1
|
Rao T, Zhou Y, Chen C, Chen J, Zhang J, Lin W, Jia D. Recent progress in neonatal hyperoxic lung injury. Pediatr Pulmonol 2024; 59:2414-2427. [PMID: 38742254 DOI: 10.1002/ppul.27062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
With the progress in neonatal intensive care, there has been an increase in the survival rates of premature infants. However, this has also led to an increased incidence of neonatal hyperoxia lung injury and bronchopulmonary dysplasia (BPD), whose pathogenesis is believed to be influenced by various prenatal and postnatal factors, although the exact mechanisms remain unclear. Recent studies suggest that multiple mechanisms might be involved in neonatal hyperoxic lung injury and BPD, with sex also possibly playing an important role, and numerous drugs have been proposed and shown promise for improving the treatment outcomes of hyperoxic lung injury. Therefore, this paper aims to analyze and summarize sex differences in neonatal hyperoxic lung injury, potential pathogenesis and treatment progress to provide new ideas for basic and clinical research in this field.
Collapse
Affiliation(s)
- Tian Rao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chizhang Chen
- Department of Clinical Medicine, Chinese Medicine Hospital of Pingyang, Wenzhou, Zhejiang, China
| | - Jiayi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Danyun Jia
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Durlak W, Thébaud B. The vascular phenotype of BPD: new basic science insights-new precision medicine approaches. Pediatr Res 2024; 96:1162-1171. [PMID: 36550351 DOI: 10.1038/s41390-022-02428-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth. Up to 1/3 of children with BPD develop pulmonary hypertension (PH). PH increases mortality, the risk of adverse neurodevelopmental outcome and lacks effective treatment. Current vasodilator therapies address symptoms, but not the underlying arrested vascular development. Recent insights into placental biology and novel technological advances enabling the study of normal and impaired lung development at the single cell level support the concept of a vascular phenotype of BPD. Dysregulation of growth factor pathways results in depletion and dysfunction of putative distal pulmonary endothelial progenitor cells including Cap1, Cap2, and endothelial colony-forming cells (ECFCs), a subset of vascular progenitor cells with self-renewal and de novo angiogenic capacity. Preclinical data demonstrate effectiveness of ECFCs and ECFC-derived particles including extracellular vesicles (EVs) in promoting lung vascular growth and reversing PH, but the mechanism is unknown. The lack of engraftment suggests a paracrine mode of action mediated by EVs that contain miRNA. Aberrant miRNA signaling contributes to arrested pulmonary vascular development, hence using EV- and miRNA-based therapies is a promising strategy to prevent the development of BPD-PH. More needs to be learned about disrupted pathways, timing of intervention, and mode of delivery. IMPACT: Single-cell RNA sequencing studies provide new in-depth view of developmental endothelial depletion underlying BPD-PH. Aberrant miRNA expression is a major cause of arrested pulmonary development. EV- and miRNA-based therapies are very promising therapeutic strategies to improve prognosis in BPD-PH.
Collapse
Affiliation(s)
- Wojciech Durlak
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Jagiellonian University Medical College, Krakow, Poland
| | - Bernard Thébaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Bao T, Liu X, Hu J, Ma M, Li J, Cao L, Yu B, Cheng H, Zhao S, Tian Z. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia. Inflammation 2024; 47:469-482. [PMID: 37917328 PMCID: PMC11074042 DOI: 10.1007/s10753-023-01923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that specifically affects preterm infants. Oxygen therapy administered to treat BPD can lead to hyperoxia-induced lung injury, characterized by apoptosis of lung alveolar epithelial cells. Our epitranscriptomic microarray analysis of normal mice lungs and hyperoxia-stimulated mice lungs revealed elevated RNA expression levels of IL-33, as well as increased m6A RNA methylation levels of IL-33 and PVT1 in the hyperoxia-stimulated lungs. This study aimed to investigate the role of the PVT1/IL-33 axis in BPD. A mouse model of BPD was established through hyperoxia induction, and lung histological changes were assessed by hematoxylin-eosin staining. Parameters such as radial alveolar count and mean chord length were measured to assess lung function. Mouse and human lung alveolar epithelial cells (MLE12 and A549, respectively) were stimulated with hyperoxia to create an in vitro BPD model. Cell apoptosis was detected using Western blotting and flow cytometry analysis. Our results demonstrated that silencing PVT1 suppressed apoptosis in MLE12 and A549 cells and improved lung function in hyperoxia-stimulated lungs. Additionally, IL-33 reversed the effects of PVT1 both in vivo and in vitro. Through online bioinformatics analysis and RNA-binding protein immunoprecipitation assays, YTHDC1 was identified as a RNA-binding protein (RBP) for both PVT1 and IL-33. We found that PVT1 positively regulated IL-33 expression by recruiting YTHDC1 to mediate m6A modification of IL-33. In conclusion, silencing PVT1 demonstrated beneficial effects in alleviating BPD by facilitating YTHDC1-mediated m6A modification of IL-33. Inhibition of the PVT1/IL-33 axis to suppress apoptosis in lung alveolar epithelial cells may hold promise as a therapeutic approach for managing hyperoxia-induced lung injury in BPD.
Collapse
Affiliation(s)
- Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Xiangye Liu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jian Hu
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jingyan Li
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Linxia Cao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Bingrui Yu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Sai Zhao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
4
|
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common complication of premature birth, imposing a significant and potentially life-long burden on patients and their families. Despite advances in our understanding of the mechanisms that contribute to patterns of lung injury and dysfunctional repair, current therapeutic strategies remain non-specific with limited success. Contemporary definitions of BPD continue to rely on clinician prescribed respiratory support requirements at specific time points. While these criteria may be helpful in broadly identifying infants at higher risk of adverse outcomes, they do not offer any precise information regarding the degree to which each compartment of the lung is affected. In this review we will outline the different pulmonary phenotypes of BPD and discuss important features in the pathogenesis, clinical presentation, and management of these frequently overlapping scenarios.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Division of Neonatology, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vineet Bhandari
- Division of Neonatology, The Children's Regional Hospital at Cooper/Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
5
|
Bolouki A, Rahimi M, Azarpira N, Baghban F. Integrated multi-omics analysis identifies epigenetic alteration related to neurodegeneration development in post-traumatic stress disorder patients. Psychiatr Genet 2023; 33:167-181. [PMID: 37222234 DOI: 10.1097/ypg.0000000000000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD), is associated with an elevated risk of neurodegenerative disorders, but the molecular mechanism was not wholly identified. Aberrant methylation status and miRNA expression pattern have been identified to be associated with PTSD, but their complex regulatory networks remain largely unexplored. METHODS The purpose of this study was to identify the key genes/pathways related to neurodegenerative disorder development in PTSD by evaluating epigenetic regulatory signature (DNA methylation and miRNA) using an integrative bioinformatic analysis. We integrated DNA expression array data with miRNA and DNA methylation array data - obtained from the GEO database- to evaluate the epigenetic regulatory mechanisms. RESULTS Our results indicated that target genes of dysregulated miRNAs were significantly related to several neurodegenerative diseases. Several dysregulated genes in the neurodegeneration pathways interacted with some members of the miR-17 and miR-15/107 families. Our analysis indicated that APP/CaN/NFATs signaling pathway was dysregulated in the peripheral blood samples of PTSD. Besides, the DNMT3a and KMT2D genes, as the encoding DNA and histone methyltransferase enzymes, were upregulated, and DNA methylation and miRNA regulators were proposed as critical molecular mechanisms. Our study found dysregulation of circadian rhythm as the CLOCK gene was upregulated and hypomethylated at TSS1500 CpGs S_shores and was also a target of several dysregulated miRNAs. CONCLUSION In conclusion, we found evidence of a negative feedback loop between stress oxidative, circadian rhythm dysregulation, miR-17 and miR-15/107 families, some essential genes involved in neuronal and brain cell health, and KMT2D/DNMT3a in the peripheral blood samples of PTSD.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
- University of Namur, Department of Biology, Research Unit on Cellular Biology (URBC), Namur, Belgium
| | - Moosa Rahimi
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Baghban
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Grimm SL, Reddick S, Dong X, Leek C, Wang AX, Gutierrez MC, Hartig SM, Moorthy B, Coarfa C, Lingappan K. Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury. Biol Sex Differ 2023; 14:50. [PMID: 37553579 PMCID: PMC10408139 DOI: 10.1186/s13293-023-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is characterized by an arrest in lung development and is a leading cause of morbidity in premature neonates. It has been well documented that BPD disproportionally affects males compared to females, but the molecular mechanisms behind this sex-dependent bias remain unclear. Female mice show greater preservation of alveolarization and angiogenesis when exposed to hyperoxia, accompanied by increased miR-30a expression. In this investigation, we tested the hypothesis that loss of miR-30a would result in male and female mice experiencing similar impairments in alveolarization and angiogenesis under hyperoxic conditions. METHODS Wild-type and miR-30a-/- neonatal mice were exposed to hyperoxia [95% FiO2, postnatal day [PND1-5] or room air before being euthanized on PND21. Alveolarization, pulmonary microvascular development, differences in lung transcriptome, and miR-30a expression were assessed in lungs from WT and miR-30a-/- mice of either sex. Blood transcriptomic signatures from preterm newborns (with and without BPD) were correlated with WT and miR-30a-/- male and female lung transcriptome data. RESULTS Significantly, the sex-specific differences observed in WT mice were abrogated in the miR-30a-/- mice upon exposure to hyperoxia. The loss of miR-30a expression eliminated the protective effect in females, suggesting that miR-30a plays an essential role in regulating alveolarization and angiogenesis. Transcriptome analysis by whole lung RNA-Seq revealed a significant response in the miR-30a-/- female hyperoxia-exposed lung, with enrichment of pathways related to cell cycle and neuroactive ligand-receptor interaction. Gene expression signature in the miR-30a-/- female lung associated with human BPD blood transcriptomes. Finally, we showed the spatial localization of miR-30a transcripts in the bronchiolar epithelium. CONCLUSIONS miR-30a could be one of the biological factors mediating the resilience of the female preterm lung to neonatal hyperoxic lung injury. A better understanding of the effects of miR-30a on pulmonary angiogenesis and alveolarization may lead to novel therapeutics for treating BPD.
