1
|
Adamopoulos KI, Sanders LM, Costes SV. NASA GeneLab derived microarray studies of Mus musculus and Homo sapiens organisms in altered gravitational conditions. NPJ Microgravity 2024; 10:49. [PMID: 38671027 PMCID: PMC11053165 DOI: 10.1038/s41526-024-00392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
One of the greatest challenges of humanity for deep space exploration is to fully understand how altered gravitational conditions affect human physiology. It is evident that the spaceflight environment causes multiple alterations to musculoskeletal, cardiovascular, immune and central nervous systems, to name a few known effects. To better characterize these biological effects, we compare gene expression datasets from microarray studies found in NASA GeneLab, part of the NASA Open Science Data Repository. In this review, we summarize these archived results for various tissues, emphasizing key genes which are highly reproducible in different mice or human experiments. Such exhaustive mining shows the potential of NASA Open Science data to identify and validate mechanisms taking place when mammalian organisms are exposed to microgravity or other spaceflight conditions. Our comparative meta-analysis findings highlight certain degrees of overlap and reproducibility in genes identified as differentially expressed within musculoskeletal tissues in each species across a variety of altered gravity conditions. However, the level of overlap between species was found to be significantly limited, partly attributed to the limited availability of human samples.
Collapse
Affiliation(s)
- Konstantinos I Adamopoulos
- National Technical University of Athens, School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, Zografou, Athens, Greece
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Lauren M Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
2
|
Parker E, Mendhe B, Ruan L, Marshall B, Zhi W, Liu Y, Fulzele S, Tang YL, McGee-Lawrence M, Lee TJ, Sharma A, Johnson M, Chen J, Hamrick MW. MicroRNA cargo of extracellular vesicles released by skeletal muscle fibro-adipogenic progenitor cells is significantly altered with disuse atrophy and IL-1β deficiency. Physiol Genomics 2022; 54:296-304. [PMID: 35759450 PMCID: PMC9342138 DOI: 10.1152/physiolgenomics.00177.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Fibro-adipogenic progenitor cells (FAPs) are a population of stem cells in skeletal muscle that play multiple roles in muscle repair and regeneration through their complex secretome; however, it is not well understood how the FAP secretome is altered with muscle disuse atrophy. Previous work suggests that the inflammatory cytokine IL-1β is increased in FAPs with disuse and denervation. Inflammasome activation and IL-1β secretion are also known to stimulate the release of extracellular vesicles (EVs). Here, we examined the microRNA (miRNA) cargo of FAP-derived, platelet-derived growth factor receptor A (PDGFRα+) EVs from hindlimb muscles of wild-type and IL-1β KO mice after 14 days of single-hindlimb immobilization. Hindlimb muscles were isolated from mice following the immobilization period, and PDGFRα+ extracellular vesicles were isolated using size-exclusion chromatography and immunoprecipitation. Microarrays were performed to detect changes in miRNAs with unloading and IL-1β deficiency. Results indicate that the PDGFRα+, FAP-derived EVs show a significant increase in miRNAs, such as miR-let-7c, miR-let-7b, miR-181a, and miR-124. These miRNAs have previously been demonstrated to play important roles in cellular senescence and muscle atrophy. Furthermore, the expression of these same miRNAs was not significantly altered in FAP-derived EVs isolated from the immobilized IL-1β KO. These data suggest that disuse-related activation of IL-1β can mediate the miRNA cargo of FAP-derived EVs, contributing directly to the release of senescence- and atrophy-related miRNAs. Therapies targeting FAPs in settings associated with muscle disuse atrophy may therefore have the potential to preserve muscle function and enhance muscle recovery.
Collapse
Affiliation(s)
- Emily Parker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Bharati Mendhe
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ling Ruan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Brendan Marshall
- EM/Histology Core Laboratory, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Sadanand Fulzele
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yao Liang Tang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Meghan McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Maribeth Johnson
- Division of Biostatistics and Data Science, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jie Chen
- Division of Biostatistics and Data Science, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
3
|
Walsh CJ, Batt J, Herridge MS, Mathur S, Bader GD, Hu P, Khatri P, Dos Santos CC. Comprehensive multi-cohort transcriptional meta-analysis of muscle diseases identifies a signature of disease severity. Sci Rep 2022; 12:11260. [PMID: 35789175 PMCID: PMC9253003 DOI: 10.1038/s41598-022-15003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Muscle diseases share common pathological features suggesting common underlying mechanisms. We hypothesized there is a common set of genes dysregulated across muscle diseases compared to healthy muscle and that these genes correlate with severity of muscle disease. We performed meta-analysis of transcriptional profiles of muscle biopsies from human muscle diseases and healthy controls. Studies obtained from public microarray repositories fulfilling quality criteria were divided into six categories: (i) immobility, (ii) inflammatory myopathies, (iii) intensive care unit (ICU) acquired weakness (ICUAW), (iv) congenital muscle diseases, (v) chronic systemic diseases, (vi) motor neuron disease. Patient cohorts were separated in discovery and validation cohorts retaining roughly equal proportions of samples for the disease categories. To remove bias towards a specific muscle disease category we repeated the meta-analysis five times by removing data sets corresponding to one muscle disease class at a time in a "leave-one-disease-out" analysis. We used 636 muscle tissue samples from 30 independent cohorts to identify a 52 gene signature (36 up-regulated and 16 down-regulated genes). We validated the discriminatory power of this signature in 657 muscle biopsies from 12 additional patient cohorts encompassing five categories of muscle diseases with an area under the receiver operating characteristic curve of 0.91, 83% sensitivity, and 85.3% specificity. The expression score of the gene signature inversely correlated with quadriceps muscle mass (r = -0.50, p-value = 0.011) in ICUAW and shoulder abduction strength (r = -0.77, p-value = 0.014) in amyotrophic lateral sclerosis (ALS). The signature also positively correlated with histologic assessment of muscle atrophy in ALS (r = 0.88, p-value = 1.62 × 10-3) and fibrosis in muscular dystrophy (Jonckheere trend test p-value = 4.45 × 10-9). Our results identify a conserved transcriptional signature associated with clinical and histologic muscle disease severity. Several genes in this conserved signature have not been previously associated with muscle disease severity.
