1
|
Zhou S, Xia L, Dong J, Liu Y, Yang Q, Xu N, Yang Y, Ai X. Anthelmintic efficacy of febantel against a monogenean parasite, Gyrodactylus kobayashii. Vet Parasitol 2023; 324:110058. [PMID: 39492189 DOI: 10.1016/j.vetpar.2023.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Monogenean parasites pose a significant challenge to aquaculture, leading to adverse effects on fish health and yields. Current anthelmintic treatments for monogeneans have demonstrated limited efficacy and are further complicated by potential issues, which emphasize the necessity for effective and safe therapeutic strategies to manage monogeneans in aquaculture. In this study, in vivo and in vitro anthelmintic activity of febantel against Gyrodactylus kobayashii on goldfish (Carassius auratus), as well as its toxicity to goldfish were evaluated. In vivo assays indicated that febantel exhibited potent anthelmintic activity against G. kobayashii with an EC50 value of 0.03 mg/L and 100 % anthelmintic efficacy at 0.1 mg/L after 48 h of exposure. Moreover, in vivo trials also revealed a notable post-treatment effect of febantel, where infected goldfish transferred to drug-free water after short 6-h exposure could still result in full eradication of the worms, indicating febantel might induce persistent perturbations in parasite physiology. In vitro assays showed a negative correlation between febantel concentrations and the survival of G. kobayashii. However, increasing the febantel concentration to 2.0 mg/L did not result in the complete death of all worms. Oral administration of febantel demonstrated limited anthelmintic activity, with only 49 % efficacy at a dosage of 200 mg/kg body weight daily over five days. Acute toxicity assays revealed the 48-h LC50 value of febantel was 5.47 mg/L, which was 182.23 times higher than the 48-h EC50 value, indicating that febantel has a favorable safety profile. However, febantel exposure potentially interfered with hepatic metabolism and oxidative status, as indicated by variations in SOD, GST, and P450 gene expression. In conclusion, treatment with 0.1 mg/L febantel for 24 h completely eradicated G. kobayashii infection on goldfish, demonstrating febantel's potent anthelmintic activity. Coupled with its safety profile and extended post-treatment effectiveness, febantel is a promising candidate for controlling Gyrodactylus infections in aquaculture.
Collapse
Affiliation(s)
- Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Liwei Xia
- College of Life Science and Technology, Tarim University/Tarim Research Center of Rare Fishes, Alar 843300, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China.
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan 430223, China.
| |
Collapse
|
2
|
Kasprzak R, Zakęś Z, Kamaszewski M, Szudrowicz H, Wiechetek W, Janusz JR, Ostaszewska T, Korzelecka-Orkisz A, Formicki K. Histomorphometric evaluation of melanomacrophage centers (MMCs) and CD3 + T cells of two morphs of brown trout (Salmo trutta) fed diets with immunostimulants. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109020. [PMID: 37611835 DOI: 10.1016/j.fsi.2023.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The brown trout (Salmo trutta) is a salmonid residing in riverine and coastal waters throughout the Northern Hemisphere, whose various populations evolved into distinct ecological morphs, differing in their migratory tendencies and preferred habitats. Unfortunately, due to progressing degradation of natural environment, the conservation of these populations is of growing importance and is undoubtedly a challenging task. Therefore, various means to refine the preparatory protocols for restocking using hatchery-reared fish are being pursued, some of which involve the administration of immunity-boosting substances. The current study assessed the effects of two dietary immunostimulants: Bioimmuno (4% inosine pranobex and 96% β-glucan) and Focus Plus (commercial preparation by Biomar, Denmark) on two morphs of the brown trout - the river trout (S. trutta morpha fario) and the sea trout (S. trutta morpha trutta). Tissue samples were obtained from ∼75 to 100g fish after 0, 2 and 4 weeks of experimental feeding. Multi-factorial analysis of conducted histological measurements of melanomacrophage centers (MMCs) revealed no changes of their parameters within spleens, but showed a decrease of the occupied tissue area and MMC counts in the livers, progressing with time regardless of the applied diet. Immunohistochemical analysis of CD3+ T cells showed their increased recruitment into mucosal folds of pyloric caeca in the 2-week sampling of trouts fed with the diet with 2% Bioimmuno addition, but this effect was not present in the 4-week sampling. When studying all groups jointly within each morph, there was a significant difference in terms of maintained CD3+ T cells levels, as sea trouts showed significantly higher tissue areas occupied by these cells than river trouts, both in the pyloric caeca and hepatic parenchyma. The study revealed that feeding with a diet enriched with Bioimmuno for 2 weeks may be a favorable enhancement of rearing protocols of brown trout stocks prior to their release, but more studies need to be conducted to test the possibility of an even shorter feeding period.