Collapse
Affiliation(s)
- Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
| | - Samuel Reddick
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Xiao Wang
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean M Hartig
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Division of Endocrinology, Baylor College of Medicine, Houston, TX, USA
| | | | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
| | - Krithika Lingappan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Heyob KM, Khuhro Z, Khan AQ, Brown D, Tipple TE, Rogers LK. Effects of DNA methylase inhibitors in a murine model of severe BPD. Respir Physiol Neurobiol 2023; 313:104060. [PMID: 37031925 DOI: 10.1016/j.resp.2023.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
DNA methylation is necessary for developmental gene regulation, but adverse environments result in aberrant methylation and gene silencing. The current pilot study tested the hypothesis that treatment with DNA methylation inhibitors (decitabine; RG108) would improve alveolarization in a newborn murine model of severe bronchopulmonary dysplasia. Newborn mice exposed to maternal inflammation (LPS) and neonatal hyperoxia (85% O2) were treated with decitabine (p3, 0.1 mg/kg; p2, 4, 6, 0.1 mg/kg; or p2, 4, 6, 0.15 mg/kg) or RG108 (p3, 0.0013 mg/kg) delivered intranasally. Modest improvements in alveolarization were observed with decitabine, but no differences were observed with RG108. Attenuated phospho-SMAD2/3 levels and greater surfactant protein C protein levels compared to vehicle were observed with some tested doses. No detrimental side effects were observed with the doses used in this study. In summary, our pilot investigations identified a safe dose for intranasal administration of both methylation inhibitors and provides a foundation for further studies into methylation inhibitors in the context of neonatal lung injury.
Collapse
Affiliation(s)
- Kathryn M Heyob
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Zahra Khuhro
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Aiman Q Khan
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dorian Brown
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Trent E Tipple
- Section of Neonatal-Perinatal Medicine, Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Putting the "mi" in omics: discovering miRNA biomarkers for pediatric precision care. Pediatr Res 2023; 93:316-323. [PMID: 35906312 PMCID: PMC9884316 DOI: 10.1038/s41390-022-02206-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
In the past decade, growing interest in micro-ribonucleic acids (miRNAs) has catapulted these small, non-coding nucleic acids to the forefront of biomarker research. Advances in scientific knowledge have made it clear that miRNAs play a vital role in regulating cellular physiology throughout the human body. Perturbations in miRNA signaling have also been described in a variety of pediatric conditions-from cancer, to renal failure, to traumatic brain injury. Likewise, the number of studies across pediatric disciplines that pair patient miRNA-omics with longitudinal clinical data are growing. Analyses of these voluminous, multivariate data sets require understanding of pediatric phenotypic data, data science, and genomics. Use of machine learning techniques to aid in biomarker detection have helped decipher background noise from biologically meaningful changes in the data. Further, emerging research suggests that miRNAs may have potential as therapeutic targets for pediatric precision care. Here, we review current miRNA biomarkers of pediatric diseases and studies that have combined machine learning techniques, miRNA-omics, and patient health data to identify novel biomarkers and potential therapeutics for pediatric diseases. IMPACT: In the following review article, we summarized how recent developments in microRNA research may be coupled with machine learning techniques to advance pediatric precision care.
Collapse
|
9
|
Kimble A, Robbins ME, Perez M. Pathogenesis of Bronchopulmonary Dysplasia: Role of Oxidative Stress from 'Omics' Studies. Antioxidants (Basel) 2022; 11:2380. [PMID: 36552588 PMCID: PMC9774798 DOI: 10.3390/antiox11122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common respiratory complication of prematurity as younger and smaller infants are surviving beyond the immediate neonatal period. The recognition that oxidative stress (OS) plays a key role in BPD pathogenesis has been widely accepted since at least the 1980s. In this article, we examine the interplay between OS and genetic regulation and review 'omics' data related to OS in BPD. Data from animal models (largely models of hyperoxic lung injury) and from human studies are presented. Epigenetic and transcriptomic analyses have demonstrated several genes related to OS to be differentially expressed in murine models that mimic BPD as well as in premature infants at risk of BPD development and infants with established lung disease. Alterations in the genetic regulation of antioxidant enzymes is a common theme in these studies. Data from metabolomics and proteomics have also demonstrated the potential involvement of OS-related pathways in BPD. A limitation of many studies includes the difficulty of obtaining timely and appropriate samples from human patients. Additional 'omics' studies could further our understanding of the role of OS in BPD pathogenesis, which may prove beneficial for prevention and timely diagnosis, and aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Ashley Kimble
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mary E. Robbins
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| | - Marta Perez
- Department of Pediatrics, Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Ann and Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Stanley Manne Children’s Research Institute of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Si L, Wang H, Jiang Y, Yi Y, Wang R, Long Q, Zhao Y. MIR17HG polymorphisms contribute to high-altitude pulmonary edema susceptibility in the Chinese population. Sci Rep 2022; 12:4346. [PMID: 35288592 PMCID: PMC8921515 DOI: 10.1038/s41598-022-06944-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
High-altitude pulmonary edema (HAPE) is a common acute altitude sickness. This study was designed to investigate the effect of MIR17HG polymorphisms on HAPE risk in the Chinese population. The Agena MassARRAY platform was used to genotype six single-nucleotide polymorphisms (SNPs) in the MIR17HG gene in 244 HAPE patients and 243 non-HAPE controls. The odds ratio (OR) and 95% confidence interval were used to evaluate the association between each MIR17HG polymorphisms and the risk of HAPE under a polygenetic model. Statistical analysis was performed using the χ2 test. Multifactor dimensionality reduction (MDR) analysis was used to analyze the impacts of SNP–SNP interactions on the risk of HAPE. According to the allele model, the HAPE risk of people with the rs7318578 A allele of MIR17HG was lower than that of people with the C allele (OR 0.74, p = 0.036).Logistic regression analysis of four models for all selected MIR17HG SNPs showed significant differences in the frequencies of rs7318578 (OR 0.74, p = 0.037) and rs17735387 (OR 1.51, p = 0.036) between cases and controls. The results of the sex stratification analysis showed that among males, rs17735387 in the MIR17HG gene is associated with an increased risk of HAPE. MDR analysis showed that the best combination model was a three-locus model incorporating rs72640334, rs7318578, and rs7336610. This study revealed the correlations between rs7318578 and rs17735387 on the MIR17HG gene and the risk of HAPE in the Chinese population, providing a theoretical basis for the early screening, prevention, and diagnosis of HAPE in high-risk populations.
Collapse
Affiliation(s)
- Lining Si
- Department of Critical-Care Medicine, Affiliated Hospital of Qinghai University, Xining, 810001, Qinghai, China
| | - Haiyang Wang
- Department of Diabetes of Traditional Chinese Medicine, Qinghai Red Cross Hospital, Xining, 810001, Qinghai, China
| | - Yahui Jiang
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Yun Yi
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Rong Wang
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Qifu Long
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Yanli Zhao
- Medical College, Qinghai University, No. 29 Tongren Road, Xining, 810001, Qinghai, China.
| |
Collapse
|
11
|
Diagnostic value of PPARδ and miRNA-17 expression levels in patients with non-small cell lung cancer. Sci Rep 2021; 11:24136. [PMID: 34921177 PMCID: PMC8683395 DOI: 10.1038/s41598-021-03312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
The PPARδ gene codes protein that belongs to the peroxisome proliferator-activated receptor (PPAR) family engaged in a variety of biological processes, including carcinogenesis. Specific biological and clinical roles of PPARδ in non-small cell lung cancer (NSCLC) is not fully explained. The association of PPARα with miRNA regulators (e.g. miRNA-17) has been documented, suggesting the existence of a functional relationship of all PPARs with epigenetic regulation. The aim of the study was to determine the PPARδ and miR-17 expression profiles in NSCLC and to assess their diagnostic value in lung carcinogenesis. PPARδ and miR-17 expressions was assessed by qPCR in NSCLC tissue samples (n = 26) and corresponding macroscopically unchanged lung tissue samples adjacent to the primary lesions served as control (n = 26). PPARδ and miR-17 expression were significantly lower in NSCLC than in the control (p = 0.0001 and p = 0.0178; respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential in discriminating NSCLC from the control with an area under the curve (AUC) of 0.914 for PPARδ and 0.692 for miR-17. Significant increase in PPARδ expression in the control for current smokers vs. former smokers (p = 0.0200) and increase in miR-17 expression in control tissue adjacent to adenocarcinoma subtype (p = 0.0422) were observed. Overexpression of miR-17 was observed at an early stage of lung carcinogenesis, which may suggest that it acts as a putative oncomiR. PPARδ and miR-17 may be markers differentiating tumour tissue from surgical margin and miR-17 may have diagnostic role in NSCLC histotypes differentiation.
Collapse
|
12
|
Elliott EK, Hopkins LN, Hensen R, Sutherland HG, Haupt LM, Griffiths LR. Epigenetic Regulation of miR-92a and TET2 and Their Association in Non-Hodgkin Lymphoma. Front Genet 2021; 12:768913. [PMID: 34899857 PMCID: PMC8661906 DOI: 10.3389/fgene.2021.768913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are well known for their ability to regulate the expression of specific target genes through degradation or inhibition of translation of the target mRNA. In various cancers, miRNAs regulate gene expression by altering the epigenetic status of candidate genes that are implicated in various difficult to treat haematological malignancies such as non-Hodgkin lymphoma by acting as either oncogenes or tumour suppressor genes. Cellular and circulating miRNA biomarkers could also be directly utilised as disease markers for diagnosis and monitoring of non-Hodgkin lymphoma (NHL); however, the role of DNA methylation in miRNA expression regulation in NHL requires further scientific inquiry. In this study, we investigated the methylation levels of CpGs in CpG islands spanning the promoter regions of the miR-17–92 cluster host gene and the TET2 gene and correlated them with the expression levels of TET2 mRNA and miR-92a-3p and miR-92a-5p mature miRNAs in NHL cell lines, tumour samples, and the whole blood gDNA of an NHL case control cohort. Increased expression of both miR-92a-3p and miR-92a-5p and aberrant expression of TET2 was observed in NHL cell lines and tumour tissues, as well as disparate levels of dysfunctional promoter CGI methylation. Both miR-92a and TET2 may play a concerted role in NHL malignancy and disease pathogenesis.
