1
|
Booth LC, Saseetharan B, May CN, Yao ST. Selective efferent vagal stimulation in heart failure. Exp Physiol 2024; 109:2001-2005. [PMID: 37755233 PMCID: PMC11607613 DOI: 10.1113/ep090866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Patients diagnosed with heart failure have high rates of mortality and morbidity. Based on promising preclinical studies, vagal nerve stimulation has been trialled in these patients using whole nerve electrical stimulation, but the results have been mixed. This is, at least in part, due to an inability to selectively recruit the activity of specific fibres within the vagus with whole nerve electrical stimulation, as well as not knowing which the 'therapeutic' fibres are. This symposium review focuses on a population of cardiac-projecting efferent vagal fibres with cell bodies located within the dorsal motor nucleus of the vagus nerve and a new method of selectively targeting these projections as a potential treatment in heart failure.
Collapse
Affiliation(s)
- Lindsea C. Booth
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Baagavi Saseetharan
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Clive N. May
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVICAustralia
| | - Song T. Yao
- Department of Anatomy and PhysiologyThe University of MelbourneMelbourneAustralia
| |
Collapse
|
2
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Suminski AJ, Rajala AZ, Birn RM, Mueller EM, Malone ME, Ness JP, Filla C, Brunner K, McMillan AB, Poore SO, Williams JC, Murali D, Brzeczkowski A, Hurley SA, Dingle AM, Zeng W, Lake WB, Ludwig KA, Populin LC. Vagus nerve stimulation in the non-human primate: implantation methodology, characterization of nerve anatomy, target engagement and experimental applications. Bioelectron Med 2023; 9:9. [PMID: 37118841 PMCID: PMC10148417 DOI: 10.1186/s42234-023-00111-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.
Collapse
Affiliation(s)
- Aaron J Suminski
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Abigail Z Rajala
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ellie M Mueller
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Margaret E Malone
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Jared P Ness
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlyn Filla
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Kevin Brunner
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel O Poore
- Division of Plastic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin C Williams
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea Brzeczkowski
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aaron M Dingle
- Division of Plastic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Weifeng Zeng
- Division of Plastic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendell B Lake
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kip A Ludwig
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Luis C Populin
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Lacto-Fermented and Unfermented Soybean Differently Modulate Serum Lipids, Blood Pressure and Gut Microbiota during Hypertension. FERMENTATION 2023. [DOI: 10.3390/fermentation9020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Soy consumption may reduce hypertension but the impact of food processing on the antihypertensive effect is unclear. Hence, we ascertained the effects of lacto-fermented (FSB) and unfermented soybean (USB) consumption on serum atherogenic lipids, hypertension and gut microbiota of spontaneous hypertensive rats (SHR). FSB displayed a strong in vitro angiotensin converting enzyme (ACE) inhibitory ability of 70 ± 5% while USB inhibited 5 ± 3% of the enzyme activity. Consumption of USB reduced serum ACE activity by 19.8 ± 12.85 U while FSB reduced the enzyme activity by 47.6 ± 11.35 U, respectively. FSB significantly improved cholesterol levels and reduced systolic and diastolic blood pressures by 14 ± 3 mmHg and 10 ± 3 mmHg, respectively, while USB only had a marginal impact on blood pressure. Analysis of FSB showed the abundance of ACE inhibitory peptides EGEQPRPFPFP and AIPVNKP (which were absent in USB) and 30 phenolic compounds (only 12 were abundant in USB). Feeding SHR with FSB promoted the growth of Akkermansia, Bacteroides, Intestinimonas, Phocaeicola, Lactobacillus and Prevotella (short chain fatty acid producers) while USB promoted only Prevotellamassilia, Prevotella and Intestimonas levels signifying the prebiotic ability of FSB. Our results show that, relative to USB, FSB are richer in bioactive compounds that reduce hypertension by inhibiting ACE, improving cholesterol levels and mitigating gut dysbiosis.
Collapse
|
5
|
Wu S, Li G, Chen M, Zhang S, Zhou Y, Shi B, Zhang X. Association of heartbeat complexity with survival in advanced non-small cell lung cancer patients. Front Neurosci 2023; 17:1113225. [PMID: 37123354 PMCID: PMC10130527 DOI: 10.3389/fnins.2023.1113225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
Background Previous studies have shown that the predictive value of traditional linear (time domain and frequency domain) heart rate variability (HRV) for the survival of patients with advanced non-small cell lung cancer (NSCLC) is controversial. Nonlinear methods, based on the concept of complexity, have been used to evaluate HRV, providing a new means to reveal the physiological and pathological changes in HRV. This study aimed to assess the association between heartbeat complexity and overall survival in patients with advanced NSCLC. Methods This study included 78 patients with advanced NSCLC (mean age: 62.0 ± 9.3 years). A 5-min resting electrocardiogram of advanced NSCLC patients was collected to analyze the following HRV parameters: time domain indicators, i.e., standard deviation of the normal-normal intervals (SDNN) and root mean square of successive interval differences (RMSSD); frequency domain indicators, i.e., total power (TP), low frequency power (LF), high frequency power (HF), and the ratio of LF to HF (LF/HF); nonlinear HRV indicators characterizing heartbeat complexity, i.e., approximate entropy (ApEn), sample entropy (SampEn), and recurrence quantification analysis (RQA) indexes: mean diagonal line length (Lmean), maximal diagonal line length (Lmax), recurrence rate (REC), determinism (DET), and shannon entropy (ShanEn). Results Univariate analysis revealed that the linear frequency domain parameter HF and nonlinear RQA parameters Lmax, REC, and DET were significantly correlated with the survival of advanced NSCLC patients (all p < 0.05). After adjusting for confounders in the multivariate analysis, HF, REC, and DET were found to be independent prognostic factors for the survival of patients with advanced NSCLC (all p < 0.05). Conclusion There was an independent association between heartbeat complexity and survival in advanced NSCLC patients. The nonlinear analysis method based on RQA may provide valuable additional information for the prognostic stratification of patients with advanced NSCLC and may supplement the traditional time domain and frequency domain analysis methods.
Collapse
Affiliation(s)
- Shuang Wu
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Guangqiao Li
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Man Chen
- Department of Oncology, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
| | - Sai Zhang
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Yufu Zhou
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Bo Shi
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
- *Correspondence: Bo Shi,
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Oncology, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
- Xiaochun Zhang,
| |
Collapse
|
6
|
Neuromodulation Applied to Diseases: The Case of HRV Biofeedback. J Clin Med 2022; 11:jcm11195927. [PMID: 36233794 PMCID: PMC9571900 DOI: 10.3390/jcm11195927] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
The vagus or “wandering” nerve is the main branch of the parasympathetic nervous system (PNS), innervating most internal organs crucial for health. Activity of the vagus nerve can be non-invasively indexed by heart-rate variability parameters (HRV). Specific HRV parameters predict less all-cause mortality, lower risk of and better prognosis after myocardial infarctions, and better survival in cancer. A non-invasive manner for self-activating the vagus is achieved by performing a slow-paced breathing technique while receiving visual feedback of one’s HRV, called HRV-biofeedback (HRV-B). This article narratively reviews the biological mechanisms underlying the role of vagal activity and vagally mediated HRV in hypertension, diabetes, coronary heart disease (CHD), cancer, pain, and dementia. After searching the literature for HRV-B intervention studies in each condition, we report the effects of HRV-B on clinical outcomes in these health conditions, while evaluating the methodological quality of these studies. Generally, the levels of evidence for the benefits of HRV-B is high in CHD, pain, and hypertension, moderate in cancer, and poor in diabetes and dementia. Limitations and future research directions are discussed.
Collapse
|
7
|
Yoshida K, Saku K, Jan Bogaard H, Abe K, Sunagawa K, Tsutsui H. Vagal nerve stimulation preserves right ventricular function in a rat model of right ventricular pressure overload. Pulm Circ 2022; 12:e12154. [PMID: 36419525 PMCID: PMC9677323 DOI: 10.1002/pul2.12154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Vagal nerve stimulation (VNS) ameliorates pulmonary vascular remodeling and improves survival in a rat model of pulmonary hypertension (PH). However, the direct impact of VNS on right ventricular (RV) function, which is the key predictor of PH patients, remains unknown. We evaluated the effect of VNS among the three groups: pulmonary artery banding (PAB) with sham stimulation (SS), PAB with VNS, and control (no PAB). We stimulated the right cervical vagal nerve with an implantable pulse generator, initiated VNS 2 weeks after PAB, and stimulated for 2 weeks. Compared to SS, VNS increased cardiac index (VNS: 130 ± 10 vs. SS: 93 ± 7 ml/min/kg; p < 0.05) and end-systolic elastance assessed by RV pressure-volume analysis (VNS: 1.1 ± 0.1 vs. SS: 0.7 ± 0.1 mmHg/μl; p < 0.01), but decreased RV end-diastolic pressure (VNS: 4.5 ± 0.7 vs. SS: 7.7 ± 1.0 mmHg; p < 0.05). Furthermore, VNS significantly attenuated RV fibrosis and CD68-positive cell migration. In PAB rats, VNS improved RV function, and attenuated fibrosis, and migration of inflammatory cells. These results provide a rationale for VNS therapy as a novel approach for RV dysfunction in PH patients.