Collapse
Affiliation(s)
- C J Walsh
- Keenan Research Center for Biomedical Science, Saint Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - J Batt
- Keenan Research Center for Biomedical Science, Saint Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - M S Herridge
- Interdepartmental Division of Critical Care, University Health Network, University of Toronto, Toronto, ON, Canada
| | - S Mathur
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - G D Bader
- The Donnelly Center, University of Toronto, Toronto, ON, Canada
| | - P Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - P Khatri
- Stanford Institute for Immunity, Transplantation and Infection (ITI), Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, Stanford, CA, USA
| | - C C Dos Santos
- Keenan Research Center for Biomedical Science, Saint Michael's Hospital, Toronto, ON, Canada. .,Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Exercise and Interorgan Communication: Short-Term Exercise Training Blunts Differences in Consecutive Daily Urine 1H-NMR Metabolomic Signatures between Physically Active and Inactive Individuals. Metabolites 2022; 12:metabo12060473. [PMID: 35736406 PMCID: PMC9229485 DOI: 10.3390/metabo12060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Physical inactivity is a worldwide health problem, an important risk for global mortality and is associated with chronic noncommunicable diseases. The aim of this study was to explore the differences in systemic urine 1H-NMR metabolomes between physically active and inactive healthy young males enrolled in the X-Adapt project in response to controlled exercise (before and after the 3-day exercise testing and 10-day training protocol) in normoxic (21% O2), normobaric (~1000 hPa) and normal-temperature (23 °C) conditions at 1 h of 50% maximal pedaling power output (Wpeak) per day. Interrogation of the exercise database established from past X-Adapt results showed that significant multivariate differences existed in physiological traits between trained and untrained groups before and after training sessions and were mirrored in significant differences in urine pH, salinity, total dissolved solids and conductivity. Cholate, tartrate, cadaverine, lysine and N6-acetyllisine were the most important metabolites distinguishing trained and untrained groups. The relatively little effort of 1 h 50% Wpeak per day invested by the untrained effectively modified their resting urine metabolome into one indistinguishable from the trained group, which hence provides a good basis for the planning of future recommendations for health maintenance in adults, irrespective of the starting fitness value. Finally, the 3-day sessions of morning urine samples represent a good candidate biological matrix for future delineations of active and inactive lifestyles detecting differences unobservable by single-day sampling due to day-to-day variability.
Collapse
|
5
|
Deane CS, da Silveira WA, Herranz R. Space omics research in Europe: Contributions, geographical distribution and ESA member state funding schemes. iScience 2022; 25:103920. [PMID: 35265808 PMCID: PMC8898910 DOI: 10.1016/j.isci.2022.103920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The European research community, via European Space Agency (ESA) spaceflight opportunities, has significantly contributed toward our current understanding of spaceflight biology. Recent molecular biology experiments include "omic" analysis, which provides a holistic and systems level understanding of the mechanisms underlying phenotypic adaptation. Despite vast interest in, and the immense quantity of biological information gained from space omics research, the knowledge of ESA-related space omics works as a collective remains poorly defined due to the recent exponential application of omics approaches in space and the limited search capabilities of pre-existing records. Thus, a review of such contributions is necessary to clarify and promote the development of space omics among ESA and ESA state members. To address this gap, in this review, we i) identified and summarized omics works led by European researchers, ii) geographically described these omics works, and iii) highlighted potential caveats in complex funding scenarios among ESA member states.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Science, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK.,Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | - Willian A da Silveira
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD, 2080, Malta
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
6
|
Manian V, Orozco-Sandoval J, Diaz-Martinez V. An Integrative Network Science and Artificial Intelligence Drug Repurposing Approach for Muscle Atrophy in Spaceflight Microgravity. Front Cell Dev Biol 2021; 9:732370. [PMID: 34604234 PMCID: PMC8481783 DOI: 10.3389/fcell.2021.732370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Muscle atrophy is a side effect of several terrestrial diseases which also affects astronauts severely in space missions due to the reduced gravity in spaceflight. An integrative graph-theoretic network-based drug repurposing methodology quantifying the interplay of key gene regulations and protein-protein interactions in muscle atrophy conditions is presented. Transcriptomic datasets from mice in spaceflight from GeneLab have been extensively mined to extract the key genes that cause muscle atrophy in organ muscle tissues such as the thymus, liver, and spleen. Top muscle atrophy gene regulators are selected by Bayesian Markov blanket method and gene-disease knowledge graph is constructed using the scalable precision medicine knowledge engine. A deep graph neural network is trained for predicting links in the network. The top ranked diseases are identified and drugs are selected for repurposing using drug bank resource. A disease drug knowledge graph is constructed and the graph neural network is trained for predicting new drugs. The results are compared with machine learning methods such as random forest, and gradient boosting classifiers. Network measure based methods shows that preferential attachment has good performance for link prediction in both the gene-disease and disease-drug graphs. The receiver operating characteristic curves, and prediction accuracies for each method show that the random walk similarity measure and deep graph neural network outperforms the other methods. Several key target genes identified by the graph neural network are associated with diseases such as cancer, diabetes, and neural disorders. The novel link prediction approach applied to the disease drug knowledge graph identifies the Monoclonal Antibodies drug therapy as suitable candidate for drug repurposing for spaceflight induced microgravity. There are a total of 21 drugs identified as possible candidates for treating muscle atrophy. Graph neural network is a promising deep learning architecture for link prediction from gene-disease, and disease-drug networks.
Collapse
Affiliation(s)
- Vidya Manian
- Laboratory for Applied Remote Sensing, Imaging, and Photonics, Department of Electrical and Computer Engineering, University of Puerto Rico, Mayaguez, PR, United States
| | | | | |
Collapse
|
7
|
Cahill T, Cope H, Bass JJ, Overbey EG, Gilbert R, da Silveira WA, Paul AM, Mishra T, Herranz R, Reinsch SS, Costes SV, Hardiman G, Szewczyk NJ, Tahimic CGT. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int J Mol Sci 2021; 22:ijms22179470. [PMID: 34502375 PMCID: PMC8430797 DOI: 10.3390/ijms22179470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies.
Collapse
Affiliation(s)
- Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
| | - Henry Cope
- Nottingham Biomedical Research Centre (BRC), School of Computer Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
| | - Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Rachel Gilbert
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian Abraham da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent ST4 2DF, UK
| | - Amber M. Paul
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas–CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Sigrid S. Reinsch
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.); (G.H.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nathaniel J. Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham NG7 2QL, UK; (J.J.B.); (N.J.S.)
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Candice G. T. Tahimic
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA; (R.G.); (A.M.P.); (S.S.R.); (S.V.C.)
