1
|
Xu H, Hui SL, Lee JS, Zhang Z, Boente RD. Effect of Antifibrotic Use on Mortality in Patients with Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2024; 21:1407-1415. [PMID: 39012168 PMCID: PMC11451888 DOI: 10.1513/annalsats.202312-1054oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
Rationale: Observational studies report a significant protective effect of antifibrotics on mortality among patients with idiopathic pulmonary fibrosis (IPF). Many of these studies, however, were subject to immortal time bias because of the mishandling of delayed antifibrotic initiation. Objectives: To evaluate the antifibrotic effect on mortality among patients with IPF using appropriate statistical methods that avoid immortal time bias. Methods: Using a large administrative database, we identified 10,289 patients with IPF, of whom 2,300 used antifibrotics. Treating delayed antifibrotic initiation as a time-dependent variable, three statistical methods were used to control baseline characteristics and avoid immortal time bias. Stratified analysis was performed for patients who initiated antifibrotics early and those who initiated treatment late. For comparison, methods that mishandle immortal time bias were performed. A simulation study was conducted to demonstrate the performance of these models in a wide range of scenarios. Results: All three statistical methods yielded nonsignificant results for the antifibrotic effect on mortality, with the stratified analysis for patients with early antifibrotic initiation suggesting evidence for reduced mortality risk (for all patients, hazard ratio, 0.89; 95% confidence interval, 0.79-1.01; P = 0.08; for patients who were 65 years or older, hazard ratio, 0.85; 95% confidence interval, 0.73-0.98; P = 0.03). Methods that mishandle immortal time bias demonstrated significantly lower mortality risk for antifibrotic users. Bias of these methods was evident in the simulation study, where appropriate methods performed well with little to no bias. Conclusions: Findings in this study did not confirm an association between antifibrotics and mortality, with a stratified analysis showing support for a potential treatment effect with early treatment initiation.
Collapse
Affiliation(s)
- Huiping Xu
- Department of Biostatistics and Health Data Science and
| | - Siu L. Hui
- Department of Biostatistics and Health Data Science and
| | - Joyce S. Lee
- University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | | | - Ryan D. Boente
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
2
|
Hozumi H, Miyashita K, Nakatani E, Inoue Y, Yasui H, Suzuki Y, Karayama M, Furuhashi K, Enomoto N, Fujisawa T, Inui N, Suda T. Antifibrotics and mortality in idiopathic pulmonary fibrosis: external validity and avoidance of immortal time bias. Respir Res 2024; 25:293. [PMID: 39085869 PMCID: PMC11293013 DOI: 10.1186/s12931-024-02922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Pooled analyses of previous randomized controlled trials reported that antifibrotics improved survival in patients with idiopathic pulmonary fibrosis (IPF), but the results were only based on short-term outcome data from selected patients who met strict criteria. Observational studies/meta-analyses also suggested that antifibrotics improve survival, but these studies failed to control for immortal time bias that considerably exaggerates drug effects. Therefore, whether antifibrotics truly improve long-term survival in patients with IPF in the real world remains undetermined and requires external validity. METHODS We used data from the Japanese National Claims Database to estimate the intention-to-treat effect of antifibrotics on mortality. To address immortal time bias, we employed models treating antifibrotic initiation as a time-dependent covariate and target trial emulation (TTE), both incorporating new-user designs for antifibrotics and treating lung transplantation as a competing event. RESULTS Of 30,154 patients with IPF, 14,525 received antifibrotics. Multivariate Fine-Gray models with antifibrotic initiation as a time-dependent covariate revealed that compared with no treatment, nintedanib (adjusted hazard ratio [aHR], 0.85; 95% confidence interval [CI], 0.81-0.89) and pirfenidone (aHR, 0.89; 95% CI, 0.86-0.93) were associated with reduced mortality. The TTE model also replicated the associations of nintedanib (aHR, 0.69; 95% CI, 0.65-0.74) and pirfenidone (aHR, 0.81; 95% CI, 0.78-0.85) with reduced mortality. Subgroup analyses confirmed this association regardless of age, sex, and comorbidities, excluding certain subpopulations. CONCLUSIONS The results of this large-scale real-world analysis support the generalizability of the association between antifibrotics and improved survival in various IPF populations.