Collapse
Affiliation(s)
- Robert Kasprzak
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Zdzisław Zakęś
- Department of Aquaculture, The Stanisław Sakowicz Inland Fisheries Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland.
| | - Maciej Kamaszewski
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Hubert Szudrowicz
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Wiktoria Wiechetek
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Julia Renata Janusz
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Teresa Ostaszewska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Agata Korzelecka-Orkisz
- Department of Hydrobiology, Ichthyology and Reproduction Biotechnology, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-550, Szczecin, Poland.
| | - Krzysztof Formicki
- Department of Hydrobiology, Ichthyology and Reproduction Biotechnology, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-550, Szczecin, Poland.
| |
Collapse
|
3
|
Puente-Marin S, Cazorla D, Chico V, Coll J, Ortega-Villaizan M. Innate immune response of rainbow trout erythrocytes to spinycterins expressing a downsized viral fragment of viral haemorrhagic septicaemia virus. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2023; 568:739303. [PMID: 38533126 PMCID: PMC10961846 DOI: 10.1016/j.aquaculture.2023.739303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 03/28/2024]
Abstract
Recent studies have reported on the importance of RBCs in fish responses to viral infections and DNA vaccines. Surface-displaying recombinant bacterins (spinycterins) are a safe and adaptable prototype for viral vaccination of fish and represent an alternative method of aquaculture prophylaxis, since have been reported to enhance fish immune response. We evaluated the innate immune response of rainbow trout (Oncorhynchus mykiss) red blood cells (RBCs), head kidney, and spleen to spinycterins expressing a fragment of the glycoprotein G of viral haemorrhagic septicemia virus (VHSV), one of the most devastating world-wide diseases in farmed salmonids. We first selected an immunorelevant downsized viral fragment of VHSV glycoprotein G (frg16252-450). Then, spinycterins expressing frg16252-450 fused to Nmistic anchor-motif (Nmistic+frg16252-450) were compared to spinycterins expressing frg16252-450 internally without the anchor motif. Nmistic+frg16252-450 spinycterins showed increased attachment to RBCs in vitro and modulated the expression of interferon- and antigen presentation-related genes in RBCs in vitro and in vivo, after intravenous injection. In contrast, the head kidney and spleen of fish injected with frg16252-450, but not Nmistic+frg16252-450, spinycterins demonstrated upregulation of interferon and antigen-presenting genes. Intravenous injection of Nmistic+frg16252-450 spinycterins resulted in a higher innate immune response in RBCs while frg16252-450 spinycterins increased the immune response in head kidney and spleen. Although more studies are required to evaluate the practicality of using spinycterins as fish viral vaccines, these results highlight the important contribution of RBCs to the fish innate immune response to antiviral prophylactics.
Collapse
Affiliation(s)
- S. Puente-Marin
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| | - D. Cazorla
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| | - V. Chico
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| | - J. Coll
- Instituto Nacional de Investigación y Tecnología Agrarias y Alimentarias, Dpto. Biotecnología. INIA, crt.Coruña km 7, 20040 Madrid, Spain
| | - M. Ortega-Villaizan
- Instituto de Biologia Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE-UMH), Elche, Spain
| |
Collapse
|
4
|
Šálková E, Schmidt-Posthaus H, Lutz I, Kocour Kroupová H, Steinbach C. Immunohistochemical investigation of epithelial, mesenchymal, neuroectodermal, immune and endocrine markers in sterlet (Acipenser ruthenus), shortnose sturgeon (Acipenser brevirostrum) and common carp (Cyprinus carpio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1737-1749. [PMID: 36478317 DOI: 10.1007/s10695-022-01145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Immunohistochemistry (IHC) is a laboratory method widely used to characterize tissue and cell origin, both in human and veterinary medicine. In fish, however, little is known about staining characteristics of most tissue types, and especially for less studied chondrostean fish. The aim of this study was to examine the specificity of various immunohistochemical markers in tissues of chondrostean and teleostean fish and to validate diagnostic tests. Sterlet (Acipenser ruthenus L.), shortnose sturgeon (Acipenser brevirostrum) and common carp (Cyprinus carpio L.) were examined. Markers were chosen as representatives of epithelial (cytokeratin AE1/AE3), mesenchymal (vimentin), neuroectodermal (S-100 protein), lymphoid (leukocyte common antigen, LCA) and endocrine (thyroglobulin, thyroxin) tissues and organs. Applied antibodies were of monoclonal or polyclonal mammalian origin and primarily intended for human medicine research or diagnostic application. No species differences were obvious while examining sterlet, shortnose sturgeon and carp. Cytokeratin AE1/AE3, vimentin, S-100 protein and thyroxin were positive on targeted tissues and structures. Leukocyte common antigen (LCA) and thyroglobulin were negative on targeted structures, however, and with clear cross-reactivity on non-targeted tissues (vascular wall, granulocytes). Conclusive results were obtained when using polyclonal antibodies with dilution adjusted to laboratory practice, while application of ready-to-use (RTU) kits with pre-diluted antibodies or monoclonal antibodies often showed conflicting or inconclusive results.
Collapse
Affiliation(s)
- Eva Šálková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Ilka Lutz
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Hana Kocour Kroupová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
5
|
Phillips KP, Cable J, Mohammed RS, Chmielewski S, Przesmycka KJ, van Oosterhout C, Radwan J. Functional immunogenetic variation, rather than local adaptation, predicts ectoparasite infection intensity in a model fish species. Mol Ecol 2021; 30:5588-5604. [PMID: 34415650 PMCID: PMC9292977 DOI: 10.1111/mec.16135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/07/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Natural host populations differ in their susceptibility to infection by parasites, and these intrapopulation differences are still an incompletely understood component of host‐parasite dynamics. In this study, we used controlled infection experiments with wild‐caught guppies (Poecilia reticulata) and their ectoparasite Gyrodactylus turnbulli to investigate the roles of local adaptation and host genetic composition (immunogenetic and neutral) in explaining differences in susceptibility to infection. We found differences between our four study host populations that were consistent between two parasite source populations, with no indication of local adaptation by either host or parasite at two tested spatial scales. Greater values of host population genetic variability metrics broadly aligned with lower population mean infection intensity, with the best alignments associated with major histocompatibility complex (MHC) “supertypes”. Controlling for intrapopulation differences and potential inbreeding variance, we found a significant negative relationship between individual‐level functional MHC variability and infection: fish carrying more MHC supertypes experienced infections of lower severity, with limited evidence for supertype‐specific effects. We conclude that population‐level differences in host infection susceptibility probably reflect variation in parasite selective pressure and/or host evolutionary potential, underpinned by functional immunogenetic variation.
