1
|
Fletcher E, Miserlis D, Papoutsi E, Steiner JL, Gordon B, Haynatzki G, Pacher P, Koutakis P. Chronic alcohol consumption exacerbates ischemia-associated skeletal muscle mitochondrial dysfunction in a murine model of peripheral artery disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167584. [PMID: 39581559 DOI: 10.1016/j.bbadis.2024.167584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE Peripheral artery disease (PAD) causes ischemic mitochondriopathy-associated muscle damage, amplifying patient disability and mortality. Although alcohol and a high-fat diet enhance PAD predisposition and severity, their impact on PAD myopathy is unclear. Using our murine model of PAD, we investigated the combined effect of chronic alcohol and fat consumption on intramuscular oxidative stress and mitochondrial content, function, and quality control. The potential relationship between intramuscular aldehyde dehydrogenase 2 (ALDH2) content, oxidative stress and mitochondriopathy was also explored. METHODS Twenty-four male, 24 female, 8-month-old C57BL/6 J mice received high-fat-sucrose (HFS) or low-fat-sucrose (LFS) diets for 16-weeks, followed by either 20 % ethanol (EtOH) supplemented in the drinking water or continued water access for another 12-weeks (n = 12 mice/4 groups). The left femoral artery was ligated to induce hindlimb ischemia (HLI), and mice 4-weeks post-ligation were euthanized. RESULTS Chronic HLI was associated with an ischemic muscle mitochondriopathy, which was exacerbated by concurrent HFS and EtOH feeding. Intramuscular ALDH2 was also reduced in mice consuming HFS + EtOH, particularly in the ischemic limb, but increased in their LFS + EtOH-consuming counterparts. Moreover, reduced ALDH2 was strongly correlated with markers of oxidative stress and mitochondrial dysfunction. CONCLUSIONS ALDH2 could be a promising therapeutic target to optimize intramuscular mitochondrial function in PAD patients, particularly those who habitually consume a diet high in fat and alcohol.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Public Health, Usha Kundu MD College of Health, University of West Florida, Pensacola, FL, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Evlampia Papoutsi
- Department of Public Health, Usha Kundu MD College of Health, University of West Florida, Pensacola, FL, USA
| | - Jennifer L Steiner
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA
| | - Bradley Gordon
- Department of Health, Nutrition and Food Sciences, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA; Institute of Sports Sciences and Medicine, Florida State University, 600 W. College Avenue, Tallahassee, FL 32306, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center College of Public Health, 984375 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Panagiotis Koutakis
- Department of Public Health, Usha Kundu MD College of Health, University of West Florida, Pensacola, FL, USA; Department of Biology, Baylor University, Waco, TX, USA.
| |
Collapse
|
2
|
Wilburn D, Fletcher E, Papoutsi E, Bohannon WT, Haynatzki G, Zechmann B, Tian Y, Pipinos II, Miserlis D, Koutakis P. Ultrastructural alterations and mitochondrial dysfunction in skeletal muscle of peripheral artery disease patients: implications for early therapeutic interventions. EXCLI JOURNAL 2024; 23:1208-1225. [PMID: 39574966 PMCID: PMC11579521 DOI: 10.17179/excli2024-7592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/24/2024]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic condition that impairs blood flow to the lower extremities, resulting in myopathy in affected skeletal muscles. Improving our understanding of PAD and developing novel treatment strategies necessitates a comprehensive examination of cellular structural alterations that occur in the muscles with disease progression. Here we aimed to employ electron microscopy to quantify skeletal muscle ultrastructural alterations responsible for the myopathy of PAD. Fifty-two participants (22 controls, 10 PAD Stage II, and 20 PAD Stage IV) were enrolled. Gastrocnemius biopsies were obtained to determine mitochondrial respiration and oxidative stress. Skeletal muscle sarcomere, mitochondria, lipid droplets, and sarcoplasm were assessed using transmission electron microscopy and focused ion beam scanning electron microscopy. Controls and PAD Stage II patients underwent walking performance tests: 6-minute walking test, 4-minute walking velocity, and maximum graded treadmill test. We identified several prominent ultrastructural modifications in PAD gastrocnemius, including reduced sarcomere dimensions, alterations in mitochondria number and localization, myofibrillar disorientation, changes in lipid droplets, and modifications in mitochondria-lipid droplet contact area. These changes correlated with impaired mitochondrial respiration and increased ROS production. We observed progressive deterioration in mitochondrial parameters across PAD stages. Stage II PAD showed impaired mitochondrial function and structure, while stage IV exhibited further deterioration, more pronounced structural alterations, and a decrease in mitochondrial content. The walking performance of Stage II PAD patients was significantly reduced. Our findings suggest that pathological mitochondria play a key role in the skeletal muscle dysfunction of PAD patients and represent an important target for therapeutic interventions aimed at improving clinical and functional outcomes in this patient population. Our data indicate that treatments should be implemented early and may include therapies designed to preserve and enhance mitochondrial biogenesis and respiration, optimize mitochondrial-lipid droplet interactions, or mitigate oxidative stress. Translational Perspective: Peripheral artery disease (PAD) is characterized by skeletal muscle and mitochondrial dysfunction. Ultrastructural changes in skeletal muscle myofibers and mitochondria morphology can provide significant information on the PAD pathophysiology. Here, we investigated skeletal muscle and mitochondria morphological and functional changes at the sarcomere level and across the disease progression and have found that sarcomere lengths and mitochondria count and function are associated with disease progression, indicating loss of skeletal muscle contractile and metabolic function. Ultrastructural changes in the PAD skeletal muscle can provide significant information in the development of new treatments.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emma Fletcher
- Department of Public Health, University of West Florida, Pensacola, FL, USA
| | - Evlampia Papoutsi
- Department of Public Health, University of West Florida, Pensacola, FL, USA
| | | | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Yuqian Tian
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Dell Medical School, Austin, TX, USA
| | - Panagiotis Koutakis
- Department of Public Health, University of West Florida, Pensacola, FL, USA
- Department of Biology, Hal Marcus College of Science and Engineering, Pensacola, FL, USA
| |
Collapse
|
3
|
Dhyani N, Tian C, Gao L, Rudebush TL, Zucker IH. Nrf2-Keap1 in Cardiovascular Disease: Which Is the Cart and Which the Horse? Physiology (Bethesda) 2024; 39:0. [PMID: 38687468 PMCID: PMC11460534 DOI: 10.1152/physiol.00015.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
High levels of oxidant stress in the form of reactive oxidant species are prevalent in the circulation and tissues in various types of cardiovascular disease including heart failure, hypertension, peripheral arterial disease, and stroke. Here we review the role of nuclear factor erythroid 2-related factor 2 (Nrf2), an important and widespread antioxidant and anti-inflammatory transcription factor that may contribute to the pathogenesis and maintenance of cardiovascular diseases. We review studies showing that downregulation of Nrf2 exacerbates heart failure, hypertension, and autonomic function. Finally, we discuss the potential for using Nrf2 modulation as a therapeutic strategy for cardiovascular diseases and autonomic dysfunction.
Collapse
Affiliation(s)
- Neha Dhyani
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Tara L Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
4
|
Wilburn D, Miserlis D, Fletcher E, Papoutsi E, Ismaeel A, Bradley C, Ring A, Wilkinson T, Smith RS, Ferrer L, Haynatzki G, Monteleone P, Banerjee S, Brisbois E, Bohannon WT, Koutakis P. Skeletal muscle desmin alterations following revascularization in peripheral artery disease claudicants. Sci Rep 2024; 14:12609. [PMID: 38824194 PMCID: PMC11144188 DOI: 10.1038/s41598-024-63626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Peripheral artery disease (PAD) is characterized by varying severity of arterial stenosis, exercise induced claudication, malperfused tissue precluding normal healing and skeletal muscle dysfunction. Revascularization interventions improve circulation, but post-reperfusion changes within the skeletal muscle are not well characterized. This study investigates if revascularization enhanced hemodynamics increases walking performance with concurrent improvement of mitochondrial function and reverses abnormal skeletal muscle morphological features that develop with PAD. Fifty-eight patients completed walking performance testing and muscle biopsy before and 6 months after revascularization procedures. Muscle fiber morphology, desmin structure, and mitochondria respiration assessments before and after the revascularization were evaluated. Revascularization improved limb hemodynamics, walking function, and muscle morphology. Qualitatively not all participants recovered normal structural architecture of desmin in the myopathic myofibers after revascularization. Heterogenous responses in the recovery of desmin structure following revascularization may be caused by other underlying factors not reversed with hemodynamic improvements. Revascularization interventions clinically improve patient walking ability and can reverse the multiple subcellular functional and structural abnormalities in muscle cells. Further study is needed to characterize desmin structural remodeling with improvements in skeletal muscle morphology and function.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Dimitrios Miserlis
- Department of Surgery and Perioperative Care, University of Texas, Austin, TX, USA
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Ahmed Ismaeel
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Cassandra Bradley
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Andrew Ring
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Trevor Wilkinson
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Lucas Ferrer
- Department of Surgery and Perioperative Care, University of Texas, Austin, TX, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter Monteleone
- Department of Internal Medicine, University of Texas, Austin, TX, USA
| | - Subhash Banerjee
- Department of Cardiology, Baylor Scott & White Medical Center, Dallas, TX, USA
| | - Elizabeth Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX, 76798-7388, USA.