Collapse
Affiliation(s)
- Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan.
| | - Koichi Miyashita
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| | - Eiji Nakatani
- Research Support Center, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-ku, Shizuoka, 420-8527, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
3
|
Yoon HY, Kim H, Bae Y, Song JW. Smoking status and clinical outcome in idiopathic pulmonary fibrosis: a nationwide study. Respir Res 2024; 25:191. [PMID: 38685071 PMCID: PMC11059669 DOI: 10.1186/s12931-024-02819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Smoking status has been linked to the development of idiopathic pulmonary fibrosis (IPF). However, the effect of smoking on the prognosis of patients with IPF is unclear. We aimed to investigate the association between smoking status and all-cause mortality or hospitalisation by using national health claims data. METHODS IPF cases were defined as people who visited medical institutions between January 2002 and December 2018 with IPF and rare incurable disease exempted calculation codes from the National Health Insurance Database. Total 10,182 patients with available data on smoking status were included in this study. Ever-smoking status was assigned to individuals with a history of smoking ≥ 6 pack-years. The multivariable Cox proportional hazard model was used to evaluate the association between smoking status and prognosis. RESULTS In the entire cohort, the mean age was 69.4 years, 73.9% were males, and 45.2% were ever smokers (current smokers: 14.2%; former smokers: 31.0%). Current smokers (hazard ratio [HR]: 0.709; 95% confidence interval [CI]: 0.643-0.782) and former smokers (HR: 0.926; 95% CI: 0.862-0.996) were independently associated with all-cause mortality compared with non-smokers. Current smokers (HR: 0.884; 95% CI: 0.827-0.945) and former smokers (HR: 0.909; 95% CI: 0.862-0.959) were also associated with a reduced risk of all-cause hospitalisation compared with non-smokers. A non-linear association between smoking amount and prognosis was found in a spline HR curve and showed increasing risk below 6 pack-years. CONCLUSION Ever-smoking status may be associated with favourable clinical outcomes in patients with IPF.
Collapse
Affiliation(s)
- Hee-Young Yoon
- Division of Allergy and Respiratory Diseases, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hoseob Kim
- Department of Data Science, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Yoonjong Bae
- Department of Data Science, Hanmi Pharm. Co., Ltd, Seoul, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
4
|
Zhang Y, Lu YB, Zhu WJ, Gong XX, Qian R, Lu YJ, Li Y, Yao WF, Bao BH, Zhang Y, Zhang L, Cheng FF. Leech extract alleviates idiopathic pulmonary fibrosis by TGF-β1/Smad3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117737. [PMID: 38228229 DOI: 10.1016/j.jep.2024.117737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leech, as a traditional Chinese medicine for the treatment of blood circulation and blood stasis, was also widely used to cure pulmonary fibrosis in China. In clinical practice, some traditional Chinese medicine preparation such as Shui Zhi Xuan Bi Hua Xian Tang and Shui Zhi Tong Luo Capsule composed of leech, could improve the clinical symptoms and pulmonary function in patients with idiopathic pulmonary fibrosis (IPF). However, the material basis of the leech in the treatment of IPF were not yet clear. AIM OF THE STUDY Screen out the components of leech that have the anti-pulmonary fibrosis effects, and further explore the therapeutic mechanism of the active components. MATERIALS AND METHODS In this study, the different molecular weight components of leech extract samples were prepared using the semi-permeable membranes with different pore sizes. The therapeutic effects of the leech extract groups with molecular weight greater than 10 KDa (>10 KDa group), between 3 KDa and 10 KDa (3-10 KDa group), and less than 3 KDa (<3 KDa group) on pulmonary fibrosis were firstly investigated by cell proliferation and cytotoxicity assay (MTT), cell wound healing assay, immunofluorescence staining (IF) and Western blot (WB) assay through the TGF-β1-induced fibroblast cell model. Then bleomycin-induced pulmonary fibrosis (BML-induced PF) mouse model was constructed to investigate the pharmacological activities of the active component group of leech extract in vivo. Pathological changes of the mouse lung were observed by hematoxylin-eosin staining (H&E) and Masson's trichrome staining (Masson). The hydroxyproline (HYP) content of lung tissues was quantified by HYP detection kit. The levels of extracellular matrix-related fibronectin (FN) and collagen type Ⅰ (Collagen Ⅰ), pyruvate kinase M2 (PKM2) monomer and Smad7 protein were determined via WB method. PKM2 and Smad7 protein were further characterized by IF assays. RESULTS Using TGF-β1-induced HFL1 cell line as a PF cell model, the in vitro results demonstrated that the >10 KDa group could significantly inhibited the cell proliferation and migration, downregulated the expression level of cytoskeletal protein vimentin and α-smooth muscle actin (α-SMA), and reduced the deposition of FN and Collagen Ⅰ. In the BML-induced PF mouse model, the >10 KDa group significantly reduced the content of HYP, downregulated the expression levels of FN and Collagen Ⅰ in lung tissues, and delayed the pathological changes of lung tissue structure. The results of WB and IF assays further indicated that the >10 KDa group could up-regulate the expression level of PKM2 monomer and Smad7 protein in the cellular level, thereby delaying the progression of pulmonary fibrosis. CONCLUSIONS Our study revealed that the >10 KDa group was the main material basis of the leech extract that inhibited pulmonary fibrosis through TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Yin Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yong-Bo Lu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wei-Jie Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiao-Xi Gong
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Rui Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yi-Jing Lu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wei-Feng Yao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Bei-Hua Bao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yi Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.