Collapse
Affiliation(s)
- Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,School of Biological Earth & Environmental Sciences, University College Cork, Cork, Ireland.,Marine Institute, Newport, Co. Mayo, Ireland
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Ryan S Mohammed
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Sebastian Chmielewski
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina J Przesmycka
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Ilgová J, Salát J, Kašný M. Molecular communication between the monogenea and fish immune system. FISH & SHELLFISH IMMUNOLOGY 2021; 112:179-190. [PMID: 32800986 DOI: 10.1016/j.fsi.2020.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Monogeneans parasitise mainly the outer structures of fish, such as the gills, fins, and skin, that is, tissues covered with a mucous layer. While attached by sclerotised structures to host's surface, monogeneans feed on its blood or epidermal cells and mucus. Besides being a rich source of nutrients, these tissues also contain humoral immune factors and immune cells, which are ready to launch defence mechanisms against the tegument or gastrointestinal tract of these invaders. The exploitation of hosts' resources by the Monogenea must, therefore, be accompanied by suppressive and immunomodulatory mechanisms which protect the parasites against attacks by host immune system. Elimination of hosts' cytotoxic molecules and evasion of host immune response is often mediated by proteins secreted by the parasites. The aim of this review is to summarise existing knowledge on fish immune responses against monogeneans. Results gleaned from experimental infections illustrate the various interactions between parasites and the innate and adaptive immune system of the fish. The involvement of monogenean molecules (mainly inhibitors of peptidases) in molecular communication with host immune system is discussed.
Collapse
Affiliation(s)
- Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic.
| | - Jiří Salát
- Department of Virology, Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
7
|
Zhi T, Huang C, Sun R, Zheng Y, Chen J, Xu X, Brown CL, Yang T. Mucosal immune response of Nile tilapia Oreochromis niloticus during Gyrodactylus cichlidarum infection. FISH & SHELLFISH IMMUNOLOGY 2020; 106:21-27. [PMID: 32693157 DOI: 10.1016/j.fsi.2020.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Monogenean Gyrodactylus cichlidarum can cause severe mortality of Nile tilapia (Oreochromis niloticus) fry. To date, reports about mucosal immunity of O. niloticus against this parasite have been rare. In order to explore the mucosal immunity of Nile tilapia against G. cichlidarum infection, the expressions of six adaptive immune-related genes and the contents of specific immunoglobulin IgM and IgT in the skin-associated lymphoid tissues (SALT) were dynamically analyzed after primary and secondary infections. The abundances of G. cichlidarum on the hosts after secondary infection were lower than those after primary parasite infection, which implied that hosts could initiate immune protection against G. cichlidarum reinfection to some degree. The transcription levels of TCR-β and CD4 genes in the skin tissue were significantly up-regulated after primary G. cichlidarum infection, while genes pIgR and IgT were only detected with significant up-regulations during secondary infection. With the exception of pIgR, which had remarkably higher expression in the fish with low parasite loads, all other genes studied tended to have higher mRNA level in the fish with higher parasite loads. The specific IgM content in the skin mucus increased significantly on the 2nd day after the primary exposure, higher than the corresponding value during the secondary exposure, and had significantly positive correlation with the parasite loads during the first parasite infection. These results manifested that acquired immune responses in the SALT of Nile tilapia participated in the resistance against G. cichlidarum infection, underscoring the involvement of mucosal immunity in fish against monogenean infection, and suggesting potential prophylactic treatment of gyrodactylid disease of tilapia.
Collapse
Affiliation(s)
- Tingting Zhi
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chaoqun Huang
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Sun
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingying Zheng
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinsong Chen
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangli Xu
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Tingbao Yang
- State Key Laboratory of Biocontrol and Center for Parasitic Organisms, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Zhou S, Liu Y, Dong J, Yang Q, Xu N, Yang Y, Gu Z, Ai X. Transcriptome analysis of goldfish (Carassius auratus) in response to Gyrodactylus kobayashii infection. Parasitol Res 2020; 120:161-171. [PMID: 33094386 DOI: 10.1007/s00436-020-06827-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Gyrodactylid monogeneans are widespread parasites of teleost fishes, and infection with these parasites results in high host morbidity and mortality in aquaculture. To comprehensively elucidate the immune mechanisms against Gyrodactylus kobayashii, the transcriptome profiles of goldfish (Carassius auratus) skin after challenge with G. kobayashii were first investigated using next-generation sequencing. Approximately 21 million clean reads per library were obtained, and the average percentage of these clean reads mapped to the reference genome was 82.25%. A total of 556 differentially expressed genes (DEGs), including 344 upregulated and 212 downregulated genes, were identified, and 380 DEGs were successfully annotated and assigned to 95 signaling pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, 14 pathways associated with immune response were identified mainly including mTOR signaling pathway, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, toll-like receptor signaling pathway, and phagosome. Twelve genes were selected and validated using qRT-PCR. A similar trend of these genes between RNA-Seq and qRT-PCR was observed, indicating that RNA-Seq data was reliable. Besides, the ALP activity and NO content in serum were significantly higher in the infected goldfish compared with the non-infected goldfish. In summary, this study provides better understandings of immune defense mechanisms of goldfish against G. kobayashii, which will support future molecular research on gyrodactylids and facilitate the prevention and treatment of gyrodactylosis in aquaculture.
