1
|
Ko K, Jones A, Francis D, Robidoux S, McArthur G. Physiological correlates of anxiety in childhood and adolescence: A systematic review and meta-analysis. Stress Health 2024; 40:e3388. [PMID: 38451702 DOI: 10.1002/smi.3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/18/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Anxiety is one of the most prevalent problems that affects children and adolescents. The vast majority of diagnostic tools for anxiety depend on written or verbal reports from children and adolescents or their significant others. The validity and reliability of such reports can be compromised by their subjective nature. Thus, there is growing interest in whether anxiety can be indexed with objective physiological measures. The key aim of this systematic review and meta-analysis was to determine which physiological measures are most reliably associated with elevated levels of anxiety amongst children and adolescents. Online databases (e.g., PsycINFO, Embase, Medline) were searched for relevant studies according to pre-determined criteria. Twenty-five studies comprising 2502 participants (N = 1160 with high anxiety) met inclusion, identifying 11 groups of physiological measures. Our meta-analysis revealed that skin conductance level is the most sensitive measure of anxiety (d = 0.83), followed by electromyography (EMG) measures (d = 0.71) and skin conductance response (d = 0.58). However, the included studies varied in terms of subjective measures, study designs, experimental task measures, and physiological measures. Consideration of these differences in methodology offer potential directions for future research.
Collapse
Affiliation(s)
- Katherine Ko
- Macquarie University Centre for Reading, School of Psychological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Lifespan Health and Wellbeing Research Centre, School of Psychological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alana Jones
- Macquarie University Centre for Reading, School of Psychological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Lifespan Health and Wellbeing Research Centre, School of Psychological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Deanna Francis
- Black Dog Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Serje Robidoux
- Macquarie University Centre for Reading, School of Psychological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Genevieve McArthur
- Australian Centre for the Advancement of Literacy, Australian Catholic University, Sydney, New South Wales, Australia
- Dyslexia-SPELD Foundation Literacy and Clinical Services, South Perth, Western Australia, Australia
| |
Collapse
|
2
|
Cummings KK, Jung J, Zbozinek TD, Wilhelm FH, Dapretto M, Craske MG, Bookheimer SY, Green SA. Shared and distinct biological mechanisms for anxiety and sensory over-responsivity in youth with autism versus anxiety disorders. J Neurosci Res 2024; 102:e25250. [PMID: 37840458 PMCID: PMC10843792 DOI: 10.1002/jnr.25250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Sensory over-responsivity (SOR) is a prevalent cross-diagnostic condition that is often associated with anxiety. The biological mechanisms underlying the co-occurrence of SOR and anxiety symptoms are not well understood, despite having important implications for targeted intervention. We therefore investigated the unique associations of SOR and anxiety symptoms with physiological and neural responses to sensory stimulation for youth with anxiety disorders (ANX), autism spectrum disorder (ASD), or typical development (TD). Age/IQ-matched youth aged 8-18 years (22 ANX; 30 ASD; 22 TD) experienced mildly aversive tactile and auditory stimuli during functional magnetic resonance imaging and then during skin conductance response (SCR) and heart rate (HR) measurements. Caregivers reported on participants' SOR and anxiety symptoms. ASD/ANX youth had elevated SOR and anxiety symptoms compared to TD. ASD/ANX youth showed similar, heightened brain responses to sensory stimulation compared to TD youth, but brain responses were more highly related to SOR symptoms in ASD youth and to anxiety symptoms in ANX youth. Across ASD/ANX youth, anxiety symptoms uniquely related to greater SCR whereas SOR uniquely related to greater HR responses to sensory stimulation. Behavioral and neurobiological over-responsivity to sensory stimulation was shared across diagnostic groups. However, findings support SOR and anxiety as distinct symptoms with unique biological mechanisms, and with different relationships to neural over-reactivity dependent on diagnostic group. Results indicate a need for targeted treatment approaches.