Collapse
Affiliation(s)
- Keimei Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Pulmonary Medicine, Amsterdam UMCVrije UniversiteitAmsterdamNetherlands
| | - Keita Saku
- Department of Cardiovascular DynamicsNational Cerebral and Cardiovascular CenterSuitaJapan
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMCVrije UniversiteitAmsterdamNetherlands
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenji Sunagawa
- Circulatory System Research FoundationKyushu UniversityFukuokaJapan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
8
|
Impact of Non-Pharmacological Interventions on the Mechanisms of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23169097. [PMID: 36012362 PMCID: PMC9409393 DOI: 10.3390/ijms23169097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis remains the leading cause of mortality and morbidity worldwide characterized by the deposition of lipids and fibrous elements in the form of atheroma plaques in vascular areas which are hemodynamically overloaded. The global burden of atherosclerotic cardiovascular disease is steadily increasing and is considered the largest known non-infectious pandemic. The management of atherosclerotic cardiovascular disease is increasing the cost of health care worldwide, which is a concern for researchers and physicians and has caused them to strive to find effective long-term strategies to improve the efficiency of treatments by managing conventional risk factors. Primary prevention of atherosclerotic cardiovascular disease is the preferred method to reduce cardiovascular risk. Fasting, a Mediterranean diet, and caloric restriction can be considered useful clinical tools. The protective impact of physical exercise over the cardiovascular system has been studied in recent years with the intention of explaining the mechanisms involved; the increase in heat shock proteins, antioxidant enzymes and regulators of cardiac myocyte proliferation concentration seem to be the molecular and biochemical shifts that are involved. Developing new therapeutic strategies such as vagus nerve stimulation, either to prevent or slow the disease’s onset and progression, will surely have a profound effect on the lives of millions of people.
Collapse
|
9
|
Wu S, Li G, Guan W, Zhao H, Wang J, Zhou Y, Zhou Y, Shi B. Low Heart Rate Variability Predicts Poor Overall Survival of Lung Cancer Patients With Brain Metastases. Front Neurosci 2022; 16:839874. [PMID: 35250470 PMCID: PMC8891474 DOI: 10.3389/fnins.2022.839874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Background The aim of this prospective study was to evaluate the association between heart rate variability (HRV) and overall survival of lung cancer patients with brain metastases (LCBM). Methods Fifty-six LCBM patients were enrolled in this study. Five-minute electrocardiograms were collected before the time to first brain radiotherapy. HRV was analyzed quantitatively by using the time domain parameters, i.e., the standard deviation of all normal-normal intervals (SDNN) and the root mean square of successive differences (RMSSD). Survival time for LCBM patients was defined as from the date of HRV testing to the date of death or the last follow-up. Results In the univariate analysis, SDNN ≤ 13 ms (P = 0.003) and RMSSD ≤ 4.8 ms (P = 0.014) significantly predicted poor survival. Multivariate analysis confirmed that RMSSD ≤ 4.8 ms (P = 0.013, hazard ratio = 3.457, 95% confidence interval = 1.303–9.171) was also an independent negative prognostic factor after adjusting for mean heart rate, Karnofsky performance status, and number of brain metastases in LCBM patients. Conclusion Decreased RMSSD is independently associated with shorter survival time in LCBM patients. HRV might be a novel predictive biomarker for LCBM prognosis.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Guangqiao Li
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, China
| | - Weizheng Guan
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, China
| | - Huan Zhao
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, China
| | - Jingfeng Wang
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, China
| | - Yongchun Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yufu Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Yufu Zhou,
| | - Bo Shi
- School of Medical Imaging, Bengbu Medical College, Bengbu, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, China
- Bo Shi,
| |
Collapse
|
10
|
Interplay between baroreflex sensitivity, obesity and related cardiometabolic risk factors (Review). Exp Ther Med 2021; 23:67. [PMID: 34934438 PMCID: PMC8649854 DOI: 10.3892/etm.2021.10990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022] Open
Abstract
The baroreflex represents a rapid negative feedback system implicated in blood pressure regulation, which aims to prevent blood pressure variations by regulating peripheral vascular tone and cardiac output. The aim of the present review was to highlight the association between baroreflex sensitivity (BRS) and obesity, including factors associated with obesity, such as metabolic syndrome, hypertension, cardiovascular disease and diabetes. For the present review, a literature search was conducted using the PubMed database until August 21, 2021. The searched terms included ‘baroreflex’, and other terms such as ‘sensitivity’, ‘obesity’, ‘metabolic syndrome’, ‘hypertension’, ‘diabetes’, ‘gender’, ‘aging’, ‘children’, ‘adolescents’, ‘physical activity’, ‘bariatric surgery’, ‘autonomous nervous system’ and ‘cardiometabolic risk factors’. Obesity and its related metabolic disorders can influence baroreflex functionality and decrease BRS, mostly by potentiating sympathetic nervous system activity. Obesity induces inflammation, which can increase sympathetic system activity and lead to a higher incidence of cardiovascular events. Obesity also represents an important risk factor for hypertension through numerous mechanisms; in this setting, dysfunctional baroreceptors are not able to protect against constantly elevated blood pressure. Furthermore, diabetes mellitus and oxidative stress result in deterioration of BRS, whereas aging is also generally related to reduced cardiovagal BRS. Differences in BRS have also been observed between men and women, and overall cardiovagal BRS in healthy women is less intense compared with that in men. BRS appears lower in children with obesity compared with that in children of a healthy weight. Notably, physical exercise can increase BRS in both hypertensive and normotensive subjects, and BRS can also be significantly improved following bariatric surgery and weight loss. In conclusion, obesity and its related metabolic disorders may influence baroreflex functionality and decrease BRS, and baroreceptors cannot protect against the constantly elevated blood pressure in obesity. However, following bariatric surgery and weight loss, BRS can be significantly improved. The present review summarizes the role of obesity and related metabolic risk factors in BRS, providing details on possible mechanisms and shedding light on their interplay leading to autonomic neuropathy.
Collapse
|
11
|
Coutinho e Silva RDS, Zanoni FL, Simas R, Moreira LFP. Perspectives of bilateral thoracic sympathectomy for treatment of heart failure. Clinics (Sao Paulo) 2021; 76:e3248. [PMID: 34378733 PMCID: PMC8311637 DOI: 10.6061/clinics/2021/e3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Surgical neuromodulation therapies are still considered a last resort when standard therapies have failed for patients with progressive heart failure (HF). Although a number of experimental studies have provided robust evidence of its effectiveness, the lack of strong clinical evidence discourages practitioners. Thoracic unilateral sympathectomy has been extensively studied and has failed to show significant clinical improvement in HF patients. Most recently, bilateral sympathectomy effect was associated with a high degree of success in HF models, opening the perspective to be investigated in randomized controlled clinical trials. In addition, a series of clinical trials showed that bilateral sympathectomy was associated with a decreased risk of sudden death, which is an important outcome in patients with HF. These aspects indicates that bilateral sympathectomy could be an important alternative in the treatment of HF wherein pharmacological treatment barely reaches the target dose.
Collapse
Affiliation(s)
- Raphael dos Santos Coutinho e Silva
- Laboratorio Cirurgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coracao (Incor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Fernando Luiz Zanoni
- Laboratorio Cirurgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coracao (Incor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Rafael Simas
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Luiz Felipe Pinho Moreira
- Laboratorio Cirurgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coracao (Incor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
12
|
Rangon CM, Krantic S, Moyse E, Fougère B. The Vagal Autonomic Pathway of COVID-19 at the Crossroad of Alzheimer's Disease and Aging: A Review of Knowledge. J Alzheimers Dis Rep 2020; 4:537-551. [PMID: 33532701 PMCID: PMC7835993 DOI: 10.3233/adr-200273] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) pandemic-triggered mortality is significantly higher in older than in younger populations worldwide. Alzheimer's disease (AD) is related to aging and was recently reported to be among the major risk factors for COVID-19 mortality in older people. The symptomatology of COVID-19 indicates that lethal outcomes of infection rely on neurogenic mechanisms. The present review compiles the available knowledge pointing to the convergence of COVID-19 complications with the mechanisms of autonomic dysfunctions in AD and aging. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is prone to neuroinvasion from the lung along the vagus nerve up to the brainstem autonomic nervous centers involved in the coupling of cardiovascular and respiratory rhythms. The brainstem autonomic network allows SARS-CoV-2 to trigger a neurogenic switch to hypertension and hypoventilation, which may act in synergy with aging- and AD-induced dysautonomias, along with an inflammatory "storm". The lethal outcomes of COVID-19, like in AD and unhealthy aging, likely rely on a critical hypoactivity of the efferent vagus nerve cholinergic pathway, which is involved in lowering cardiovascular pressure and systemic inflammation tone. We further discuss the emerging evidence supporting the use of 1) the non-invasive stimulation of vagus nerve as an additional therapeutic approach for severe COVID-19, and 2) the demonstrated vagal tone index, i.e., heart rate variability, via smartphone-based applications as a non-serological low-cost diagnostic of COVID-19. These two well-known medical approaches are already available and now deserve large-scale testing on human cohorts in the context of both AD and COVID-19.