| |
Collapse
|
5
|
Hamaoka M, Leuenberger UA, Gao Z, Aziz F, Kim DJK, Luck JC, Blaha C, Cauffman AE, Sinoway LI, Cui J. Effects of acute hyperoxia on autonomic function and coronary tone in patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2024; 326:H1544-H1549. [PMID: 38700471 PMCID: PMC11380970 DOI: 10.1152/ajpheart.00225.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Numerous studies have shown that oxidative stress plays an important role in peripheral artery disease (PAD). Prior reports suggested autonomic dysfunction in PAD. We hypothesized that responses of the autonomic nervous system and coronary tone would be impaired in patients with PAD during exposure to acute hyperoxia, an oxidative stressor. In 20 patients with PAD and 16 healthy, sex- and age-matched controls, beat-by-beat heart rate (HR, from ECG) and blood pressure (BP, with Finometer) were recorded for 10 min during room air breathing and 5 min of hyperoxia. Cardiovagal baroreflex sensitivity and HR variability (HRV) were evaluated as measures of autonomic function. Transthoracic coronary echocardiography was used to assess peak coronary blood flow velocity (CBV) in the left anterior descending coronary artery. Cardiovagal baroreflex sensitivity at rest was lower in PAD than in healthy controls. Hyperoxia raised BP solely in the patients with PAD, with no change observed in healthy controls. Hyperoxia induced an increase in cardiac parasympathetic activity assessed by the high-frequency component of HRV in healthy controls but not in PAD. Indices of parasympathetic activity were lower in PAD than in healthy controls throughout the trial as well as during hyperoxia. Hyperoxia induced coronary vasoconstriction in both groups, while the coronary perfusion time fraction was lower in PAD than in healthy controls. These results suggest that the response in parasympathetic activity to hyperoxia (i.e., oxidative stress) is blunted and the coronary perfusion time is shorter in patients with PAD.NEW & NOTEWORTHY Patients with peripheral artery disease (PAD) showed consistently lower parasympathetic activity and blunted cardiovagal baroreflex sensitivity compared with healthy individuals. Notably, hyperoxia, which normally boosts parasympathetic activity in healthy individuals, failed to induce this response in patients with PAD. These data suggest altered autonomic responses during hyperoxia in PAD.
Collapse
Affiliation(s)
- Mami Hamaoka
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Urs A Leuenberger
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Faisal Aziz
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Danielle Jin-Kwang Kim
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Jonathan Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Aimee E Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| | - Jian Cui
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
6
|
Bradley CE, Fletcher E, Wilkinson T, Ring A, Ferrer L, Miserlis D, Pacher P, Koutakis P. Mitochondrial fatty acid beta-oxidation: a possible therapeutic target for skeletal muscle lipotoxicity in peripheral artery disease myopathy. EXCLI JOURNAL 2024; 23:523-533. [PMID: 38741727 PMCID: PMC11089102 DOI: 10.17179/excli2024-7004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease impacting over 200 million individuals and the prevalence increases with age. PAD occurs when plaque builds up within the peripheral arteries, leading to reduced blood flow and oxygen supply to the outer extremities. Individuals who experience PAD suffer from ischemia, which is typically accompanied by significant damage to skeletal muscles. Additionally, this tissue damage affects mitochondria, causing them to become dysregulated and dysfunctional, resulting in decreased metabolic rates. As there is no known cure for PAD, researchers are exploring potential therapeutic targets by examining coexisting cardiovascular conditions and metabolic risk factors, such as the aging process. Among these comorbidities, type-two diabetes mellitus and obesity are particularly common in PAD cases. These conditions, along with aging itself, are associated with an elevated accumulation of ectopic lipids within skeletal muscles, similar to what is observed in PAD. Researchers have attempted to reduce excess lipid accumulation by increasing the rate of fatty acid beta oxidation. Manipulating acetyl coenzyme A carboxylase 2, a key regulatory protein of fatty acid beta oxidation, has been the primary focus of such research. When acetyl coenzyme A carboxylase 2 is inhibited, it interrupts the conversion of acetyl-CoA into malonyl-CoA, resulting in an increase in the rate of fatty acid beta oxidation. By utilizing samples from PAD patients and applying the pharmacological strategies developed for acetyl coenzyme A carboxylase 2 in diabetes and obesity to PAD, a potential new therapeutic avenue may emerge, offering hope for improved quality of life for individuals suffering from PAD.
Collapse
Affiliation(s)
- Cassandra E. Bradley
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Trevor Wilkinson
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Andrew Ring
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, 1601 Trinity St, Room 6708A, Austin, TX 78712, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, 1601 Trinity St, Room 6708A, Austin, TX 78712, USA
| | - Pal Pacher
- National Institutes of Health, Bethesda, MD, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| |
Collapse
|
7
|
Koutakis P, Hernandez H, Miserlis D, Thompson JR, Papoutsi E, Mietus CJ, Haynatzki G, Kim JK, Casale GP, Pipinos II. Oxidative damage in the gastrocnemius predicts long-term survival in patients with peripheral artery disease. NPJ AGING 2024; 10:21. [PMID: 38580664 PMCID: PMC10997596 DOI: 10.1038/s41514-024-00147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Patients with peripheral artery disease (PAD) have increased mortality rates and a myopathy in their affected legs which is characterized by increased oxidative damage, reduced antioxidant enzymatic activity and defective mitochondrial bioenergetics. This study evaluated the hypothesis that increased levels of oxidative damage in gastrocnemius biopsies from patients with PAD predict long-term mortality rates. Oxidative damage was quantified as carbonyl adducts in myofibers of the gastrocnemius of PAD patients. The oxidative stress data were grouped into tertiles and the 5-year, all-cause mortality for each tertile was determined by Kaplan-Meier curves and compared by the Modified Peto test. A Cox-regression model was used to control the effects of clinical characteristics. Results were adjusted for age, sex, race, body mass index, ankle-brachial index, smoking, physical activity, and comorbidities. Of the 240 study participants, 99 died during a mean follow up of 37.8 months. Patients in the highest tertile of oxidative damage demonstrated the highest 5-year mortality rate. The mortality hazard ratios (HR) from the Cox analysis were statistically significant for oxidative damage (lowest vs middle tertile; HR = 6.33; p = 0.0001 and lowest vs highest; HR = 8.37; p < 0.0001). Survival analysis of a contemporaneous population of PAD patients identifies abundance of carbonyl adducts in myofibers of their gastrocnemius as a predictor of mortality rate independently of ankle-brachial index, disease stage and other clinical and myopathy-related covariates.
Collapse
Affiliation(s)
- Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX, USA.
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Hernan Hernandez
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery and Perioperative Care, University of Texas at Austin, Austin, TX, USA
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Constance J Mietus
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Neurological Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julian K Kim
- Department of Biology, Baylor University, Waco, TX, USA
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
8
|
Ismaeel A, McDermott MM, Joshi JK, Sturgis JC, Zhang D, Ho KJ, Sufit R, Ferrucci L, Peterson CA, Kosmac K. Cocoa flavanols, Nrf2 activation, and oxidative stress in peripheral artery disease: mechanistic findings in muscle based on outcomes from a randomized trial. Am J Physiol Cell Physiol 2024; 326:C589-C605. [PMID: 38189132 PMCID: PMC11193455 DOI: 10.1152/ajpcell.00573.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
The pathophysiology of muscle damage in peripheral artery disease (PAD) includes increased oxidant production and impaired antioxidant defenses. Epicatechin (EPI), a naturally occurring flavanol, has antioxidant properties that may mediate the beneficial effects of natural products such as cocoa. In a phase II randomized trial, a cocoa-flavanol-rich beverage significantly improved walking performance compared with a placebo in people with PAD. In the present work, the molecular mechanisms underlying the therapeutic effect of cocoa flavanols were investigated by analyzing baseline and follow-up muscle biopsies from participants. Increases in nuclear factor erythroid 2-related factor 2 (Nrf2) target antioxidants heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) in the cocoa group were significantly associated with reduced accumulation of central nuclei, a myopathy indicator, in type II muscle fibers (P = 0.017 and P = 0.023, respectively). Protein levels of the mitochondrial respiratory complex III subunit, cytochrome b-c1 complex subunit 2 (UQCRC2), were significantly higher in the cocoa group than in the placebo group (P = 0.032), and increases in UQCRC2 were significantly associated with increased levels of Nrf2 target antioxidants HO-1 and NQO1 (P = 0.001 and P = 0.035, respectively). Exposure of non-PAD human myotubes to ex vivo serum from patients with PAD reduced Nrf2 phosphorylation, an indicator of activation, increased hydrogen peroxide production and oxidative stress, and reduced mitochondrial respiration. Treatment of myotubes with EPI in the presence of serum from patients with PAD increased Nrf2 phosphorylation and protected against PAD serum-induced oxidative stress and mitochondrial dysfunction. Overall, these findings suggest that cocoa flavanols may enhance antioxidant capacity in PAD via Nrf2 activation.NEW & NOTEWORTHY The current study supports the hypothesis that in people with PAD, cocoa flavanols activate Nrf2, thereby increasing antioxidant protein levels, protecting against skeletal muscle damage, and increasing mitochondrial protein abundance. These results suggest that Nrf2 activation may be an important therapeutic target for improving walking performance in people with PAD.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Deparment of Physiology, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Mary M McDermott
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Jai K Joshi
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, United States
| | - Jada C Sturgis
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, United States
| | - Dongxue Zhang
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Karen J Ho
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Robert Sufit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Luigi Ferrucci
- National Institute on Aging, Intramural Research Program, Baltimore, Maryland, United States
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
- Department of Physical Therapy, University of Kentucky, Lexington, Kentucky, United States
| | - Kate Kosmac
- Department of Physical Therapy, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
9
|
Fletcher E, Miserlis D, Sorokolet K, Wilburn D, Bradley C, Papoutsi E, Wilkinson T, Ring A, Ferrer L, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Diet-induced obesity augments ischemic myopathy and functional decline in a murine model of peripheral artery disease. Transl Res 2023; 260:17-31. [PMID: 37220835 PMCID: PMC11388035 DOI: 10.1016/j.trsl.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | | | - Dylan Wilburn
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas
| | | | | | | | - Andrew Ring
- Department of Biology, Baylor University, Waco, Texas
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
10
|
Safari-Alighiarloo N, Mani-Varnosfaderani A, Madani NH, Tabatabaei SM, Babaei MR, Khamseh ME. Potential metabolic biomarkers of critical limb ischemia in people with type 2 diabetes mellitus. Metabolomics 2023; 19:66. [PMID: 37452163 DOI: 10.1007/s11306-023-02029-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is a significant risk factor for the development of critical limb ischemia (CLI), the most advanced stage of peripheral arterial disease. The concurrent existence of T2DM and CLI often leads to adverse outcomes, namely limb amputation. OBJECTIVE To identify biomarkers for improving the screening of CLI in high-risk people with T2DM. METHODS We investigated metabolome profiles in serum samples of 113 T2DM people with CLI (n = 23, G2) and without CLI (n = 45, G0: no lower limb stenosis (LLS) and n = 45, G1: LLS < 50%), using hydrogen nuclear magnetic resonance (1H NMR) approach. Principle component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to analyze 1H NMR data. RESULTS Twenty potential metabolites that could discriminate people with T2DM and CLI (G2) from non-CLI patients without LLS (G0) were determined in serum samples. The correct percent of classification for the PLS-DA model for the test set samples was 85% (n = 20) and 100% (n = 5) for G0 and G2 groups, respectively. Non-CLI patients with LLS < 50% (G1) were projected on the PCA abstract space built using 20 discriminatory metabolites. Eleven people with T2DM and LLS < 50% were prospectively followed, and their ankle-brachial index (ABI) was measured after 4 years. A promising agreement existed between the PCA model's predictions and those obtained by ABI values. CONCLUSION The findings suggest that confirmation of blood potential metabolic biomarkers as a complement to ABI for screening of CLI in a large group of high-risk people with T2DM is needed.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
- Endocrine and Metabolism Research Institute, Firoozeh Alley, Valiasr Square, Tehran, Iran.
