastasis. However, more studies are needed to validate our data.
Collapse
Affiliation(s)
- Parisa Sahranavardfard
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pardis Khosravani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, The cancer institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Dorraj
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Keighobadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Pathological and Molecular Features of Glioblastoma and Its Peritumoral Tissue. Cancers (Basel) 2019; 11:cancers11040469. [PMID: 30987226 PMCID: PMC6521241 DOI: 10.3390/cancers11040469] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal human brain tumors. At present, GBMs are divided in primary and secondary on the basis of the mutational status of the isocitrate dehydrogenase (IDH) genes. In addition, IDH1 and IDH2 mutations are considered crucial to better define the prognosis. Although primary and secondary GBMs are histologically indistinguishable, they retain distinct genetic alterations that account for different evolution of the tumor. The high invasiveness, the propensity to disperse throughout the brain parenchyma, and the elevated vascularity make these tumors extremely recidivist, resulting in a short patient median survival even after surgical resection and chemoradiotherapy. Furthermore, GBM is considered an immunologically cold tumor. Several studies highlight a highly immunosuppressive tumor microenvironment that promotes recurrence and poor prognosis. Deeper insight into the tumor immune microenvironment, together with the recent discovery of a conventional lymphatic system in the central nervous system (CNS), led to new immunotherapeutic strategies. In the last two decades, experimental evidence from different groups proved the existence of cancer stem cells (CSCs), also known as tumor-initiating cells, that may play an active role in tumor development and progression. Recent findings also indicated the presence of highly infiltrative CSCs in the peritumoral region of GBM. This region appears to play a key role in tumor growing and recurrence. However, until recently, few studies investigated the biomolecular characteristics of the peritumoral tissue. The aim of this review is to recapitulate the pathological features of GBM and of the peritumoral region associated with progression and recurrence.
Collapse
|
15
|
Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E, Ebrahimi M, Hamidieh AA. Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist Updat 2019; 42:35-45. [PMID: 30877905 DOI: 10.1016/j.drup.2018.03.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is among the most incurable cancers. GBMs survival rate has not markedly improved, despite new radical surgery protocols, the introduction of new anticancer drugs, new treatment protocols, and advances in radiation techniques. The low efficacy of therapy, and short interval between remission and recurrence, could be attributed to the resistance of a small fraction of tumorigenic cells to treatment. The existence and importance of cancer stem cells (CSCs) is perceived by some as controversial. Experimental evidences suggest that the presence of therapy-resistant glioblastoma stem cells (GSCs) could explain tumor recurrence and metastasis. Some scientists, including most of the authors of this review, believe that GSCs are the driving force behind GBM relapses, whereas others however, question the existence of GSCs. Evidence has accumulated indicating that non-tumorigenic cancer cells with high heterogeneity, could undergo reprogramming and become GSCs. Hence, targeting GSCs as the "root cells" initiating malignancy has been proposed to eradicate this devastating disease. Most standard treatments fail to completely eradicate GSCs, which can then cause the recurrence of the disease. To effectively target GSCs, a comprehensive understanding of the biology of GSCs as well as the mechanisms by which these cells survive during treatment and develop into new tumor, is urgently needed. Herein, we provide an overview of the molecular features of GSCs, and elaborate how to facilitate their detection and efficient targeting for therapeutic interventions. We also discuss GBM classifications based on the molecular stem cell subtypes with a focus on potential therapeutic approaches.
Collapse
Affiliation(s)
- Farzaneh Sharifzad
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, Canada
| | - Javad Verdi
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soura Mardpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Azizi
- Heart Rhythm Program, Southlake Regional Health Centre, Toronto ON Canada
| | - Adeleh Taghikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Immunology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology in Gliwice, Poland
| | - Esmail Fakharian
- Department of Neurosurgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Amir Ali Hamidieh
- Pediatric Stem Cell Transplant Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Kang H, Kim C, Ji E, Ahn S, Jung M, Hong Y, Kim W, Lee EK. The MicroRNA-551a/MEF2C Axis Regulates the Survival and Sphere Formation of Cancer Cells in Response to 5-Fluorouracil. Mol Cells 2019; 42:175-182. [PMID: 30703870 PMCID: PMC6399004 DOI: 10.14348/molcells.2018.0288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/27/2022] Open
Abstract
microRNAs regulate a diverse spectrum of cancer biology, including tumorigenesis, metastasis, stemness, and drug resistance. To investigate miRNA-mediated regulation of drug resistance, we characterized the resistant cell lines to 5-fluorouracil by inducing stable expression of miRNAs using lenti-miRNA library. Here, we demonstrate miR-551a as a novel factor regulating cell survival after 5-FU treatment. miR-551a-expressing cells (Hep3B-lenti-miR-551a) were resistant to 5-FU-induced cell death, and after 5-FU treatment, and showed significant increases in cell viability, cell survival, and sphere formation. It was further shown that myocyte-specific factor 2C is the direct target of miR-551a. Our results suggest that miR-551a plays a novel function in regulating 5-FU-induced cell death, and targeting miR-551a might be helpful to sensitize cells to anti-cancer drugs.