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
- Correspondence:
| |
Collapse
|
8
|
Huang Y, Yu M, Kuma A, Klein JD, Wang Y, Hassounah F, Cai H, Wang XH. Downregulation of let-7 by Electrical Acupuncture Increases Protein Synthesis in Mice. Front Physiol 2021; 12:697139. [PMID: 34489723 PMCID: PMC8417904 DOI: 10.3389/fphys.2021.697139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Our previous study found that acupuncture with low frequency electrical stimulation (Acu/LFES) prevents muscle atrophy by attenuation of protein degradation in mice. The current study examines the impact of Acu/LFES on protein synthesis. METHOD C57/BL6 mice received Acu/LFES treatment on hindlimb for 30 min once. Acu/LFES points were selected by WHO Standard Acupuncture Nomenclature and electric stimulation applied using an SDZ-II Electronic acupuncture instrument. Muscle protein synthesis was measured by the surface-sensing of translation (SUnSET) assay. Exosomes were isolated using serial centrifugation and concentration and size of the collected exosomes were measured using a NanoSight instrument. The mature microRNA library in serum exosomes was validated using a High Sensitivity DNA chip. RESULTS Protein synthesis was enhanced in the both hindlimb and forelimb muscles. Blocking exosome secretion with GW4869 decreased the Acu/LFES-induced increases in protein synthesis. MicroRNA-deep sequencing demonstrated that four members of the Let-7 miRNA family were significantly decreased in serum exosomes. Real time qPCR further verified Acu/LFES-mediated decreases of let-7c-5p in serum exosomes and skeletal muscles. In cultured C2C12 myotubes, inhibition of let-7c not only increased protein synthesis, but also enhanced protein abundance of Igf1 and Igf1 receptors. Using a luciferase reporter assay, we demonstrated that let-7 directly inhibits Igf1. CONCLUSION Acu/LFES on hindlimb decreases let-7-5p leading to upregulation of the Igf1 signaling and increasing protein synthesis in both hindlimb and forelimb skeletal muscles. This provides a new understanding of how the electrical acupuncture treatment can positively influence muscle health.
Collapse
Affiliation(s)
- Ying Huang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, United States
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Manshu Yu
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, United States
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Akihiro Kuma
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, United States
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Janet D. Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Faten Hassounah
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Hui Cai
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, United States
- Section of Nephrology, Atlanta VA Medical Center, Decatur, GA, United States
| | - Xiaonan H. Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Giagnorio E, Malacarne C, Mantegazza R, Bonanno S, Marcuzzo S. MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. J Cell Sci 2021; 134:269129. [PMID: 34137441 DOI: 10.1242/jcs.258349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of both upper and lower motor neurons (MNs). The main clinical features of ALS are motor function impairment, progressive muscle weakness, muscle atrophy and, ultimately, paralysis. Intrinsic skeletal muscle deterioration plays a crucial role in the disease and contributes to ALS progression. Currently, there are no effective treatments for ALS, highlighting the need to obtain a deeper understanding of the molecular events underlying degeneration of both MNs and muscle tissue, with the aim of developing successful therapies. Muscle tissue is enriched in a group of microRNAs called myomiRs, which are effective regulators of muscle homeostasis, plasticity and myogenesis in both physiological and pathological conditions. After providing an overview of ALS pathophysiology, with a focus on the role of skeletal muscle, we review the current literature on myomiR network dysregulation as a contributing factor to myogenic perturbations and muscle atrophy in ALS. We argue that, in view of their critical regulatory function at the interface between MNs and skeletal muscle fiber, myomiRs are worthy of further investigation as potential molecular targets of therapeutic strategies to improve ALS symptoms and counteract disease progression.
Collapse
Affiliation(s)
- Eleonora Giagnorio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Claudia Malacarne
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| |
Collapse
|
10
|
Deutsch L, Stres B. The Importance of Objective Stool Classification in Fecal 1H-NMR Metabolomics: Exponential Increase in Stool Crosslinking Is Mirrored in Systemic Inflammation and Associated to Fecal Acetate and Methionine. Metabolites 2021; 11:172. [PMID: 33809780 PMCID: PMC8002301 DOI: 10.3390/metabo11030172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Past studies strongly connected stool consistency-as measured by Bristol Stool Scale (BSS)-with microbial gene richness and intestinal inflammation, colonic transit time and metabolome characteristics that are of clinical relevance in numerous gastro intestinal conditions. While retention time, defecation rate, BSS but not water activity have been shown to account for BSS-associated inflammatory effects, the potential correlation with the strength of a gel in the context of intestinal forces, abrasion, mucus imprinting, fecal pore clogging remains unexplored as a shaping factor for intestinal inflammation and has yet to be determined. Our study introduced a minimal pressure approach (MP) by probe indentation as measure of stool material crosslinking in fecal samples. Results reported here were obtained from 170 samples collected in two independent projects, including males and females, covering a wide span of moisture contents and BSS. MP values increased exponentially with increasing consistency (i.e., lower BSS) and enabled stratification of samples exhibiting mixed BSS classes. A trade-off between lowest MP and highest dry matter content delineated the span of intermediate healthy density of gel crosslinks. The crossectional transects identified fecal surface layers with exceptionally high MP and of <5 mm thickness followed by internal structures with an order of magnitude lower MP, characteristic of healthy stool consistency. The MP and BSS values reported in this study were coupled to reanalysis of the PlanHab data and fecal 1H-NMR metabolomes reported before. The exponential association between stool consistency and MP determined in this study was mirrored in the elevated intestinal and also systemic inflammation and other detrimental physiological deconditioning effects observed in the PlanHab participants reported before. The MP approach described in this study can be used to better understand fecal hardness and its relationships to human health as it provides a simple, fine scale and objective stool classification approach for the characterization of the exact sampling locations in future microbiome and metabolome studies.