| | - Ahmad Mani-Varnosfaderani
- Chemometrics and Cheminformatics Laboratory, Department of Chemistry, Tarbiat Modares University, Tehran, Iran.
| | - Nahid Hashemi Madani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Mohammad Tabatabaei
- Medical Informatics Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Science, Tehran, Iran
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Saini SK, Pérez‐Cremades D, Cheng HS, Kosmac K, Peterson CA, Li L, Tian L, Dong G, Wu KK, Bouverat B, Wohlgemuth SE, Ryan T, Sufit RL, Ferrucci L, McDermott MM, Leeuwenburgh C, Feinberg MW. Dysregulated Genes, MicroRNAs, Biological Pathways, and Gastrocnemius Muscle Fiber Types Associated With Progression of Peripheral Artery Disease: A Preliminary Analysis. J Am Heart Assoc 2022; 11:e023085. [PMID: 36300658 PMCID: PMC9673627 DOI: 10.1161/jaha.121.023085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Background Peripheral artery disease (PAD) is associated with gastrocnemius muscle abnormalities. However, the biological pathways associated with gastrocnemius muscle dysfunction and their associations with progression of PAD are largely unknown. This study characterized differential gene and microRNA (miRNA) expression in gastrocnemius biopsies from people without PAD compared with those with PAD. Participants with PAD included those with and without PAD progression. Methods and Results mRNA and miRNA sequencing were performed to identify differentially expressed genes, differentially expressed miRNAs, mRNA-miRNA interactions, and associated biological pathways for 3 sets of comparisons: (1) PAD progression (n=7) versus non-PAD (n=7); (2) PAD no progression (n=6) versus non-PAD; and (3) PAD progression versus PAD no progression. Immunohistochemistry was performed to determine gastrocnemius muscle fiber types and muscle fiber size. Differentially expressed genes and differentially expressed miRNAs were more abundant in the comparison of PAD progression versus non-PAD compared with PAD with versus without progression. Among the top significant cellular pathways in subjects with PAD progression were muscle contraction or development, transforming growth factor-beta, growth/differentiation factor, and activin signaling, inflammation, cellular senescence, and notch signaling. Subjects with PAD progression had increased frequency of smaller Type 2a gastrocnemius muscle fibers in exploratory analyses. Conclusions Humans with PAD progression exhibited greater differences in the number of gene and miRNA expression, biological pathways, and Type 2a muscle fiber size compared with those without PAD. Fewer differences were observed between people with PAD without progression and control patients without PAD. Further study is needed to confirm whether the identified transcripts may serve as potential biomarkers for diagnosis and progression of PAD.
Collapse
Affiliation(s)
- Sunil K. Saini
- All India Institute of Medical Sciences, Department of BiophysicsNew DelhiIndia
| | - Daniel Pérez‐Cremades
- Cardiovascular Division, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA
- Department of PhysiologyUniversity of Valencia and INCLIVA Biomedical Research InstituteValenciaSpain
| | - Henry S. Cheng
- Cardiovascular Division, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | - Kate Kosmac
- Center for Muscle Biology, College of Health SciencesUniversity of KentuckyLexingtonKY
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health SciencesUniversity of KentuckyLexingtonKY
| | - Lingyu Li
- Department of Preventive Medicine, Northwestern University Feinberg School of MedicineChicagoIL
| | - Lu Tian
- Department of Health Research and Policy, Stanford UniversityStanfordCA
| | - Gengfu Dong
- Department of Applied Physiology & Kinesiology, University of FloridaGainesvilleFL
| | - Kevin K. Wu
- Department of Aging and Geriatric Research, University of Florida, Institute on AgingGainesvilleFL
| | - Brian Bouverat
- Department of Aging and Geriatric Research, University of Florida, Institute on AgingGainesvilleFL
| | - Stephanie E. Wohlgemuth
- Department of Aging and Geriatric Research, University of Florida, Institute on AgingGainesvilleFL
| | - Terence Ryan
- Department of Applied Physiology & Kinesiology, University of FloridaGainesvilleFL
| | - Robert L. Sufit
- Department of Medicine, Northwestern University Feinberg School of MedicineChicagoIL
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on AgingBaltimoreMD
| | - Mary M. McDermott
- Department of Preventive Medicine, Northwestern University Feinberg School of MedicineChicagoIL
- Department of Medicine, Northwestern University Feinberg School of MedicineChicagoIL
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, Institute on AgingGainesvilleFL
| | - Mark W. Feinberg
- Cardiovascular Division, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| |
Collapse
|
12
|
Keramat S, Sharebiani H, Patel M, Fazeli B, Stanek A. The Potential Role of Antioxidants in the Treatment of Peripheral Arterial Disease: A Systematic Review. Antioxidants (Basel) 2022; 11:2126. [PMID: 36358498 PMCID: PMC9686635 DOI: 10.3390/antiox11112126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Peripheral arterial disease (PAD) has a worldwide prevalence and is a significant cause of cardiovascular morbidity and mortality. Due to its high prevalence and higher rates of ischemic cardiovascular and lower-extremity events, its treatment is essential. Increased levels of oxidative stress cause disease. This review aimed to evaluate different studies of antioxidant treatments for PAD patients. A systematic search for relevant studies was performed on the PubMed, SCOPUS, and ScienceDirect databases, and 18 studies fulfilled the inclusion criteria. In total, 16.6% of the studies used natural antioxidants, and 83.3% used synthetic antioxidants. The reviewed studies show that natural antioxidants were completely effective in treating PAD, and synthetic antioxidants showed effective results in only 53% of the studies. A less-than-optimal pro-oxidant-antioxidant balance does not improve the symptoms of PAD. In conclusion, antioxidants in their natural forms are more effective for PAD patients, and ensuring the optimal pro-oxidant-antioxidant balance is an effective method for managing treatment with antioxidants.
Collapse
Affiliation(s)
- Shayan Keramat
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy
- Department of Research and Biobanking, Buerger’s Disease Non-Governmental Organization, Mashhad 9183785195, Iran
| | - Hiva Sharebiani
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy
- Department of Research and Biobanking, Buerger’s Disease Non-Governmental Organization, Mashhad 9183785195, Iran
| | - Malay Patel
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy
- Department of Vascular Surgery, Apollo CVHF, Heart Institute, Ahmedabad 380059, India
| | - Bahare Fazeli
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy
- Department of Research and Biobanking, Buerger’s Disease Non-Governmental Organization, Mashhad 9183785195, Iran
| | - Agata Stanek
- Vascular Independent Research and Education, European Foundation, 20157 Milan, Italy
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
13
|
Ismaeel A, Lavado R, Koutakis P. Metabolomics of peripheral artery disease. Adv Clin Chem 2022; 106:67-89. [PMID: 35152975 DOI: 10.1016/bs.acc.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The science of metabolomics has emerged as a novel tool for studying changes in metabolism that accompany different disease states. Several studies have applied this evolving field to the study of various cardiovascular disease states, which has led to improved understanding of metabolic changes that underlie heart failure and ischemic heart disease. A significant amount of progress has also been made in the identification of novel biomarkers of cardiovascular disease. Another common atherosclerotic disease, peripheral artery disease (PAD) affects arteries of the lower extremities. Although certain aspects of the disease pathophysiology overlap with other cardiovascular diseases in general, PAD patients suffer unique manifestations that lead to significant morbidity and mortality as well as severe functional limitations. Furthermore, because over half of PAD patients are asymptomatic, there is a need for improved diagnostic and screening methods. Identification of metabolites associated with the disease may thus be a promising approach for PAD. However, PAD remains highly understudied. In this chapter, we discuss the application of metabolomics to the study of PAD.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | | |
Collapse
|
14
|
Casado-Diaz A, Moreno-Rojas JM, Verdú-Soriano J, Lázaro-Martínez JL, Rodríguez-Mañas L, Tunez I, La Torre M, Berenguer Pérez M, Priego-Capote F, Pereira-Caro G. Evaluation of Antioxidant and Wound-Healing Properties of EHO-85, a Novel Multifunctional Amorphous Hydrogel Containing Olea europaea Leaf Extract. Pharmaceutics 2022; 14:349. [PMID: 35214081 PMCID: PMC8879625 DOI: 10.3390/pharmaceutics14020349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
The excess of free radicals in the wound environment contributes to its stagnation during the inflammatory phase, favoring hard-to-heal wounds. Oxidative stress negatively affects cells and the extracellular matrix, hindering the healing process. In this study, we evaluated the antioxidant and wound-healing properties of a novel multifunctional amorphous hydrogel-containing Olea europaea leaf extract (OELE). Five assessments were performed: (i) phenolic compounds characterization in OELE; (ii) absolute antioxidant activity determination in OELE and hydrogel (EHO-85); (iii) antioxidant activity measurement of OELE and (iv) its protective effect on cell viability on human dermal fibroblasts (HDFs) and keratinocytes (HaCaT); and (v) EHO-85 wound-healing-capacity analysis on diabetic mice (db/db; BKS.Cg-m+/+Leprdb). The antioxidant activity of OELE was prominent: 2220, 1558, and 1969 µmol TE/g by DPPH, ABTS, and FRAP assays, respectively. Oxidative stress induced with H2O2 in HDFs and HaCaT was normalized, and their viability increased with OELE co-treatment, thus evidencing a protective role. EHO-85 produced an early and sustained wound-healing stimulating effect superior to controls in diabetic mice. This novel amorphous hydrogel presents an important ROS scavenger capacity due to the high phenolic content of OELE, which protects skin cells from oxidative stress and contributes to the physiological process of wound healing.