Collapse
Affiliation(s)
- Esther K Elliott
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia.,Icon Cancer Centre, Brisbane, QLD, Australia
| | - Lloyd N Hopkins
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | | | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| |
Collapse
|
13
|
Sahni M, Bhandari V. Patho-mechanisms of the origins of bronchopulmonary dysplasia. Mol Cell Pediatr 2021; 8:21. [PMID: 34894313 PMCID: PMC8665964 DOI: 10.1186/s40348-021-00129-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of prematurity, despite significant advancement in neonatology over the last couple of decades. The new BPD is characterized histopathologically by impaired lung alveolarization and dysregulated vascularization. With the increased survival of extremely preterm infants, the risk for the development of BPD remains high, emphasizing the continued need to understand the patho-mechanisms that play a role in the development of this disease. This brief review summarizes recent advances in our understanding of the maldevelopment of the premature lung, highlighting recent research in pathways of oxidative stress-related lung injury, the role of placental insufficiency, growth factor signaling, the extracellular matrix, and microRNAs.
Collapse
Affiliation(s)
- Mitali Sahni
- Pediatrix Medical Group, Sunrise Children's Hospital, Las Vegas, NV, USA.,University of Nevada, Las Vegas, NV, USA
| | - Vineet Bhandari
- Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
14
|
Xi Y, Wang Y. Insight Into the Roles of Non-coding RNA in Bronchopulmonary Dysplasia. Front Med (Lausanne) 2021; 8:761724. [PMID: 34805228 PMCID: PMC8602187 DOI: 10.3389/fmed.2021.761724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease most commonly occurring in premature infants, and its pathological manifestations are alveolar hypoplasia and dysregulation of pulmonary vasculature development. The effective treatment for BPD has not yet been established. Non-coding RNAs, including microRNAs and long non-coding RNAs do not encode proteins, but can perform its biological functions at the RNA level. Non-coding RNAs play an important role in the incidence and development of BPD by regulating the expression of genes related to proliferation, apoptosis, angiogenesis, inflammation and other cell activities of alveolar epithelial cells and vascular endothelial cells. Here we summarize the role of non-coding RNAs in BPD, which provides possible molecular marker and therapeutic target for the diagnosis and treatment of BPD.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujia Wang
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine Hypoxia and Epigenetic Programming in Lung Development and Disease. Biomedicines 2021; 9:944. [PMID: 34440150 PMCID: PMC8394854 DOI: 10.3390/biomedicines9080944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Clinically, intrauterine hypoxia is the foremost cause of perinatal morbidity and developmental plasticity in the fetus and newborn infant. Under hypoxia, deviations occur in the lung cell epigenome. Epigenetic mechanisms (e.g., DNA methylation, histone modification, and miRNA expression) control phenotypic programming and are associated with physiological responses and the risk of developmental disorders, such as bronchopulmonary dysplasia. This developmental disorder is the most frequent chronic pulmonary complication in preterm labor. The pathogenesis of this disease involves many factors, including aberrant oxygen conditions and mechanical ventilation-mediated lung injury, infection/inflammation, and epigenetic/genetic risk factors. This review is focused on various aspects related to intrauterine hypoxia and epigenetic programming in lung development and disease, summarizes our current knowledge of hypoxia-induced epigenetic programming and discusses potential therapeutic interventions for lung disease.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| |
Collapse
|
16
|
Freeman A, Qiao L, Olave N, Rezonzew G, Gentle S, Halloran B, Pryhuber GS, Gaggar A, Tipple TE, Ambalavanan N, Lal CV. MicroRNA 219-5p inhibits alveolarization by reducing platelet derived growth factor receptor-alpha. Respir Res 2021; 22:57. [PMID: 33596914 PMCID: PMC7891005 DOI: 10.1186/s12931-021-01654-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNA (miR) are small conserved RNA that regulate gene expression post-transcription. Previous genome-wide analysis studies in preterm infants indicate that pathways of miR 219-5p are important in infants with Bronchopulmonary Dysplasia (BPD). METHODS Here we report a prospective cohort study of extremely preterm neonates wherein infants diagnosed with severe BPD expressed increased airway miR-219-5p and decreased platelet derived growth factor receptor alpha (PDGFR-α), a target of mir-219-5p and a key regulator of alveolarization, compared to post-conception age-matched term infants. RESULTS miR-219-5p was highly expressed in the pulmonary epithelial lining in lungs of infants with BPD by in situ hybridization of human infant lungs. In both in vitro and in vivo (mouse) models of BPD, miR-219-5p was increased on exposure to hyperoxia compared with the normoxia control, with a complementary decrease of PDGFR-α. To further confirm the target relationship between miR-219 and PDGFR-α, pulmonary epithelial cells (MLE12) and lung primary fibroblasts were treated with a mimic of miR-219-5p and a locked nucleic acid (LNA) based inhibitor of miR-219-5p. In comparison with the control group, the level of miR-219 increased significantly after miR-219 mimic treatment, while the level of PDGFR-α declined markedly. LNA exposure increased PDGFR-α. Moreover, in BPD mouse model, over-expression of miR-219-5p inhibited alveolar development, indicated by larger alveolar spaces accompanied by reduced septation. CONCLUSIONS Taken together, our results demonstrate that increased miR-219-5p contributes to the pathogenesis of BPD by targeting and reducing PDGFR-α. The use of specific miRNA antagonists may be a therapeutic strategy for preventing the development of BPD.
Collapse
Affiliation(s)
- Amelia Freeman
- Division of Neonatology, Department of Pediatrics, Women and Infants Center, University of Alabama At Birmingham, 176F Suite 9380619 South 19th Street, Birmingham, AL, 35249-7335, USA
| | - Luhua Qiao
- Division of Neonatology, Department of Pediatrics, Women and Infants Center, University of Alabama At Birmingham, 176F Suite 9380619 South 19th Street, Birmingham, AL, 35249-7335, USA
| | - Nelida Olave
- Division of Neonatology, Department of Pediatrics, Women and Infants Center, University of Alabama At Birmingham, 176F Suite 9380619 South 19th Street, Birmingham, AL, 35249-7335, USA
| | - Gabriel Rezonzew
- Division of Neonatology, Department of Pediatrics, Women and Infants Center, University of Alabama At Birmingham, 176F Suite 9380619 South 19th Street, Birmingham, AL, 35249-7335, USA
| | - Samuel Gentle
- Division of Neonatology, Department of Pediatrics, Women and Infants Center, University of Alabama At Birmingham, 176F Suite 9380619 South 19th Street, Birmingham, AL, 35249-7335, USA
| | - Brian Halloran
- Division of Neonatology, Department of Pediatrics, Women and Infants Center, University of Alabama At Birmingham, 176F Suite 9380619 South 19th Street, Birmingham, AL, 35249-7335, USA
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Amit Gaggar
- Program in Matrix and Pulmonary Biology, Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Trent E Tipple
- Center for Pregnancy and Newborn Research, Section of Neonatal-Perinatal Medicine, University of Oklahoma College of Medicine, Oklahoma, OK, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, Women and Infants Center, University of Alabama At Birmingham, 176F Suite 9380619 South 19th Street, Birmingham, AL, 35249-7335, USA
| | - Charitharth Vivek Lal
- Division of Neonatology, Department of Pediatrics, Women and Infants Center, University of Alabama At Birmingham, 176F Suite 9380619 South 19th Street, Birmingham, AL, 35249-7335, USA.
- Program in Matrix and Pulmonary Biology, Department of Medicine, University of Alabama, Birmingham, AL, USA.
| |
Collapse
|
17
|
Perinatal inflammation alters histone 3 and histone 4 methylation patterns: Effects of MiR-29b supplementation. Redox Biol 2020; 38:101783. [PMID: 33202301 PMCID: PMC7677713 DOI: 10.1016/j.redox.2020.101783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023] Open
Abstract
Preterm birth is still a major health problem and maternal inflammation has been shown to play a role. The combination of maternal inflammation and neonatal hyperoxia contributes to epigenetic changes that influence gene expression and the development of bronchopulmonary dysplasia (BPD). We have previously demonstrated suppression of miR-29b and increases in DNA methylation in infants with severe BPD and in our mouse model of maternal inflammation and neonatal hyperoxia exposure. The present studies further explored epigenetic changes in the murine model to include histone methylation. We identified a global suppression of histone methylation in exposed mice and validated decreases in expression in well-defined histone modifications, specifically H3K4me3, H3K27me3, H3K36me2, H3K79me2, and H4K20me3. We further tested the hypothesis that restoration of miR-29b expression would restore the histone methylation marks. Using lipid nanoparticle delivery of miR-29b, partial to full methylation was reestablished for H3K4me3, H3K27me3, and H4K20me3; all tri-methylation marks. To identify the causes of decreased methylation in exposed mice, we measured commonly identified methylases and demethylases. We found a decreased expression of SUV40H2, a methylase primarily associated with H4K20me3. Further studies are needed to identify the causes for the decreased global histone methylation and potential therapeutic opportunities.