| | - Fang-Fang Cheng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.
| |
Collapse
|
5
|
Park J, Lee CH, Han K, Choi SM. Association between statin use and the risk for idiopathic pulmonary fibrosis and its prognosis: a nationwide, population-based study. Sci Rep 2024; 14:7805. [PMID: 38565856 PMCID: PMC10987568 DOI: 10.1038/s41598-024-58417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Given the pleiotropic effects of statins beyond their lipid-lowering effects, there have been attempts to evaluate the role of statin therapy in IPF, but they have shown inconclusive results. Data from the National Health Insurance Service (NHIS) database of South Korea were used to investigate the effects of statin therapy on IPF. The IPF cohort consisted of a total of 10,568 patients who were newly diagnosed with IPF between 2010 and 2017. These patients were then matched in a 1:3 ratio to 31,704 subjects from a control cohort without IPF, with matching based on age and sex. A case-control study was performed to evaluate the association between statin use and the risk for IPF, and the multivariable analysis revealed that statin use was associated with a lower risk for IPF (adjusted OR 0.847, 95% CI 0.800-0.898). Using the IPF cohort, we also evaluated whether statin use at the time of diagnosis was associated with future clinical outcomes. The statin use at the time of IPF diagnosis was associated with improved overall survival (adjusted HR 0.779, 95% CI 0.709-0.856). Further prospective studies are needed to clarify the role of statin therapy in IPF.
Collapse
Affiliation(s)
- Jimyung Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Sun Mi Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
6
|
Sim JK, Moon SJ, Choi J, Oh JY, Lee YS, Min KH, Hur GY, Lee SY, Shim JJ. Mechanical ventilation in patients with idiopathic pulmonary fibrosis in Korea: a nationwide cohort study. Korean J Intern Med 2024; 39:295-305. [PMID: 38326962 PMCID: PMC10918379 DOI: 10.3904/kjim.2023.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/17/2023] [Accepted: 10/19/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND/AIMS The prognosis of patients with idiopathic pulmonary fibrosis (IPF) and respiratory failure requiring mechanical ventilation is poor. Therefore, mechanical ventilation is not recommended. Recently, outcomes of mechanical ventilation, including those for patients with IPF, have improved. The aim of this study was to investigate changes in the use of mechanical ventilation in patients with IPF and their outcomes over time. METHODS This retrospective, observational cohort study used data from the National Health Insurance Service database. Patients diagnosed with IPF between January 2011 and December 2019 who were placed on mechanical ventilation were included. We analyzed changes in the use of mechanical ventilation in patients with IPF and their mortality using the Cochran- Armitage trend test. RESULTS Between 2011 and 2019, 1,227 patients with IPF were placed on mechanical ventilation. The annual number of patients with IPF with and without mechanical ventilation increased over time. However, the ratio was relatively stable at approximately 3.5%. The overall hospital mortality rate was 69.4%. There was no improvement in annual hospital mortality rate. The overall 30-day mortality rate was 68.7%, which did not change significantly. The overall 90-day mortality rate was 85.3%. The annual 90-day mortality rate was decreased from 90.9% in 2011 to 83.1% in 2019 (p = 0.028). CONCLUSION Despite improvements in intensive care and ventilator management, the prognosis of patients with IPF receiving mechanical ventilation has not improved significantly.