Collapse
Affiliation(s)
- Antonio Casado-Diaz
- Clinical Management Unit of Endocrinology and Nutrition, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (L.R.-M.); (F.P.-C.)
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
| | - José Manuel Moreno-Rojas
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), 14004 Córdoba, Spain
| | - José Verdú-Soriano
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain; (J.V.-S.); (M.B.P.)
| | - José Luis Lázaro-Martínez
- Diabetic Foot Unit, University Podiatry Clinic, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Leocadio Rodríguez-Mañas
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (L.R.-M.); (F.P.-C.)
- Department of Geriatrics, Hospital Universitario de Getafe, 28905 Madrid, Spain
| | - Isaac Tunez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain
| | - Manuel La Torre
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain
| | - Miriam Berenguer Pérez
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain; (J.V.-S.); (M.B.P.)
| | - Feliciano Priego-Capote
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (L.R.-M.); (F.P.-C.)
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Analytical Chemistry, Institute of Nanochemistry, University of Córdoba, 14071 Córdoba, Spain
| | - Gema Pereira-Caro
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.M.M.-R.); (I.T.); (M.L.T.); (G.P.-C.)
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), 14004 Córdoba, Spain
| |
Collapse
|
15
|
Hsu CC, Lin YT, Fu TC, Huang SC, Lin CH, Wang JS. Supervised Cycling Training Improves Erythrocyte Rheology in Individuals With Peripheral Arterial Disease. Front Physiol 2022; 12:792398. [PMID: 35069254 PMCID: PMC8766405 DOI: 10.3389/fphys.2021.792398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral arterial disease (PAD) results in insufficient flow to lower extremities. Aerobic exercise provides health benefits for individuals with PAD, but basic science behind it is still debated. Twenty-one PAD patients aged about 70 years with female/male as 7/14 were recruited. Among them, 11 were randomized to have supervised cycling training (SCT) and 10 to receive general healthcare (GHC) as controls. SCT participants completed 36 sessions of SCT at the first ventilation threshold within 12 weeks and the controls received GHC for 12 weeks. Ankle-brachial index (ABI), 6-min walk test (6MWT), peak oxygen consumption (V˙O2peak), minute ventilation (V˙E), minute carbon dioxide production (V˙CO2), erythrocyte rheology, including the maximal elongation index (EImax) and shear stress at 50% of maximal elongation (SS1/2), and the Short Form-36 (SF-36) questionnaire for quality of life (QoL) were assessed before and 12 weeks after initial visit. SCT significantly decreased the SS1/2 as well as SS1/2 to EImax ratio (SS1/2/EImax) and increased the erythrocyte osmolality in the hypertonic region as well as the area under EI-osmolality curve. The supervised exercise-induced improvement of erythrocyte deformability could contribute to the increased peripheral tissue O2 delivery and was possibly related with increased V˙O2peak. The physiological benefit was associated with significantly increased ABI, 6-min walking distance, cardiorespiratory fitness, and SF-36 score. However, no significant changes in aerobic capacity and erythrocyte rheological properties were observed after 12-week of GHC. In conclusion, SCT improves aerobic capacity by enhancing erythrocyte membrane deformability and consequently promotes QoL in PAD patients.
Collapse
Affiliation(s)
- Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yu-Ting Lin
- Healthy Aging Research Center, College of Medicine, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
| | - Tieh-Cheng Fu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shu-Chun Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Department of Physical Medicine and Rehabilitation, New Taipei Municipal Tucheng Hospital, New Taipei City, Taiwan
| | - Cheng-Hsien Lin
- Healthy Aging Research Center, College of Medicine, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan
| | - Jong-Shyan Wang
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Healthy Aging Research Center, College of Medicine, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan City, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| |
Collapse
|
16
|
Gui L, Chen Y, Diao Y, Chen Z, Duan J, Liang X, Li H, Liu K, Miao Y, Gao Q, Li Z, Yang J, Li Y. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia. Mater Today Bio 2022; 13:100192. [PMID: 34988419 PMCID: PMC8695365 DOI: 10.1016/j.mtbio.2021.100192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
With critical limb ischemia (CLI) being a multi-factorial disease, it is becoming evident that gene therapy with a multiple bio-functional growth factor could achieve better therapeutic outcomes. Cytochrome P450 epoxygenase-2J2 (CYP2J2) and its catalytic products epoxyeicosatrienoic acids (EETs) exhibit pleiotropic biological activities, including pro-angiogenic, anti-inflammatory and cardiovascular protective effects, which are considerably beneficial for reversing ischemia and restoring local blood flow in CLI. Here, we designed a nanoparticle-based pcDNA3.1-CYP2J2 plasmid DNA (pDNA) delivery system (nanoparticle/pDNA complex) composed of a novel three-arm star block copolymer (3S-PLGA-po-PEG), which was achieved by conjugating three-armed PLGA to PEG via the peroxalate ester bond. Considering the multiple bio-functions of CYP2J2-EETs and the sensitivity of the peroxalate ester bond to H2O2, this nanoparticle-based gene delivery system is expected to exhibit excellent pro-angiogenic effects while improving the high oxidative stress and inflammatory micro-environment in ischemic hindlimb. Our study reports the first application of CYP2J2 in the field of therapeutic angiogenesis for CLI treatment and our findings demonstrated good biocompatibility, stability and sustained release properties of the CYP2J2 nano-delivery system. In addition, this nanoparticle-based gene delivery system showed high transfection efficiency and efficient VEGF expression in vitro and in vivo. Intramuscular injection of nanoparticle/pDNA complexes into mice with hindlimb ischemia resulted in significant rapid blood flow recovery and improved muscle repair compared to mice treated with naked pDNA. In summary, 3S-PLGA-po-PEG/CYP2J2-pDNA complexes have tremendous potential and provide a practical strategy for the treatment of limb ischemia. Moreover, 3S-PLGA-po-PEG nanoparticles might be useful as a potential non-viral carrier for other gene delivery applications. Cytochrome P450 epoxygenase-2J2 (CYP2J2) was first applied in the field of therapeutic angiogenesis for critical limb ischemia treatment. The ROS-responsive three-arm star block copolymer (3S-PLGA-po-PEG) was synthesized with peroxalate ester as H2O2-responsive linkages through the esterification reaction of oxalyl chloride and hydroxyl group. The CYP2J2 nano-delivery system achieved high transfection efficiency and significant therapeutic angiogenesis effect.
Collapse
Affiliation(s)
- Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China.,Graduate School of Peking Union Medical College, Beijing, 100730, PR China.,Department of Vascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongpeng Diao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yuqing Miao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Qing Gao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Zhichao Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| |
Collapse
|
17
|
Ring A, Ismaeel A, Wechsler M, Fletcher E, Papoutsi E, Miserlis D, Koutakis P. MicroRNAs in peripheral artery disease: potential biomarkers and pathophysiological mechanisms. Ther Adv Cardiovasc Dis 2022; 16:17539447221096940. [PMID: 35583375 PMCID: PMC9121511 DOI: 10.1177/17539447221096940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Peripheral artery disease (PAD) is a disease of atherosclerosis in the lower extremities. PAD carries a massive burden worldwide, while diagnosis and treatment options are often lacking. One of the key points of research in recent years is the involvement of microRNAs (miRNAs), which are short 20-25 nucleotide single-stranded RNAs that can act as negative regulators of post-transcriptional gene expression. Many of these miRNAs have been discovered to be misregulated in PAD patients, suggesting a potential utility as biomarkers for PAD diagnosis. miRNAs have also been shown to play an important role in many different pathophysiological aspects involved in the initiation and progression of the disease including angiogenesis, hypoxia, inflammation, as well as other cellular functions like cell proliferation and migration. The research on miRNAs in PAD has the potential to lead to a whole new class of diagnostic tools and treatments.