Collapse
|
18
|
Involvement of Hdac3-mediated inhibition of microRNA cluster 17-92 in bronchopulmonary dysplasia development. Mol Med 2020; 26:99. [PMID: 33143661 PMCID: PMC7640435 DOI: 10.1186/s10020-020-00237-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background The incidence of bronchopulmonary dysplasia (BPD), a chronic lung disease of newborns, has been paradoxically rising despite medical advances. Histone deacetylase 3 (Hdac3) has been reported to be a crucial regulator in alveologenesis. Hence, this study aims to investigate the mechanism of Hdac3 in the abnormal pulmonary angiogenesis and alveolarization of BPD. Methods A hyperoxia-induced BPD model of was developed in newborn mice, and primary lung fibroblasts were isolated from adult mice. Hdac3 was knocked out in vivo and knocked down in vitro, while microRNA (miR)-17 was downregulated in vivo and in vitro to clarify their roles in abnormal pulmonary angiogenesis and alveolarization. Mechanistic investigations were performed on the interplay of Hdac3, miR-17-92 cluster, enhancer of zeste homolog 1 (EZH1), p65 and placental growth factor (Pgf). Results Hdac3 was involved in abnormal alveolarization and angiogenesis in BPD mice. Further, the expression of the miR-17-92 cluster in BPD mice was downregulated by Hdac3. miR-17 was found to target EZH1, and Hdac3 rescued the inhibited EZH1 expression by miR-17 in lung fibroblasts. Additionally, EZH1 augmented Pgf expression by recruiting p65 thus enhancing the progression of BPD. Hdac3 augmented the recruitment of p65 in the Pgf promoter region through the miR-17/EZH1 axis, thus enhancing the transcription and expression of Pgf, which elicited abnormal angiogenesis and alveolarization of BPD mice. Conclusions Altogether, the present study revealed that Hdac3 activated the EZH1-p65-Pgf axis through inhibiting miR-17 in the miR-17-92 cluster, leading to accelerated abnormal pulmonary angiogenesis and alveolarization of BPD mice.
Collapse
|
19
|
Coarfa C, Grimm SL, Katz T, Zhang Y, Jangid RK, Walker CL, Moorthy B, Lingappan K. Epigenetic response to hyperoxia in the neonatal lung is sexually dimorphic. Redox Biol 2020; 37:101718. [PMID: 32961439 PMCID: PMC7509469 DOI: 10.1016/j.redox.2020.101718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
Sex as a biological variable plays a critical role both during lung development and in modulating postnatal hyperoxic lung injury and repair. The molecular mechanisms behind these sex-specific differences need to be elucidated. Our objective was to determine if the neonatal lung epigenomic landscape reconfiguration has profound effects on gene expression and could underlie sex-biased differences in protection from or susceptibility to diseases. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia (95% FiO, PND 1-5: saccular stage) or room air and euthanized on PND 7 and 21. Pulmonary gene expression was studied using RNA-seq on Illumina HiSeq 2500 platform and quantified. Epigenomic landscape was assessed using Chromatin Immunoprecipitation (ChIP-Seq) of the H3K27ac histone modification mark, associated with active genes, enhancers, and super-enhancers. These data were then integrated, pathways identified and validated. Sex-biased epigenetic modulation of gene expression leads to differential regulation of biological processes in the developing lung at baseline and after exposure to hyperoxia. The female lung exhibits a more robust epigenomic response for the H3K27ac mark in response to hyperoxia. Epigenomic changes distribute over genomic and epigenomic domains in a sex-specific manner. The differential epigenomic responses also enrich for key transcription regulators crucial for lung development. In addition, by utilizing H3K27ac as the target epigenomic change we were also able to identify new epigenomic reprogramming at super-enhancers. Finally, we report for the first time that the upregulation of p21 (Cdkn1a) in the injured neonatal lung could be mediated through gain of H3K27ac. These data demonstrate that modulation of transcription via epigenomic landscape alterations may contribute to the sex-specific differences in preterm neonatal hyperoxic lung injury and repair.
Collapse
Affiliation(s)
- Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, USA; Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, USA.
| | - Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA
| | - Tiffany Katz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, USA; Obstetrics and Gynecology Department, Baylor College of Medicine, Houston, USA
| | - Yuhao Zhang
- Pediatrics/Neonatology, Baylor College of Medicine, Houston, USA
| | - Rahul K Jangid
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, USA; Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, USA
| | - Cheryl L Walker
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, USA; Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, USA
| | | | | |
Collapse
|
20
|
Abstract
Bronchopulmonary dysplasia (BPD) remains a common and challenging complication of prematurity, with limited effective strategies at the neonatologist's disposal. Throughout the years, our understanding of this complex syndrome has broadened. Instead of solely attributing this disease to the effects of prematurity and injuries to the lung from mechanical ventilation, it is now accepted to be a multifactorial disease. Recent research efforts have focused on investigating the gene-environment interactions that may influence an infant's susceptibility toward the development of BPD. So far, success has been limited but promising, offering hope that in the future, novel therapies will be available to ameliorate the risk for BPD.
Collapse
Affiliation(s)
- Melanie Leong
- Division of Newborn Medicine, The Regional Neonatal Center, Maria Fareri Children's Hospital, New York Medical College, Valhalla, NY
| |
Collapse
|
21
|
Ruiz-Camp J, Quantius J, Lignelli E, Arndt PF, Palumbo F, Nardiello C, Surate Solaligue DE, Sakkas E, Mižíková I, Rodríguez-Castillo JA, Vadász I, Richardson WD, Ahlbrecht K, Herold S, Seeger W, Morty RE. Targeting miR-34a/ Pdgfra interactions partially corrects alveologenesis in experimental bronchopulmonary dysplasia. EMBO Mol Med 2020; 11:emmm.201809448. [PMID: 30770339 PMCID: PMC6404112 DOI: 10.15252/emmm.201809448] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth characterized by arrested lung alveolarization, which generates lungs that are incompetent for effective gas exchange. We report here deregulated expression of miR‐34a in a hyperoxia‐based mouse model of BPD, where miR‐34a expression was markedly increased in platelet‐derived growth factor receptor (PDGFR)α‐expressing myofibroblasts, a cell type critical for proper lung alveolarization. Global deletion of miR‐34a; and inducible, conditional deletion of miR‐34a in PDGFRα+ cells afforded partial protection to the developing lung against hyperoxia‐induced perturbations to lung architecture. Pdgfra mRNA was identified as the relevant miR‐34a target, and using a target site blocker in vivo, the miR‐34a/Pdgfra interaction was validated as a causal actor in arrested lung development. An antimiR directed against miR‐34a partially restored PDGFRα+ myofibroblast abundance and improved lung alveolarization in newborn mice in an experimental BPD model. We present here the first identification of a pathology‐relevant microRNA/mRNA target interaction in aberrant lung alveolarization and highlight the translational potential of targeting the miR‐34a/Pdgfra interaction to manage arrested lung development associated with preterm birth.
Collapse
Affiliation(s)
- Jordi Ruiz-Camp
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jennifer Quantius
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ettore Lignelli
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Philipp F Arndt
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Elpidoforos Sakkas
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
22
|
Go H, Maeda H, Miyazaki K, Maeda R, Kume Y, Namba F, Momoi N, Hashimoto K, Otsuru S, Kawasaki Y, Hosoya M, Dennery PA. Extracellular vesicle miRNA-21 is a potential biomarker for predicting chronic lung disease in premature infants. Am J Physiol Lung Cell Mol Physiol 2020; 318:L845-L851. [PMID: 32191117 DOI: 10.1152/ajplung.00166.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Premature infants are often exposed to positive pressure ventilation and supplemental oxygen, which leads to the development of chronic lung disease (CLD). There are currently no standard serum biomarkers used for prediction or early detection of patients who go on to develop CLD. MicroRNAs (miRNAs) are a novel class of naturally occurring, short, noncoding substances that regulate gene expression at the posttranscriptional level and cause translational inhibition and/or mRNA degradation and present in body fluids packaged in extracellular vesicles (EVs), rendering them remarkably stable. Our aim was to evaluate miRNAs identified in serum EVs of premature infants as potential biomarkers for CLD. Serum EVs were extracted from premature infants at birth and on the 28th day of life (DOL). Using a human miRNA array, we identified 62 miRNAs that were universally expressed in CLD patients and non-CLD patients. Of the 62 miRNAs, 59 miRNAs and 44 miRNAs were differentially expressed on DOL0 and DOL28 in CLD and non-CLD patients, respectively. Of these miRNAs, serum EV miR-21 was upregulated in CLD patients on DOL28 compared with levels at birth and downregulated in non-CLD patients on DOL28 compared with levels at birth. In neonatal mice exposed to hyperoxia for 7days, as a model of CLD, five miRNAs (miR-34a, miR-21, miR-712, miR-682, and miR-221) were upregulated, and 7 miRNAs (miR-542-5p, miR-449a, miR-322, miR-190b, miR-153, miR-335-3p, miR-377) were downregulated. MiR-21 was detected as a common miRNA that changed in CLD patients and in the hyperoxia exposed mice. We conclude that EV miR-21 may be a biomarker of CLD.
Collapse
Affiliation(s)
- Hayato Go
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hajime Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kyohei Miyazaki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ryo Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yohei Kume
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama, Japan
| | - Nobuo Momoi
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yukihiko Kawasaki
- Department of Pediatrics, Sapporo Medical University School of Medicine, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Phyllis A Dennery
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, Rhode Island.,Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
23
|
Carbon nanotubes: An effective platform for biomedical electronics. Biosens Bioelectron 2019; 150:111919. [PMID: 31787449 DOI: 10.1016/j.bios.2019.111919] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Cylindrical fullerenes (or carbon nanotubes (CNTs)) have been extensively investigated as potential sensor platforms due to effective and practical manipulation of their physical and chemical properties by functionalization/doping with chemical groups suitable for novel nanocarrier systems. CNTs play a significant role in biomedical applications due to rapid development of synthetic methods, structural integration, surface area-controlled heteroatom doping, and electrical conductivity. This review article comprehensively summarized recent trends in biomedical science and technologies utilizing a promising nanomaterial of CNTs in disease diagnosis and therapeutics, based on their biocompatibility and significance in drug delivery, implants, and bio imaging. Biocompatibility of CNTs is essential for designing effective and practical electronic applications in the biomedical field particularly due to their growing potential in the delivery of anticancer agents. Furthermore, functionalized CNTs have been shown to exhibit advanced electrochemical properties, responsible for functioning of numerous oxidase and dehydrogenase based amperometric biosensors. Finally, faster signal transduction by CNTs allows charge transfer between underlying electrode and redox centres of biomolecules (enzymes).