Collapse
Affiliation(s)
- Kaitlin K. Cummings
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jiwon Jung
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, USA
| | - Tomislav D. Zbozinek
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, USA
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, California, USA
| | - Frank H. Wilhelm
- Division of Clinical Psychology and Psychopathology, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, USA
| | - Michelle G. Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, USA
| | - Shulamite A. Green
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Cheung WY. Anticipated nostalgia. Curr Opin Psychol 2023; 49:101521. [PMID: 36563634 DOI: 10.1016/j.copsyc.2022.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Anticipated nostalgia is the foreseeing of looking back on life events and expecting to feel nostalgic about it in the future. I review recent findings on the content, affective profile, and psychological benefits of anticipated nostalgia. I also review neurological and cognitive evidence that may explain the mechanism underlying anticipated nostalgia. Finally, I discuss anticipated nostalgia in an applied setting, consumer behavior.
Collapse
|
4
|
Neural responding during uncertain threat anticipation in pediatric anxiety. Int J Psychophysiol 2023; 183:159-170. [PMID: 35985508 DOI: 10.1016/j.ijpsycho.2022.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023]
Abstract
Excessive fear responses to uncertain threat are a key feature of anxiety disorders (ADs), though most mechanistic work considers adults. As ADs onset in childhood and confer risk for later psychopathology, we sought to identify conditions of uncertain threat that distinguish 8-17-year-old youth with AD (n = 19) from those without AD (n = 33), and assess test-retest reliability of such responses in a companion sample of healthy adults across three sites (n = 19). In an adapted uncertainty of threat paradigm, visual cues parametrically signaled threat of aversive stimuli (fear faces) in 25 % increments (0 %, 25 %, 50 %, 100 %), while participants underwent functional magnetic resonance imaging (fMRI). We compared neural response elicited by cues signaling different degrees of probability regarding the subsequent delivery of fear faces. Overall, youth displayed greater engagement of bilateral inferior parietal cortex, fusiform gyrus, and lingual gyrus during uncertain threat anticipation in general. Relative to healthy youth, AD youth exhibited greater activation in ventrolateral prefrontal cortex (vlPFC)/BA47 during uncertain threat anticipation in general. Further, AD differed from healthy youth in scaling of ventral striatum/sgACC activation with threat probability and attenuated flexibility of responding during parametric uncertain threat. Complementing these results, significant, albeit modest, cross-site test-retest reliability in these regions was observed in an independent sample of healthy adults. While preliminary due to a small sample size, these findings suggest that during uncertainty of threat, AD youth engage vlPFC regions known to be involved in fear regulation, response inhibition, and cognitive control. Findings highlight the potential of isolating neural correlates of threat anticipation to guide treatment development and translational work in youth.
Collapse
|
5
|
Brain networks under uncertainty: A coordinate-based meta-analysis of brain imaging studies. J Affect Disord 2022; 319:627-637. [PMID: 36162676 DOI: 10.1016/j.jad.2022.09.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/31/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
In recent years, uncertainty has been extensively studied as a core factor in anxiety models. However, it remains unclear whether there is a stable brain circuitry to cope with uncertainty. Addressing this yet open question, we first distinguish uncertainty into three different states: risky, ambiguity, and threat anticipation. Then, we performed three meta-analyses of fMRI studies to identify those regions that are commonly activated by the three domains using activation likelihood estimation (ALE). The overlapping analyses of the three ALE maps revealed major conjunctions of the risk decision making, ambiguity decision making, and the threat anticipation in specifically the right insula. Contrast analysis further confirmed this finding. In addition, different uncertainty states also have different brain networks involved. Specifically, a large number of brain regions in the frontal-parietal cortex were recruited under ambiguity state, while subcortical gray matter regions were recruited under risk decision making, and the bilateral insula were closely associated with threat anticipation. Additionally, we assessed the co-activation pattern of identified regions using meta-analytic connectivity modeling (MACM) to investigate the potential network underlying the relationship of three domains. The MACM analysis further confirmed that different uncertain states have specific brain network basis. We concluded that the right insula serves as a convergent brain region for brain regions recruited for different uncertain states, and its co-activation pattern also corresponds to the brain network of the three uncertain states. This study is a preliminary attempt to further uncover the brain circuitry of anxiety models with uncertainty at their core.