Collapse
Affiliation(s)
- Andrew Ring
- Department of Biology, Baylor University, Waco,
TX, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco,
TX, USA
| | - Marissa Wechsler
- Department of Biomedical Engineering and
Chemical Engineering, The University of Texas at San Antonio, San Antonio,
TX, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco,
TX, USA
| | | | - Dimitrios Miserlis
- Department of Surgery, The University of Texas
Health Science Center at San Antonio, San Antonio, TX, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207
Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388,
USA
| |
Collapse
|
18
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
19
|
Li C, Nie F, Liu X, Chen M, Chi D, Li S, Pipinos II, Li X. Antioxidative and Angiogenic Hyaluronic Acid-Based Hydrogel for the Treatment of Peripheral Artery Disease. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45224-45235. [PMID: 34519480 DOI: 10.1021/acsami.1c11349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Peripheral arterial disease (PAD) is a progressive atherosclerotic disorder characterized by blockages of the arteries supplying the lower extremities. Ischemia initiates oxidative damage and mitochondrial dysfunction in the legs of PAD patients, causing injury to the tissues of the leg, significant decline in walking performance, leg pain while walking, and in the most severe cases, nonhealing ulcers and gangrene. Current clinical trials based on cells/stem cells, the trophic factor, or gene therapy systems have shown some promising results for the treatment of PAD. Biomaterial matrices have been explored in animal models of PAD to enhance these therapies. However, current biomaterial approaches have not fully met the essential requirements for minimally invasive intramuscular delivery to the leg. Ideally, a biomaterial should present properties to ameliorate oxidative stress/damage and failure of angiogenesis. Recently, we have created a thermosensitive hyaluronic acid (HA) hydrogel with antioxidant capacity and skeletal muscle-matching stiffness. Here, we further optimized HA hydrogels with the cell adhesion peptide RGD to facilitate the development of vascular-like structures in vitro. The optimized HA hydrogel reduced intracellular reactive oxygen species levels and preserved vascular-like structures against H2O2-induced damage in vitro. HA hydrogels also provided prolonged release of the vascular endothelial growth factor (VEGF). After injection into rat ischemic hindlimb muscles, this VEGF-releasing hydrogel reduced lipid oxidation, regulated oxidative-related genes, enhanced local blood flow in the muscle, and improved running capacity of the treated rats. Our HA hydrogel system holds great potential for the treatment of the ischemic legs of patients with PAD.
Collapse
Affiliation(s)
- Cui Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Fujiao Nie
- Hunan Engineering Technology Research Center for the Prevention and Treatment of Otorhinolaryngologic Diseases and Protection of Visual Function with Chinese Medicine, Human University of Chinese Medicine, Changsha, Hunan 410208, China
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaoyan Liu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Meng Chen
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - David Chi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shuai Li
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaowei Li
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
20
|
Beeraka NM, Tomilova IK, Batrak GA, Zhaburina MV, Nikolenko VN, Sinelnikov MY, Mikhaleva LM. Recent Insights into the Nutritional Antioxidant Therapy in Prevention and Treatment of Diabetic Vascular Complications - A comprehensive Review. Curr Med Chem 2021; 29:1920-1935. [PMID: 34375177 DOI: 10.2174/0929867328666210810142527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) and DM-induced vascular complications are a significant global healthcare problem causing a decrease in patient quality of life. The main reason for the disability and mortality of patients is rapidly progressing micro- and macroangiopathies. Currently, free radical oxidation is recognized as one of the main mechanisms in the development of DM and associated complications. Under normal physiological conditions, the level of free radicals and antioxidant defense capabilities is balanced. However, imbalance occurs between the antioxidant defense system and pro-oxidants during chronic hyperglycemia and may invoke formation of excess free radicals, leading to activation of lipid peroxidation and accumulation of highly toxic products of free radical oxidation. This is accompanied by varying degrees of insulin deficiency and insulin resistance in DM patients. Simultaneously with the activation of free radical generation, a decrease in the activity of antioxidant defense factors (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, vitamins C and E) and an acceleration of diabetic complications is seen. Therefore, we hypothesize that antioxidants may play a positive role in the treatment of DM patients to prevent DM-induced vascular complications. However this has not been sufficiently studied. In this review, we discuss recent insights into the potential underlying mechanisms of oxidative stress induced diabetic complications, and implications of antioxidants in mitigation of DM-induced vascular complications.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research (JSS AHER),Mysuru, Karnataka, India
| | - Irina K Tomilova
- Federal State Budgetary Educational Institution of Higher Education Ivanovo State Medical Academy, Ministry of Health of the Russian Federation, Ivanovo. Russian Federation
| | - Galina A Batrak
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research (JSS AHER),Mysuru, Karnataka, India
| | - Maria V Zhaburina
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research (JSS AHER),Mysuru, Karnataka, India
| | - Vladimir N Nikolenko
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146. Russian Federation
| | - Mikhail Y Sinelnikov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146. Russian Federation
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, Russian Academy of Medical Science, Moscow 117418. Russian Federation
| |
Collapse
|
21
|
Collins BJ, Mukherjee MS, Miller MD, Delaney CL. Effect of Dietary or Supplemental Vitamin C Intake on Vitamin C Levels in Patients with and without Cardiovascular Disease: A Systematic Review. Nutrients 2021; 13:nu13072330. [PMID: 34371840 PMCID: PMC8308513 DOI: 10.3390/nu13072330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a pro-oxidative and pro-inflammatory disease state, which is the underlying cause of most cardiovascular events, estimated to affect 5.2% of the Australian population. Diet, and specifically vitamin C, through its antioxidant properties can play a role in impeding the development and progression of atherosclerosis. This systematic review conducted comprehensive searches in Medline, Emcare, Scopus, PubMed, and Cochrane using key search terms for vitamin C, plasma vitamin C, supplementation, and cardiovascular disease (CVD). The results demonstrated that vitamin C supplementation resulted in a significant increase in vitamin C levels in populations with or without CVD, except for one study on the CVD population. It was also seen that the healthy population baseline and post-intervention vitamin C levels were high compared to the CVD population. However, further research is indicated for CVD population groups with varying baseline vitamin C levels, such as low baseline vitamin C, within a more representative elderly cohort in order to formulate and update vitamin C repletion guidelines.
Collapse
Affiliation(s)
- Bianca J. Collins
- Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Mitali S. Mukherjee
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
| | - Michelle D. Miller
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia;
- Correspondence:
| | - Christopher L. Delaney
- Department of Vascular Surgery, Flinders Medical Centre, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
22
|
Ismaeel A, Greathouse KL, Newton N, Miserlis D, Papoutsi E, Smith RS, Eidson JL, Dawson DL, Milner CW, Widmer RJ, Bohannon WT, Koutakis P. Phytochemicals as Therapeutic Interventions in Peripheral Artery Disease. Nutrients 2021; 13:2143. [PMID: 34206667 PMCID: PMC8308302 DOI: 10.3390/nu13072143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peripheral artery disease (PAD) affects over 200 million people worldwide, resulting in significant morbidity and mortality, yet treatment options remain limited. Among the manifestations of PAD is a severe functional disability and decline, which is thought to be the result of different pathophysiological mechanisms including oxidative stress, skeletal muscle pathology, and reduced nitric oxide bioavailability. Thus, compounds that target these mechanisms may have a therapeutic effect on walking performance in PAD patients. Phytochemicals produced by plants have been widely studied for their potential health effects and role in various diseases including cardiovascular disease and cancer. In this review, we focus on PAD and discuss the evidence related to the clinical utility of different phytochemicals. We discuss phytochemical research in preclinical models of PAD, and we highlight the results of the available clinical trials that have assessed the effects of these compounds on PAD patient functional outcomes.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - K. Leigh Greathouse
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
- Department of Human Sciences and Design, Baylor University, Waco, TX 76798, USA
| | - Nathan Newton
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA;
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| | - Robert S. Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Jack L. Eidson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - David L. Dawson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Craig W. Milner
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Robert J. Widmer
- Heart & Vascular Department, Baylor Scott & White Medical Center, Temple, TX 76508, USA;
| | - William T. Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (R.S.S.); (J.L.E.); (D.L.D.); (C.W.M.); (W.T.B.)
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX 76798, USA; (A.I.); (K.L.G.); (E.P.)
| |
Collapse
|
23
|
Xing Z, Zhao C, Wu S, Zhang C, Liu H, Fan Y. Hydrogel-based therapeutic angiogenesis: An alternative treatment strategy for critical limb ischemia. Biomaterials 2021; 274:120872. [PMID: 33991951 DOI: 10.1016/j.biomaterials.2021.120872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
Critical limb ischemia (CLI) is the most severe clinical manifestation of peripheral arterial disease (PAD), resulting in the total or partial loss of limb function. Although the conventional treatment strategy of CLI (e.g., medical treatment and surgery) can improve blood perfusion and restore limb function, many patients are unsuitable for these strategies and they still face the threats of amputation or death. Therapeutic angiogenesis, as a potential solution for these problems, attempts to manipulate blood vessel growth in vivo for augment perfusion without the help of extra pharmaceutics and surgery. With the rise of interdisciplinary research, regenerative medicine strategies provide new possibilities for treating many clinical diseases. Hydrogel, as an excellent biocompatibility material, is an ideal candidate for delivering bioactive molecules and cells for therapeutic angiogenesis. Besides, hydrogel could precisely deliver, control release, and keep the bioactivity of cargos, making hydrogel-based therapeutic angiogenesis a new strategy for CLI therapy. In this review, we comprehensively discuss the approaches of hydrogel-based strategy for CLI treatment as well as their challenges, and future directions.