Collapse
Affiliation(s)
- Claire-Marie Rangon
- Pain and Neuromodulation Unit, Division of Neurosurgery, Hôpital Fondation Ophtalmologique A. De Rothschild, Paris, France
| | - Slavica Krantic
- Sorbonne Université, St. Antoine Research Center (CRSA), Inserm UMRS-938, Hopital St-Antoine, Paris, France
| | - Emmanuel Moyse
- INRAE Centre Val-de-Loire, Physiology of Reproduction and Behavior Unit (PRC, UMR-85), Team ER2, Nouzilly, France
| | - Bertrand Fougère
- Division of Geriatric Medicine, Tours University Hospital, Tours, France
- Education, Ethics, Health (EA 7505), Tours University, Tours, France
| |
Collapse
|
13
|
Kawada T, Sonobe T, Nishikawa T, Hayama Y, Li M, Zheng C, Uemura K, Akiyama T, Pearson JT, Sugimachi M. Contribution of afferent pathway to vagal nerve stimulation-induced myocardial interstitial acetylcholine release in rats. Am J Physiol Regul Integr Comp Physiol 2020; 319:R517-R525. [PMID: 32903042 DOI: 10.1152/ajpregu.00080.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vagal nerve stimulation (VNS) has been explored as a potential therapy for chronic heart failure. The contribution of the afferent pathway to myocardial interstitial acetylcholine (ACh) release during VNS has yet to be clarified. In seven anesthetized Wistar-Kyoto rats, we implanted microdialysis probes in the left ventricular free wall and measured the myocardial interstitial ACh release during right VNS with the following combinations of stimulation frequency (F in Hz) and voltage readout (V in volts): F0V0 (no stimulation), F5V3, F20V3, F5V10, and F20V10. F5V3 did not affect the ACh level. F20V3, F5V10, and F20V10 increased the ACh level to 2.83 ± 0.47 (P < 0.01), 4.31 ± 1.09 (P < 0.001), and 4.33 ± 0.82 (P < 0.001) nM, respectively, compared with F0V0 (1.76 ± 0.22 nM). After right vagal afferent transection (rVAX), F20V3 and F20V10 increased the ACh level to 2.90 ± 0.53 (P < 0.001) and 3.48 ± 0.63 (P < 0.001) nM, respectively, compared with F0V0 (1.61 ± 0.19 nM), but F5V10 did not (2.11 ± 0.24 nM). The ratio of the ACh levels after rVAX relative to before was significantly <100% in F5V10 (59.4 ± 8.7%) but not in F20V3 (102.0 ± 8.7%). These results suggest that high-frequency and low-voltage stimulation (F20V3) evoked the ACh release mainly via direct activation of the vagal efferent pathway. By contrast, low-frequency and high-voltage stimulation (F5V10) evoked the ACh release in a manner dependent on the vagal afferent pathway.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yohsuke Hayama
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Can Zheng
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tsuyoshi Akiyama
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Osaka, Japan.,Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
14
|
Kawada T, Sata Y, Akiyama T, Shimizu S, Sonobe T, Pearson JT, Sugimachi M. Threshold and saturation pressures of baroreflex-mediated myocardial interstitial acetylcholine release in rats. Auton Neurosci 2020; 225:102657. [PMID: 32097880 DOI: 10.1016/j.autneu.2020.102657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
Cardiac microdialysis allows the assessment of cardiac efferent vagal nerve activity from myocardial interstitial acetylcholine (ACh) levels with minimal influence on the neural control of the heart; however, a total picture of the baroreflex-mediated myocardial interstitial ACh release including the threshold and saturation pressures has yet to be quantified. In eight anesthetized Wistar-Kyoto rats, we implanted microdialysis probes in the left ventricular free wall and measured the myocardial interstitial ACh release simultaneously with efferent sympathetic nerve activity (SNA) during a carotid sinus baroreceptor pressure input between 60 and 180 mm Hg. The baroreflex-mediated ACh release approximated a positive sigmoid curve, and its threshold and saturation pressures were not significantly different from those of an inverse sigmoid curve associated with the baroreflex-mediated SNA response (threshold: 94.3 ± 8.6 vs. 99.3 ± 6.0 mm Hg; saturation: 150.0 ± 10.3 vs. 158.8 ± 5.8 mm Hg). The sympathetic and vagal systems have certain levels of activities across most of the normal pressure range.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan.
| | - Yusuke Sata
- Human Neurotransmitters Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Tsuyoshi Akiyama
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Takashi Sonobe
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| |
Collapse
|
15
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
16
|
Gidron Y, Caton L, Reich M. Stress, Inflammation and Cancer Prognosis: New Evidence-Based Effective Treatments. PSYCHO-ONCOLOGIE 2020. [DOI: 10.3166/pson-2019-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article introduces the general model of stress, coping and adaptation applied to cancer, and biological mechanisms mediating psychological factors and cancer prognosis. The role of the vagus nerve as a possible bridge and therapeutic target in psycho-oncology is reviewed. Finally, the effects of brief psychological interventions (e.g., stress management) on cancer prognosis are presented. Psycho-oncology education and practice need to shift to a more evidence-based proactive approach, to help cancer patients adapt and possibly improve their quality and quantity of life.
Collapse
|
17
|
Boswijk E, Franssen R, Vijgen GHEJ, Wierts R, van der Pol JAJ, Mingels AMA, Cornips EMJ, Majoie MHJM, van Marken Lichtenbelt WD, Mottaghy FM, Wildberger JE, Bucerius J. Short-term discontinuation of vagal nerve stimulation alters 18F-FDG blood pool activity: an exploratory interventional study in epilepsy patients. EJNMMI Res 2019; 9:101. [PMID: 31773320 PMCID: PMC6879675 DOI: 10.1186/s13550-019-0567-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/16/2019] [Indexed: 11/15/2022] Open
Abstract
Background Vagus nerve activation impacts inflammation. Therefore, we hypothesized that vagal nerve stimulation (VNS) influenced arterial wall inflammation as measured by 18F-FDG uptake. Results Ten patients with left-sided VNS for refractory epilepsy were studied during stimulation (VNS-on) and in the hours after stimulation was switched off (VNS-off). In nine patients, 18F-FDG uptake was measured in the right carotid artery, aorta, bone marrow, spleen, and adipose tissue. Target-to-background ratios (TBRs) were calculated to normalize the respective standardized uptake values (SUVs) for venous blood pool activity. Median values are shown with interquartile range and compared using the Wilcoxon signed-rank test. Arterial SUVs tended to be higher during VNS-off than VNS-on [SUVmax all vessels 1.8 (1.5–2.2) vs. 1.7 (1.2–2.0), p = 0.051]. However, a larger difference was found for the venous blood pool at this time point, reaching statistical significance in the vena cava superior [meanSUVmean 1.3 (1.1–1.4) vs. 1.0 (0.8–1.1); p = 0.011], resulting in non-significant lower arterial TBRs during VNS-off than VNS-on. Differences in the remaining tissues were not significant. Insulin levels increased after VNS was switched off [55.0 pmol/L (45.9–96.8) vs. 48.1 pmol/L (36.9–61.8); p = 0.047]. The concurrent increase in glucose levels was not statistically significant [4.8 mmol/L (4.7–5.3) vs. 4.6 mmol/L (4.5–5.2); p = 0.075]. Conclusions Short-term discontinuation of VNS did not show a consistent change in arterial wall 18F-FDG-uptake. However, VNS did alter insulin and 18F-FDG blood levels, possibly as a result of sympathetic activation.
Collapse
Affiliation(s)
- Ellen Boswijk
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Renee Franssen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Guy H E J Vijgen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.,Department of Surgery, Erasmus Medical Center (EMC), Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Roel Wierts
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Jochem A J van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Alma M A Mingels
- Department of Clinical Chemistry, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Erwin M J Cornips
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marian H J M Majoie
- Department of Research & Development, Epilepsy Center Kempenhaeghe, Sterkselseweg 65, 5591 VE, Heeze, The Netherlands.,Department of Neurology, Academic Center for Epileptology, Epilepsy Center Kempenhaeghe & Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,MHENS School of Mental Health & Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.,School of Health Professions Education, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 60, 6229 ER, Maastricht, The Netherlands
| | - Wouter D van Marken Lichtenbelt
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Jan Bucerius
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands. .,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands. .,Department of Nuclear Medicine, Georg-August University Göttingen, Robert-Koch-Strasse 40, 37075, Göttingen, Germany.
| |
Collapse
|
18
|
Li M, Zheng C, Kawada T, Inagaki M, Uemura K, Sugimachi M. Chronic vagal nerve stimulation exerts additional beneficial effects on the beta-blocker-treated failing heart. J Physiol Sci 2019; 69:295-303. [PMID: 30414045 PMCID: PMC10717668 DOI: 10.1007/s12576-018-0646-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Vagal nerve stimulation (VNS) induces bradycardia in chronic heart failure (CHF). We hypothesized that beta-blocker would cover the beneficial effects of VNS on CHF if the anti-beta-adrenergic effect was the main VNS effect. This study investigated the effects of VNS on cardiac remodeling in rats with CHF treated with metoprolol. Two weeks after myocardial infarction, surviving rats were randomly assigned to groups of sham stimulation (SS), sham stimulation with metoprolol (SSM), or VNS with metoprolol (VSM). Compared to the SS group, heart rate was significantly reduced in the SSM and VSM groups. Hemodynamic assessments showed that VSM rats maintained better cardiac pump function and presented higher cardiac index and lower heart weight than SSM rats. VSM was also associated with lower plasma brain natriuretic peptide and norepinephrine levels than SSM. VSM but not SSM improved the 50-day survival rate compared with the SS group. The results suggest that VNS may exert its beneficial effects on the failing heart independently of its anti-beta-adrenergic mechanism.