Collapse
|
24
|
Hoefel G, Tay H, Foster P. MicroRNAs in Lung Diseases. Chest 2019; 156:991-1000. [DOI: 10.1016/j.chest.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
|
25
|
Abstract
Significance: Redox homeostasis is finely tuned and governed by distinct intracellular mechanisms. The dysregulation of this either by external or internal events is a fundamental pathophysiologic base for many pulmonary diseases. Recent Advances: Based on recent discoveries, it is increasingly clear that cellular redox state and oxidation of signaling molecules are critical modulators of lung disease and represent a final common pathway that leads to poor respiratory outcomes. Critical Issues: Based on the wide variety of stimuli that alter specific redox signaling pathways, improved understanding of the disease and patient-specific alterations are needed for the development of therapeutic targets. Further Directions: For the full comprehension of redox signaling in pulmonary disease, it is essential to recognize the role of reactive oxygen intermediates in modulating biological responses. This review summarizes current knowledge of redox signaling in pulmonary development and pulmonary vascular disease.
Collapse
Affiliation(s)
- Gaston Ofman
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Trent E Tipple
- Redox Biology Laboratory, Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
Warnement CM, Cismowski MJ, Rogers LK. Optimizing miR-29 measurements in biobanked, heparinized samples. Life Sci 2019; 238:116894. [PMID: 31626789 DOI: 10.1016/j.lfs.2019.116894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023]
Abstract
AIMS MicroRNAs (miRs) and their importance in development, normal physiology, and disease have become increasingly recognized. Our laboratory is interested in miR-29 and its effects on lung development. These studies set out to identify optimal conditions for the measurement of miR-29 in heparinized, biobanked samples and to compare isoform expression patterns. MATERIALS AND METHODS The efficiency of three distinct heparinases were tested using reverse transcriptase polymerase chain reaction (RT-PCR): recombinant F. Heparinum heparinase I; recombinant P. heparinus heparinase II; recombinant P. heparinus heparinase III; and heparinase I (B. efferthii-derived). The effects of freeze/thaws, and the relative expression of different miR-29 isoforms were also assessed using RT-PCR. KEY FINDINGS Our investigations determined that heparinase 1 (recombinant F. Heparinum) and 2 (recombinant P. heparinus) at 1 or 2 h incubation efficiently neutralized heparin activity and prevented interference with the PCR. Also, a single freeze/thaw did not affect the measurement of miR-29-3p but multiple freeze/thaw cycles decreased the measureable miR levels. Finally, the -3p strand was most abundantly expressed in all three isoforms in both human and mouse plasma. SIGNIFICANCE Our findings illustrate that specific conditions need to be optimized for the particular miR and the type of sample being tested.
Collapse
Affiliation(s)
- Catherine M Warnement
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, USA
| | - Mary J Cismowski
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, USA; Department of Pediatrics, The Ohio State University, USA
| | - Lynette K Rogers
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, USA; Department of Pediatrics, The Ohio State University, USA.
| |
Collapse
|
27
|
Liu Y, Ma Y, Zhang J, Yuan Y, Wang J. Exosomes: A Novel Therapeutic Agent for Cartilage and Bone Tissue Regeneration. Dose Response 2019; 17:1559325819892702. [PMID: 31857803 PMCID: PMC6913055 DOI: 10.1177/1559325819892702] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Despite traditionally treating autologous and allogeneic transplantation and emerging tissue engineering (TE)-based therapies, which have commonly performed in clinic for skeletal diseases, as the "gold standard" for care, undesirably low efficacy and other complications remain. Therefore, exploring new strategies with better therapeutic outcomes and lower incidences of unfavorable side effect is imperative. Recently, exosomes, secreted microvesicles of endocytic origin, have caught researcher's eyes in tissue regeneration fields, especially in cartilage and bone-related regeneration. Multiple researchers have demonstrated the crucial roles of exosomes throughout every developing stage of cartilage and bone tissue regeneration, indicating that there may be a potential therapeutic application of exosomes in future clinical use. Herein, we summarize the function of exosomes derived from the primary cells functioning in skeletal diseases and their restoration processes, therapeutic exosomes used to promote cartilage and bone repairing in recent research, and applications of exosomes within the setting of the TE matrix.
Collapse
Affiliation(s)
- Yanxin Liu
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Yuan Yuan
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jinqiao Wang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
28
|
Ma C, Jiang F, Ma Y, Wang J, Li H, Zhang J. Isolation and Detection Technologies of Extracellular Vesicles and Application on Cancer Diagnostic. Dose Response 2019; 17:1559325819891004. [PMID: 31839757 PMCID: PMC6902397 DOI: 10.1177/1559325819891004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/04/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
The vast majority of cancers are treatable when diagnosed early. However, due to the elusive trace and the limitation of traditional biopsies, most cancers have already spread widely and are at advanced stages when they are first diagnosed, causing ever-increasing mortality in the past decades. Hence, developing reliable methods for early detection and diagnosis of cancer is indispensable. Recently, extracellular vesicles (EVs), as circulating phospholipid vesicles secreted by cells, are found to play significant roles in the intercellular communication as well as the setup of tumor microenvironments and have been identified as one of the key factors in the next-generation technique for cancer diagnosis. However, EVs present in complex biofluids that contain various contaminations such as nonvesicle proteins and nonspecific EVs, resulting in the interference of screening for desired biomarkers. Therefore, applicable isolation and enrichment methods that guarantee scale-up of sample volume, purity, speed, yield, and tumor specificity are necessary. In this review, we introduce current technologies for EV separation and summarize biomarkers toward EV-based cancer liquid biopsy. In conclusion, a novel systematic isolation method that guarantees high purity, recovery rate, and tumor specificity is still missing. Besides that, a dual-model EV-based clinical trial system includes isolation and detection is a hot trend in the future due to efficient point-of-care needs. In addition, cancer-related biomarkers discovery and biomarker database establishment are essential objectives in the research field for diagnostic settings.
Collapse
Affiliation(s)
- Chunyan Ma
- Department of Neurology, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Fan Jiang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jinqiao Wang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Hongjuan Li
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
Bonnet S, Boucherat O, Paulin R, Wu D, Hindmarch CCT, Archer SL, Song R, Moore JB, Provencher S, Zhang L, Uchida S. Clinical value of non-coding RNAs in cardiovascular, pulmonary, and muscle diseases. Am J Physiol Cell Physiol 2019; 318:C1-C28. [PMID: 31483703 DOI: 10.1152/ajpcell.00078.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although a majority of the mammalian genome is transcribed to RNA, mounting evidence indicates that only a minor proportion of these transcriptional products are actually translated into proteins. Since the discovery of the first non-coding RNA (ncRNA) in the 1980s, the field has gone on to recognize ncRNAs as important molecular regulators of RNA activity and protein function, knowledge of which has stimulated the expansion of a scientific field that quests to understand the role of ncRNAs in cellular physiology, tissue homeostasis, and human disease. Although our knowledge of these molecules has significantly improved over the years, we have limited understanding of their precise functions, protein interacting partners, and tissue-specific activities. Adding to this complexity, it remains unknown exactly how many ncRNAs there are in existence. The increased use of high-throughput transcriptomics techniques has rapidly expanded the list of ncRNAs, which now includes classical ncRNAs (e.g., ribosomal RNAs and transfer RNAs), microRNAs, and long ncRNAs. In addition, splicing by-products of protein-coding genes and ncRNAs, so-called circular RNAs, are now being investigated. Because there is substantial heterogeneity in the functions of ncRNAs, we have summarized the present state of knowledge regarding the functions of ncRNAs in heart, lungs, and skeletal muscle. This review highlights the pathophysiologic relevance of these ncRNAs in the context of human cardiovascular, pulmonary, and muscle diseases.
Collapse
Affiliation(s)
- Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Queen's Cardiopulmonary Unit, Translational Institute of Medicine, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shizuka Uchida
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
30
|
Preventing bronchopulmonary dysplasia: new tools for an old challenge. Pediatr Res 2019; 85:432-441. [PMID: 30464331 DOI: 10.1038/s41390-018-0228-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most prevalent chronic lung disease in infants and presents as a consequence of preterm birth. Due to the lack of effective preventive and treatment strategies, BPD currently represents a major therapeutic challenge that requires continued research efforts at the basic, translational, and clinical levels. However, not all very low birth weight premature babies develop BPD, which suggests that in addition to known gestational age and intrauterine and extrauterine risk factors, other unknown factors must be involved in this disease's development. One of the main goals in BPD research is the early prediction of very low birth weight infants who are at risk of developing BPD in order to initiate the adequate preventive strategies. Other benefits of determining the risk of BPD include providing prognostic information and stratifying infants for clinical trial enrollment. In this article, we describe new opportunities to address BPD's complex pathophysiology by identifying prognostic biomarkers and develop novel, complex in vitro human lung models in order to develop effective therapies. These therapies for protecting the immature lung from injury can be developed by taking advantage of recent scientific progress in -omics, 3D organoids, and regenerative medicine.