Collapse
|
6
|
Glenn DE, Merenstein JL, Bennett IJ, Michalska KJ. Anxiety symptoms and puberty interactively predict lower cingulum microstructure in preadolescent Latina girls. Sci Rep 2022; 12:20755. [PMID: 36456602 PMCID: PMC9713745 DOI: 10.1038/s41598-022-24803-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Preadolescence is a period of increased vulnerability for anxiety, especially among Latina girls. Reduced microstructure (fractional anisotropy; FA) of white matter tracts between limbic and prefrontal regions may underlie regulatory impairments in anxiety. However, developmental research on the association between anxiety and white matter microstructure is mixed, possibly due to interactive influences with puberty. In a sample of 39 Latina girls (8-13 years), we tested whether pubertal stage moderated the association between parent- and child-reported anxiety symptoms and FA in the cingulum and uncinate fasciculus. Parent- but not child-reported anxiety symptoms predicted lower cingulum FA, and this effect was moderated by pubertal stage, such that this association was only significant for prepubertal girls. Neither anxiety nor pubertal stage predicted uncinate fasciculus FA. These findings suggest that anxiety is associated with disruptions in girls' cingulum white matter microstructure and that this relationship undergoes maturational changes during puberty.
Collapse
Affiliation(s)
- Dana E Glenn
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| | - Jenna L Merenstein
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Kalina J Michalska
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| |
Collapse
|
7
|
Atlas LY, Dildine TC, Palacios-Barrios EE, Yu Q, Reynolds RC, Banker LA, Grant SS, Pine DS. Instructions and experiential learning have similar impacts on pain and pain-related brain responses but produce dissociations in value-based reversal learning. eLife 2022; 11:e73353. [PMID: 36317867 PMCID: PMC9681218 DOI: 10.7554/elife.73353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Recent data suggest that interactions between systems involved in higher order knowledge and associative learning drive responses during value-based learning. However, it is unknown how these systems impact subjective responses, such as pain. We tested how instructions and reversal learning influence pain and pain-evoked brain activation. Healthy volunteers (n=40) were either instructed about contingencies between cues and aversive outcomes or learned through experience in a paradigm where contingencies reversed three times. We measured predictive cue effects on pain and heat-evoked brain responses using functional magnetic resonance imaging. Predictive cues dynamically modulated pain perception as contingencies changed, regardless of whether participants received contingency instructions. Heat-evoked responses in the insula, anterior cingulate, and other regions updated as contingencies changed, and responses in the prefrontal cortex mediated dynamic cue effects on pain, whereas responses in the brainstem's rostroventral medulla (RVM) were shaped by initial contingencies throughout the task. Quantitative modeling revealed that expected value was shaped purely by instructions in the Instructed Group, whereas expected value updated dynamically in the Uninstructed Group as a function of error-based learning. These differences were accompanied by dissociations in the neural correlates of value-based learning in the rostral anterior cingulate, thalamus, and posterior insula, among other regions. These results show how predictions dynamically impact subjective pain. Moreover, imaging data delineate three types of networks involved in pain generation and value-based learning: those that respond to initial contingencies, those that update dynamically during feedback-driven learning as contingencies change, and those that are sensitive to instruction. Together, these findings provide multiple points of entry for therapies designs to impact pain.