Collapse
Affiliation(s)
- Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China
| | - Chen Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, PR China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
24
|
Chen J, Liang ZQ, Hu C, Gao Y, Wang YK, Yang JW, Zhao C, Cao YM, Cao YB. Protection against peripheral artery disease injury by Ruan Jian Qing Mai formula via metabolic programming. Biotechnol Appl Biochem 2021; 68:366-380. [PMID: 32374895 DOI: 10.1002/bab.1934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/23/2020] [Indexed: 12/21/2022]
Abstract
Ruan Jian Qing Mai formula (RJQM), a multicomponent herbal formula, has been widely used to treat peripheral arterial disease (PAD) in China. However, its active compounds and mechanisms of action are still unknown. First, RNA sequencing analysis of 15 healthy and 16 PAD samples showed that 524 PAD differential genes were significantly enriched in Go Ontology (ribonucleotide metabolic process, oxidoreductase complex, and electron transfer activity), Kyoto Encyclopedia of Genes and Genomes (KEGG) and GSEA pathways (OXPHOS and TCA cycle), miRNA (MIR183), and kinase (PAK6). Fifty-three active ingredients in RJQM had similar structures to the seven drug molecules in CLUE. Then, network topology analysis of the 53 components-target-pathway-disease network yielded 10 active ingredients. Finally, computational toxicity estimations showed that the median lethal dose (LD50) of the 10 active ingredients was above 1000 mg/kg, and eight of them did not cause hepatotoxicity, mutagenicity, carcinogenicity, cytotoxicity, and immunotoxicity nor activate 12 toxic pathways. In conclusion, RJQM has a protection effect on PAD by regulating a complex molecular network. Part of the mechanism is associated with the regulation of OXPHOS by 10 active components, which may alleviate mitochondrial dysfunction and pathological metabolic programming.
Collapse
Affiliation(s)
- Jian Chen
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Academy of Traditional Chinese Medicine, Institute of Vascular Anomalies, Shanghai, China
| | - Zhi-Qiang Liang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Can Hu
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Gao
- Traditional Chinese Recovery and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Yong-Kui Wang
- The Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiang-Wei Yang
- Mental Health Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Cheng Zhao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Academy of Traditional Chinese Medicine, Institute of Vascular Anomalies, Shanghai, China
| | - Ye-Min Cao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Academy of Traditional Chinese Medicine, Institute of Vascular Anomalies, Shanghai, China
| | - Yong-Bing Cao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Academy of Traditional Chinese Medicine, Institute of Vascular Anomalies, Shanghai, China
| |
Collapse
|
25
|
Li C, Kitzerow O, Nie F, Dai J, Liu X, Carlson MA, Casale GP, Pipinos II, Li X. Bioengineering strategies for the treatment of peripheral arterial disease. Bioact Mater 2021; 6:684-696. [PMID: 33005831 PMCID: PMC7511653 DOI: 10.1016/j.bioactmat.2020.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Accepted: 09/12/2020] [Indexed: 12/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a progressive atherosclerotic disorder characterized by narrowing and occlusion of arteries supplying the lower extremities. Approximately 200 million people worldwide are affected by PAD. The current standard of operative care is open or endovascular revascularization in which blood flow restoration is the goal. However, many patients are not appropriate candidates for these treatments and are subject to continuous ischemia of their lower limbs. Current research in the therapy of PAD involves developing modalities that induce angiogenesis, but the results of simple cell transplantation or growth factor delivery have been found to be relatively poor mainly due to difficulties in stem cell retention and survival and rapid diffusion and enzymolysis of growth factors following injection of these agents in the affected tissues. Biomaterials, including hydrogels, have the capability to protect stem cells during injection and to support cell survival. Hydrogels can also provide a sustained release of growth factors at the injection site. This review will focus on biomaterial systems currently being investigated as carriers for cell and growth factor delivery, and will also discuss biomaterials as a potential stand-alone method for the treatment of PAD. Finally, the challenges of development and use of biomaterials systems for PAD treatment will be reviewed.
Collapse
Affiliation(s)
- Cui Li
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Oliver Kitzerow
- Department of Genetics Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Fujiao Nie
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jingxuan Dai
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Xiaoyan Liu
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Mark A. Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
- Omaha VA Medical Center, Omaha, NE, 68105, United States
| | - George P. Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program and Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
26
|
da Silva A, Caldas APS, Pinto SL, Hermsdorff HHM, Marcadenti A, Bersch-Ferreira ÂC, Torreglosa CR, Weber B, Bressan J. Dietary total antioxidant capacity is inversely associated with cardiovascular events and cardiometabolic risk factors: A cross-sectional study. Nutrition 2021; 89:111140. [PMID: 33838491 DOI: 10.1016/j.nut.2021.111140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Dietary total antioxidant capacity (dTAC) has been introduced as a useful tool to quantify the antioxidant content of a diet. However, few studies have evaluated the association of dTAC with cardiovascular disease (CVD) occurrence and cardiometabolic risk factors in people with established CVD events. Thus, we aimed to investigate the presence of an association between dTAC values, cardiovascular events, and cardiometabolic risk factors in individuals with previous CVD in a Brazilian multicenter study. METHODS This study has a cross-sectional design. We evaluated baseline data from the Brazilian Cardioprotective Nutritional Program Trial. Sociodemographic, anthropometric, clinical, and food-consumption data were collected in face-to-face interviews. We estimated dTAC from the mean of two 24-h dietary recalls by values of ferric-reducing antioxidant power. RESULTS We evaluated 2346 participants, most of whom were men (58.4%), older adults (64.2%), and overweight (68.6%), and had coronary artery disease (92.4%). The mean dTAC was equal to 5.6 (interquartile range, 3.9-7.8) mmol/1000 kcal. Participants in the third dTAC tertile (9.2 mmol/1000 kcal) had a 22%, 59%, and 69% lower chance, respectively, of having hypertriglyceridemic waist phenotype, abdominal aortic aneurysm, and amputation due to arterial disease in comparison to the first tertile (3.4 mmol/1000 kcal). CONCLUSIONS The dTAC was inversely associated with hypertriglyceridemic waist phenotype, abdominal aortic aneurysm, and amputation due to arterial disease in individuals undergoing secondary care for CVD. Our results can guide strategies for the prevention of new CVD and its consequences.
Collapse
Affiliation(s)
- Alessandra da Silva
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Ana Paula Silva Caldas
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Helen Hermana M Hermsdorff
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Aline Marcadenti
- HCor Research Institute, Hospital do Coração (IP-HCor), São Paulo, Brazil; Graduate Program in Health Science (Cardiology), Institute of Cardiology of Rio Grande do Sul (IC/FUC), Porto Alegre, Brazil
| | | | | | - Bernardete Weber
- HCor Research Institute, Hospital do Coração (IP-HCor), São Paulo, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Lin ML, Fu TC, Hsu CC, Huang SC, Lin YT, Wang JS. Cycling Exercise Training Enhances Platelet Mitochondrial Bioenergetics in Patients with Peripheral Arterial Disease: A Randomized Controlled Trial. Thromb Haemost 2021; 121:900-912. [PMID: 33421964 DOI: 10.1055/s-0040-1722191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exercise training influences the risk of vascular thrombosis in patients with peripheral arterial disease (PAD). Mitochondrial functionalities in platelets involve the cellular bioenergetics and thrombogenesis. This study aimed to elucidate the effect of cycling exercise training (CET) on platelet mitochondrial bioenergetics in PAD patients. Forty randomly selected patients with PAD engaged in general rehabilitation (GR) with CET (i.e., cycling exercise at ventilation threshold for 30 minute/day, 3 days/week) (GR + CET, n = 20) or to a control group that only received GR course (n = 20) for 12 weeks. Systemic aerobic capacity and platelet mitochondrial bioenergetics that included oxidative phosphorylation (OXPHOS) and electron transport system (ETS) were measured using automatic gas analysis and high-resolution respirometry, respectively. The experimental results demonstrated that GR + CET for 12 weeks significantly (1) elevated VO2peak and lowered VE-VCO2 slope, (2) raised resting ankle-brachial index and enhanced cardiac output response to exercise, (3) increased the distance in 6-minute walk test and raised the Short Form-36 physical/mental component scores, and (4) enhanced capacities of mitochondrial OXPHOS and ETS in platelets by activating FADH2 (complex II)-dependent pathway. Moreover, changes in VO2peak levels were positively associated with changes in platelet OXPHOS and ETS capacities. However, no significant changes in systemic aerobic capacity, platelet mitochondrial bioenergetics, and health-related quality of life (HRQoL) occurred following GR alone. Hence, we conclude that CET effectively increases the capacities of platelet mitochondrial bioenergetics by enhancing complex II activity in patients with PAD. Moreover, the exercise regimen also enhanced functional exercise capacity, consequently improving HRQoL in PAD patients.
Collapse
Affiliation(s)
- Ming-Lu Lin
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan, Taiwan
| | - Tieh-Cheng Fu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shu-Chun Huang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Yu-Ting Lin
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan, Taiwan
| | - Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|
28
|
The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants (Basel) 2020; 9:antiox9100966. [PMID: 33050223 PMCID: PMC7601824 DOI: 10.3390/antiox9100966] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
As a carrier of many biologically active compounds, blood is exposed to oxidants to a greater extent than the intracellular environment. Serum albumin plays a key role in antioxidant defence under both normal and oxidative stress conditions. This review evaluates data published in the literature and from our own research on the mechanisms of the enzymatic and non-enzymatic activities of albumin that determine its participation in redox modulation of plasma and intercellular fluid. For the first time, the results of numerous clinical, biochemical, spectroscopic and computational experiments devoted to the study of allosteric modulation of the functional properties of the protein associated with its participation in antioxidant defence are analysed. It has been concluded that it is fundamentally possible to regulate the antioxidant properties of albumin with various ligands, and the binding and/or enzymatic features of the protein by changing its redox status. The perspectives for using the antioxidant properties of albumin in practice are discussed.