Collapse
|
31
|
Zhang Y, Coarfa C, Dong X, Jiang W, Hayward-Piatkovskyi B, Gleghorn JP, Lingappan K. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD. Am J Physiol Lung Cell Mol Physiol 2019; 316:L144-L156. [PMID: 30382766 PMCID: PMC6383497 DOI: 10.1152/ajplung.00372.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Premature male neonates are at a greater risk of developing bronchopulmonary dysplasia (BPD). The reasons underlying sexually dimorphic outcomes in premature neonates are not known. The role of miRNAs in mediating sex biases in BPD is understudied. Analysis of the pulmonary transcriptome revealed that a large percentage of angiogenesis-related differentially expressed genes are miR-30a targets. We tested the hypothesis that there is differential expression of miR-30a in vivo and in vitro in neonatal human pulmonary microvascular endothelial cells (HPMECs) upon exposure to hyperoxia. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% fraction of inspired oxygen (FiO2), postnatal day ( PND) 1-5] and euthanized on PND 7 and 21. HPMECs (18-24-wk gestation donors) were subjected to hyperoxia (95% O2 and 5% CO2) or normoxia (air and 5% CO2) up to 72 h. miR-30a expression was increased in both males and females in the acute phase ( PND 7) after hyperoxia exposure. However, at PND 21 (recovery phase), female mice showed significantly higher miR-30a expression in the lungs compared with male mice. Female HPMECs showed greater expression of miR-30a in vitro upon exposure to hyperoxia. Delta-like ligand 4 (Dll4) was an miR-30a target in HPMECs and showed sex-specific differential expression. miR-30a increased angiogenic sprouting in vitro in female HPMECs. Lastly, we show decreased expression of miR-30a and increased expression of DLL4 in human BPD lung samples compared with controls. These results support the hypothesis that miR-30a could, in part, contribute to the sex-specific molecular mechanisms in play that lead to the sexual dimorphism in BPD.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | - Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine , Houston, Texas
| | - Xiaoyu Dong
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | | | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware , Newark, Delaware
- Department of Biomedical Engineering, University of Delaware , Newark, Delaware
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
32
|
Yan G, Du Q, Wei X, Miozzi J, Kang C, Wang J, Han X, Pan J, Xie H, Chen J, Zhang W. Application of Real-Time Cell Electronic Analysis System in Modern Pharmaceutical Evaluation and Analysis. Molecules 2018; 23:E3280. [PMID: 30544947 PMCID: PMC6321149 DOI: 10.3390/molecules23123280] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: We summarized the progress of the xCELLigence real-time cell analysis (RTCA) technology application in recent years for the sake of enriching and developing the application of RTCA in the field of Chinese medicine. Background: The RTCA system is an established electronic cellular biosensor. This system uses micro-electronic biosensor technology that is confirmed for real-time, label-free, dynamic and non-offensive monitoring of cell viability, migration, growth, spreading, and proliferation. Methods: We summarized the relevant experiments and literature of RTCA technology from the principles, characteristics, applications, especially from the latest application progress. Results and conclusion: RTCA is attracting more and more attention. Now it plays an important role in drug screening, toxicology, Chinese herbal medicine and so on. It has wide application prospects in the area of modern pharmaceutical evaluation and analysis.
Collapse
Affiliation(s)
- Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qian Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xuchao Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jackelyn Miozzi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Chen Kang
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Jinnv Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinxin Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jinhuo Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hui Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jun Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weihua Zhang
- Beijing Body Revival Medical Technology Co., Ltd., Beijing 100088, China.
| |
Collapse
|
33
|
Ali M, Heyob K, Tipple TE, Pryhuber GS, Rogers LK. Alterations in VASP phosphorylation and profilin1 and cofilin1 expression in hyperoxic lung injury and BPD. Respir Res 2018; 19:229. [PMID: 30463566 PMCID: PMC6249974 DOI: 10.1186/s12931-018-0938-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hyperoxia is a frequently employed therapy for prematurely born infants, induces lung injury and contributes to development of bronchopulmonary dysplasia (BPD). BPD is characterized by decreased cellular proliferation, cellular migration, and failure of injury repair systems. Actin binding proteins (ABPs) such as VASP, cofilin1, and profilin1 regulate cell proliferation and migration via modulation of actin dynamics. Lung mesenchymal stem cells (L-MSCs) initiate repair processes by proliferating, migrating, and localizing to sites of injury. These processes have not been extensively explored in hyperoxia induced lung injury and repair. METHODS ABPs and CD146+ L-MSCs were analyzed by immunofluorescence in human lung autopsy tissues from infants with and without BPD and by western blot in lung tissue homogenates obtained from our murine model of newborn hyperoxic lung injury. RESULTS Decreased F-actin content, ratio of VASPpS157/VASPpS239, and profilin 1 expression were observed in human lung tissues but this same pattern was not observed in lungs from hyperoxia-exposed newborn mice. Increases in cofilin1 expression were observed in both human and mouse tissues at 7d indicating a dysregulation in actin dynamics which may be related to altered growth. CD146 levels were elevated in human and newborn mice tissues (7d). CONCLUSION Altered phosphorylation of VASP and expression of profilin 1 and cofilin 1 in human tissues indicate that the pathophysiology of BPD involves dysregulation of actin binding proteins. Lack of similar changes in a mouse model of hyperoxia exposure imply that disruption in actin binding protein expression may be linked to interventions or morbidities other than hyperoxia alone.
Collapse
Affiliation(s)
- Mehboob Ali
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 575 Children's Cross Road, Columbus, OH, USA.
| | - Kathryn Heyob
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 575 Children's Cross Road, Columbus, OH, USA
| | - Trent E Tipple
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, 575 Children's Cross Road, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
34
|
Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, Yang Z, Xie J. A Review on Electroporation-Based Intracellular Delivery. Molecules 2018; 23:E3044. [PMID: 30469344 PMCID: PMC6278265 DOI: 10.3390/molecules23113044] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/17/2022] Open
Abstract
Intracellular delivery is a critical step in biological discoveries and has been widely utilized in biomedical research. A variety of molecular tools have been developed for cell-based gene therapies, including FDA approved CAR-T immunotherapy, iPSC, cell reprogramming and gene editing. Despite the inspiring results of these applications, intracellular delivery of foreign molecules including nucleic acids and proteins remains challenging. Efficient yet non-invasive delivery of biomolecules in a high-throughput manner has thus long fascinates the scientific community. As one of the most popular non-viral technologies for cell transfection, electroporation has gone through enormous development with the assist of nanotechnology and microfabrication. Emergence of miniatured electroporation system brought up many merits over the weakness of traditional electroporation system, including precise dose control and high cell viability. These new generation of electroporation systems are of considerable importance to expand the biological applications of intracellular delivery, bypassing the potential safety issue of viral vectors. In this review, we will go over the recent progresses in the electroporation-based intracellular delivery and several potential applications of cutting-edge research on the miniatured electroporation, including gene therapy, cellular reprogramming and intracellular probe.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuanxin Chen
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL 33573, USA.
| | - Yating Sun
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yicheng Yao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
35
|
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of preterm birth and is characterized histopathologically by impaired lung alveolarization. Extremely preterm born infants remain at high risk for the development of BPD, highlighting a pressing need for continued efforts to understand the pathomechanisms at play in affected infants. This brief review summarizes recent progress in our understanding of the how the development of the newborn lung is stunted, highlighting recent reports on roles for growth factor signaling, oxidative stress, inflammation, the extracellular matrix and proteolysis, non-coding RNA, and fibroblast and epithelial cell plasticity. Additionally, some concerns about modeling BPD in experimental animals are reviewed, as are new developments in the in vitro modeling of pathophysiological processes relevant to impaired lung alveolarization in BPD.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
36
|
Hu J, Kwak KJ, Shi J, Yu B, Sheng Y, Lee LJ. Overhang molecular beacons encapsulated in tethered cationic lipoplex nanoparticles for detection of single-point mutation in extracellular vesicle-associated RNAs. Biomaterials 2018; 183:20-29. [PMID: 30145409 DOI: 10.1016/j.biomaterials.2018.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023]
Abstract
Detection of specific extracellular RNAs has been developed for non-invasive cancer diagnosis. However, accurate and efficient identification of RNAs with single-point mutation in cancer cells-derived extracellular vesicles (EVs) is challenging. Herein, we present a unique overhang molecular beacon with internal dye (Ohi-MB) with a stable hairpin structure, fast hybridization kinetics and single mismatch specificity. Ohi-MBs are encapsulated in cationic lipoplex nanoparticles (CLNs) that are tethered on a gold coated glass slide as a chip, which can capture circulating EVs and detect encapsulated target RNAs in-situ in a single step. The capability of detection of single-point mutation by CLN-Ohi-MB is demonstrated in artificial EVs and cancer cells. This CLN-Ohi-MB biochip could quantify single-point mutations in KRAS mRNA (G12C, G12D, G12V) in pancreatic cancer cell-derived EVs and single-point mutations in EGFR mRNA (L858R and T790M) in lung cancer cell-derived EVs with high specificity, not achievable by conventional molecular probes. We show that CLN-Ohi-MB biochip could selectively and sensitively identify single-point mutations in KRAS mRNA in human serum EVs, distinguishing pancreatic cancer patients with different mutations.
Collapse
Affiliation(s)
- Jiaming Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Kwang Joo Kwak
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Junfeng Shi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Bohao Yu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yan Sheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Ly James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
37
|
Hönig J, Mižíková I, Nardiello C, Surate Solaligue DE, Daume MJ, Vadász I, Mayer K, Herold S, Günther S, Seeger W, Morty RE. Transmission of microRNA antimiRs to mouse offspring via the maternal-placental-fetal unit. RNA (NEW YORK, N.Y.) 2018; 24:865-879. [PMID: 29540511 PMCID: PMC5959254 DOI: 10.1261/rna.063206.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/12/2018] [Indexed: 09/09/2023]
Abstract
The emergence of microRNA as regulators of organogenesis and tissue differentiation has stimulated interest in the ablation of microRNA expression and function during discrete periods of development. To this end, inducible, conditional modulation of microRNA expression with doxycycline-based tetracycline-controlled transactivator and tamoxifen-based estrogen receptor systems has found widespread use. However, the induction agents and components of genome recombination systems negatively impact pregnancy, parturition, and postnatal development; thereby limiting the use of these technologies between late gestation and the early postnatal period. MicroRNA inhibitor (antimiR) administration also represents a means of neutralizing microRNA function in vitro and in vivo. To date, these studies have used direct (parenteral) administration of antimiRs to experimental animals. As an extension of this approach, an alternative means of regulating microRNA expression and function is described here: the maternal-placental-fetal transmission of antimiRs. When administered to pregnant dams, antimiRs were detected in offspring and resulted in a pronounced and persistent reduction in detectable steady-state free microRNA levels in the heart, kidney, liver, lungs, and brain. This effect was comparable to direct injection of newborn mouse pups with antimiRs, although maternal delivery resulted in fewer off-target effects. Furthermore, depletion of steady-state microRNA levels via the maternal route resulted in concomitant increases in steady-state levels of selected microRNA targets. This novel methodology permits the temporal regulation of microRNA function during late gestation and in neonates, without recourse to conventional approaches that rely on doxycycline and tamoxifen, which may confound studies on developmental processes.