Collapse
Affiliation(s)
- Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Can Zheng
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Masashi Inagaki
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| |
Collapse
|
19
|
Kawada T, Hayama Y, Nishikawa T, Yamamoto H, Tanaka K, Sugimachi M. Even weak vasoconstriction from rilmenidine can be unmasked in vivo by opening the baroreflex feedback loop. Life Sci 2019; 219:144-151. [PMID: 30630007 DOI: 10.1016/j.lfs.2019.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 11/17/2022]
Abstract
AIMS Rilmenidine and moxonidine are centrally acting antihypertensive agents that are more selective for I1-imidazoline receptors than for α2-adrenergic receptors. Moxonidine previously showed a peripheral vasoconstrictive effect stronger than generally recognized, which counteracted an arterial pressure (AP) lowering effect resulting from central sympathoinhibition. We tested whether rilmenidine also showed a significant vasoconstrictive effect that could attenuate its AP lowering effect. MAIN METHODS Efferent sympathetic nerve activity (SNA) and AP responses to changes in carotid sinus pressure were compared in nine anesthetized Wistar-Kyoto rats before and after low, medium, and high doses (40, 100, and 250 μg/kg, respectively) of intravenous rilmenidine. KEY FINDINGS High-dose rilmenidine narrowed the range of the SNA response (from 89.6 ± 2.9% to 50.4 ± 7.9%, P < 0.001) and reduced the lower asymptote of SNA (from 13.5 ± 3.0% to 2.7 ± 1.5%, P < 0.001). High-dose rilmenidine significantly increased the intercept (from 57.1 ± 3.8 to 78.2 ± 2.7 mm Hg, P < 0.001) but reduced the slope (from 0.82 ± 0.08 to 0.51 ± 0.07 mm Hg/%, P < 0.001) of the SNA-AP relationship. The reduction in the operating-point AP induced by high-dose rilmenidine did not significantly differ based on whether the peripheral effect was considered (-19.8 ± 2.2 vs. -26.4 ± 5.3 mm Hg, not significant). SIGNIFICANCE Rilmenidine increased AP in the absence of SNA, which suggests a peripheral vasoconstrictive effect; however, the vasoconstrictive effect was weak and did not significantly counteract the AP-lowering effect through central sympathoinhibition.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan.
| | - Yohsuke Hayama
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| | - Hiromi Yamamoto
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Kindai University, Osaka 589-8511, Japan
| | - Kunihiko Tanaka
- Graduate School of Health and Medicine, Gifu University of Medical Science, Gifu 501-3892, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan
| |
Collapse
|
20
|
Annoni EM, Van Helden D, Guo Y, Levac B, Libbus I, KenKnight BH, Osborn JW, Tolkacheva EG. Chronic Low-Level Vagus Nerve Stimulation Improves Long-Term Survival in Salt-Sensitive Hypertensive Rats. Front Physiol 2019; 10:25. [PMID: 30766489 PMCID: PMC6365472 DOI: 10.3389/fphys.2019.00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic hypertension (HTN) affects more than 1 billion people worldwide, and is associated with an increased risk of cardiovascular disease. Despite decades of promising research, effective treatment of HTN remains challenging. This work investigates vagus nerve stimulation (VNS) as a novel, device-based therapy for HTN treatment, and specifically evaluates its effects on long-term survival and HTN-associated adverse effects. HTN was induced in Dahl salt-sensitive rats using a high-salt diet, and the rats were randomly divided into two groups: VNS (n = 9) and Sham (n = 8), which were implanted with functional or non-functional VNS stimulators, respectively. Acute and chronic effects of VNS therapy were evaluated through continuous monitoring of blood pressure (BP) and ECG via telemetry devices. Autonomic tone was quantified using heart rate (HR), HR variability (HRV) and baroreflex sensitivity (BRS) analysis. Structural cardiac changes were quantified through gross morphology and histology studies. VNS significantly improved the long-term survival of hypertensive rats, increasing median event-free survival by 78% in comparison to Sham rats. Acutely, VNS improved autonomic balance by significantly increasing HRV during stimulation, which may lead to beneficial chronic effects of VNS therapy. Chronic VNS therapy slowed the progression of HTN through an attenuation of SBP and by preserving HRV. Finally, VNS significantly altered cardiac structure, increasing heart weight, but did not alter the amount of fibrosis in the hypertensive hearts. These results suggest that VNS has the potential to improve outcomes in subjects with severe HTN.
Collapse
Affiliation(s)
- Elizabeth M Annoni
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Dusty Van Helden
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Yugene Guo
- Department of Biology, University of Minnesota, Minneapolis, MN, United States
| | - Brett Levac
- Department of Electrical Engineering, University of Minnesota, Minneapolis, MN, United States
| | | | | | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Elena G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
21
|
Yoshida K, Saku K, Kamada K, Abe K, Tanaka-Ishikawa M, Tohyama T, Nishikawa T, Kishi T, Sunagawa K, Tsutsui H. Electrical Vagal Nerve Stimulation Ameliorates Pulmonary Vascular Remodeling and Improves Survival in Rats With Severe Pulmonary Arterial Hypertension. ACTA ACUST UNITED AC 2018; 3:657-671. [PMID: 30456337 PMCID: PMC6234524 DOI: 10.1016/j.jacbts.2018.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
Abstract
Autonomic imbalance has been documented in patients with PAH. Electrical VNS is known to restore autonomic balance and improve heart failure. This study aimed to elucidate the therapeutic effects of VNS on severe PAH in a rat model. VNS significantly restored autonomic balance, decreased mean pulmonary arterial pressure, attenuated pulmonary vascular remodeling, and preserved right ventricular function. In addition, VNS markedly improved the survival of rats with PAH. Our findings may contribute greatly to the development of device therapy for PAH and widen the clinical applicability of VNS.
This study aimed to elucidate the therapeutic effects of electrical vagal nerve stimulation (VNS) on severe pulmonary arterial hypertension in a rat model. In a pathophysiological study, VNS significantly restored autonomic balance, decreased mean pulmonary arterial pressure, attenuated pulmonary vascular remodeling, and preserved right ventricular function. In a survival study, VNS significantly improved the survival rate in both the prevention (VNS from 0 to 5 weeks after a SU5416 injection) and treatment (VNS from 5 to 10 weeks) protocols. Thus, VNS may serve as a novel therapeutic strategy for pulmonary arterial hypertension.
Collapse
Key Words
- BNP, brain natriuretic peptide
- HF, high-frequency
- HRV, heart rate variability
- IL, interleukin
- MCP, monocyte chemotactic protein
- NE, norepinephrine
- NO, nitric oxide
- PA, pulmonary artery
- PAH, pulmonary arterial hypertension
- PAP, pulmonary arterial pressure
- PVR, pulmonary vascular resistance
- RV, right ventricular
- RVEDP, right ventricular end-diastolic pressure
- SS, sham-stimulated
- VNS, vagal nerve stimulation
- autonomic imbalance
- eNOS, endothelial nitric oxide synthase
- mRNA, messenger ribonucleic acid
- pulmonary arterial hypertension
- pulmonary vascular remodeling
- vagal nerve stimulation
Collapse
Affiliation(s)
- Keimei Yoshida
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
- Address for correspondence: Dr. Keita Saku, Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kazuhiro Kamada
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mariko Tanaka-Ishikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
22
|
The Vagus Nerve Can Predict and Possibly Modulate Non-Communicable Chronic Diseases: Introducing a Neuroimmunological Paradigm to Public Health. J Clin Med 2018; 7:jcm7100371. [PMID: 30347734 PMCID: PMC6210465 DOI: 10.3390/jcm7100371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Global burden of diseases (GBD) includes non-communicable conditions such as cardiovascular diseases, cancer and chronic obstructive pulmonary disease. These share important behavioral risk factors (e.g., smoking, diet) and pathophysiological contributing factors (oxidative stress, inflammation and excessive sympathetic activity). This article wishes to introduce to medicine and public health a new paradigm to predict, understand, prevent and possibly treat such diseases based on the science of neuro-immunology and specifically by focusing on vagal neuro-modulation. Vagal nerve activity is related to frontal brain activity which regulates unhealthy lifestyle behaviors. Epidemiologically, high vagal activity, indexed by greater heart rate variability (HRV), independently predicts reduced risk of GBD and better prognosis in GBD. Biologically, the vagus nerve inhibits oxidative stress, inflammation and sympathetic activity (and associated hypoxia). Finally, current non-invasive methods exist to activate this nerve for neuro-modulation, and have promising clinical effects. Indeed, preliminary evidence exists for the beneficial effects of vagal nerve activation in diabetes, stroke, myocardial infarction and possibly cancer. Thus, we propose to routinely implement measurement of HRV to predict such GBD in populations, and to test in randomized controlled trials effects of non-invasive vagal nerve activation on prevention and treatment of GBD, reflecting possible neuro-modulation of health.
Collapse
|
23
|
Kamada K, Saku K, Tohyama T, Kawada T, Mannoji H, Abe K, Nishikawa T, Sunagawa G, Kishi T, Sunagawa K, Tsutsui H. Diabetes mellitus attenuates the pressure response against hypotensive stress by impairing the sympathetic regulation of the baroreflex afferent arc. Am J Physiol Heart Circ Physiol 2018; 316:H35-H44. [PMID: 30339460 DOI: 10.1152/ajpheart.00515.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with diabetes mellitus (DM) often show arterial pressure (AP) lability associated with cardiovascular autonomic neuropathy. Because the arterial baroreflex tightly regulates AP via sympathetic nerve activity (SNA), we investigated the systematic baroreflex function, considering the control theory in DM by open-loop analysis. We used Zucker diabetic fatty (ZDF) rats as a type 2 DM model. Under general anesthesia, we isolated the carotid sinuses from the systemic circulation, changed intracarotid sinus pressure (CSP), and recorded SNA and AP responses. We compared CSP-AP (total loop), CSP-SNA (afferent arc), and SNA-AP (efferent arc) relationships between ZDF lean ( n = 8) and ZDF fatty rats ( n = 6). Although the total loop gain of baroreflex (ΔAP/ΔCSP) at the operating point did not differ between the two groups, the average gain in the lower CSP range was markedly reduced in ZDF fatty rats (0.03 ± 0.01 vs. 0.87 ± 0.10 mmHg/mmHg, P < 0.001). The afferent arc showed the same trend as the total loop, with a response threshold of 139.8 ± 1.0 mmHg in ZDF fatty rats. There were no significant differences in the gain of efferent arc between the two groups. Simulation experiments indicated a markedly higher AP fall and lower total loop gain of baroreflex in ZDF fatty rats than in ZDF lean rats against hypotensive stress because the efferent arc intersected with the afferent arc in the SNA unresponsive range. Thus, we concluded that impaired baroreflex sympathetic regulation in the lower AP range attenuates the pressure response against hypotensive stress and may partially contribute to AP lability in DM. NEW & NOTEWORTHY In this study, we investigated the open-loop baroreflex function, considering the control theory in type 2 diabetes mellitus model rats to address the systematic mechanism of arterial pressure (AP) lability in diabetes mellitus. The unresponsiveness of baroreflex sympathetic regulation in the lower AP range was observed in type 2 diabetic rats. It may attenuate the baroreflex pressure-stabilizing function and induce greater AP fall against hypotensive stress.