Collapse
|
29
|
Chen M, Li C, Nie F, Liu X, Pipinos II, Li X. Synthesis and characterization of a hyaluronic acid-based hydrogel with antioxidative and thermosensitive properties. RSC Adv 2020; 10:33851-33860. [PMID: 35519025 PMCID: PMC9056774 DOI: 10.1039/d0ra07208g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/04/2020] [Indexed: 02/01/2023] Open
Abstract
Peripheral arterial disease (PAD) is initiated by progressive atherosclerotic blockages of the arteries supplying the lower extremities. The most common presentation of PAD is claudication (leg pain and severe walking limitation), with many patients progressing to limb threatening ischemia and amputation. Biomaterial approaches are just beginning to be explored in the therapy of PAD with different materials now being evaluated for the delivery of cells or growth factors in animal models of PAD. A biomaterial matrix optimized for minimally invasive injection in the ischemic leg muscles of patients with PAD is urgently needed. There are several important requirements for optimal delivery, retention, and performance of a biomaterial matrix in the mechanically, histologically, and biochemically dynamic intramuscular environment of the PAD leg. Ideally, the material should have mechanical properties matching those of the recipient muscle, undergo minimal swelling, and should introduce properties that can ameliorate the mechanisms operating in PAD like oxidative stress and damage. Here we have developed an injectable, antioxidative, and thermosensitive hydrogel system based on hyaluronic acid (HA). We first synthesized a unique crosslinker of disulfide-modified poloxamer F127 diacrylate. This crosslinker led to the creation of a thermosensitive HA hydrogel with minimal swelling and muscle-matching mechanical properties. We introduced unique disulfide groups into hydrogels which functioned as an effective reactive oxygen species scavenger, exhibited hydrogen peroxide (H2O2)-responsive degradation, and protected cells against H2O2-induced damage. Our antioxidative thermosensitive HA hydrogel system holds great potential for the treatment of the ischemic legs of patients with PAD.
Collapse
Affiliation(s)
- Meng Chen
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Cui Li
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Fujiao Nie
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Xiaoyan Liu
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
30
|
Ismaeel A, Papoutsi E, Miserlis D, Lavado R, Haynatzki G, Casale GP, Bohannon WT, Smith RS, Eidson JL, Brumberg R, Hayson A, Kirk JS, Castro C, Sawicki I, Konstantinou C, Brewster LP, Pipinos II, Koutakis P. The Nitric Oxide System in Peripheral Artery Disease: Connection with Oxidative Stress and Biopterins. Antioxidants (Basel) 2020; 9:E590. [PMID: 32640613 PMCID: PMC7402092 DOI: 10.3390/antiox9070590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Peripheral artery disease (PAD) pathophysiology extends beyond hemodynamics to include other operating mechanisms, including endothelial dysfunction. Oxidative stress may be linked to endothelial dysfunction by reducing nitric oxide (NO) bioavailability. We aimed to investigate whether the NO system and its regulators are altered in the setting of PAD and to assess the relationship between NO bioavailability and oxidative stress. Sera from 35 patients with intermittent claudication (IC), 26 patients with critical limb ischemia (CLI), and 35 non-PAD controls were analyzed to determine levels of tetrahydrobiopterin (BH4), dihydrobiopterin (BH2), nitrate/nitrite (nitric oxides, or NOx), arginine, citrulline, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and the oxidative stress markers 8-Oxo-2'-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), advanced glycation end products (AGEs), and protein carbonyls. NOx was significantly lower in IC and CLI patients compared to controls in association with elevated oxidative stress, with the greatest NOx reductions observed in CLI. Compared with controls, IC and CLI patients had reduced BH4, elevated BH2, and a reduced BH4/BH2 ratio. SDMA, the arginine/SDMA ratio, and the arginine/ADMA ratio were significantly higher in CLI patients. The NO system and its regulators are significantly compromised in PAD. This dysregulation appears to be driven by increased oxidative stress and worsens as the disease progresses from claudication to CLI.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA; (A.I.); (E.P.)
| | - Evlampia Papoutsi
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA; (A.I.); (E.P.)
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA;
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - George P. Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA; (G.P.C.); (I.I.P.)
| | - William T. Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (W.T.B.); (R.S.S.); (J.L.E.); (I.S.)
| | - Robert S. Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (W.T.B.); (R.S.S.); (J.L.E.); (I.S.)
| | - Jack Leigh Eidson
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (W.T.B.); (R.S.S.); (J.L.E.); (I.S.)
| | - Robert Brumberg
- Vascular Surgery Associates, Tallahassee, FL 32308, USA; (R.B.); (A.H.)
| | - Aaron Hayson
- Vascular Surgery Associates, Tallahassee, FL 32308, USA; (R.B.); (A.H.)
| | - Jeffrey S. Kirk
- Department of Vascular Surgery, Capital Regional Medical Center, Tallahassee, FL 32308, USA; (J.S.K.); (C.C.)
| | - Carlos Castro
- Department of Vascular Surgery, Capital Regional Medical Center, Tallahassee, FL 32308, USA; (J.S.K.); (C.C.)
| | - Ian Sawicki
- Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; (W.T.B.); (R.S.S.); (J.L.E.); (I.S.)
| | - Charalambos Konstantinou
- Department of Electrical & Computer Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Luke P. Brewster
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA; (G.P.C.); (I.I.P.)
- Department of Surgery and Research Service, Veterans Affairs-Western Iowa Medical Center, Omaha, NE 68105, USA
| | - Panagiotis Koutakis
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA; (A.I.); (E.P.)
| |
Collapse
|
31
|
Signorelli SS, Marino E, Scuto S, Di Raimondo D. Pathophysiology of Peripheral Arterial Disease (PAD): A Review on Oxidative Disorders. Int J Mol Sci 2020; 21:ijms21124393. [PMID: 32575692 PMCID: PMC7352779 DOI: 10.3390/ijms21124393] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Peripheral arterial disease (PAD) is an atherosclerotic disease that affects a wide range of the world’s population, reaching up to 200 million individuals worldwide. PAD particularly affects elderly individuals (>65 years old). PAD is often underdiagnosed or underestimated, although specificity in diagnosis is shown by an ankle/brachial approach, and the high cardiovascular event risk that affected the PAD patients. A number of pathophysiologic pathways operate in chronic arterial ischemia of lower limbs, giving the possibility to improve therapeutic strategies and the outcome of patients. This review aims to provide a well detailed description of such fundamental issues as physical exercise, biochemistry of physical exercise, skeletal muscle in PAD, heme oxygenase 1 (HO-1) in PAD, and antioxidants in PAD. These issues are closely related to the oxidative stress in PAD. We want to draw attention to the pathophysiologic pathways that are considered to be beneficial in order to achieve more effective options to treat PAD patients.
Collapse
Affiliation(s)
- Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (E.M.); (S.S.)
- Correspondence: ; Tel.: +39-09-5378-2545
| | - Elisa Marino
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (E.M.); (S.S.)
| | - Salvatore Scuto
- Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (E.M.); (S.S.)
| | - Domenico Di Raimondo
- Division of Internal Medicine and Stroke Care, Department of Promoting Health, Maternal-Infant. Excellence and Internal and Specialized Medicine (Promise) G. D’Alessandro, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
32
|
Kosmac K, Gonzalez‐Freire M, McDermott MM, White SH, Walton RG, Sufit RL, Tian L, Li L, Kibbe MR, Criqui MH, Guralnik JM, S. Polonsky T, Leeuwenburgh C, Ferrucci L, Peterson CA. Correlations of Calf Muscle Macrophage Content With Muscle Properties and Walking Performance in Peripheral Artery Disease. J Am Heart Assoc 2020; 9:e015929. [PMID: 32390569 PMCID: PMC7660852 DOI: 10.1161/jaha.118.015929] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/25/2022]
Abstract
Background Peripheral artery disease (PAD) is a manifestation of atherosclerosis characterized by reduced blood flow to the lower extremities and mobility loss. Preliminary evidence suggests PAD damages skeletal muscle, resulting in muscle impairments that contribute to functional decline. We sought to determine whether PAD is associated with an altered macrophage profile in gastrocnemius muscles and whether muscle macrophage populations are associated with impaired muscle phenotype and walking performance in patients with PAD. Methods and Results Macrophages, satellite cells, and extracellular matrix in gastrocnemius muscles from 25 patients with PAD and 7 patients without PAD were quantified using immunohistochemistry. Among patients with PAD, both the absolute number and percentage of cluster of differentiation (CD) 11b+CD206+ M2-like macrophages positively correlated to satellite cell number (r=0.461 [P=0.023] and r=0.416 [P=0.042], respectively) but not capillary density or extracellular matrix. The number of CD11b+CD206- macrophages negatively correlated to 4-meter walk tests at normal (r=-0.447, P=0.036) and fast pace (r=-0.510, P=0.014). Extracellular matrix occupied more muscle area in PAD compared with non-PAD (8.72±2.19% versus 5.30±1.03%, P<0.001) and positively correlated with capillary density (r=0.656, P<0.001). Conclusions Among people with PAD, higher CD206+ M2-like macrophage abundance was associated with greater satellite cell numbers and muscle fiber size. Lower CD206- macrophage abundance was associated with better walking performance. Further study is needed to determine whether CD206+ macrophages are associated with ongoing reparative processes enabling skeletal muscle adaptation to damage with PAD. Registration URL: https://www.clinicaltrials.gov; Unique identifiers: NCT00693940, NCT01408901, NCT0224660.