Collapse
Affiliation(s)
- Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430223, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China. .,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China.
| |
Collapse
|
9
|
Firmino JP, Vallejos-Vidal E, Sarasquete C, Ortiz-Delgado JB, Balasch JC, Tort L, Estevez A, Reyes-López FE, Gisbert E. Unveiling the effect of dietary essential oils supplementation in Sparus aurata gills and its efficiency against the infestation by Sparicotyle chrysophrii. Sci Rep 2020; 10:17764. [PMID: 33082387 PMCID: PMC7576129 DOI: 10.1038/s41598-020-74625-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
A microencapsulated feed additive composed by garlic, carvacrol and thymol essential oils (EOs) was evaluated regarding its protective effect in gills parasitized by Sparicotyle chrysophrii in Sparus aurata. A nutritional trial (65 days) followed by a cohabitation challenge with parasitized fish (39 days) were performed. Transcriptomic analysis by microarrays of gills of fish fed the EOs diet showed an up-regulation of genes related to biogenesis, vesicular transport and exocytosis, leukocyte-mediated immunity, oxidation–reduction and overall metabolism processes. The functional network obtained indicates a tissue-specific pro-inflammatory immune response arbitrated by degranulating acidophilic granulocytes, sustained by antioxidant and anti-inflammatory responses. The histochemical study of gills also showed an increase of carboxylate glycoproteins containing sialic acid in mucous and epithelial cells of fish fed the EOs diet, suggesting a mucosal defence mechanism through the modulation of mucin secretions. The outcomes of the in vivo challenge supported the transcriptomic results obtained from the nutritional trial, where a significant reduction of 78% in the abundance of S. chrysophrii total parasitation and a decrease in the prevalence of most parasitic developmental stages evaluated were observed in fish fed the EOs diet. These results suggest that the microencapsulation of garlic, carvacrol and thymol EOs could be considered an effective natural dietary strategy with antiparasitic properties against the ectoparasite S. chrysophrii.
Collapse
Affiliation(s)
- Joana P Firmino
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Crta. Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain.,TECNOVIT-FARMFAES, S.L. Pol. Ind. Les Sorts, parc. 10, 43365, Alforja, Spain.,PhD Program in Aquaculture, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Campus Universitario Río San Pedro, Puerto Real, Cádiz, Spain
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Campus Universitario Río San Pedro, Puerto Real, Cádiz, Spain
| | - Joan Carles Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Alicia Estevez
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Crta. Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Crta. Poble Nou km 5.5, 43540, Sant Carles de la Ràpita, Spain.
| |
Collapse
|
10
|
Dong F, Tacchi L, Xu Z, LaPatra SE, Salinas I. Vaccination Route Determines the Kinetics and Magnitude of Nasal Innate Immune Responses in Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2020; 9:biology9100319. [PMID: 33019693 PMCID: PMC7601189 DOI: 10.3390/biology9100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Simple Summary Many pathogens exploit the olfactory route to reach critical organs in the body such as the brain or lungs. Thus, effective onset of an early innate immune response in the nasal epithelium is key to stopping pathogen progression. The stimulation of nasal immunity by vaccines may depend on the type of vaccine and vaccination route. The goal of this study was to evaluate the ability of a live attenuated viral vaccine to stimulate innate immunity in the olfactory organ of rainbow trout, a teleost fish of commercial aquaculture value. The kinetics and magnitude of the innate immune response depended on the route of vaccination, with the strongest and fastest responses recorded in intranasally vaccinated fish. Injection vaccination had an intermediate effect, whereas immersion vaccination resulted in delayed and weak nasal innate immunity. Injection vaccination, even with the vehicle control, induced mortality in fingerlings, whereas nasal and immersion vaccines were safe. Challenge experiments with the live virus revealed that nasal and injected vaccines conferred very high and comparable levels of protection, but immersion vaccination only induced transient protection. In conclusion, the route of vaccination determines the type, magnitude and velocity of the innate immune response in the nasal epithelium of animals. Abstract Many pathogens infect animal hosts via the nasal route. Thus, understanding how vaccination stimulates early nasal immune responses is critical for animal and human health. Vaccination is the most effective method to prevent disease outbreaks in farmed fish. Nasal vaccination induces strong innate and adaptive immune responses in rainbow trout and was shown to be highly effective against infectious hematopoietic necrosis (IHN). However, direct comparisons between intranasal, injection and immersion vaccination routes have not been conducted in any fish species. Moreover, whether injection or immersion routes induce nasal innate immune responses is unknown. The goal of this study is to compare the effects of three different vaccine delivery routes, including intranasal (IN), intramuscular (i.m.) injection and immersion (imm) routes on the trout nasal innate immune response. Expression analyses of 13 immune-related genes in trout nasopharynx-associated lymphoid tissue (NALT), detected significant changes in immune expression in all genes analyzed in response to the three vaccination routes. However, nasal vaccination induced the strongest and fastest changes in innate immune gene expression compared to the other two routes. Challenge experiments 7 days post-vaccination (dpv) show the highest survival rates in the IN- and imm-vaccinated groups. However, survival rates in the imm group were significantly lower than the IN- and i.m.-vaccinated groups 28 dpv. Our results confirm that nasal vaccination of rainbow trout with live attenuated IHNV is highly effective and that the protection conferred by immersion vaccination is transient. These results also demonstrate for the first time that immersion vaccines stimulate NALT immune responses in salmonids.