Collapse
Affiliation(s)
- Jae Kyeom Sim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Seok Joo Moon
- Smart Health-Care Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Juwhan Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Jee Youn Oh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Young Seok Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Kyung Hoon Min
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Gyu Young Hur
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Sung Yong Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| | - Jae Jeong Shim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul,
Korea
| |
Collapse
|
7
|
Hao Y, Li J, Dan L, Wu X, Xiao X, Yang H, Zhou R, Li B, Wang F, Du Q. Chinese medicine as a therapeutic option for pulmonary fibrosis: Clinical efficacies and underlying mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116836. [PMID: 37406748 DOI: 10.1016/j.jep.2023.116836] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a fibrotic interstitial lung disease caused by continuous damage and excessive repair of alveolar epithelial cells, the pathogenesis of which is not fully understood. At present, the incidence of PF has increased significantly around the world. The therapeutic arsenals against PF are relatively limited, with often poor efficacy and many adverse effects. As a conventional and effective therapeutic strategy, traditional Chinese medicine (TCM) has been widely applied in treating lung fibrosis for thousands of years in China. Due to the multi-ingredient, multi-target characteristics, Chinese medicines possess promising clinical benefits for PF treatment. AIM OF THIS REVIEW This review aims to systematically analyze the clinical efficacy of Chinese medicine on PF, and further summarize the relevant mechanisms of Chinese medicine treating PF in preclinical studies, in order to provide a comprehensive insight into the beneficial effects of Chinese medicines on PF. METHODS Eight major Chinese and English databases were searched from database inception up to October 2022, and all randomized clinical trials (RCTs) investigating the effects of Chinese medicine intervention on effectiveness and safety in the treatment of PF patients were included. Subsequently, preclinical studies related to the treatment of PF in Chinese medicine, including Chinese medicine compounds, Chinese herbal materials and extracts, and Chinese herbal formulas (CHFs) were searched through PubMed and Web of science to summarize the related mechanisms of Chinese medicine against PF. RESULTS A total of 56 studies with 4019 patients were included by searching the relevant databases. Total clinical efficacy, pulmonary function, blood gas analysis, lung high resolution CT (HRCT), 6 min walk test (6-MWT), St George's Respiratory Questionnaire (SGRQ) scores, clinical symptom scores, TCM syndrome scores and other outcome indicators related to PF were analyzed. Besides, numerous preclinical studies have shown that many Chinese medicine compounds, Chinese herbal materials and extracts, and CHFs play a preventive and therapeutic role in PF by reducing oxidative stress, ameliorating inflammation, inhibiting epithelial-mesenchymal transition and myofibroblasts activation, and regulating autophagy and apoptosis. CONCLUSION Chinese medicines show potential as supplements or substitutes for treating PF. And studies on Chinese medicines will provide a new approach to better management of PF.
Collapse
Affiliation(s)
- Yanwei Hao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaxin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lijuan Dan
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuanyu Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Rui Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Fei Wang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Quanyu Du
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
8
|
Lee JH, Park HJ, Kim S, Kim YJ, Kim HC. Epidemiology and comorbidities in idiopathic pulmonary fibrosis: a nationwide cohort study. BMC Pulm Med 2023; 23:54. [PMID: 36739401 PMCID: PMC9898951 DOI: 10.1186/s12890-023-02340-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is frequently accompanied by comorbidities, with the management of these comorbidities crucial for clinical outcomes. This study investigated the prevalence, incidence, changes over time, and clinical impact of comorbidities in IPF patients, based on nationwide claims data in South Korea. METHODS This retrospective cohort study utilised nationwide health claim data in South Korea between 2011 and 2019. Patients with IPF were defined as those with ICD-10 code J84.1 and Rare Intractable Disease code V236 who made at least one claim per year. Patients were classified by sex, age, pirfenidone use and burden of comorbidities, and differences among groups were determined. RESULTS The yearly prevalence rate of IPF increased from 7.50 to 23.20 per 100,000 people, and the yearly incidence rate increased from 3.56 to 7.91 per 100,000 person-years over time. The most common respiratory comorbidity was chronic obstructive pulmonary disease (37.34%), followed by lung cancer (3.34%), whereas the most common non-respiratory comorbidities were gastro-oesophageal reflux disease (70.83%), dyslipidaemia (62.93%) and hypertension (59.04%). The proportion of some comorbidities differed by sex, age and use of pirfenidone. The proportion of lung cancer was higher in patients treated with pirfenidone, whereas the proportion of anxiety and depression were lower in patients not treated with pirfenidone. Charlson comorbidity index ≥ 4 was associated with increases in hospitalisations and total medical costs. CONCLUSIONS The yearly prevalence and incidence of IPF and comorbidities in Korea increased over time. These comorbidities affected the use of pirfenidone and medical resources.