Collapse
Affiliation(s)
- Jonas Hönig
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Maximilian J Daume
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| |
Collapse
|
38
|
Pan J, Zhan C, Yuan T, Wang W, Shen Y, Sun Y, Wu T, Gu W, Chen L, Yu H. Effects and molecular mechanisms of intrauterine infection/inflammation on lung development. Respir Res 2018; 19:93. [PMID: 29747649 PMCID: PMC5946538 DOI: 10.1186/s12931-018-0787-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Intrauterine infection/inflammation plays an important role in the development of lung injury and bronchopulmonary dysplasia (BPD) in preterm infants, While a multifactorial genesis is likely, mechanisms involved in BPD after intrauterine infection/inflammation are largely unknown. Recent studies have suggested microRNAs (miRNAs) are likely to play a role. Therefore, this study aimed to study the effects and mechanisms of intrauterine infection/inflammation on lung development, and to identify miRNAs related to lung injury and BPD. METHODS An animal model of intrauterine infection/inflammation was established with pregnant SD rats endocervically inoculated with E.coli. The fetal and neonatal rats were observed at embryonic day (E) 17, 19, 21 and postnatal day (P) 1, 3, 7, 14, respectively. Body weight, lung weight, the expression levels of NLRP3, TNF-α, IL-lβ, IL-6, VEGF, Collagen I, SP-A, SP-B and SP-C in the lung tissues of fetal and neonatal rats were measured. Expression profiles of 1218 kinds of miRNAs in the lungs of neonatal rats were detected by miRNA microarray technique. Target genes of the identified miRNAs were predicted through online software. RESULTS Intrauterine infection/inflammation compromised not only weight development but also lung development of the fetal and neonatal rats. The results showed significantly increased expression of NLRP3, TNF-α, IL-1β, IL-6, Collagen I, and significantly decreased expression of VEGF, SP-A, SP-B and SP-C in the fetal and neonatal rat lung tissues in intrauterine infection group compared to the control group at different observation time point (P < 0.05). Forty-three miRNAs with significant differential expression were identified. Possible target genes regulated by the identified miRNAs are very rich. CONCLUSIONS Intrauterine infection/inflammation results in lung histological changes which are very similar to those observed in BPD. Possible mechanisms may include NLRP3 inflammasome activation followed by inflammatory cytokines expression up-regulated, inhibiting the expression of pulmonary surfactant proteins, interfering with lung interstitial development. There are many identified miRNAs which target a wide range of genes and may play an important role in the processes of lung injury and BPD.
Collapse
Affiliation(s)
- Jiarong Pan
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Canyang Zhan
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Tianming Yuan
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Weiyan Wang
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Ying Shen
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Yi Sun
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Tai Wu
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Weizhong Gu
- Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Disease, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Lihua Chen
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Huimin Yu
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| |
Collapse
|
39
|
Huang Z, Lei W, Hu H, Zhang H, Zhu Y. H19 promotes non‐small‐cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR‐17. J Cell Physiol 2018; 233:6768-6776. [PMID: 29693721 DOI: 10.1002/jcp.26530] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiwen Huang
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Wei Lei
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Hai‐Bo Hu
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Hongyan Zhang
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Yehan Zhu
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| |
Collapse
|
40
|
Alvira CM, Morty RE. Can We Understand the Pathobiology of Bronchopulmonary Dysplasia? J Pediatr 2017; 190:27-37. [PMID: 29144252 PMCID: PMC5726414 DOI: 10.1016/j.jpeds.2017.08.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Cristina M. Alvira
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94305
| | - Rory E. Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center campus of the German Center for Lung Research, Giessen, Germany,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
41
|
Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs. Nat Commun 2017; 8:1173. [PMID: 29079808 PMCID: PMC5660088 DOI: 10.1038/s41467-017-01349-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023] Open
Abstract
Hyperoxia-induced acute lung injury (HALI) is a key contributor to the pathogenesis of bronchopulmonary dysplasia (BPD) in neonates, for which no specific preventive or therapeutic agent is available. Here we show that lung micro-RNA (miR)-34a levels are significantly increased in lungs of neonatal mice exposed to hyperoxia. Deletion or inhibition of miR-34a improves the pulmonary phenotype and BPD-associated pulmonary arterial hypertension (PAH) in BPD mouse models, which, conversely, is worsened by miR-34a overexpression. Administration of angiopoietin-1, which is one of the downstream targets of miR34a, is able to ameliorate the BPD pulmonary and PAH phenotypes. Using three independent cohorts of human samples, we show that miR-34a expression is increased in type 2 alveolar epithelial cells in neonates with respiratory distress syndrome and BPD. Our data suggest that pharmacologic miR-34a inhibition may be a therapeutic option to prevent or ameliorate HALI/BPD in neonates.
Collapse
|
42
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
43
|
Durrani-Kolarik S, Pool CA, Gray A, Heyob KM, Cismowski MJ, Pryhuber G, Lee LJ, Yang Z, Tipple TE, Rogers LK. miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L339-L349. [PMID: 28473324 PMCID: PMC5582933 DOI: 10.1152/ajplung.00273.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 02/06/2023] Open
Abstract
Even with advances in the care of preterm infants, chronic lung disease or bronchopulmonary dysplasia (BPD) continues to be a significant pulmonary complication. Among those diagnosed with BPD, a subset of infants develop severe BPD with disproportionate pulmonary morbidities. In addition to decreased alveolarization, these infants develop obstructive and/or restrictive lung function due to increases in or dysregulation of extracellular matrix proteins. Analyses of plasma obtained from preterm infants during the first week of life indicate that circulating miR-29b is suppressed in infants that subsequently develop BPD and that decreased circulating miR-29b is inversely correlated with BPD severity. Our mouse model mimics the pathophysiology observed in infants with severe BPD, and we have previously reported decreased pulmonary miR-29b expression in this model. The current studies tested the hypothesis that adeno-associated 9 (AAV9)-mediated restoration of miR-29b in the developing lung will improve lung alveolarization and minimize the deleterious changes in matrix deposition. Pregnant C3H/HeN mice received an intraperitoneal LPS injection on embryonic day 16 and newborn pups were exposed to 85% oxygen from birth to 14 days of life. On postnatal day 3, AAV9-miR-29b or AAV9-control was administered intranasally. Mouse lung tissues were then analyzed for changes in miR-29 expression, alveolarization, and matrix protein levels and localization. Although only modest improvements in alveolarization were detected in the AAV9-miR29b-treated mice at postnatal day 28, treatment completely attenuated defects in matrix protein expression and localization. Our data suggest that miR-29b restoration may be one component of a novel therapeutic strategy to treat or prevent severe BPD in prematurely born infants.
Collapse
Affiliation(s)
- Shaheen Durrani-Kolarik
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Caylie A Pool
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Ashley Gray
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kathryn M Heyob
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Mary J Cismowski
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - L James Lee
- The Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio
| | - Zhaogang Yang
- The Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio;
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
44
|
Huang X, Lee RJ, Qi Y, Li Y, Lu J, Meng Q, Teng L, Xie J. Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery. Oncotarget 2017; 8:96826-96836. [PMID: 29228574 PMCID: PMC5722526 DOI: 10.18632/oncotarget.18281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/01/2017] [Indexed: 12/12/2022] Open
Abstract
Small interfering RNAs (siRNAs) are promising as therapeutics for intractable diseases such as cancer. However, efficient and safe delivery of siRNAs in vivo remains a challenge. Polymer-lipid hybrid nanoparticles (P/LNPs) have been evaluated for therapeutic delivery of siRNA. In this study, a microfluidic hydrodynamic focusing (MF) system was used to prepare P/LNPs loaded with VEGF siRNA. P/LNPs made by MF were smaller in particle size and had narrower size distribution compared to P/LNPs formed by bulk mixing (BM). MF-synthesized P/LNPs demonstrated low vehicle cytotoxicity and potent tumor cell inhibition in vitro. In addition, P/LNPs produced by the microfluidic chip exhibited prolonged blood circulation and increased AUC after i.v. injection compared to free siRNA. Furthermore, P/LNPs synthesized by MF induced greater down-regulation of VEGF mRNA and protein levels as well as greater tumor inhibition in a xenograft tumor model. Taken together, P/LNPs prepared by MF have been shown to be an effective and safe therapeutic siRNA delivery system for cancer treatment both in vitro and in vivo.
Collapse
Affiliation(s)
- Xueqin Huang
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China.,Department of Chemistry and Pharmacy, Zhuhai College of Jilin University, Zhuhai, Guangdong, 519041, China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China.,Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yuhang Qi
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Yujing Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Jiahui Lu
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Qingfan Meng
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun, Jilin 130023, China
| |
Collapse
|
45
|
Duan J, Zhang X, Zhang S, Hua S, Feng Z. miR-206 inhibits FN1 expression and proliferation and promotes apoptosis of rat type II alveolar epithelial cells. Exp Ther Med 2017; 13:3203-3208. [PMID: 28587394 PMCID: PMC5450603 DOI: 10.3892/etm.2017.4430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/19/2016] [Indexed: 12/24/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a syndrome of respiratory distress caused by chronic lung injury, primarily in preterm infants. miR-206 and fibronectin 1 (FN1) are associated with the development of BPD. The present study used rat type II alveolar epithelial cells (AECII) to investigate the underlying mechanisms of BPD. AECII were isolated using a primary cell culture prior to alkaline phosphatase staining and immunofluorescence of surfactant protein C (SP-C). These were used to verify the presence of AECII. AECII were then divided into four groups, which were transfected with four different plasmids. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to determine the relative expression of miR-206 in the each group. The gene and protein expression level of FN1 was detected by RT-qPCR and immunofluorescence. The proliferation of AECII in each of the four groups was evaluated using an MTT assay 48 h following transfection. The percentage of apoptotic cells was determined by flow cytometric analysis. The present study demonstrated that upregulation of miR-206 decreased the expression of FN1 (P<0.05) and low levels of miR-206 led to increased expression of FN1 (P<0.05) in AECII. Furthermore, the forced expression of miR-206 suppressed proliferation and promoted apoptosis of AECII while downregulation of miR-206 had the opposite effect (P<0.05). The results of the current study provide valuable insights into the prevention of BPD and suggest that miR-206 may be used as a potential molecular target for BPD therapy in the future.