Collapse
Affiliation(s)
- Kazuhiro Kamada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Disease, Center for Disruptive Cardiovascular Medicine, Kyushu University , Fukuoka , Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute , Osaka , Japan
| | - Hiroshi Mannoji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Kiyokazu Abe
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Genya Sunagawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Disease, Center for Disruptive Cardiovascular Medicine, Kyushu University , Fukuoka , Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University , Fukuoka , Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| |
Collapse
|
24
|
Sturm VE, Brown JA, Hua AY, Lwi SJ, Zhou J, Kurth F, Eickhoff SB, Rosen HJ, Kramer JH, Miller BL, Levenson RW, Seeley WW. Network Architecture Underlying Basal Autonomic Outflow: Evidence from Frontotemporal Dementia. J Neurosci 2018; 38:8943-8955. [PMID: 30181137 PMCID: PMC6191520 DOI: 10.1523/jneurosci.0347-18.2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
The salience network is a distributed neural system that maintains homeostasis by regulating autonomic nervous system activity and social-emotional function. Here we examined how within-network connectivity relates to individual differences in human (including males and females) baseline parasympathetic and sympathetic nervous activity. We measured resting autonomic nervous system physiology in 24 healthy controls and 23 patients with behavioral variant frontotemporal dementia (bvFTD), a neurodegenerative disease characterized by baseline autonomic deficits. Participants also underwent structural and task-free fMRI. First, we used voxel-based morphometry to determine whether salience network atrophy was associated with lower baseline respiratory sinus arrhythmia (a parasympathetic measure) and skin conductance level (a sympathetic measure) in bvFTD. Next, we examined whether functional connectivity deficits in 21 autonomic-relevant, salience network node-pairs related to baseline autonomic dysfunction. Lower baseline respiratory sinus arrhythmia was associated with smaller volume in left ventral anterior insula (vAI), weaker connectivity between bilateral vAI and bilateral anterior cingulate cortex (ACC), and stronger connectivity between bilateral ACC and bilateral hypothalamus/amygdala. Lower baseline skin conductance level, in contrast, was associated with smaller volume in inferior temporal gyrus, dorsal mid-insula, and hypothalamus; weaker connectivity between bilateral ACC and right hypothalamus/amygdala; and stronger connectivity between bilateral dorsal anterior insula and periaqueductal gray. Our results suggest that baseline parasympathetic and sympathetic tone depends on the integrity of lateralized salience network hubs (left vAI for parasympathetic and right hypothalamus/amygdala for sympathetic) and highly calibrated ipsilateral and contralateral network connections. In bvFTD, deficits in this system may underlie resting parasympathetic and sympathetic disruption.SIGNIFICANCE STATEMENT The salience network maintains homeostasis and regulates autonomic nervous system activity. Whether within-network connectivity patterns underlie individual differences in resting parasympathetic and sympathetic nervous system activity, however, is not well understood. We measured baseline autonomic nervous system activity in healthy controls and patients with behavioral variant frontotemporal dementia, a neurodegenerative disease characterized by resting autonomic deficits, and probed how salience network dysfunction relates to diminished parasympathetic and sympathetic outflow. Our results indicate that baseline parasympathetic and sympathetic tone are the product of complex, opposing intranetwork nodal interactions and depend on the integrity of highly tuned, lateralized salience network hubs (i.e., left ventral anterior insula for parasympathetic activity and right hypothalamus/amygdala for sympathetic activity).
Collapse
Affiliation(s)
- Virginia E Sturm
- Department of Neurology, University of California-San Francisco, Sandler Neurosciences Center, San Francisco, California 94158
| | - Jesse A Brown
- Department of Neurology, University of California-San Francisco, Sandler Neurosciences Center, San Francisco, California 94158
| | - Alice Y Hua
- Department of Psychology, University of California, Berkeley, California 94720-1650
| | - Sandy J Lwi
- Department of Psychology, University of California, Berkeley, California 94720-1650
| | - Juan Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857
| | - Florian Kurth
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles School of Medicine, Los Angeles, California 90095
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine Universität, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour, Research Centre Jülich, Jülich, 52425, Germany, and
| | - Howard J Rosen
- Department of Neurology, University of California-San Francisco, Sandler Neurosciences Center, San Francisco, California 94158
| | - Joel H Kramer
- Department of Neurology, University of California-San Francisco, Sandler Neurosciences Center, San Francisco, California 94158
| | - Bruce L Miller
- Department of Neurology, University of California-San Francisco, Sandler Neurosciences Center, San Francisco, California 94158
| | - Robert W Levenson
- Department of Psychology, University of California, Berkeley, California 94720-1650
| | - William W Seeley
- Department of Neurology, University of California-San Francisco, Sandler Neurosciences Center, San Francisco, California 94158,
- Department of Pathology, University of California, San Francisco, California 94143
| |
Collapse
|
25
|
Gross MJ, Bringer JD, Kilduff LP, Cook CJ, Hall R, Shearer DA. A multi-modal biofeedback protocol to demonstrate physiological manifestations of psychological stress and introduce heart rate variability biofeedback stress management. JOURNAL OF SPORT PSYCHOLOGY IN ACTION 2018. [DOI: 10.1080/21520704.2018.1496210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mike J. Gross
- University of South Wales, UK. Welsh Institute of Performance Science, Pontypridd, Wales, UK
| | - Joy D. Bringer
- Sports Council for Wales, UK. Welsh Institute of Performance Science, Cardiff, Wales, UK
| | - Liam P. Kilduff
- University of South Wales, UK. Welsh Institute of Performance Science, Pontypridd, Wales, UK
- A-STEM, Swansea University, UK. Welsh Institute of Performance Science, Swansea, Wales, UK
| | | | - Ross Hall
- University of South Wales, Pontypridd, UK
| | - David A. Shearer
- University of South Wales, UK. Welsh Institute of Performance Science, Pontypridd, Wales, UK
| |
Collapse
|
26
|
Central activation of cardiac vagal nerve by α 2-adrenergic stimulation is impaired in streptozotocin-induced type 1 diabetic rats. Auton Neurosci 2018; 216:39-45. [PMID: 30220605 DOI: 10.1016/j.autneu.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
To elucidate the abnormality of cardiac vagal control in streptozotocin-induced type 1 diabetic rats, we measured left ventricular myocardial interstitial acetylcholine (ACh) release in response to α2-adrenergic stimulation as an index of in vivo cardiac vagal nerve activity. A cardiac microdialysis technique was applied to the rat left ventricle, and the effect of α2-adrenergic stimulation by intravenous medetomidine (100 μg/kg) on myocardial interstitial ACh levels was examined in anesthetized diabetic rats (4-6 weeks after intraperitoneal streptozotocin) and age-matched control rats (protocol 1). The effect of electrical vagal nerve stimulation on ACh levels was also examined in separate rats (protocol 2). In protocol 1, medetomidine increased the ACh levels in control (from 1.76 ± 0.65 to 3.13 ± 1.41 nM, P < 0.05, n = 7) but not in diabetic rats (from 2.01 ± 0.47 to 1.62 ± 0.34 nM, not significant, n = 7). In protocol 2, electrical vagal nerve stimulation at 20 Hz significantly increased the ACh levels in both control (from 1.49 ± 0.26 to 6.39 ± 1.81 nM, P < 0.001, n = 6) and diabetic rats (from 1.77 ± 0.54 to 6.98 ± 1.38 nM, P < 0.001, n = 6). In conclusion, medetomidine-induced central vagal activation was impaired in diabetic rats, whereas peripheral cardiac vagal control of ACh release was preserved. The impairment of central vagal activation may lead to relative sympathetic predominance and promote cardiovascular complications in diabetes.
Collapse
|
27
|
Oga Y, Saku K, Nishikawa T, Kishi T, Tobushi T, Hosokawa K, Tohyama T, Sakamoto T, Sunagawa K, Tsutsui H. The impact of volume loading-induced low pressure baroreflex activation on arterial baroreflex-controlled sympathetic arterial pressure regulation in normal rats. Physiol Rep 2018; 6:e13887. [PMID: 30307125 PMCID: PMC6180297 DOI: 10.14814/phy2.13887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Although low pressure baroreflex (LPB) has been shown to elicit various cardiovascular responses, its impact on sympathetic nerve activity (SNA) and arterial baroreflex (ABR) function has not been fully elucidated. The aim of this study was to clarify how volume loading-induced acute LPB activation impacts on SNA and ABR function in normal rats. In 20 anesthetized Sprague-Dawley rats, we isolated bilateral carotid sinuses, controlled carotid sinus pressure (CSP), and measured central venous pressure (CVP), splanchnic SNA, and arterial pressure (AP). We infused blood stepwise (3 mL/kg/step) to activate volume loading-induced LPB. Under the ABR open-loop condition, stepwise volume loading markedly increased SNA by 76.8 ± 21.6% at CVP of 3.6 ± 0.2 mmHg. In contrast, further volume loading suppressed SNA toward the baseline condition. Bilateral vagotomy totally abolished the changes in SNA by volume loading. To assess the impact of LPB on ABR function, we changed CSP stepwise. Low volume loading (CVP = 3.6 ± 0.4 mmHg) significantly shifted the sigmoidal CSP-SNA relationship (central arc) upward from baseline, whereas high volume loading (CVP = 5.4 ± 0.4 mmHg) returned it to the baseline level. Volume loading shifted the linear SNA-AP relationship (peripheral arc) upward without significant changes in slope. In conclusions, volume loading-induced acute LPB activation evoked two-phase changes, an initial increase followed by decline from baseline value, in SNA via resetting of the ABR central arc. LPB may contribute greatly to stabilize AP in response to volume status.