Collapse
Affiliation(s)
- Fen Dong
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; (F.D.); (L.T.)
| | - Luca Tacchi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; (F.D.); (L.T.)
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | | | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; (F.D.); (L.T.)
- Correspondence:
| |
Collapse
|
11
|
Konczal M, Ellison AR, Phillips KP, Radwan J, Mohammed RS, Cable J, Chadzinska M. RNA-Seq analysis of the guppy immune response against Gyrodactylus bullatarudis infection. Parasite Immunol 2020; 42:e12782. [PMID: 32738163 DOI: 10.1111/pim.12782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Amy R Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Marine Institute, Furnace, Newport, Ireland.,School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, St. Augustine, Trinidad and Tobago
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Puente-Marin S, Nombela I, Chico V, Ciordia S, Mena MC, Perez LG, Coll J, Ortega-Villaizan MDM. Potential Role of Rainbow Trout Erythrocytes as Mediators in the Immune Response Induced by a DNA Vaccine in Fish. Vaccines (Basel) 2019; 7:E60. [PMID: 31277329 PMCID: PMC6789471 DOI: 10.3390/vaccines7030060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, fish nucleated red blood cells (RBCs) have been implicated in the response against viral infections. We have demonstrated that rainbow trout RBCs can express the antigen encoded by a DNA vaccine against viral hemorrhagic septicemia virus (VHSV) and mount an immune response to the antigen in vitro. In this manuscript, we show, for the first time, the role of RBCs in the immune response triggered by DNA immunization of rainbow trout with glycoprotein G of VHSV (GVHSV). Transcriptomic and proteomic profiles of RBCs revealed genes and proteins involved in antigen processing and presentation of exogenous peptide antigen via MHC class I, the Fc receptor signaling pathway, the autophagy pathway, and the activation of the innate immune response, among others. On the other hand, GVHSV-transfected RBCs induce specific antibodies against VHSV in the serum of rainbow trout which shows that RBCs expressing a DNA vaccine are able to elicit a humoral response. These results open a new direction in the research of vaccination strategies for fish since rainbow trout RBCs actively participate in the innate and adaptive immune response in DNA vaccination. Based on our findings, we suggest the use of RBCs as target cells or carriers for the future design of novel vaccine strategies.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Ivan Nombela
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Veronica Chico
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Luis Garcia Perez
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Biotecnología, 28040 Madrid, Spain
| | - Maria Del Mar Ortega-Villaizan
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| |
Collapse
|
13
|
Puente-Marin S, Thwaite R, Mercado L, Coll J, Roher N, Ortega-Villaizan MDM. Fish Red Blood Cells Modulate Immune Genes in Response to Bacterial Inclusion Bodies Made of TNFα and a G-VHSV Fragment. Front Immunol 2019; 10:1055. [PMID: 31178858 PMCID: PMC6538768 DOI: 10.3389/fimmu.2019.01055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
Fish Red-Blood Cells (RBCs) are nucleated cells that can modulate the expression of different sets of genes in response to stimuli, playing an active role in the homeostasis of the fish immune system. Nowadays, vaccination is one of the main ways to control and prevent viral diseases in aquaculture and the development of novel vaccination approaches is a focal point in fish vaccinology. One of the strategies that has recently emerged is the use of nanostructured recombinant proteins. Nanostructured cytokines have already been shown to immunostimulate and protect fish against bacterial infections. To explore the role of RBCs in the immune response to two nanostructured recombinant proteins, TNFα and a G-VHSV protein fragment, we performed different in vitro and in vivo studies. We show for the first time that rainbow trout RBCs are able to endocytose nanostructured TNFα and G-VHSV protein fragment in vitro, despite not being phagocytic cells, and in response to nanostructured TNFα and G-VHSV fragment, the expression of different immune genes could be modulated.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Rosemary Thwaite
- Department Biologia Cellular, Fisiologia Animal i Immunologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Nerea Roher
- Department Biologia Cellular, Fisiologia Animal i Immunologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria Del Mar Ortega-Villaizan
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| |
Collapse
|
14
|
Nombela I, Requena-Platek R, Morales-Lange B, Chico V, Puente-Marin S, Ciordia S, Mena MC, Coll J, Perez L, Mercado L, Ortega-Villaizan MDM. Rainbow Trout Red Blood Cells Exposed to Viral Hemorrhagic Septicemia Virus Up-Regulate Antigen-Processing Mechanisms and MHC I&II, CD86, and CD83 Antigen-presenting Cell Markers. Cells 2019; 8:E386. [PMID: 31035565 PMCID: PMC6562805 DOI: 10.3390/cells8050386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/13/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleated teleost red blood cells (RBCs) are known to express molecules from the major histocompatibility complex and peptide-generating processes such as autophagy and proteasomes, but the role of RBCs in antigen presentation of viruses have not been studied yet. In this study, RBCs exposed ex vivo to viral hemorrhagic septicemia virus (VHSV) were evaluated by means of transcriptomic and proteomic approaches. Genes and proteins related to antigen presentation molecules, proteasome degradation, and autophagy were up-regulated. VHSV induced accumulation of ubiquitinated proteins in ex vivo VHSV-exposed RBCs and showed at the same time a decrease of proteasome activity. Furthermore, induction of autophagy was detected by evaluating LC3 protein levels. Sequestosome-1/p62 underwent degradation early after VHSV exposure, and it may be a link between ubiquitination and autophagy activation. Inhibition of autophagosome degradation with niclosamide resulted in intracellular detection of N protein of VHSV (NVHSV) and p62 accumulation. In addition, antigen presentation cell markers, such as major histocompatibility complex (MHC) class I & II, CD83, and CD86, increased at the transcriptional and translational level in rainbow trout RBCs exposed to VHSV. In summary, we show that nucleated rainbow trout RBCs can degrade VHSV while displaying an antigen-presenting cell (APC)-like profile.