Collapse
Affiliation(s)
- Jang Ho Lee
- grid.267370.70000 0004 0533 4667Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Centre, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Hyung Jun Park
- grid.267370.70000 0004 0533 4667Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Centre, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| | - Seonok Kim
- grid.267370.70000 0004 0533 4667Department of Clinical Epidemiology and Biostatistics, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ye-Jee Kim
- grid.267370.70000 0004 0533 4667Department of Clinical Epidemiology and Biostatistics, Asan Medical Centre, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho Cheol Kim
- grid.267370.70000 0004 0533 4667Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Centre, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505 Republic of Korea
| |
Collapse
|
9
|
Suissa S, Suissa K. Antifibrotics and Reduced Mortality in Idiopathic Pulmonary Fibrosis: Immortal Time Bias. Am J Respir Crit Care Med 2023; 207:105-109. [PMID: 35950929 PMCID: PMC9952857 DOI: 10.1164/rccm.202207-1301le] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Samy Suissa
- Jewish General HospitalMontréal, Canada,McGill UniversityMontréal, Canada,Corresponding author (e-mail: )
| | - Karine Suissa
- Brigham and Women’s HospitalBoston, Massachusetts,Harvard Medical SchoolBoston, Massachusetts
| |
Collapse
|
10
|
Zheng Q, Otahal P, Cox IA, de Graaff B, Campbell JA, Ahmad H, Walters EH, Palmer AJ. The influence of immortal time bias in observational studies examining associations of antifibrotic therapy with survival in idiopathic pulmonary fibrosis: A simulation study. Front Med (Lausanne) 2023; 10:1157706. [PMID: 37113607 PMCID: PMC10126672 DOI: 10.3389/fmed.2023.1157706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Background Immortal time bias (ITB) has been overlooked in idiopathic pulmonary fibrosis (IPF). We aimed to identify the presence of ITB in observational studies examining associations between antifibrotic therapy and survival in patients with IPF and illustrate how ITB may affect effect size estimates of those associations. Methods Immortal time bias was identified in observational studies using the ITB Study Assessment Checklist. We used a simulation study to illustrate how ITB may affect effect size estimates of antifibrotic therapy on survival in patients with IPF based on four statistical techniques including time-fixed, exclusion, time-dependent and landmark methods. Results Of the 16 included IPF studies, ITB was detected in 14 studies, while there were insufficient data for assessment in two others. Our simulation study showed that use of time-fixed [hazard ratio (HR) 0.55, 95% confidence interval (CI) 0.47-0.64] and exclusion methods (HR 0.79, 95% CI 0.67-0.92) overestimated the effectiveness of antifibrotic therapy on survival in simulated subjects with IPF, in comparison of the time-dependent method (HR 0.93, 95% CI 0.79-1.09). The influence of ITB was mitigated using the 1 year landmark method (HR 0.69, 95% CI 0.58-0.81), compared to the time-fixed method. Conclusion The effectiveness of antifibrotic therapy on survival in IPF can be overestimated in observational studies, if ITB is mishandled. This study adds to the evidence for addressing the influence of ITB in IPF and provides several recommendations to minimize ITB. Identifying the presence of ITB should be routinely considered in future IPF studies, with the time-dependent method being an optimal approach to minimize ITB.