Collapse
Affiliation(s)
- Yasuhiro Oga
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular DiseasesCenter for Disruptive Cardiovascular MedicineKyushu UniversityFukuokaJapan
| | - Takuya Nishikawa
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular DiseasesCenter for Disruptive Cardiovascular MedicineKyushu UniversityFukuokaJapan
| | - Tomoyuki Tobushi
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Kazuya Hosokawa
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Takeshi Tohyama
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Takafumi Sakamoto
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular HomeostasisCenter for Disruptive Cardiovascular MedicineKyushu UniversityFukuokaJapan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular MedicineKyushu University Graduate School of Medical SciencesFukuokaJapan
| |
Collapse
|
28
|
Kawada T, Shimizu S, Hayama Y, Yamamoto H, Saku K, Shishido T, Sugimachi M. Derangement of open-loop static and dynamic characteristics of the carotid sinus baroreflex in streptozotocin-induced type 1 diabetic rats. Am J Physiol Regul Integr Comp Physiol 2018; 315:R553-R567. [DOI: 10.1152/ajpregu.00092.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although diabetes mellitus (DM) is a major risk factor for cardiovascular diseases, changes in open-loop static and dynamic characteristics of the arterial baroreflex in the early phase of DM remain to be clarified. We performed an open-loop systems analysis of the carotid sinus baroreflex in type 1 DM rats 4 to 5 wk after intraperitoneal streptozotocin injection ( n = 9) and we compared the results with control rats ( n = 9). The operating-point baroreflex gain was maintained in the DM rats compared with the control rats (2.07 ± 0.67 vs. 2.66 ± 0.22 mmHg/mmHg, P = 0.666). However, the range of arterial pressure (AP) control was narrower in the DM than in the control group (48.0 ± 5.0 vs. 77.1 ± 4.5 mmHg, P = 0.001), suggesting that the reserve for AP buffering is lost in DM. Although baroreflex dynamic characteristics were relatively preserved, coherences were lower in the DM than in the control group. The decreased coherence in the neural arc may be related to the narrowed quasi-linear range in the static relationship between carotid sinus pressure and sympathetic nerve activity in the DM group. Although the reason for the decreased coherences in the peripheral arc and the total reflex arc was inconclusive, the finding may indicate a loss of integrity of the baroreflex-mediated sympathetic AP control in the DM group. The derangement of the baroreflex dynamic characteristics is progressing occultly in this early stage of type 1 DM in a manner where dynamic gains are relatively preserved around the normal operating point.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yohsuke Hayama
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiromi Yamamoto
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Toshiaki Shishido
- Department of Research Promotion, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
29
|
Annoni EM, Tolkacheva EG. Acute cardiovascular and hemodynamic effects of vagus nerve stimulation in conscious hypertensive rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:3685-3688. [PMID: 30441172 DOI: 10.1109/embc.2018.8513025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypertension (HTN) affects over 1 billion people worldwide, with a significant number who are unable to control their blood pressure (BP) with conventional therapies. Recently, novel device-based therapies targeting the autonomic nervous system have been evaluated for treating HTN, including vagus nerve stimulation (VNS). Numerous studies have indicated the beneficial effects of chronic VNS in various models of HTN, however the acute effects of VNS on physiological responses have not been widely investigated. To better understand the acute effects of VNS, this study evaluates cardiovascular and hemodynamic responses from conscious hypertensive rats implanted with VNS stimulators and physiological telemeters for simultaneous monitoring of BP and heart rate (HR) as therapy is applied. We demonstrated that there are no acute changes in mean BP, HR and contractility measures as a result of VNS stimulation. However, there were significant increases in both HR variability and BP variability during VNS, which returned to baseline levels immediately at the cessation of therapy. The small acute changes observed during intermittent VNS could be additive, leading to beneficial chronic changes in BP and HR control, and may help in furthering the understanding of beneficial effects demonstrated in chronic use of VNS therapy.
Collapse
|
30
|
Baroreflex failure and beat-to-beat blood pressure variation. Hypertens Res 2018; 41:547-552. [DOI: 10.1038/s41440-018-0056-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
|
31
|
Gidron Y, De Couck M, Schallier D, De Greve J, Van Laethem JL, Maréchal R. The Relationship between a New Biomarker of Vagal Neuroimmunomodulation and Survival in Two Fatal Cancers. J Immunol Res 2018; 2018:4874193. [PMID: 29854838 PMCID: PMC5964597 DOI: 10.1155/2018/4874193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The vagus nerve may slow tumor progression because it inhibits inflammation. This study examined the relationship between a new vagal neuroimmunomodulation (NIM) index and survival in fatal cancers. METHOD We retroactively derived markers of vagal nerve activity indexed by heart rate variability (HRV), specifically the root mean square of successive differences (RMSSD), from patients' electrocardiograms near diagnosis. The NIM index was the ratio of RMSSD to C-reactive protein levels (RMSSD/CRP). Sample 1 included 202 Belgian patients with advanced pancreatic cancer (PC), while sample 2 included 71 Belgian patients with non-small cell lung cancer (NSCLC). In both samples, we examined the overall survival, while in sample 2, we additionally examined the survival time in deceased patients. RESULTS In PC patients, in a multivariate Cox regression controlling for confounders, the NIM index had a protective relative risk (RR) of 0.68 and 95% confidence interval (95% CI) of 0.51-0.92. In NSCLC patients, the NIM index also had a protective RR of 0.53 and 95% CI of 0.32-0.88. Finally, in NSCLC, patients with a higher NIM index survived more days (475.2) than those with lower NIM (285.1) (p < 0.05). CONCLUSIONS The NIM index, reflecting vagal modulation of inflammation, may be a new independent prognostic biomarker in fatal cancers.
Collapse
Affiliation(s)
- Y. Gidron
- Vrije Universiteit Brussel, Center for Neuroscience, Brussels, Belgium
- Scalab, Université Lille 3, Lille, France
| | - M. De Couck
- Faculty of Health Care, University College Odisee, Aalst, Belgium
- Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Ixelles, Belgium
| | | | - J. De Greve
- Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Ixelles, Belgium
| | - J. L. Van Laethem
- Department of Gastroenterology, Erasme University Hospital, Brussels, Belgium
| | - R. Maréchal
- Department of Gastroenterology, Erasme University Hospital, Brussels, Belgium
| |
Collapse
|
32
|
Tohyama T, Saku K, Kawada T, Kishi T, Yoshida K, Nishikawa T, Mannoji H, Kamada K, Sunagawa K, Tsutsui H. Impact of lipopolysaccharide-induced acute inflammation on baroreflex-controlled sympathetic arterial pressure regulation. PLoS One 2018; 13:e0190830. [PMID: 29329321 PMCID: PMC5766102 DOI: 10.1371/journal.pone.0190830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Background Lipopolysaccharide (LPS) induces acute inflammation, activates sympathetic nerve activity (SNA) and alters hemodynamics. Since the arterial baroreflex is a negative feedback system to stabilize arterial pressure (AP), examining the arterial baroreflex function is a prerequisite to understanding complex hemodynamics under LPS challenge. We investigated the impact of LPS-induced acute inflammation on SNA and AP regulation by performing baroreflex open-loop analysis. Methods Ten anesthetized Sprague-Dawley rats were used. Acute inflammation was induced by an intravenous injection of LPS (60 μg/kg). We isolated the carotid sinuses from the systemic circulation and controlled carotid sinus pressure (CSP) by a servo-controlled piston pump. We matched CSP to AP to establish the baroreflex closed-loop condition, whereas we decoupled CSP from AP to establish the baroreflex open-loop condition and changed CSP stepwise to evaluate the baroreflex open-loop function. We recorded splanchnic SNA and hemodynamic parameters under baroreflex open- and closed-loop conditions at baseline and at 60 and 120 min after LPS injection. Results In the baroreflex closed-loop condition, SNA continued to increase after LPS injection, reaching three-fold the baseline value at 120 min (baseline: 94.7 ± 3.6 vs. 120 min: 283.9 ± 31.9 a.u.). In contrast, AP increased initially (until 75 min), then declined to the baseline level. In the baroreflex open-loop condition, LPS reset the neural arc (CSP-SNA relationship) upward to higher SNA, while shifted the peripheral arc (SNA-AP relationship) downward at 120 min after the injection. As a result, the operating point determined by the intersection between function curves of neural arc and peripheral arc showed marked sympatho-excitation without substantial changes in AP. Conclusions LPS-induced acute inflammation markedly increased SNA via resetting of the baroreflex neural arc, and suppressed the peripheral arc. The balance between the augmented neural arc and suppressed peripheral arc determines SNA and hemodynamics in LPS-induced acute inflammation.