Collapse
Affiliation(s)
- Ivan Nombela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Ricardo Requena-Platek
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Byron Morales-Lange
- Instituto de Biología, Pontificia Universidad Católica de Valparaiso, 2373223 Valparaiso, Chile.
| | - Veronica Chico
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Sara Puente-Marin
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB- CSIC), 28049 Madrid, Spain.
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB- CSIC), 28049 Madrid, Spain.
| | - Julio Coll
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - Luis Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaiso, 2373223 Valparaiso, Chile.
| | - Maria Del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| |
Collapse
|
15
|
Piazzon MC, Mladineo I, Naya-Català F, Dirks RP, Jong-Raadsen S, Vrbatović A, Hrabar J, Pérez-Sánchez J, Sitjà-Bobadilla A. Acting locally - affecting globally: RNA sequencing of gilthead sea bream with a mild Sparicotyle chrysophrii infection reveals effects on apoptosis, immune and hypoxia related genes. BMC Genomics 2019; 20:200. [PMID: 30866816 PMCID: PMC6416957 DOI: 10.1186/s12864-019-5581-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/03/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Monogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture. The polyopisthocotylean Sparicotyle chrysophrii parasitizes the gills of gilthead sea bream (GSB, Sparus aurata) causing anaemia, lamellae fusion and sloughing of epithelial cells, with the consequent hypoxia, emaciation, lethargy and mortality. Currently no preventive or curative measures against this disease exist and therefore information on the host-parasite interaction is crucial to find mitigation solutions for sparicotylosis. The knowledge about gene regulation in monogenean-host models mostly comes from freshwater monopysthocotyleans and almost nothing is known about polyopisthocotyleans. The current study aims to decipher the host response at local (gills) and systemic (spleen, liver) levels in farmed GSB with a mild natural S. chrysophrii infection by transcriptomic analysis. RESULTS Using Illumina RNA sequencing and transcriptomic analysis, a total of 2581 differentially expressed transcripts were identified in infected fish when compared to uninfected controls. Gill tissues in contact with the parasite (P gills) displayed regulation of fewer genes (700) than gill portions not in contact with the parasite (NP gills) (1235), most likely due to a local silencing effect of the parasite. The systemic reaction in the spleen was much higher than that at the parasite attachment site (local) (1240), and higher than in liver (334). NP gills displayed a strong enrichment of genes mainly related to immune response and apoptosis. Processes such as apoptosis, inflammation and cell proliferation dominated gills, whereas inhibition of apoptosis, autophagy, platelet activation, signalling and aggregation, and inflammasome were observed in spleen. Proteasome markers were increased in all tissues, whereas hypoxia-related genes were down-regulated in gills and spleen. CONCLUSIONS Contrasting forces seem to be acting at local and systemic levels. The splenic down-regulation could be part of a hypometabolic response, to counteract the hypoxia induced by the parasite damage to the gills and to concentrate the energy on defence and repair responses. Alternatively, it can be also interpreted as the often observed action of helminths to modify host immunity in its own interest. These results provide the first toolkit for future studies towards understanding and management of this parasitosis.