Collapse
Affiliation(s)
- Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
- National Institute on Drug Abuse, National Institutes of HealthBaltimoreUnited States
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Troy C Dildine
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
- Department of Clinical Neuroscience, Karolinska InstitutetSolnaSweden
| | | | - Qingbao Yu
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Richard C Reynolds
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| | - Lauren A Banker
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Shara S Grant
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Daniel S Pine
- National Institute of Mental Health, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
8
|
Abend R, Burk D, Ruiz SG, Gold AL, Napoli JL, Britton JC, Michalska KJ, Shechner T, Winkler AM, Leibenluft E, Pine DS, Averbeck BB. Computational modeling of threat learning reveals links with anxiety and neuroanatomy in humans. eLife 2022; 11:66169. [PMID: 35473766 PMCID: PMC9197395 DOI: 10.7554/elife.66169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Influential theories implicate variations in the mechanisms supporting threat learning in the severity of anxiety symptoms. We use computational models of associative learning in conjunction with structural imaging to explicate links among the mechanisms underlying threat learning, their neuroanatomical substrates, and anxiety severity in humans. We recorded skin-conductance data during a threat-learning task from individuals with and without anxiety disorders (N=251; 8-50 years; 116 females). Reinforcement-learning model variants quantified processes hypothesized to relate to anxiety: threat conditioning, threat generalization, safety learning, and threat extinction. We identified the best-fitting models for these processes and tested associations among latent learning parameters, whole-brain anatomy, and anxiety severity. Results indicate that greater anxiety severity related specifically to slower safety learning and slower extinction of response to safe stimuli. Nucleus accumbens gray-matter volume moderated learning-anxiety associations. Using a modeling approach, we identify computational mechanisms linking threat learning and anxiety severity and their neuroanatomical substrates.
Collapse
Affiliation(s)
- Rany Abend
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
| | - Diana Burk
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
| | - Sonia G Ruiz
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
| | - Andrea L Gold
- Department of Psychiatry and Human Behavior, Brown University, Providence, United States
| | - Julia L Napoli
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
| | - Jennifer C Britton
- Department of Psychology, University of Miami, Coral Gables, United States
| | - Kalina J Michalska
- Department of Psychology, University of California, Riverside, Riverside, United States
| | - Tomer Shechner
- Psychology Department, University of Haifa, Haifa, Israel
| | - Anderson M Winkler
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, United States
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, Besthesda, United States
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, United States
| |
Collapse
|
9
|
Grossman YS, Fillinger C, Manganaro A, Voren G, Waldman R, Zou T, Janssen WG, Kenny PJ, Dumitriu D. Structure and function differences in the prelimbic cortex to basolateral amygdala circuit mediate trait vulnerability in a novel model of acute social defeat stress in male mice. Neuropsychopharmacology 2022; 47:788-799. [PMID: 34799681 PMCID: PMC8782864 DOI: 10.1038/s41386-021-01229-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 02/03/2023]
Abstract
Stressful life events are ubiquitous and well-known to negatively impact mental health. However, in both humans and animal models, there is large individual variability in how individuals respond to stress, with some but not all experiencing long-term adverse consequences. While there is growing understanding of the neurobiological underpinnings of the stress response, much less is known about how neurocircuits shaped by lifetime experiences are activated during an initial stressor and contribute to this selective vulnerability versus resilience. We developed a model of acute social defeat stress (ASDS) that allows classification of male mice into "susceptible" (socially avoidant) versus "resilient" (expressing control-level social approach) one hour after exposure to six minutes of social stress. Using circuit tracing and high-resolution confocal imaging, we explored differences in activation and dendritic spine density and morphology in the prelimbic cortex to basolateral amygdala (PL→BLA) circuit in resilient versus susceptible mice. Susceptible mice had greater PL→BLA recruitment during ASDS and activated PL→BLA neurons from susceptible mice had more and larger mushroom spines compared to resilient mice. We hypothesized identified structure/function differences indicate an overactive PL→BLA response in susceptible mice and used an intersectional chemogenetic approach to inhibit the PL→BLA circuit during or prior to ASDS. We found in both cases that this blocked ASDS-induced social avoidance. Overall, we show PL→BLA structure/function differences mediate divergent behavioral responses to ASDS in male mice. These results support PL→BLA circuit overactivity during stress as a biomarker of trait vulnerability and potential target for prevention of stress-induced psychopathology.