Collapse
Affiliation(s)
- Qiang Zheng
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, NSW, Australia
- Department of Anaesthesiology (High–Tech Branch), First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Petr Otahal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ingrid A. Cox
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Barbara de Graaff
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, NSW, Australia
| | - Julie A. Campbell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Hasnat Ahmad
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Australian Government Department of Health and Aged Care, Tasmania (TAS) Office, Hobart, TAS, Australia
| | - E. Haydn Walters
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, NSW, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Andrew J. Palmer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, NSW, Australia
- *Correspondence: Andrew J. Palmer,
| |
Collapse
|
11
|
Yang F, Ma Z, Li W, Kong J, Zong Y, Wendusu B, Wu Q, Li Y, Dong G, Zhao X, Wang J. Identification and immune characteristics of molecular subtypes related to fatty acid metabolism in idiopathic pulmonary fibrosis. Front Nutr 2022; 9:992331. [PMID: 36211517 PMCID: PMC9537386 DOI: 10.3389/fnut.2022.992331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background Although fatty acid metabolism has been confirmed to be involved in the pathological process of idiopathic pulmonary fibrosis (IPF), systematic analyses on the immune process mediated by fatty acid metabolism-related genes (FAMRGs) in IPF remain lacking. Methods The gene expression data of 315 patients with IPF were obtained from Gene Expression Omnibus database and were divided into the training and verification sets. The core FAMRGs of the training set were identified through weighted gene co-expression network analysis. Then, the fatty acid metabolism-related subtypes in IPF were identified on the basis of k-means unsupervised clustering. The scores of fatty acid metabolism and the expression of the fibrosis biomarkers in different subtypes were compared, and functional enrichment analysis was carried out on the differentially expressed genes between subtypes. A random forest model was used to select important FAMRGs as diagnostic markers for distinguishing between subtypes, and a line chart model was constructed and verified by using other datasets and rat models with different degrees of pulmonary fibrosis. The difference in immune cell infiltration among subtypes was evaluated with CIBERSORT, and the correlation between core diagnostic markers and immune cells were analyzed. Results Twenty-four core FAMRGs were differentially expressed between the training set and normal samples, and IPF was divided into two subtypes. Significant differences were observed between the two subtypes in biological processes, such as linoleic acid metabolism, cilium movement, and natural killer (NK) cell activation. The subtype with high fatty acid metabolism had more severe pulmonary fibrosis than the other subtype. A reliable construction line chart model based on six diagnostic markers was constructed, and ABCA3 and CYP24A1 were identified as core diagnostic markers. Significant differences in immune cell infiltration were found between the two subtypes, and ABCA3 and CYP24A1 were closely related to NK cells. Conclusion Fatty acid metabolism and the immune process that it mediates play an important role in the occurrence and development of IPF. The analysis of the role of FAMRGs in IPF may provide a new potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaotian Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital (Dongdan Campus), Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bilige Wendusu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Qinglu Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangda Dong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Jegal Y, Park JS, Kim SY, Yoo H, Jeong SH, Song JW, Lee JH, Lee HL, Choi SM, Kim YW, Kim YH, Choi HS, Lee J, Uh ST, Kim TH, Kim SH, Lee WY, Kim YH, Lee HK, Lee EJ, Heo EY, Yang SH, Kang HK, Chung MP. Clinical Features, Diagnosis, Management, and Outcomes of Idiopathic Pulmonary Fibrosis in Korea: Analysis of the Korea IPF Cohort (KICO) Registry. Tuberc Respir Dis (Seoul) 2022; 85:185-194. [PMID: 34902237 PMCID: PMC8987666 DOI: 10.4046/trd.2021.0123] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Korea Interstitial Lung Disease Study Group has made a new nationwide idiopathic pulmonary fibrosis (IPF) registry because the routine clinical practice has changed due to new guidelines and newly developed antifibrotic agents in the recent decade. The aim of this study was to describe recent clinical characteristics of Korean IPF patients. METHODS Both newly diagnosed and following IPF patients diagnosed after the previous registry in 2008 were enrolled. Survival analysis was only conducted for patients diagnosed with IPF after 2016 because antifibrotic agents started to be covered by medical insurance of Korea in October 2015. RESULTS A total of 2,139 patients were analyzed. Their mean age at diagnosis was 67.4±9.3 years. Of these patients, 76.1% were males, 71.0% were ever-smokers, 14.4% were asymptomatic at the time of diagnosis, and 56.9% were at gender-agephysiology stage I. Occupational toxic material exposure was reported in 534 patients. The mean forced vital capacity was 74.6% and the diffusing capacity for carbon monoxide was 63.6%. Treatment with pirfenidone was increased over time: 62.4% of IPF patients were treated with pirfenidone initially. And 79.2% of patients were treated with antifiboritics for more than three months during the course of the disease since 2016. Old age, acute exacerbation, treatment without antifibrotics, and exposure to wood and stone dust were associated with higher mortality. CONCLUSION In the recent Korean IPF registry, the percentage of IPF patients treated with antifibrotics was increased compared to that in the previous IPF registry. Old age, acute exacerbation, treatment without antifibrotics, and exposure to wood and stone dust were associated with higher mortality.