Collapse
Affiliation(s)
- M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| | | | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.,Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Ron P Dirks
- Future Genomics Technology, Leiden, The Netherlands
| | | | | | - Jerko Hrabar
- Institute of Oceanography and Fisheries, Split, Croatia
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
16
|
Puente-Marin S, Nombela I, Chico V, Ciordia S, Mena MC, Coll J, Mercado L, Ortega-Villaizan MDM. Rainbow Trout Erythrocytes ex vivo Transfection With a DNA Vaccine Encoding VHSV Glycoprotein G Induces an Antiviral Immune Response. Front Immunol 2018; 9:2477. [PMID: 30429850 PMCID: PMC6220650 DOI: 10.3389/fimmu.2018.02477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
Fish red blood cells (RBCs), are integral in several biologic processes relevant to immunity, such as pathogen recognition, pathogen binding and clearance, and production of effector molecules and cytokines. So far, one of the best strategies to control and prevent viral diseases in aquaculture is DNA immunization. DNA vaccines (based on the rhabdoviral glycoprotein G [gpG] gene) have been shown to be effective against fish rhabdoviruses. However, more knowledge about the immune response triggered by DNA immunization is necessary to develop novel and more effective strategies. In this study, we investigated the role of fish RBCs in immune responses induced by DNA vaccines. We show for the first time that rainbow trout RBCs express gpG of viral hemorrhagic septicaemia virus (VHSV) (GVHSV) when transfected with the DNA vaccine ex vivo and modulate the expression of immune genes and proteins. Functional network analysis of transcriptome profiling of RBCs expressing GVHSV revealed changes in gene expression related to G-protein coupled receptor (GPCR)-downstream signaling, complement activation, and RAR related orphan receptor α (RORA). Proteomic profile functional network analysis of GVHSV-transfected RBCs revealed proteins involved in the detoxification of reactive oxygen species, interferon-stimulated gene 15 (ISG15) antiviral mechanisms, antigen presentation of exogenous peptides, and the proteasome. Conditioned medium of GVHSV-transfected RBCs conferred antiviral protection and induced ifn1 and mx gene expression in RTG-2 cells infected with VHSV. In summary, rainbow trout nucleated RBCs could be actively participating in the regulation of the fish immune response to GVHSV DNA vaccine, and thus may represent a possible carrier cells for the development of new vaccine approaches.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Ivan Nombela
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Veronica Chico
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Julio Coll
- Instituto Nacional de Investigaciones Agrarias, Biotecnología, Madrid, Spain
| | - Luis Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | | |
Collapse
|
17
|
Zhi T, Xu X, Chen J, Zheng Y, Zhang S, Peng J, Brown CL, Yang T. Expression of immune-related genes of Nile tilapia Oreochromis niloticus after Gyrodactylus cichlidarum and Cichlidogyrus sclerosus infections demonstrating immunosupression in coinfection. FISH & SHELLFISH IMMUNOLOGY 2018; 80:397-404. [PMID: 29859316 DOI: 10.1016/j.fsi.2018.05.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Gyrodactylus cichlidarum and Cichlidogyrus sclerosus, two monogenean ectoparasite species commonly found on the body surface and gills of Nile tilapia (Oreochromis niloticus) respectively, inflicted considerable economic losses in intensive tilapia farming. In order to explore the immune response of tilapia against these two species of monogeneans, expression patterns of five immune-related genes were studied after singular G. cichlidarum or C. sclerosus infection and their coinfection. The transcription levels of IL-1β were up-regulated in the skin after G. cichlidarum infection, reaching a peak at day 5 PI, and in the gills after C. sclerosus infection (peaking at day 8 PI), with significant elevation only detected in the gills after high-dose C. sclerosus infection. A trend favoring increased gill TNF-α expression at day 8 PI of C. sclerosus infection was statistically significant only in the low-dose infection group. TNF-α expression in the skin did not change significantly after G. cichlidarum infection. TGF-β had extremely up-regulated expressions in the gills at day 8 PI after both high- and low-dose C. sclerosus infections, but its significantly promoted expression in the skin was observed only after infection of high-dose G. cichlidarum. Significantly increased expressions of HSP70 and COX-2 in the skin were detected after high-dose G. cichlidarum infections. In comparison to singular infection with either G. cichlidarum or C. sclerosus, concurrent infection resulted in significantly advanced expression of TGF-β in both skin and gills, and lower expressions at day 8 PI, and similar patterns were observed in the expression of IL-1β and TNF-α in the gills. G. cichlidarum infection on the body surface significantly down-regulated the expressions of TNF-α, TGF-β and COX-2 in the gills. In addition, the intensity of G. cichlidarum was significantly positively correlated with that of C. sclerosus (correlation index 0.922, p = 0.000) at day 2 PI under concurrent infection. These results contribute to the understanding of mucosal immunity of fish against monogenean infection, particularly when two monogenean species infect concurrently.
Collapse
Affiliation(s)
- Tingting Zhi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangli Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinsong Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingying Zheng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuai Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Tingbao Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Center for Parasitic Organisms, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Zhou S, Li WX, Zou H, Zhang J, Wu SG, Li M, Wang GT. Expression analysis of immune genes in goldfish (Carassius auratus) infected with the monogenean parasite Gyrodactylus kobayashii. FISH & SHELLFISH IMMUNOLOGY 2018; 77:40-45. [PMID: 29567133 DOI: 10.1016/j.fsi.2018.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Heavy infection with the ectoparasite Gyrodactylus kobayashii commonly leads to high mortality of ornamental goldfish Carassius auratus. To understand the underlying mechanisms of goldfish against infection of gyrodactylids, transcription responses of immune-related genes including IL-1β2, TNFα1, TNFα2, IFN-γ, TGFβ, MHC II β, TCRβ1 and complement factor C3 were studied by real-time quantitative PCR analysis. Significant increases of expression of inflammatory genes such as IL-1β2, TNFα1, TNFα2 and TGFβ were detected at days 7 and 14 post-infection (pi). No significant differences of G. kobayashii load were observed in response to primary infection and re-infection. In addition, the transcript levels of genes involved in adaptive immunity such as MHC II β and TCRβ1 remained unchanged. Curiously, fish moderately infected with gyrodactylid showed elevated expression IL-1β2, TNFα1 and TNFα2. In all the gyrodactylids-infected fish, expression of complement factor C3 was consistently inhibited. The results extend current knowledge to the understanding of gyrodactylid infection in fish and support the previous findings that innate immunity is indispensable for controlling parasite infection.
Collapse
Affiliation(s)
- Shun Zhou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wen X Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, PR China.