Collapse
Affiliation(s)
- Takeshi Tohyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Keimei Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Mannoji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Kamada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Neuromodulation Therapies for Cardiac Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Nishikawa T, Saku K, Todaka K, Kuwabara Y, Arai S, Kishi T, Ide T, Tsutsui H, Sunagawa K. The challenge of magnetic vagal nerve stimulation for myocardial infarction -preliminary clinical trial. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:4321-4324. [PMID: 29060853 DOI: 10.1109/embc.2017.8037812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Numerous studies have shown in animal models that vagal nerve stimulation (VNS) strikingly reduces infarct size of acute myocardial infarction (AMI) and prevents heart failure. However, the lack of techniques to noninvasively stimulate the vagal nerve hinders VNS from clinical applications. Transcranial magnetic stimulation is noninvasive and capable of stimulating central neurons in patients. In this study, we examined whether the magnetic stimulation could noninvasively activate the cervical vagal nerve in healthy human. Sixteen healthy males and 4 females were enrolled in this study. We used Magstim Rapid2 with a 70-mm double coil in the right neck. We randomly assigned the subjects to 5 Hz or 20 Hz stimulation. We defined the maximum intensity of stimulation (MAX) which is the intensity just below the threshold of adverse effects. We defined HALF as a half of MAX. Protocols comprised 2 sets of MAX and 2 sets of HALF. Each stimulation continued for 3 minutes. We monitored heart rate (HR) and assessed the bradycardic response as an index of successful VNS. Nineteen subjects completed all protocols. They had no problematic adverse events during and/or after magnetic VNS. The magnetic VNS induced transient bradycardic responses in some subjects, whereas failed to induce sustained bradycardia in pooled data in any settings. Arterial pressure did not change either. Successful magnetic stimulation requires technical improvements including narrowing the magnetic focus and optimization of stimulation site. These improvements may enable us to apply magnetic VNS in the management of AMI.
Collapse
|
35
|
Saku K, Tohyama T, Shinoda M, Kishi T, Hosokawa K, Nishikawa T, Oga Y, Sakamoto T, Tsutsui H, Miyamoto T, Sunagawa K. Central chemoreflex activation induces sympatho-excitation without altering static or dynamic baroreflex function in normal rats. Physiol Rep 2017; 5:5/17/e13406. [PMID: 28899913 PMCID: PMC5599864 DOI: 10.14814/phy2.13406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/24/2022] Open
Abstract
Central chemoreflex activation induces sympatho-excitation. However, how central chemoreflex interacts with baroreflex function remains unknown. This study aimed to examine the impact of central chemoreflex on the dynamic as well as static baroreflex functions under open-loop conditions. In 15 anesthetized, vagotomized Sprague-Dawley rats, we isolated bilateral carotid sinuses and controlled intra-sinus pressure (CSP). We then recorded sympathetic nerve activity (SNA) at the celiac ganglia, and activated central chemoreflex by a gas mixture containing various concentrations of CO2 Under the baroreflex open-loop condition (CSP = 100 mmHg), central chemoreflex activation linearly increased SNA and arterial pressure (AP). To examine the static baroreflex function, we increased CSP stepwise from 60 to 170 mmHg and measured steady-state SNA responses to CSP (mechanoneural arc), and AP responses to SNA (neuromechanical arc). Central chemoreflex activation by inhaling 3% CO2 significantly increased SNA irrespective of CSP, indicating resetting of the mechanoneural arc, but did not change the neuromechanical arc. As a result, central chemoreflex activation did not change baroreflex maximum total loop gain significantly (-1.29 ± 0.27 vs. -1.68 ± 0.74, N.S.). To examine the dynamic baroreflex function, we randomly perturbed CSP and estimated transfer functions from 0.01 to 1.0 Hz. The transfer function of the mechanoneural arc approximated a high-pass filter, while those of the neuromechanical arc and total (CSP-AP relationship) arcs approximated a low-pass filter. In conclusion, central chemoreflex activation did not alter the transfer function of the mechanoneural, neuromechanical, or total arcs. Central chemoreflex modifies hemodynamics via sympatho-excitation without compromising dynamic or static baroreflex AP buffering function.
Collapse
Affiliation(s)
- Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masako Shinoda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Kazuya Hosokawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Oga
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takafumi Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadayoshi Miyamoto
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Tahsili-Fahadan P, Geocadin RG. Heart-Brain Axis: Effects of Neurologic Injury on Cardiovascular Function. Circ Res 2017; 120:559-572. [PMID: 28154104 DOI: 10.1161/circresaha.116.308446] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/23/2023]
Abstract
A complex interaction exists between the nervous and cardiovascular systems. A large network of cortical and subcortical brain regions control cardiovascular function via the sympathetic and parasympathetic outflow. A dysfunction in one system may lead to changes in the function of the other. The effects of cardiovascular disease on the nervous system have been widely studied; however, our understanding of the effects of neurological disorders on the cardiovascular system has only expanded in the past 2 decades. Various pathologies of the nervous system can lead to a wide range of alterations in function and structure of the cardiovascular system ranging from transient and benign electrographic changes to myocardial injury, cardiomyopathy, and even cardiac death. In this article, we first review the anatomy and physiology of the central and autonomic nervous systems in regard to control of the cardiovascular function. The effects of neurological injury on cardiac function and structure will be summarized, and finally, we review neurological disorders commonly associated with cardiovascular manifestations.
Collapse
Affiliation(s)
- Pouya Tahsili-Fahadan
- From the Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology & Critical Care Medicine, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Romergryko G Geocadin
- From the Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology & Critical Care Medicine, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
37
|
Arimura T, Saku K, Kakino T, Nishikawa T, Tohyama T, Sakamoto T, Sakamoto K, Kishi T, Ide T, Sunagawa K. Intravenous electrical vagal nerve stimulation prior to coronary reperfusion in a canine ischemia-reperfusion model markedly reduces infarct size and prevents subsequent heart failure. Int J Cardiol 2016; 227:704-710. [PMID: 27816306 DOI: 10.1016/j.ijcard.2016.10.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Reducing myocardial damage is a prerequisite to prevent chronic heart failure after acute myocardial infarction (AMI). Although vagal nerve stimulation (VNS) has been repeatedly demonstrated to have potent anti-infarct effect, technical difficulties have precluded its clinical application. We developed a novel therapeutic strategy of intravenous VNS (iVNS) and examined whether iVNS administered prior to coronary reperfusion in a canine AMI model reduces infarct size and prevents heart failure. METHODS AND RESULTS In 35 mongrel dogs, we induced ischemia by ligating the left anterior descending coronary artery and then reperfused 3h later (I/R). We transvenously placed a catheter electrode in the superior vena cava and adjusted the stimulation intensity to a level that induced bradycardia but maintained stable hemodynamics (continuous, 5.1±2.1V, 10Hz). We administered iVNS from onset (iVNS-0, n=7) or 90min after onset (iVNS-90, n=7) of ischemia until one hour after reperfusion. Four weeks after ischemia-reperfusion, iVNS markedly reduced infarct size (iVNS-0: 2.4±2.1%, p<0.05 and iVNS-90: 4.5±4.5%, p<0.05) compared with I/R control (I/R: 13.3±2.5%), and improved cardiac performance and hemodynamics. Atrial pacing (n=7) to abolish iVNS-induced bradycardia significantly attenuated the beneficial effects of iVNS. CONCLUSIONS Short-term iVNS delivered prior to coronary reperfusion markedly reduced infarct size and preserved cardiac function one month after AMI. The bradycardic effect plays an important role in the beneficial effect of iVNS. How other mechanisms contribute to the reduction of infarct size remains to be studied.
Collapse
Affiliation(s)
- Takahiro Arimura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Keita Saku
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Takamori Kakino
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Takafumi Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kazuo Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Takuya Kishi
- Collaborative Research Institute of Innovative Therapeutics for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, 1-1-3 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
38
|
Kawada T, Li M, Zheng C, Sugimachi M. Acute Effects of Vagotomy on Baroreflex Equilibrium Diagram in Rats with Chronic Heart Failure. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:139-47. [PMID: 27594790 PMCID: PMC5003122 DOI: 10.4137/cmc.s38443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 01/01/2023]
Abstract
The arterial baroreflex system can be divided into the neural arc, from pressure input to efferent sympathetic nerve activity (SNA), and the peripheral arc, from SNA to arterial pressure (AP). Plotting the neural and peripheral arcs on a pressure–SNA plane yields a baroreflex equilibrium diagram. We examined the effects of vagotomy on the open-loop static characteristics of the carotid sinus baroreflex in normal control rats (NC, n = 10) and rats with heart failure after myocardial infarction (MI, n = 10). In the NC group, vagotomy shifted the neural arc toward higher SNA and decreased the slope of the peripheral arc. Consequently, the operating-point SNA increased without a significant change in the operating-point AP on the baroreflex equilibrium diagram. These vagotomy-induced effects were not observed in the MI group, suggesting a loss of vagal modulation of the carotid sinus baroreflex function in heart failure.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Can Zheng
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
39
|
Optimal Titration Is Important to Maximize the Beneficial Effects of Vagal Nerve Stimulation in Chronic Heart Failure. J Card Fail 2016; 22:631-8. [DOI: 10.1016/j.cardfail.2016.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 11/22/2022]
|
40
|
Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, Herring N, O'Leary DS, Sabbah HN, Schultz HD, Sunagawa K, Zucker IH. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol 2016; 594:3877-909. [PMID: 27098459 DOI: 10.1113/jp271869] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
Collapse
Affiliation(s)
- J L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - M C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - J A Armour
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - G E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - P-S Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D S O'Leary
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - H N Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - H D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Sunagawa
- Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - I H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
41
|
Kishi T. Deep and future insights into neuromodulation therapies for heart failure. J Cardiol 2016; 68:368-372. [PMID: 27293020 DOI: 10.1016/j.jjcc.2016.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022]
Abstract
Major pathophysiology of heart failure is an autonomic nervous system dysfunction as a result of excess sympathoexcitation and/or withdrawal of vagal nerve activity. Although we already have various pharmacological and non-pharmacological therapies for heart failure, survival of heart failure patients remains around 50%. To achieve further reductions in morbidity and mortality of heart failure, neuromodulations with devices, such as baroreflex activating therapy, vagal nerve stimulation, renal sympathetic denervation, spinal cord stimulation, and left cardiac sympathetic denervation, have been expected. Although all of these neuromodulations have benefits on heart failure, efficacy, and safety in preclinical and small-sized clinical studies, the benefits on heart failure have been insufficient and controversial compared to our expectations in large-sized randomized trials. However, we should develop and apply these novel therapies for the patients with heart failure in the near future.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan.