Collapse
Affiliation(s)
- Leon Deutsch
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Blaz Stres
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia
- Department of Automation, Jožef Stefan Institute, Biocybernetics and Robotics, Jamova 39, SI-1000 Ljubljana, Slovenia
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
11
|
Okamura T, Okada H, Hashimoto Y, Majima S, Senmaru T, Nakanishi N, Asano M, Yamazaki M, Hamaguchi M, Fukui M. Let-7e-5p Regulates IGF2BP2, and Induces Muscle Atrophy. Front Endocrinol (Lausanne) 2021; 12:791363. [PMID: 35002969 PMCID: PMC8741024 DOI: 10.3389/fendo.2021.791363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS To understand the role of microRNAs in muscle atrophy caused by androgen-depletion, we performed microarray analysis of microRNA expression in the skeletal muscles of Sham, orchiectomized (ORX), and androgen-treated ORX mice. METHODS To clarify role and mechanisms of let-7e-5p in the muscle, the effect of let-7e-5p overexpression or knockdown on the expression of myosin heavy chain, glucose uptake, and mitochondrial function was investigated in C2C12 myotube cells. Moreover, we examined serum let-7e-5p levels among male subjects with type 2 diabetes. RESULTS We found that the expression of the miRNA, lethal (let)-7e-5p was significantly lower in ORX mice than that in Sham mice (p = 0.027); however, let-7e-5p expression in androgen-treated ORX mice was higher (p = 0.047). Suppression of let-7e-5p significantly upregulated the expression of myosin heavy chain, glucose uptake, and mitochondrial function. Real-time PCR revealed a possible regulation involving let-7e-5p and Igf2bp2 mRNA and protein in C2C12 cells. The serum let-7e-5p levels were significantly lower, which might be in compensation, in subjects with decreased muscle mass compared to subjects without decreased muscle mass. Let-7e-5p downregulates the expression of Igf2bp2 in myotube cells and inhibits the growth of the myosin heavy chain. CONCLUSIONS Based on our study, serum level of let-7e-5p may be used as a potential diagnostic marker for muscle atrophy.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Moriguchi, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- *Correspondence: Michiaki Fukui,
| |
Collapse
|
12
|
Malkani S, Chin CR, Cekanaviciute E, Mortreux M, Okinula H, Tarbier M, Schreurs AS, Shirazi-Fard Y, Tahimic CGT, Rodriguez DN, Sexton BS, Butler D, Verma A, Bezdan D, Durmaz C, MacKay M, Melnick A, Meydan C, Li S, Garrett-Bakelman F, Fromm B, Afshinnekoo E, Langhorst BW, Dimalanta ET, Cheng-Campbell M, Blaber E, Schisler JC, Vanderburg C, Friedländer MR, McDonald JT, Costes SV, Rutkove S, Grabham P, Mason CE, Beheshti A. Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure Development. Cell Rep 2020; 33:108448. [PMID: 33242410 PMCID: PMC8441986 DOI: 10.1016/j.celrep.2020.108448] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
We have identified and validated a spaceflight-associated microRNA (miRNA) signature that is shared by rodents and humans in response to simulated, short-duration and long-duration spaceflight. Previous studies have identified miRNAs that regulate rodent responses to spaceflight in low-Earth orbit, and we have confirmed the expression of these proposed spaceflight-associated miRNAs in rodents reacting to simulated spaceflight conditions. Moreover, astronaut samples from the NASA Twins Study confirmed these expression signatures in miRNA sequencing, single-cell RNA sequencing (scRNA-seq), and single-cell assay for transposase accessible chromatin (scATAC-seq) data. Additionally, a subset of these miRNAs (miR-125, miR-16, and let-7a) was found to regulate vascular damage caused by simulated deep space radiation. To demonstrate the physiological relevance of key spaceflight-associated miRNAs, we utilized antagomirs to inhibit their expression and successfully rescue simulated deep-space-radiation-mediated damage in human 3D vascular constructs.
Collapse
Affiliation(s)
- Sherina Malkani
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Christopher R Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hazeem Okinula
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Sofie Schreurs
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Candice G T Tahimic
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniela Bezdan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tubingen, Germany
| | - Ceyda Durmaz
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Sheng Li
- The Jackson Laboratories, Farmington, CT, USA
| | - Francine Garrett-Bakelman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Margareth Cheng-Campbell
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Elizabeth Blaber
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Universities Space Research Association, Space Biosciences Division, NASA Ames Research Center, Mountain View, CA 94035, USA
| | - Jonathan C Schisler
- McAllister Heart Institute, Department of Pharmacology, and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles Vanderburg
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington DC 20007, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Peter Grabham
- Center for Radiological Research, Columbia University, New York, NY 10032, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA; The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Šket R, Deutsch L, Prevoršek Z, Mekjavić IB, Plavec J, Rittweger J, Debevec T, Eiken O, Stres B. Systems View of Deconditioning During Spaceflight Simulation in the PlanHab Project: The Departure of Urine 1 H-NMR Metabolomes From Healthy State in Young Males Subjected to Bedrest Inactivity and Hypoxia. Front Physiol 2020; 11:532271. [PMID: 33364971 PMCID: PMC7750454 DOI: 10.3389/fphys.2020.532271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
We explored the metabolic makeup of urine in prescreened healthy male participants within the PlanHab experiment. The run-in (5 day) and the following three 21-day interventions [normoxic bedrest (NBR), hypoxic bedrest (HBR), and hypoxic ambulation (HAmb)] were executed in a crossover manner within a controlled laboratory setup (medical oversight, fluid and dietary intakes, microbial bioburden, circadian rhythm, and oxygen level). The inspired O2 (FiO2) fraction next to inspired O2 (PiO2) partial pressure were 0.209 and 133.1 ± 0.3 mmHg for the NBR variant in contrast to 0.141 ± 0.004 and 90.0 ± 0.4 mmHg (approx. 4,000 m of simulated altitude) for HBR and HAmb interventions, respectively. 1H-NMR metabolomes were processed using standard quantitative approaches. A consensus of ensemble of multivariate analyses showed that the metabolic makeup at the start of the experiment and at HAmb endpoint differed significantly from the NBR and HBR endpoints. Inactivity alone or combined with hypoxia resulted in a significant reduction of metabolic diversity and increasing number of affected metabolic pathways. Sliding window analysis (3 + 1) unraveled that metabolic changes in the NBR lagged behind those observed in the HBR. These results show that the negative effects of cessation of activity on systemic metabolism are further aggravated by additional hypoxia. The PlanHab HAmb variant that enabled ambulation, maintained vertical posture, and controlled but limited activity levels apparently prevented the development of negative physiological symptoms such as insulin resistance, low-level systemic inflammation, constipation, and depression. This indicates that exercise apparently prevented the negative spiral between the host's metabolism, intestinal environment, microbiome physiology, and proinflammatory immune activities in the host.