Collapse
Affiliation(s)
- Jun Duan
- Department of Pediatrics, BaYi Children's Hospital Affiliated to Clinical Medical College in Beijing Military General Hospital of Southern Medical University, Beijing 100700, P.R. China
| | - Xiaoying Zhang
- Department of Pediatrics, BaYi Children's Hospital Affiliated to Clinical Medical College in Beijing Military General Hospital of Southern Medical University, Beijing 100700, P.R. China
| | - Sheng Zhang
- Department of Pediatrics, BaYi Children's Hospital Affiliated to Clinical Medical College in Beijing Military General Hospital of Southern Medical University, Beijing 100700, P.R. China
| | - Shaodong Hua
- Department of Pediatrics, BaYi Children's Hospital Affiliated to Clinical Medical College in Beijing Military General Hospital of Southern Medical University, Beijing 100700, P.R. China
| | - Zhichun Feng
- Department of Pediatrics, BaYi Children's Hospital Affiliated to Clinical Medical College in Beijing Military General Hospital of Southern Medical University, Beijing 100700, P.R. China
| |
Collapse
|
46
|
Li H, Zhou H, Luo J, Huang J. MicroRNA-17-5p inhibits proliferation and triggers apoptosis in non-small cell lung cancer by targeting transforming growth factor β receptor 2. Exp Ther Med 2017; 13:2715-2722. [PMID: 28588663 PMCID: PMC5450772 DOI: 10.3892/etm.2017.4347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that suppress gene expression by directly binding to the 3′-untranslated region of their target mRNAs. Specific miRs serve key roles in the development and progression of non-small cell lung cancer (NSCLC). The aim of the present study was to determine the mechanism of miR-17-5p in the regulation of NSCLC cell survival and proliferation. Reverse transcription-quantitative polymerase chain reaction data indicated that miR-17-5p was significantly downregulated in 28 NSCLC tissues compared with 7 non-tumorous lung tissues. Furthermore, lower miR-17-5p expression was associated with a higher pathological stage in NSCLC patients. Lower miR-17-5p expression was also observed in several common NSCLC cell lines, including SK-MES-1, A549, SPCA-1, H460, H1229 and HCC827, compared with the bronchial epithelium cell line, BEAS-2B. Additionally, overexpression of miR-17-5p significantly inhibited proliferation while inducing the apoptosis of NSCLC H460 cells. Subsequently, transforming growth factor β receptor 2 (TGFβR2) was identified as a direct target of miR-17-5p using a luciferase reporter assay. Western blot analysis confirmed that miR-17-5p negatively mediated the expression of TGFβR2 in NSCLC cells. Furthermore, small interfering RNA-induced downregulation of TGFβR2 also suppressed the proliferation of H460 cells while triggering apoptosis. Therefore, the results of the current study suggest that miR-17-5p may inhibit proliferation and trigger apoptosis in NSCLC H460 cells at least partially by targeting TGFβR2.
Collapse
Affiliation(s)
- Hui Li
- Institute of Medical Examination, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China.,Department of Microbiology and Immunology, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Hui Zhou
- Department of Medical Oncology, Tumor Hospital of Hunan Province, Changsha, Hunan 410000, P.R. China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jiashun Luo
- Institute of Medical Research, Medical School of Jishou University, Jishou, Hunan 416000, P.R. China
| | - Jun Huang
- Department of Orthopaedics, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
47
|
Robbins ME, Dakhlallah D, Marsh CB, Rogers LK, Tipple TE. Of mice and men: correlations between microRNA-17∼92 cluster expression and promoter methylation in severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2016; 311:L981-L984. [PMID: 27694474 PMCID: PMC5130535 DOI: 10.1152/ajplung.00390.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/28/2016] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that decreased miR-17∼92 cluster expression was 1) present in lungs from human infants who died with bronchopulmonary dysplasia (BPD); 2) inversely correlated with DNA methyltransferase (DNMT) expression and promoter methylation; and 3) correlated with a subsequent diagnosis of BPD at 36 wk gestational age. We tested the hypothesis that plasma miR-17 levels would be lowest in infants who ultimately develop severe BPD. Secondly, we utilized our well-characterized murine model of severe BPD that combines perinatal inflammation with postnatal hyperoxia to test the hypothesis that alterations in lung miR-17∼92, DNMT, and promoter methylation in our model would mirror our findings in tissues from premature human infants. Plasma was obtained during the first 5 days of life from premature infants born ≤32 wk gestation. Lung tissues were harvested from mice exposed to maternal inflammation and neonatal hyperoxia for 14 days after birth. miR-17∼92 cluster expression and DNA methyltransferase expression were measured by qRT-PCR, and promoter methylation was assessed by Methyl-Profiler assay. Plasma miR-17 levels are significantly lower in the first week of life in human infants who develop severe BPD compared with mild or moderate BPD. Data from our severe BPD murine model reveal that lung miR-17∼92 cluster expression is significantly attenuated, and levels inversely correlated with DNMT expression and miR-17∼92 cluster promoter methylation. Collectively, our data support a plausible role for epigenetically altered miR-17∼92 cluster in the pathogenesis of severe BPD.
Collapse
Affiliation(s)
- Mary E Robbins
- Division of Neonatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Duaa Dakhlallah
- Departments of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Clay B Marsh
- Departments of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Lynette K Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; and
| | - Trent E Tipple
- Division of Neonatology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
48
|
Yang Z, Xie J, Zhu J, Kang C, Chiang C, Wang X, Wang X, Kuang T, Chen F, Chen Z, Zhang A, Yu B, Lee RJ, Teng L, Lee LJ. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J Control Release 2016; 243:160-171. [PMID: 27742443 DOI: 10.1016/j.jconrel.2016.10.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/02/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Abstract
Exosomes, the smallest subgroup of extracellular vesicles, have been recognized as extracellular organelles that contain genetic and proteomic information for long distance intercellular communication. Exosome-based drug delivery is currently a subject of intensive research. Here, we report a novel strategy to produce nanoscale exosome-mimics (EMs) in sufficient quantity for gene delivery in cancer both in vitro and in vivo. Size-controllable EMs were generated at a high yield by serial extrusion of non-tumorigenic epithelial MCF-10A cells through filters with different pore sizes. siRNA was then encapsulated into the EMs by electroporation. Biosafety and uptake efficiency of the EMs were evaluated both in vitro and in vivo. The mechanism underlying their cellular endocytosis was also studied.
Collapse
Affiliation(s)
- Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43212, USA
| | - Chen Kang
- College of Pharmacy, The Ohio State University, Columbus, OH 43212, USA
| | - Chiling Chiang
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43212, USA
| | - Xinmei Wang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaobing Wang
- Tumor Biomarker Research Center, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China; Peking Union Medical College, Beijing 100021, China
| | - Tairong Kuang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Feng Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Zhou Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aili Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Bo Yu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Robert J Lee
- College of Pharmacy, The Ohio State University, Columbus, OH 43212, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - L James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
49
|
Nardiello C, Morty RE. MicroRNA in late lung development and bronchopulmonary dysplasia: the need to demonstrate causality. Mol Cell Pediatr 2016; 3:19. [PMID: 27216745 PMCID: PMC4877338 DOI: 10.1186/s40348-016-0047-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNA are emerging as powerful regulators of cell differentiation and tissue and organ development. Several microRNA have been described to play a role in branching morphogenesis, a key step in early lung development. However, considerably less attention has been paid to microRNA as regulators of the process of secondary septation, which drives lung alveolarization during late lung development. Secondary septation is severely perturbed in bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by blunted alveolarization. A number of studies to date have reported microRNA microarray screens in animal models of BPD; however, only two studies have attempted to demonstrate causality. Although the expression of miR-150 was altered in experimental BPD, a miR-150−/− knockout mouse did not exhibit appreciable protection in a BPD animal model. Similarly, while the expression of miR-489 in the lung was reduced in clinical and experimental BPD, antagomiR and over-expression approaches could not validate a role for miR-489 in the impaired alveolarization associated with experimental BPD. This mini-review aims to highlight microRNA that have been revealed by multiple microarray studies to be potential causal players in normal and pathological alveolarization. Additionally, the challenges faced in attempting to demonstrate a causal role for microRNA in lung alveolarization are discussed. These include the tremendous variability in the animal models employed, and the limitations and advantages offered by the available tools, including antagomiRs and approaches for the validation of a specific microRNA-mRNA interaction during lung alveolarization.
Collapse
Affiliation(s)
- Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
50
|
Chen Z, Chen Z, Zhang A, Hu J, Wang X, Yang Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci 2016; 4:922-32. [PMID: 27048889 DOI: 10.1039/c6bm00070c] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The advent of nanotechnology has provided unprecedented opportunities for nanomedicine. Electrospun nanofibers have some astounding features such as high loading capacity, extremely large surface area and porosity, high encapsulation efficiency, ease of modification, combination of diverse therapies, low cost and great benefits. These remarkable structure-dependent properties have far reaching application potential in cancer diagnosis and therapy such as ultra-sensitive sensing systems for point-of-care cancer detection, targeted cancer cell capture, and functional and smart anticancer drug delivery systems. This review summarizes the principal mechanism of electrospun nanofibers and a variety of modified electrospun nanofibers, illustrates their application in biosensors for cancer detection, and enumerates their application in implantable drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- College of Material Science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China.
| | | | | | | | | | | |
Collapse
|