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, PR China
| | - Jing Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, PR China
| | - Shan G Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, PR China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, PR China
| | - Gui T Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
19
|
In Silico Functional Networks Identified in Fish Nucleated Red Blood Cells by Means of Transcriptomic and Proteomic Profiling. Genes (Basel) 2018; 9:genes9040202. [PMID: 29642539 PMCID: PMC5924544 DOI: 10.3390/genes9040202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
Nucleated red blood cells (RBCs) of fish have, in the last decade, been implicated in several immune-related functions, such as antiviral response, phagocytosis or cytokine-mediated signaling. RNA-sequencing (RNA-seq) and label-free shotgun proteomic analyses were carried out for in silico functional pathway profiling of rainbow trout RBCs. For RNA-seq, a de novo assembly was conducted, in order to create a transcriptome database for RBCs. For proteome profiling, we developed a proteomic method that combined: (a) fractionation into cytosolic and membrane fractions, (b) hemoglobin removal of the cytosolic fraction, (c) protein digestion, and (d) a novel step with pH reversed-phase peptide fractionation and final Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC ESI-MS/MS) analysis of each fraction. Combined transcriptome- and proteome- sequencing data identified, in silico, novel and striking immune functional networks for rainbow trout nucleated RBCs, which are mainly linked to innate and adaptive immunity. Functional pathways related to regulation of hematopoietic cell differentiation, antigen presentation via major histocompatibility complex class II (MHCII), leukocyte differentiation and regulation of leukocyte activation were identified. These preliminary findings further implicate nucleated RBCs in immune function, such as antigen presentation and leukocyte activation.
Collapse
|
20
|
Leal E, Granja AG, Zarza C, Tafalla C. Distribution of T Cells in Rainbow Trout (Oncorhynchus mykiss) Skin and Responsiveness to Viral Infection. PLoS One 2016; 11:e0147477. [PMID: 26808410 PMCID: PMC4726708 DOI: 10.1371/journal.pone.0147477] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022] Open
Abstract
Although the skin constitutes the first line of defense against waterborne pathogens, there is a great lack of information regarding the skin associated lymphoid tissue (SALT) and whether immune components of the skin are homogeneously distributed through the surface of the fish is still unknown. In the current work, we have analyzed the transcription of several immune genes throughout different rainbow trout (Oncorhynchus mykiss) skin areas. We found that immunoglobulin and chemokine gene transcription levels were higher in a skin area close to the gills. Furthermore, this skin area as well as other anterior sections also transcribed significantly higher levels of many different immune genes related to T cell immunity such as T cell receptor α (TCRα), TCRγ, CD3, CD4, CD8, perforin, GATA3, Tbet, FoxP3, interferon γ (IFNγ), CD40L and Eomes in comparison to posterior skin sections. In agreement with these results, immunohistochemical analysis revealed that anterior skin areas had a higher concentration of CD3+ T cells and flow cytometry analysis confirmed that the percentage of CD8+ T lymphocytes was also higher in anterior skin sections. These results demonstrate for the first time that T cells are not homogeneously distributed throughout the teleost skin. Additionally, we studied the transcriptional regulation of these and additional T cell markers in response to a bath infection with viral hemorrhagic septicemia virus (VHSV). We found that VHSV regulated the transcription of several of these T cell markers in both the skin and the spleen; with some differences between anterior and posterior skin sections. Altogether, our results point to skin T cells as major players of teleost skin immunity in response to waterborne viral infections.
Collapse
Affiliation(s)
- Esther Leal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Aitor G. Granja
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Carlos Zarza
- Skretting Aquaculture Research Centre, PO Box 48, Stavanger, 4001, Norway
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos (Madrid), Spain
- * E-mail:
| |
Collapse
|
21
|
Salinas I, Zhang YA, Sunyer JO. Mucosal immunoglobulins and B cells of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1346-65. [PMID: 22133710 PMCID: PMC3428141 DOI: 10.1016/j.dci.2011.11.009] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As physical barriers that separate teleost fish from the external environment, mucosae are also active immunological sites that protect them against exposure to microbes and stressors. In mammals, the sites where antigens are sampled from mucosal surfaces and where stimulation of naïve T and B lymphocytes occurs are known as inductive sites and are constituted by mucosa-associated lymphoid tissue (MALT). According to anatomical location, the MALT in teleost fish is subdivided into gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), and gill-associated lymphoid tissue (GIALT). All MALT contain a variety of leukocytes, including, but not limited to, T cells, B cells, plasma cells, macrophages and granulocytes. Secretory immunoglobulins are produced mainly by plasmablasts and plasma cells, and play key roles in the maintenance of mucosal homeostasis. Until recently, teleost fish B cells were thought to express only two classes of immunoglobulins, IgM and IgD, in which IgM was thought to be the only one responding to pathogens both in systemic and mucosal compartments. However, a third teleost immunoglobulin class, IgT/IgZ, was discovered in 2005, and it has recently been shown to behave as the prevalent immunoglobulin in gut mucosal immune responses. The purpose of this review is to summarise the current knowledge of mucosal immunoglobulins and B cells of fish MALT. Moreover, we attempt to integrate the existing knowledge on both basic and applied research findings on fish mucosal immune responses, with the goal to provide new directions that may facilitate the development of novel vaccination strategies that stimulate not only systemic, but also mucosal immunity.
Collapse
Affiliation(s)
| | | | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|