Collapse
Affiliation(s)
- Hoin Kang
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Eunbyul Ji
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Sojin Ahn
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Myeongwoo Jung
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - Youlim Hong
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| | - WooK Kim
- Department of Molecular Science and Technology, Ajou University, Suwon,
Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul,
Korea
| |
Collapse
|
17
|
Wang HX, Qin R, Mao J, Huang QL, Hong F, Li F, Gong ZY, Xu T, Yan Y, Chao SH, Zhang SK, Chen JX. CPEB4 regulates glioblastoma cell proliferation and predicts poor outcome of patients. Clin Neurol Neurosurg 2018; 169:92-97. [PMID: 29642043 DOI: 10.1016/j.clineuro.2018.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Cytoplasmic polyadenylation element binding protein 4 (CPEB4) is a regulator of gene expression at transcriptional level and has been reported to be associated with biological malignancy in cancers. However, little was known about the correlation between CPEB4 and glioblastoma cell proliferation and the prognostic significance in patients. Our aim was to investigate the functional role and prognostic value of CPEB4 in glioblastoma. PATIENTS AND METHODS We determined the expression of CPEB4 protein using immunohistochemistry in tissue microarrays containing 278 glioma patients (including 98 primary glioblastomas) and evaluated its association with pathological grades and clinical outcome by univariate and multivariate analyses. And then, lentiviral-mediated RNAi targeting CPEB4 was utilized to study the role of CPEB4 in glioblastoma cell proliferation. RESULTS In our cohort, CPEB4 expression was positively related to glioma pathological grade (p < 0.01) and elevated in glioblastoma (p < 0.01). High expression of CPEB4 was associated with significantly poor prognosis, and could be identified as an independent risk factor for overall survival (OS) and progression-free survival (PFS) of glioblastoma patients (hazard ratio (HR) = 1.730, p = 0.014 and HR = 1.877, p = 0.004, respectively). In vitro studies further showed that downregulation of CPEB4 significantly reduced the growth rate of T98G and U251 cells comparing with the controls. CONCLUSION Our study indicated that increased expression of CPEB4 in primary glioblastoma is a novel biomarker for predicting poor outcome of patients and suppression of CPEB4 inhibit tumor cell proliferation, suggesting a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Hong-Xiang Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rong Qin
- Department of Neurosurgery, The 184st Hospital of PLA, Yingtan, Jiangxi Province, China
| | - Jian Mao
- Department of Neurosurgery, The 184st Hospital of PLA, Yingtan, Jiangxi Province, China
| | - Qi-Lin Huang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fan Hong
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhen-Yu Gong
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Yan
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shao-Hui Chao
- Department of Neurosurgery, The 184st Hospital of PLA, Yingtan, Jiangxi Province, China
| | - Shi-Kun Zhang
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China.
| | - Ju-Xiang Chen
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
18
|
miR-484/MAP2/c-Myc-positive regulatory loop in glioma promotes tumor-initiating properties through ERK1/2 signaling. J Mol Histol 2018; 49:209-218. [PMID: 29480405 DOI: 10.1007/s10735-018-9760-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/05/2018] [Indexed: 01/17/2023]
Abstract
Glioma is the most common intracranial malignant tumor. Cancer stem cells (CSCs) are resistant to chemotherapy and radiotherapy, and are closely related to cancer metastasis and recurrence. In this study, we aimed to explore the effect of miR-484 on glioma stemness and the underlying mechanism involved. miR-484 enhanced glioma tumor-initiating properties in vitro and in vivo. Moreover, miR-484 was shown to directly target MAP2, resulting in activation of ERK1/2 signaling and promotion of stemness in glioma. The ERK1/2 signaling facilitated the formation of a miR-484/MAP2/c-Myc positive feedback loop in glioma. High miR-484 expression predicted a poor prognosis for glioma patients, and high MAP2 expression predicted a good prognosis for glioma patients. Low miR-484 expression and high MAP2 expression was associated with the best prognosis in glioma. Our study suggests that miR-484 and MAP2 can be utilized as predictors for the clinical diagnosis and prognosis of glioma, and miR-484 and MAP2 are potential targets for the treatment of glioma.