Collapse
Affiliation(s)
- Yael S Grossman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
| | - Clementine Fillinger
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessia Manganaro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - George Voren
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Waldman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiffany Zou
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dani Dumitriu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, Columbia University, New York, NY, USA.
- Sackler Institute, Columbia University, New York, NY, USA.
- Columbia Population Research Center, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Abend R, Ruiz SG, Bajaj MA, Harrewijn A, Linke JO, Atlas LY, Winkler AM, Pine DS. Threat imminence reveals links among unfolding of anticipatory physiological response, cortical-subcortical intrinsic functional connectivity, and anxiety. Neurobiol Stress 2022; 16:100428. [PMID: 35036479 PMCID: PMC8749274 DOI: 10.1016/j.ynstr.2022.100428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Excessive expression of fear responses in anticipation of threat occurs in anxiety, but understanding of underlying pathophysiological mechanisms is limited. Animal research indicates that threat-anticipatory defensive responses are dynamically organized by threat imminence and rely on conserved circuitry. Insight from basic neuroscience research in animals on threat imminence could guide mechanistic research in humans mapping abnormal function in this circuitry to aberrant defensive responses in pathological anxiety. 50 pediatric anxiety patients and healthy-comparisons (33 females) completed an instructed threat-anticipation task whereby cues signaled delivery of painful (threat) or non-painful (safety) thermal stimulation. Temporal changes in skin-conductance indexed anxiety effects on anticipatory responding as function of threat imminence. Multivariate network analyses of resting-state functional connectivity data from a subsample were used to identify intrinsic-function correlates of anticipatory-response dynamics, within a specific, distributed network derived from translational research on defensive responding. By considering threat imminence, analyses revealed specific anxiety effects. Importantly, pathological anxiety was associated with excessive deployment of anticipatory physiological response as threat, but not safety, outcomes became more imminent. Magnitude of increase in threat-anticipatory physiological responses corresponded with magnitude of intrinsic connectivity within a cortical-subcortical circuit. Moreover, more severe anxiety was associated with stronger associations between anticipatory physiological responding and connectivity that ventromedial prefrontal cortex showed with hippocampus and basolateral amygdala, regions implicated in animal models of anxiety. These findings link basic and clinical research, highlighting variations in intrinsic function in conserved defensive circuitry as a potential pathophysiological mechanism in anxiety.
Collapse
Affiliation(s)
- Rany Abend
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sonia G. Ruiz
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Psychology, Yale University, New Haven, CT, 06511, USA
| | - Mira A. Bajaj
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anita Harrewijn
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Julia O. Linke
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lauren Y. Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anderson M. Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Atlas LY. A social affective neuroscience lens on placebo analgesia. Trends Cogn Sci 2021; 25:992-1005. [PMID: 34538720 PMCID: PMC8516707 DOI: 10.1016/j.tics.2021.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
Pain is a fundamental experience that promotes survival. In humans, pain stands at the intersection of multiple health crises: chronic pain, the opioid epidemic, and health disparities. The study of placebo analgesia highlights how social, cognitive, and affective processes can directly shape pain, and identifies potential paths for mitigating these crises. This review examines recent progress in the study of placebo analgesia through affective science. It focuses on how placebo effects are shaped by expectations, affect, and the social context surrounding treatment, and discusses neurobiological mechanisms of placebo, highlighting unanswered questions and implications for health. Collaborations between clinicians and social and affective scientists can address outstanding questions and leverage placebo to reduce pain and improve human health.
Collapse
Affiliation(s)
- Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
12
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|