Collapse
Affiliation(s)
- Robert Šket
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Leon Deutsch
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zala Prevoršek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Igor B. Mekjavić
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janez Plavec
- National Institute of Chemistry, NMR Center, Ljubljana, Slovenia
| | - Joern Rittweger
- German Aerospace Center, Institute of Aerospace Medicine, Muscle and Bone Metabolism, Köln, Germany
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Blaz Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Civil and Geodetic Engineering, Institute of Sanitary Engineering, University of Ljubljana, Ljubljana, Slovenia
- Laboratory for Clinical Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Van Ombergen A, Rossiter A, Ngo-Anh TJ. 'White Mars' - nearly two decades of biomedical research at the Antarctic Concordia station. Exp Physiol 2020; 106:6-17. [PMID: 32662901 DOI: 10.1113/ep088352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the topic of this review? Biomedical research at the Antarctic Concordia Station. What advances does it highlight? Overview of findings in psychology, neuroscience, sleep, cardiovascular physiology and immune system, relevant in isolated, confined and extreme environments and spaceflight. ABSTRACT Extended stays in isolated, confined and extreme (ICE) environments like Antarctica are associated with a whole set of psychological and physiological challenges for the crew. As such, winter-over stays at Antarctica provide an important opportunity to acquire knowledge into the physiological and psychological changes that ICE environments inevitably bring. The European Space Agency (ESA) is particularly interested in conducting research in such an environment, as it is a unique opportunity to translate these results to space crews experiencing very similar issues. In the past two decades, the ESA has supported a total of 36 biomedical research projects at the Concordia station in collaboration with the French and Italian polar institutes. More specifically, studies in the areas of psychology, neuroscience, sleep physiology, cardiovascular physiology and immunology were performed. The outcomes of these studies are directly relevant for people working in ICE environments, but also help to better understand the biomedical challenges of those environments. Consequently, they can help to better prepare for human space exploration and to identify countermeasures to minimize the adverse effects of space environments on astronaut health. The aim of this review is to provide an overview of the biomedical studies that have taken place in the past two decades at the Antarctic Concordia station and to summarize the results and their implication for human spaceflight.
Collapse
Affiliation(s)
- Angelique Van Ombergen
- SciSpacE team, Directorate of Human and Robotic Exploration, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Andrea Rossiter
- SciSpacE team, Directorate of Human and Robotic Exploration, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Thu Jennifer Ngo-Anh
- SciSpacE team, Directorate of Human and Robotic Exploration, European Space Agency, ESTEC, Noordwijk, The Netherlands
| |
Collapse
|
15
|
Fernandez‐Gonzalo R, Tesch PA, Lundberg TR, Alkner BA, Rullman E, Gustafsson T. Three months of bed rest induce a residual transcriptomic signature resilient to resistance exercise countermeasures. FASEB J 2020; 34:7958-7969. [DOI: 10.1096/fj.201902976r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 03/29/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Rodrigo Fernandez‐Gonzalo
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Per A. Tesch
- Department of Physiology & Pharmacology Karolinska Institutet Stockholm Sweden
| | - Tommy R. Lundberg
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Björn A. Alkner
- Department of Orthopaedics Region Jönköping County Eksjö Sweden
- Department of Biomedical and Clinical Sciences Linköping University Linköping Sweden
| | - Eric Rullman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
16
|
Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat Commun 2020; 11:470. [PMID: 31980607 PMCID: PMC6981202 DOI: 10.1038/s41467-019-13869-w] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/29/2019] [Indexed: 12/26/2022] Open
Abstract
The molecular mechanisms underlying the response to exercise and inactivity are not fully understood. We propose an innovative approach to profile the skeletal muscle transcriptome to exercise and inactivity using 66 published datasets. Data collected from human studies of aerobic and resistance exercise, including acute and chronic exercise training, were integrated using meta-analysis methods (www.metamex.eu). Here we use gene ontology and pathway analyses to reveal selective pathways activated by inactivity, aerobic versus resistance and acute versus chronic exercise training. We identify NR4A3 as one of the most exercise- and inactivity-responsive genes, and establish a role for this nuclear receptor in mediating the metabolic responses to exercise-like stimuli in vitro. The meta-analysis (MetaMEx) also highlights the differential response to exercise in individuals with metabolic impairments. MetaMEx provides the most extensive dataset of skeletal muscle transcriptional responses to different modes of exercise and an online interface to readily interrogate the database. The pathways that underlie the effects of exercise on metabolism remain incompletely described. Here, the authors perform a meta-analysis of transcriptomic data from 66 published datasets of human skeletal muscle. They identify pathways selectively activated by inactivity, aerobic or resistance exercise, and characterize NR4A3 as one of the genes responsive to inactivity.
Collapse
|
17
|
Tang NP, Hui TT, Ma J, Mei QB. Effects of miR-503-5p on apoptosis of human pulmonary microvascular endothelial cells in simulated microgravity. J Cell Biochem 2018; 120:727-737. [PMID: 30216505 DOI: 10.1002/jcb.27430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
Recent studies have shown that microRNA (miRNAs) can play important roles in the regulation of endothelial cell (EC) function. However, the expression profile of miRNAs and their effects on the apoptosis of ECs under microgravity conditions remains unclear. In this study, the apoptosis of human pulmonary microvascular endothelial cells (HPMECs) under simulated microgravity was identified by Annexin V and propidium iodide double staining and transmission electron microscopy. miRNA microarray assay was used to screen the differentially expressed miRNAs in HPMECs under simulated microgravity, and eight differentially expressed miRNAs were identified. Specifically, miR-503-5p, which was found to be most significantly upregulated in both microarray and quantitative reverse-transcription polymerase chain reaction assays, was selected for further functional investigation. Overexpression of miR-503-5p induced apoptosis of HPMECs under normal gravity and aggravated the negative effects of simulated microgravity on HPMECs. Furthermore, silencing of miR-503-5p expression effectively attenuated the negative effects of simulated microgravity on HPMECs. Further experiments showed that the mRNA and protein expression of anti-apoptotic factor B-cell lymphoma-2 (Bcl-2), which has been confirmed as a direct target of miR-503-5p, was inhibited by the upregulation of miR-503-5p and increased by the downregulation of miR-503-5p. Taken together, our findings demonstrate, for the first time, that miR-503-5p can induce apoptosis of HPMECs under simulated microgravity through, at least in part, inhibiting the expression of Bcl-2.