| |
Collapse
|
42
|
Abstract
Circulatory homeostasis is associated with interactions between multiple organs, and the disruption of dynamic circulatory homeostasis could be considered as heart failure. The brain is the central unit integrating neural and neurohormonal information from peripheral organs and controlling peripheral organs using the autonomic nervous system. Heart failure is worsened by abnormal sympathoexcitation associated with baroreflex failure and/or chemoreflex activation, and by vagal withdrawal, and autonomic modulation therapies have benefits for heart failure. Recently, we showed that baroreflex failure induces striking volume intolerance independent of left ventricular dysfunction. Many studies have indicated that an overactive renin-angiotensin system, excess oxidative stress and excess inflammation, and/or decreased nitric oxide in the brain cause sympathoexcitation in heart failure. We have demonstrated that angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the rostral ventrolateral medulla (RVLM), which is known as a vasomotor center, causes prominent sympathoexcitation in heart failure model rats. Interestingly, systemic infusion of angiotensin II directly affects brain AT1R with sympathoexcitation and left ventricular diastolic dysfunction. Moreover, we have demonstrated that targeted deletion of AT1R in astrocytes strikingly improved survival with prevention of left ventricular remodeling and sympathoinhibition in myocardial infarction-induced heart failure. From these results, we believe it is possible that AT1R in astrocytes, not in neurons, have a key role in the pathophysiology of heart failure. We would like to propose a novel concept that the brain works as a central processing unit integrating neural and hormonal input, and that the disruption of dynamic circulatory homeostasis mediated by the brain causes heart failure.
Collapse
Affiliation(s)
- Takuya Kishi
- Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine
| |
Collapse
|
43
|
Abbreviated Resonant Frequency Training to Augment Heart Rate Variability and Enhance On-Demand Emotional Regulation in Elite Sport Support Staff. Appl Psychophysiol Biofeedback 2016; 41:263-74. [DOI: 10.1007/s10484-015-9330-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Kawada T, Sugimachi M. Open-loop static and dynamic characteristics of the arterial baroreflex system in rabbits and rats. J Physiol Sci 2016; 66:15-41. [PMID: 26541155 PMCID: PMC4742515 DOI: 10.1007/s12576-015-0412-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
The arterial baroreflex system is the most important negative feedback system for stabilizing arterial pressure (AP). This system serves as a key link between the autonomic nervous system and the cardiovascular system, and is thus essential for understanding the pathophysiology of cardiovascular diseases and accompanying autonomic abnormalities. This article focuses on an open-loop systems analysis using a baroreceptor isolation preparation to identify the characteristics of two principal subsystems of the arterial baroreflex system, namely, the neural arc from pressure input to efferent sympathetic nerve activity (SNA) and the peripheral arc from SNA to AP. Studies on the static and dynamic characteristics of the two arcs under normal physiological conditions and also under various interventions including diseased conditions are to be reviewed. Quantitative understanding of the arterial baroreflex function under diseased conditions would help develop new treatment strategies such as electrical activation of the carotid sinus baroreflex for drug-resistant hypertension.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| |
Collapse
|
45
|
Effect of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication. Hypertens Res 2015; 39:79-87. [DOI: 10.1038/hr.2015.122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/06/2015] [Accepted: 09/13/2015] [Indexed: 11/08/2022]
|
46
|
Kawada T, Sata Y, Shimizu S, Turner MJ, Fukumitsu M, Sugimachi M. Effects of tempol on baroreflex neural arc versus peripheral arc in normotensive and spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2015; 308:R957-64. [DOI: 10.1152/ajpregu.00525.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/23/2015] [Indexed: 11/22/2022]
Abstract
Although oxidative redox signaling affects arterial pressure (AP) regulation via modulation of vascular tone and sympathetic nerve activity (SNA), it remains unknown which effect plays a dominant role in the determination of AP in vivo. Open-loop systems analysis of the carotid sinus baroreflex was conducted to separately quantify characteristics of the neural arc from baroreceptor pressure input to SNA and the peripheral arc from SNA to AP in normotensive Wistar-Kyoto (WKY; n = 8) and spontaneously hypertensive rats (SHR; n = 8). Responses in SNA and AP to a staircase-wise increase in carotid sinus pressure were examined before and during intravenous administration of the membrane-permeable superoxide dismutase mimetic tempol (30 mg/kg bolus followed by 30 mg·kg−1·h−1). Two-way ANOVA indicated that tempol significantly decreased the response range of SNA (from 89.1 ± 2.4% to 60.7 ± 2.5% in WKY and from 77.5 ± 3.2% to 56.9 ± 7.3% in SHR, P < 0.001) without affecting the lower plateau of SNA (from 12.5 ± 2.4% to 9.5 ± 2.5% in WKY, and from 28.8 ± 2.8% to 30.4 ± 5.7% in SHR, P = 0.800) in the neural arc. While tempol did not affect the peripheral arc characteristics in WKY, it yielded a downward change in the regression line of AP vs. SNA in SHR. In conclusion, oxidative redox signaling plays an important role, not only in the pathological AP elevation, but also in the baroreflex-mediated physiological AP regulation. The effect of modulating oxidative redox signaling on the peripheral arc contributed to the determination of AP in SHR but not in WKY.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
| | - Yusuke Sata
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
- Department of Artificial Organ Medicine, Faculty of Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
| | - Michael J. Turner
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
- Department of Artificial Organ Medicine, Faculty of Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan; and
- Department of Artificial Organ Medicine, Faculty of Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
47
|
Mikova L, Horvathova L, Ondicova K, Tillinger A, Vannucci LE, Bizik J, Gidron Y, Mravec B. Ambiguous effect of signals transmitted by the vagus nerve on fibrosarcoma incidence and survival of tumor-bearing rats. Neurosci Lett 2015; 593:90-4. [PMID: 25797182 DOI: 10.1016/j.neulet.2015.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
While the parasympathetic nervous system appears to be involved in the regulation of tumor progression, its exact role is still unclear. Therefore, using a rat BP6-TU2 fibrosarcoma tumor model, we investigated the effect of (1) reduction of vagal activity produced by subdiaphragmatic vagotomy; and (2) enhancement of vagal activity produced by continuous delivery of electric impulses to the cervical part of the vagus nerve on tumor development and survival of tumor-bearing rats. We also evaluated the expression of cholinergic receptors within in vitro cultivated BP6-TU2 cells. Interestingly, we found that both, vagal stimulation and subdiaphragmatic vagotomy slightly reduced tumor incidence. However, survival of tumor-bearing rats was not affected by any of the experimental approaches. Additionally, we detected mRNA expression of the α1, α2, α5, α7, and α10 subunits of nicotinic receptors and the M1, M3, M4, and M5 subtypes of muscarinic receptors within in vitro cultivated BP6-TU2 cells. Our data indicate that the role of the vagus nerve in modulation of fibrosarcoma development is ambiguous and uncertain and requires further investigation.
Collapse
Affiliation(s)
- Lucia Mikova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Lubica Horvathova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia
| | - Katarina Ondicova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Andrej Tillinger
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia
| | - Luca E Vannucci
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jozef Bizik
- Cancer Research Institute, Slovak Academy of Sciences, Vlarska 7, 833 91 Bratislava, Slovakia
| | - Yori Gidron
- Department of Pharmacology and Pharmacokinetics, Faculty of Medicine and Pharmacy, Free University of Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Boris Mravec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia.
| |
Collapse
|
48
|
Kawada T, Li M, Sata Y, Zheng C, Turner MJ, Shimizu S, Sugimachi M. Calibration of baroreflex equilibrium diagram based on exogenous pressor agents in chronic heart failure rats. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 9:1-9. [PMID: 25698884 PMCID: PMC4319654 DOI: 10.4137/cmc.s18759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/15/2014] [Accepted: 12/26/2014] [Indexed: 11/05/2022]
Abstract
A baroreflex equilibrium diagram describes the relation between input pressure and sympathetic nerve activity (SNA) and that between SNA and arterial pressure (AP). To calibrate the SNA axis (abscissa) of the baroreflex equilibrium diagram, the AP response to intravenous bolus injections of phenylephrine (0.2-50 μg/kg) or norepinephrine (NE, 0.02-5 μg/kg) was examined in normal control rats (NC, n = 9) and rats with chronic heart failure (CHF, n = 6). The maximum slope of the dose-effect curve was significantly smaller in the CHF group than in the NC group (57.3 ± 5.2 vs 80.9 ± 6.3 mmHg/decade for phenylephrine, 60.2 ± 7.8 vs 80.4 ± 5.9 mmHg/decade for NE; P < 0.01). The CHF/NC ratio of the maximum slope was used to calibrate SNA. While the calibrated baroreflex equilibrium diagram showed increased maximum SNA and operating-point SNA in CHF rats compared with NC rats, the magnitude of increase was smaller than that expected from the excess plasma NE concentration in CHF rats. Plasma NE concentration in the CHF group could be disproportionally high relative to SNA.
Collapse
Affiliation(s)
- Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Meihua Li
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yusuke Sata
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan. ; Department of Artificial Organ Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Can Zheng
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Michael J Turner
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shuji Shimizu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masaru Sugimachi
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Osaka, Japan. ; Department of Artificial Organ Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|