Collapse
|
19
|
Chen J, Yang L, Wang X. Reduced circulating microRNA-203 predicts poor prognosis for glioblastoma. Cancer Biomark 2017; 20:521-526. [PMID: 28946553 DOI: 10.3233/cbm-170335] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Institute of Neurology, Yichang Central People’s Hospital and The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443003, China
| | - Li Yang
- Yichang Blood Center, Yichang, Hubei 443003, China
| | - Xiongwei Wang
- Department of Neurosurgery, Institute of Neurology, Yichang Central People’s Hospital and The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443003, China
| |
Collapse
|
20
|
Ahir BK, Ozer H, Engelhard HH, Lakka SS. MicroRNAs in glioblastoma pathogenesis and therapy: A comprehensive review. Crit Rev Oncol Hematol 2017; 120:22-33. [PMID: 29198335 DOI: 10.1016/j.critrevonc.2017.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma (GBM), also known as grade IV astrocytoma, is the most aggressive primary intracranial tumor of the adult brain. MicroRNAs (miRNAs), a class of small non-coding RNA species, have critical functions across various biological processes. A great deal of progress has been made recently in dissecting miRNA pathways associated with the pathogenesis of GBM. miRNA expression signatures called gene signatures also characterize and contribute to the phenotypic diversity of GBM subclasses through their ability to regulate developmental growth and differentiation. miRNA molecules have been identified as diagnostic and prognostic biomarkers for patient stratification and may also serve as therapeutic targets and agents. This review summarizes: (i) the current understanding of the roles of miRNAs in the pathogenesis of GBM, (ii) the potential use of miRNAs in GBM diagnosis and glioma grading, (iii) further prospects of developing miRNAs as novel biomarkers and therapeutic targets for GBM, and (iv) important practical considerations when considering miRNA therapy for GBM patients.
Collapse
Affiliation(s)
- Bhavesh K Ahir
- Section of Hematology and Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Howard Ozer
- Section of Hematology and Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Herbert H Engelhard
- Department of Neurosurgery, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Sajani S Lakka
- Section of Hematology and Oncology, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Holmes RS. Comparative studies of vertebrate iduronate 2-sulfatase (IDS) genes and proteins: evolution of A mammalian X-linked gene. 3 Biotech 2017; 7:22. [PMID: 28401457 PMCID: PMC5388652 DOI: 10.1007/s13205-016-0595-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 12/23/2016] [Indexed: 12/24/2022] Open
Abstract
IDS is responsible for the lysosomal degradation of heparan sulfate and dermatan sulfate and linked to an X-linked lysosomal storage disease, mucopolysaccharidosis 2 (MPS2), resulting in neurological damage and early death. Comparative IDS amino acid sequences and structures and IDS gene locations were examined using data from several vertebrate genome projects. Vertebrate IDS sequences shared 60–99% identities with each other. Human IDS showed 47% sequence identity with fruit fly (Drosophila melanogaster) IDS. Sequence alignments, key amino acid residues, N-glycosylation sites and conserved predicted secondary and tertiary structures were also studied, including signal peptide, propeptide and active site residues. Mammalian IDS genes usually contained 9 coding exons. The human IDS gene promoter contained a large CpG island (CpG46) and 5 transcription factor binding sites, whereas the 3′-UTR region contained 5 miRNA target sites. These may contribute to IDS gene regulation of expression in the brain and other neural tissues of the body. An IDS pseudogene (IDSP1) was located proximally to the IDS gene on the X-chromosome in primate genomes. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate IDS gene. These suggested that IDS has originated in an invertebrate ancestral genome and retained throughout vertebrate evolution and conserved on marsupial and eutherian X-chromosomes, with the exception of rat Ids on chromosome 8.
Collapse
|