Collapse
Affiliation(s)
- Na-Ping Tang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Tao-Tao Hui
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Biological Sciences, Xi'an Yufan Bio Technology Co, Ltd, Xi'an, Shaanxi, China
| | - Jing Ma
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Qi-Bing Mei
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Unraveling the Molecular Determinants of Manual Therapy: An Approach to Integrative Therapeutics for the Treatment of Fibromyalgia and Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Int J Mol Sci 2018; 19:ijms19092673. [PMID: 30205597 PMCID: PMC6164741 DOI: 10.3390/ijms19092673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022] Open
Abstract
Application of protocols without parameter standardization and appropriate controls has led manual therapy (MT) and other physiotherapy-based approaches to controversial outcomes. Thus, there is an urgency to carefully define standard protocols that elevate physiotherapy treatments to rigorous scientific demands. One way in which this can be achieved is by studying gene expression and physiological changes that associate to particular, parameter-controlled, treatments in animal models, and translating this knowledge to properly designed, objective, quantitatively-monitored clinical trials (CTs). Here, we propose a molecular physiotherapy approach (MPTA) requiring multidisciplinary teams, to uncover the scientific reasons behind the numerous reports that historically attribute health benefits to MT-treatments. The review focuses on the identification of MT-induced physiological and molecular responses that could be used for the treatment of fibromyalgia (FM) and chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). The systemic effects associated to mechanical-load responses are considered of particular relevance, as they suggest that defined, low-pain anatomic areas can be selected for MT treatment and yet yield overall benefits, an aspect that might result in it being essential to treat FM. Additionally, MT can provide muscle conditioning to sedentary patients without demanding strenuous physical effort, which is particularly detrimental for CFS/ME patients, placing MT as a real option for integrative medicine programs to improve FM and CFS/ME.
Collapse
|
19
|
Rullman E, Fernandez-Gonzalo R, Mekjavić IB, Gustafsson T, Eiken O. MEF2 as upstream regulator of the transcriptome signature in human skeletal muscle during unloading. Am J Physiol Regul Integr Comp Physiol 2018; 315:R799-R809. [PMID: 29995456 DOI: 10.1152/ajpregu.00452.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our understanding of skeletal muscle structural and functional alterations during unloading has increased in recent decades, yet the molecular mechanisms underpinning these changes have only started to be unraveled. The purpose of the current investigation was to assess changes in skeletal muscle gene expression after 21 days of bed rest, with a particular focus on predicting upstream regulators of muscle disuse. Additionally, the association between differential microRNA expression and the transcriptome signature of bed rest were investigated. mRNAs from musculus vastus lateralis biopsies obtained from 12 men before and after the bed rest were analyzed using a microarray. There were 54 significantly upregulated probesets after bed rest, whereas 103 probesets were downregulated (false discovery rate 10%; fold-change cutoff ≥1.5). Among the upregulated genes, transcripts related to denervation-induced alterations in skeletal muscle were identified, e.g., acetylcholine receptor subunit delta and perinatal myosin. The most downregulated transcripts were functionally enriched for mitochondrial genes and genes involved in mitochondrial biogenesis, followed by a large number of contractile fiber components. Upstream regulator analysis identified a robust inhibition of the myocyte enhancer factor-2 (MEF2) family, in particular MEF2C, which was suggested to act upstream of several key downregulated genes, most notably peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α)/peroxisome proliferator-activated receptors (PPARs) and CRSP3. Only a few microRNAs were identified as playing a role in the overall transcriptome picture induced by sustained bed rest. Our results suggest that the MEF2 family is a key regulator underlying the transcriptional signature of bed rest and, hence, ultimately also skeletal muscle alterations induced by systemic unloading in humans.
Collapse
Affiliation(s)
- Eric Rullman
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital , Stockholm , Sweden.,Department of Cardiology, Karolinska University Hospital , Stockholm , Sweden
| | - Rodrigo Fernandez-Gonzalo
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital , Stockholm , Sweden
| | - Igor B Mekjavić
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute , Ljubljana , Slovenia
| | - Thomas Gustafsson
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital , Stockholm , Sweden
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology , Stockholm , Sweden
| |
Collapse
|
20
|
Debevec T, Ganse B, Mittag U, Eiken O, Mekjavic IB, Rittweger J. Hypoxia Aggravates Inactivity-Related Muscle Wasting. Front Physiol 2018; 9:494. [PMID: 29867545 PMCID: PMC5962751 DOI: 10.3389/fphys.2018.00494] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
Poor musculoskeletal state is commonly observed in numerous clinical populations such as chronic obstructive pulmonary disease (COPD) and heart failure patients. It, however, remains unresolved whether systemic hypoxemia, typically associated with such clinical conditions, directly contributes to muscle deterioration. We aimed to experimentally elucidate the effects of systemic environmental hypoxia upon inactivity-related muscle wasting. For this purpose, fourteen healthy, male participants underwent three 21-day long interventions in a randomized, cross-over designed manner: (i) bed rest in normoxia (NBR; PiO2 = 133.1 ± 0.3 mmHg), (ii) bed rest in normobaric hypoxia (HBR; PiO2 = 90.0 ± 0.4 mmHg) and ambulatory confinement in normobaric hypoxia (HAmb; PiO2 = 90.0 ± 0.4 mmHg). Peripheral quantitative computed tomography and vastus lateralis muscle biopsies were performed before and after the interventions to obtain thigh and calf muscle cross-sectional areas and muscle fiber phenotype changes, respectively. A significant reduction of thigh muscle size following NBR (-6.9%, SE 0.8%; P < 0.001) was further aggravated following HBR (-9.7%, SE 1.2%; P = 0.027). Bed rest-induced muscle wasting in the calf was, by contrast, not exacerbated by hypoxic conditions (P = 0.47). Reductions in both thigh (-2.7%, SE 1.1%, P = 0.017) and calf (-3.3%, SE 0.7%, P < 0.001) muscle size were noted following HAmb. A significant and comparable increase in type 2× fiber percentage of the vastus lateralis muscle was noted following both bed rest interventions (NBR = +3.1%, SE 2.6%, HBR = +3.9%, SE 2.7%, P < 0.05). Collectively, these data indicate that hypoxia can exacerbate inactivity-related muscle wasting in healthy active participants and moreover suggest that the combination of both, hypoxemia and lack of activity, as seen in COPD patients, might be particularly harmful for muscle tissue.