Collapse
Affiliation(s)
- Kate Kosmac
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | | | - Mary M. McDermott
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Sarah H. White
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | - R. Grace Walton
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | - Robert L. Sufit
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - Lu Tian
- Department of Health Research & PolicyStanford UniversityStanfordCA
| | - Lingyu Li
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Melina R. Kibbe
- Department of SurgeryUniversity of North Carolina School of MedicineChapel HillNC
| | - Michael H. Criqui
- Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCA
| | | | | | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric ResearchUniversity of Florida Institute on AgingGainesvilleFL
| | | | - Charlotte A. Peterson
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| |
Collapse
|
33
|
Signorelli SS, Vanella L, Abraham NG, Scuto S, Marino E, Rocic P. Pathophysiology of chronic peripheral ischemia: new perspectives. Ther Adv Chronic Dis 2020; 11:2040622319894466. [PMID: 32076496 PMCID: PMC7003198 DOI: 10.1177/2040622319894466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral arterial disease (PAD) affects individuals particularly over 65 years old in the more advanced countries. Hemodynamic, inflammatory, and oxidative mechanisms interact in the pathophysiological scenario of this chronic arterial disease. We discuss the hemodynamic, muscle tissue, and oxidative stress (OxS) conditions related to chronic ischemia of the peripheral arteries. This review summarizes the results of evaluating both metabolic and oxidative markers, and also therapy to counteract OxS. In conclusion, we believe different pathways should be highlighted to discover new drugs to treat patients suffering from PAD.
Collapse
Affiliation(s)
- Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, University Hospital ‘G. Rodolico’, Catania, 95124, Italy
| | - Luca Vanella
- Department of Drug Science, University of Catania, Catania, Italy
| | - Nader G. Abraham
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| | - Salvatore Scuto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elisa Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Petra Rocic
- Departments of Medicine, Pharmacology and Gastroenterology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
34
|
Pizzimenti M, Riou M, Charles AL, Talha S, Meyer A, Andres E, Chakfé N, Lejay A, Geny B. The Rise of Mitochondria in Peripheral Arterial Disease Physiopathology: Experimental and Clinical Data. J Clin Med 2019; 8:jcm8122125. [PMID: 31810355 PMCID: PMC6947197 DOI: 10.3390/jcm8122125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a frequent and serious condition, potentially life-threatening and leading to lower-limb amputation. Its pathophysiology is generally related to ischemia-reperfusion cycles, secondary to reduction or interruption of the arterial blood flow followed by reperfusion episodes that are necessary but also—per se—deleterious. Skeletal muscles alterations significantly participate in PAD injuries, and interestingly, muscle mitochondrial dysfunctions have been demonstrated to be key events and to have a prognosis value. Decreased oxidative capacity due to mitochondrial respiratory chain impairment is associated with increased release of reactive oxygen species and reduction of calcium retention capacity leading thus to enhanced apoptosis. Therefore, targeting mitochondria might be a promising therapeutic approach in PAD.
Collapse
Affiliation(s)
- Mégane Pizzimenti
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Marianne Riou
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne-Laure Charles
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
| | - Samy Talha
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Alain Meyer
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Emmanuel Andres
- Internal Medicine, Diabete and Metabolic Diseases Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France;
| | - Nabil Chakfé
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Anne Lejay
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Vascular Surgery and Kidney Transplantation Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
| | - Bernard Geny
- Unistra, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, Team 3072 «Mitochondria, Oxidative Stress and Muscle Protection», 11 Rue Humann, 67000 Strasbourg, France; (M.P.); (M.R.); (A.-L.C.); (S.T.); (A.M.); (A.L.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg CEDEX, France
- Correspondence:
| |
Collapse
|
35
|
Ismaeel A, Franco ME, Lavado R, Papoutsi E, Casale GP, Fuglestad M, Mietus CJ, Haynatzki GR, Smith RS, Bohannon WT, Sawicki I, Pipinos II, Koutakis P. Altered Metabolomic Profile in Patients with Peripheral Artery Disease. J Clin Med 2019; 8:E1463. [PMID: 31540015 PMCID: PMC6780416 DOI: 10.3390/jcm8091463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
Peripheral artery disease (PAD) is a common atherosclerotic disease characterized by narrowed or blocked arteries in the lower extremities. Circulating serum biomarkers can provide significant insight regarding the disease progression. Here, we explore the metabolomics signatures associated with different stages of PAD and investigate potential mechanisms of the disease. We compared the serum metabolites of a cohort of 26 PAD patients presenting with claudication and 26 PAD patients presenting with critical limb ischemia (CLI) to those of 26 non-PAD controls. A difference between the metabolite profiles of PAD patients from non-PAD controls was observed for several amino acids, acylcarnitines, ceramides, and cholesteryl esters. Furthermore, our data demonstrate that patients with CLI possess an altered metabolomic signature different from that of both claudicants and non-PAD controls. These findings provide new insight into the pathophysiology of PAD and may help develop future diagnostic procedures and therapies for PAD patients.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Evlampia Papoutsi
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - George P Casale
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Matthew Fuglestad
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Constance J Mietus
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Gleb R Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott and White Hospital, Temple, TX 76508, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott and White Hospital, Temple, TX 76508, USA
| | - Ian Sawicki
- Department of Surgery, Baylor Scott and White Hospital, Temple, TX 76508, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Panagiotis Koutakis
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
36
|
Oxidative Stress in Peripheral Arterial Disease (PAD) Mechanism and Biomarkers. Antioxidants (Basel) 2019; 8:antiox8090367. [PMID: 31480714 PMCID: PMC6770183 DOI: 10.3390/antiox8090367] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Hemodynamic dysfunction mainly characterizes pathophysiology of peripheral arterial disease (PAD) leading to chronic ischemia. Hemodynamic dysfunction is the origin of intermittent claudication (chronic PAD) or of critical limb ischemia (very severe PAD). Notably, it is well known that oxidative stress (OxS) plays a pathophysiological role in PAD. The higher production of reactive oxygen species (ROS) from OxS and reduced redox capability are two crucial players in initiating and progressing PAD. A number of biomarkers highlight OxS and monitor it in PAD. The present review summarizes data on OxS, on biomarkers available to mark OxS occurrence and to monitor on PAD progression, as well as to evaluate the effects treatments in PAD patients. In conclusion, by detailing OxS and its biomarkers, we hope to encourage more studies to focus on drugs which combat OxS and inflammation.
Collapse
|
37
|
Critical Limb Ischaemia Exacerbates Mitochondrial Dysfunction in ApoE-/- Mice Compared with ApoE+/+ Mice, but N-acetyl Cysteine still Confers Protection. Eur J Vasc Endovasc Surg 2019; 58:576-582. [PMID: 31422047 DOI: 10.1016/j.ejvs.2019.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The current study was performed in order to determine the influence of hypercholesterolaemia on critical limb ischaemia (CLI) and whether targeting oxidative stress by antioxidant therapies such as N-acetyl cysteine (NAC), considered to be a direct scavenger of reactive oxygen species, could confer muscle protection. METHODS Apolipoprotein E (ApoE)-/- mice (n = 9, 29 weeks old) and their genetic controls ApoE+/+ mice (n = 9, 29 weeks old) were submitted to sequential right femoral and iliac ligations; the left limb served as control. ApoE+/+ mice were divided into two groups: Group 1 (n = 4) and Group 2 (n = 5); as well as ApoE-/- mice: Group 3 (n = 3), and Group 4 (n = 6). NAC treatment was administered to Groups 2 and 4 in drinking water. Mice were sacrificed on Day 40 and gastrocnemius muscles were harvested to study mitochondrial respiration by oxygraphy, calcium retention capacity by spectrofluorometry, and production of reactive oxygen species by electron paramagnetic resonance. RESULTS CLI associated with ApoE deficiency resulted in more severe mitochondrial dysfunction: maximum oxidative capacity and calcium retention capacity were decreased (-42.9% vs. -25.1%, p = .010; and -73.1% vs. -40.3%, p = .003 respectively) and production of reactive oxygen species was enhanced (+63.6% vs. +41.4%, p = .03) in ApoE-/- mice compared with ApoE+/+ mice respectively. Antioxidant treatment restored oxidative capacity, calcium retention capacity and decreased production of reactive oxygen species in both mice strands. CONCLUSIONS In this small murine study, hypercholesterolaemia exacerbated mitochondrial dysfunction, as clinically expected; but antioxidant therapy appeared protective, which is counter to clinical experience. Further work is clearly needed.
Collapse
|
38
|
Ismaeel A, Brumberg RS, Kirk JS, Papoutsi E, Farmer PJ, Bohannon WT, Smith RS, Eidson JL, Sawicki I, Koutakis P. Oxidative Stress and Arterial Dysfunction in Peripheral Artery Disease. Antioxidants (Basel) 2018; 7:antiox7100145. [PMID: 30347720 PMCID: PMC6210426 DOI: 10.3390/antiox7100145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease characterized by a narrowing of the arteries in the lower extremities. Disease manifestations are the result of more than just reduced blood flow, and include endothelial dysfunction, arterial stiffness, and inflammation. Growing evidence suggests that these factors lead to functional impairment and decline in PAD patients. Oxidative stress also plays an important role in the disease, and a growing amount of data suggest a link between arterial dysfunction and oxidative stress. In this review, we present the current evidence for the involvement of endothelial dysfunction, arterial stiffness, and inflammation in the pathophysiology of PAD. We also discuss the links between these factors and oxidative stress, with a focus on nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2)-derived reactive oxygen species (ROS) and decreased nitric oxide (NO) bioavailability. Finally, the potential therapeutic role of NOX2 antioxidants for improving arterial function and functional status in PAD patients is explored.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA.
| | - Robert S Brumberg
- Department of Surgery, Vascular Surgery Associates, Florida State University School of Medicine, Tallahassee Memorial Hospital, Tallahassee, FL 32308, USA.
| | - Jeffrey S Kirk
- Department of Surgery, Capital Regional Medical Center, Tallahassee, FL 32308, USA.
| | - Evlampia Papoutsi
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA.
| | - Patrick J Farmer
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA.
| | - William T Bohannon
- Department of Surgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA.
| | - Robert S Smith
- Department of Surgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA.
| | - Jack L Eidson
- Department of Surgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA.
| | - Ian Sawicki
- Department of Surgery, Baylor Scott and White Medical Center, Temple, TX 76508, USA.
| | - Panagiotis Koutakis
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA.
| |
Collapse
|