Collapse
Affiliation(s)
- Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia.,Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Bergita Ganse
- Department of Orthopaedic Trauma, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Uwe Mittag
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
D'Souza RF, Zeng N, Figueiredo VC, Markworth JF, Durainayagam BR, Mitchell SM, Fanning AC, Poppitt SD, Cameron-Smith D, Mitchell CJ. Dairy Protein Supplementation Modulates the Human Skeletal Muscle microRNA Response to Lower Limb Immobilization. Mol Nutr Food Res 2018; 62:e1701028. [DOI: 10.1002/mnfr.201701028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Nina Zeng
- Liggins Institute; University of Auckland; Auckland New Zealand
| | - Vandre C. Figueiredo
- Liggins Institute; University of Auckland; Auckland New Zealand
- College of Health Sciences; University of Kentucky; Lexington KY USA
| | | | | | | | - Aaron C. Fanning
- Fonterra Research and Development Centre; Palmerston North New Zealand
| | - Sally D. Poppitt
- School of Biological Sciences; University of Auckland; Auckland New Zealand
- Centre of Research Excellence (CoRE); Riddet Institute,; Palmerston North New Zealand
| | - David Cameron-Smith
- Liggins Institute; University of Auckland; Auckland New Zealand
- Food & Bio-based Products Group; AgResearch; Palmerston North New Zealand
- Centre for Research Excellence (CoRE); Riddet Insitute; Palmerston North New Zealand
| | | |
Collapse
|
22
|
Gan Z, Powell FL, Zambon AC, Buchholz KS, Fu Z, Ocorr K, Bodmer R, Moya EA, Stowe JC, Haddad GG, McCulloch AD. Transcriptomic analysis identifies a role of PI3K-Akt signalling in the responses of skeletal muscle to acute hypoxia in vivo. J Physiol 2017; 595:5797-5813. [PMID: 28688178 PMCID: PMC5577531 DOI: 10.1113/jp274556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Changes in gene expression that occur within hours of exposure to hypoxia in in vivo skeletal muscles remain unexplored. Two hours of hypoxia caused significant down-regulation of extracellular matrix genes followed by a shift at 6 h to altered expression of genes associated with the nuclear lumen while respiratory and blood gases were stabilized. Enrichment analysis of mRNAs classified by stability rates suggests an attenuation of post-transcriptional regulation within hours of hypoxic exposure, where PI3K-Akt signalling was suggested to have a nodal role by pathway analysis. Experimental measurements and bioinformatic analyses suggested that the dephosphorylation of Akt after 2 h of hypoxic exposure might deactivate RNA-binding protein BRF1, hence resulting in the selective degradation of mRNAs. ABSTRACT The effects of acute hypoxia have been widely studied, but there are few studies of transcriptional responses to hours of hypoxia in vivo, especially in hypoxia-tolerant tissues like skeletal muscles. We used RNA-seq to analyse gene expression in plantaris muscles while monitoring respiration, arterial blood gases, and blood glucose in mice exposed to 8% O2 for 2 or 6 h. Rapid decreases in blood gases and a slower reduction in blood glucose suggest stress, which was accompanied by widespread changes in gene expression. Early down-regulation of genes associated with the extracellular matrix was followed by a shift to genes associated with the nuclear lumen. Most of the early down-regulated genes had mRNA half-lives longer than 2 h, suggesting a role for post-transcriptional regulation. These transcriptional changes were enriched in signalling pathways in which the PI3K-Akt signalling pathway was identified as a hub. Our analyses indicated that gene targets of PI3K-Akt but not HIF were enriched in early transcriptional responses to hypoxia. Among the PI3K-Akt targets, 75% could be explained by a deactivation of adenylate-uridylate-rich element (ARE)-binding protein BRF1, a target of PI3K-Akt. Consistent decreases in the phosphorylation of Akt and BRF1 were experimentally confirmed following 2 h of hypoxia. These results suggest that the PI3K-Akt signalling pathway might play a role in responses induced by acute hypoxia in skeletal muscles, partially through the dephosphorylation of ARE-binding protein BRF1.
Collapse
Affiliation(s)
- Zhuohui Gan
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhou325035ZhejiangChina
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Frank L. Powell
- Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Alexander C. Zambon
- Department of Biopharmaceutical SciencesKeck Graduate InstituteClaremontCA91711USA
| | - Kyle S. Buchholz
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Zhenxing Fu
- Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Karen Ocorr
- Development, Aging and Regeneration ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCA92037USA
| | - Rolf Bodmer
- Development, Aging and Regeneration ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCA92037USA
| | - Esteban A. Moya
- Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| | - Jennifer C. Stowe
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Gabriel G. Haddad
- Department of PediatricsUniversity of California San DiegoLa JollaCA92093USA
- Department of NeurosciencesUniversity of California San DiegoLa JollaCA92093USA
- Rady Children's Hospital San Diego3020 Children's WaySan DiegoCA92123USA
| | - Andrew D. McCulloch
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Department of MedicineUniversity of California San DiegoLa JollaCA92093USA
| |
Collapse
|
23
|
Mechanosensitive miRNAs and Bone Formation. Int J Mol Sci 2017; 18:ijms18081684. [PMID: 28767056 PMCID: PMC5578074 DOI: 10.3390/ijms18081684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022] Open
Abstract
Mechanical stimuli are required for the maintenance of skeletal integrity and bone mass. An increasing amount of evidence indicates that multiple regulators (e.g., hormone, cytoskeleton proteins and signaling pathways) are involved in the mechanical stimuli modulating the activities of osteogenic cells and the process of bone formation. Significantly, recent studies have showed that several microRNAs (miRNAs) were sensitive to various mechanical stimuli and played a crucial role in osteogenic differentiation and bone formation. However, the functional roles and further mechanisms of mechanosensitive miRNAs in bone formation are not yet completely understood. This review highlights the roles of mechanosensitive miRNAs in osteogenic differentiation and bone formation and underlines their potential therapeutic application for bone loss induced by the altering of mechanical stimuli.
Collapse
|
24
|
Morrison SA, Mirnik D, Korsic S, Eiken O, Mekjavic IB, Dolenc-Groselj L. Bed Rest and Hypoxic Exposure Affect Sleep Architecture and Breathing Stability. Front Physiol 2017; 8:410. [PMID: 28676764 PMCID: PMC5476730 DOI: 10.3389/fphys.2017.00410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
Objective: Despite over 50 years of research on the physiological effects of sustained bed rest, data characterizing its effects on sleep macrostructure and breathing stability in humans are scarce. This study was conducted to determine the effects of continuous exposure to hypoxia and sustained best rest, both individually and combined, on nocturnal sleep and breathing stability. Methods: Eleven participants completed three randomized, counter-balanced, 21-days trials of: (1) normoxic bed rest (NBR, PIO2 = 133.1 ± 0.3), (2) hypoxic ambulatory confinement (HAMB, PIO2 = 90.0 ± 0.4) and (3) hypoxic bed rest (HBR, PIO2 = 90.0 ± 0.4; ~4,000 m equivalent altitude). Full objective polysomnography was performed at baseline, on Night 1 and Night 21 in each condition. Results: In NBR Night 1, more time was spent in light sleep (10 ± 2%) compared to baseline (8 ± 2%; p = 0.028); Slow-wave sleep (SWS) was reduced from baseline in the hypoxic-only trial by 18% (HAMB Night 21, p = 0.028) and further reduced by 33% (HBR Night 1, p = 0.010), and 36% (HBR Night 21, p = 0.008) when combined with bed rest. The apnea-hypopnea index doubled from Night 1 to Night 21 in HBR (32–62 events·h−1) and HAMB (31–59 events·h−1; p = 0.002). Those who experienced greatest breathing instability from Night 1 to Night 21 (NBR) were correlated to unchanged or higher (+1%) night SpO2 concentrations (R2 = 0.471, p = 0.020). Conclusion: Bed rest negatively affects sleep macrostructure, increases the apnea-hypopnea index, and worsens breathing stability, each independently exacerbated by continuous exposure to hypoxia.
Collapse
Affiliation(s)
- Shawnda A Morrison
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan InstituteLjubljana, Slovenia.,Faculty of Health Sciences, University of PrimorskaIzola, Slovenia.,Division of Neurology, Institute of Clinical Neurophysiology, University Medical CentreLjubljana, Slovenia
| | - Dani Mirnik
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical CentreLjubljana, Slovenia
| | - Spela Korsic
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical CentreLjubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of TechnologyStockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan InstituteLjubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada
| | - Leja Dolenc-Groselj
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical CentreLjubljana, Slovenia
| |
Collapse
|
25
|
Šket R, Treichel N, Debevec T, Eiken O, Mekjavic I, Schloter M, Vital M, Chandler J, Tiedje JM, Murovec B, Prevoršek Z, Stres B. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study. Front Physiol 2017; 8:250. [PMID: 28522975 PMCID: PMC5416748 DOI: 10.3389/fphys.2017.00250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but) and butyrate kinase (buk) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05). In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%), experimentally structured metabolites (12.8%), and gut metabolite-immunological markers (11.9%), with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward the developed symptoms of low magnitude obesity-related syndromes was primarily driven by the onset of inactivity (lack of exercise in NBR) that were exacerbated by systemic hypoxia (HBR) and significantly alleviated by exercise, despite hypoxia (HAmb). Butyrate producing community in colon exhibited apparent resilience toward short-term modifications in host exercise or hypoxia. Progressive constipation (decreased intestinal motility) and increased local inflammation marker suggest that changes in microbial colonization and metabolism were taking place at the location of small intestine.
Collapse
Affiliation(s)
- Robert Šket
- Department of Animal Science, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Nicole Treichel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental HealthNeuherberg, Germany
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan InstituteLjubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of TechnologyStockholm, Sweden
| | - Igor Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan InstituteLjubljana, Slovenia
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental HealthNeuherberg, Germany
| | - Marius Vital
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
| | - Jenna Chandler
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
| | - Boštjan Murovec
- Laboratory for Artificial Sight and Automation, Faculty of Electrical Sciences, University of LjubljanaLjubljana, Slovenia
| | - Zala Prevoršek
- Department of Animal Science, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia.,Center for Clinical Neurophysiology, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
26
|
Circulating miRNA as fine regulators of the physiological responses to physical activity: Pre-analytical warnings for a novel class of biomarkers. Clin Biochem 2016; 49:1331-1339. [PMID: 27693050 DOI: 10.1016/j.clinbiochem.2016.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022]
Abstract
MicroRNAs are endogenous non-coding RNAs that post-transcriptionally regulate gene expression by specifically binding the target mRNA and by consequently inducing its degradation. miRNAs can be released into the circulation where they remain stable and they can be measured. Their changes reflect individual biologic adaptation to exposures to specific environmental conditions. As such, measurement of circulating microRNAs represents an opportunity to evaluate biologic changes associated with interventions such as exercise and diet. Physical activity is, indeed, a very important modifying factor for circulating miRNAs. Toward their use in clinical settings several issues should be still solved. Their clinical application is hindered by the high heterogeneity of the analytical procedures used for their measurements. Furthermore, several pre-analytical concerns equally reduce the clinical applicability of miRNA. Pre-analytical phase in sports medicine is an important issue both because, often the conditions in which sampling are performed are peculiar (and not always canonical) and because some of the tested parameters, in the case of professional athletes, enters in routine anti-doping testing and, as such, they should be treated according to precise rules in order to avoid any false positive results. Aim of this review is to give an overview of the main available knowledges about the pre-analytical management of the sample for circulating miRNA evaluation along with the importance of miRNA as regulators of the response to physical activity and their possible future use in anti-doping settings.
Collapse
|
27
|
Rullman E, Mekjavic IB, Fischer H, Eiken O. PlanHab (Planetary Habitat Simulation): the combined and separate effects of 21 days bed rest and hypoxic confinement on human skeletal muscle miRNA expression. Physiol Rep 2016; 4:4/8/e12753. [PMID: 27117806 PMCID: PMC4848719 DOI: 10.14814/phy2.12753] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Abstract
The study concerns effects of 21 days of sustained bedrest and hypoxia, alone and in combination, on skeletal muscle microRNA (miRNA) expression. It is expected that astronauts undertaking long‐duration missions will be exposed not only to microgravity but also to a hypoxic environment. The molecular machinery underlying microgravity‐induced alterations in skeletal muscle structure and function is still largely unknown. One possible regulatory mechanism is altered expression of miRNAs, a group of noncoding RNAs which down‐regulate many different target genes through increased degradation or translation of their messenger RNA. Thirteen healthy men underwent three 21‐day interventions, interspersed by 4‐month washout periods: horizontal bedrest in normoxia, bedrest in hypoxia, ambulation in hypoxia. The level of hypoxia corresponded to 4000 m altitude. miRNAs from v. lateralis muscle biopsies were analyzed using a microarray covering ≈4000 human miRNAs. Sixteen mature miRNAs were up‐regulated and three down‐regulated after bedrest. The magnitudes of these changes were small and a large portion of the miRNAs affected by bedrest was also differentially expressed after washout periods. In fact, the number of differentially expressed probe sets over time was substantially larger than what could be detected after bedrest. Still, the majority of the miRNAs (let‐7, miR‐15, miR‐25, miR‐199, miR‐133) that were differentially expressed following bedrest, belong to miRNA families previously reported in the context of muscle physiology, in particular to respond to changes in mechanical loading. Since only minor changes in miRNA expression could be detected after bedrest, our data indicate miRNA to play only a minor role in the substantial change in muscle phenotype seen with unloading.
Collapse
Affiliation(s)
- Eric Rullman
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Helene Fischer
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ola Eiken
- Unit of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|