Collapse
Affiliation(s)
- Yangjin Jegal
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan, College of Medicine, Ulsan, Korea
| | - Jong Sun Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Song Yee Kim
- Division of Pulmonology, Department of Internal Medicine, Institute of Chest Diseases, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hongseok Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Hwan Jeong
- Department of Internal Medicine, Gil Medical Center, Gachon Medical School, Incheon, Korea
| | - Jin Woo Song
- Division of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ha Lee
- Division of Pulmonology, Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hong Lyeol Lee
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Sun Mi Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Young Whan Kim
- Departement of Respiratory-Allergy and Clinical Immunology, Konkuk University Hospital, Konkuk University School of Medicine, Seoul, Korea
| | - Yong Hyun Kim
- Division of Allergy and Pulmonology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Hye Sook Choi
- Department of Pulmonary and Critical Care Medicine, Kyung Hee Medical Center, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jongmin Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo-Taek Uh
- Division of Pulmonary and Allergy Medicine, Department of Internal Medicine, Soonchunhyang University Hospital, Seoul, Korea
| | - Tae-Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Sang-Heon Kim
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Won-Yeon Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Yonsei University Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yee Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Hyun-kyung Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Eun Joo Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Eun Young Heo
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sei Hoon Yang
- Department of Internal Medicine, Wonkwang University Hospital, Wonkwang University College of Medicine, Iksan, Korea
| | - Hyung Koo Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Man Pyo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Address for correspondence: Man Pyo Chung, M.D., Ph.D. Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea Phone: 82-2-3410-3429, Fax: 82-2-3410-3849, E-mail:
| | | |
Collapse
|
13
|
Matrix Metalloproteinase 7 Expression and Apical Epithelial Defects in Atp8b1 Mutant Mouse Model of Pulmonary Fibrosis. Biomolecules 2022; 12:biom12020283. [PMID: 35204783 PMCID: PMC8961514 DOI: 10.3390/biom12020283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Abnormalities in airway epithelia and lung parenchyma are found in Atp8b1 mutant mice, which develop pulmonary fibrosis after hyperoxic insult. Microarray and ingenuity pathway analysis (IPA) show numerous transcripts involved in ciliogenesis are downregulated in 14-month (14 M) -old Atp8b1 mouse lung compared with wild-type C57BL/6. Lung epithelium of Atp8b1 mice demonstrate apical abnormalities of ciliated and club cells in the bronchial epithelium on transmission electron microscopy (TEM). Matrix metalloproteinase 7 (MMP7) regulates of ciliogenesis and is a biomarker for idiopathic pulmonary fibrosis (IPF) in humans. Mmp7 transcript and protein expression are significantly upregulated in 14 M Atp8b1 mutant mouse lung. MMP7 expression is also increased in bronchoalveolar lavage fluid (BAL). Immunohistochemistry is localized MMP7 to bronchial epithelial cells in the Atp8b1 mutant. In conclusion, MMP7 is upregulated in the aged Atp8b1 mouse model, which displays abnormal ciliated cell and club cell morphology. This mouse model can facilitate the exploration of the role of MMP7 in epithelial integrity and ciliogenesis in IPF. The Atp8b1 mutant mouse is proposed as a model for IPF.
Collapse
|
14
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Current and future treatment. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:84-96. [PMID: 35001525 PMCID: PMC9060042 DOI: 10.1111/crj.13466] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3–5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development. Data Source The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management. Results Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy. Conclusion Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well‐being.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - David Grossfeld
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Heather A Renna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Priya Agarwala
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Peter Spiegler
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joshua DeLeon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, New York, USA
| |
Collapse
|
15
|
Zheng Q, Cox IA, Campbell JA, Xia Q, Otahal P, de Graaff B, Corte TJ, Teoh AK, Walters EH, Palmer AJ. Mortality and survival in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. ERJ Open Res 2022; 8:00591-2021. [PMID: 35295232 PMCID: PMC8918939 DOI: 10.1183/23120541.00591-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/09/2022] [Indexed: 11/05/2022] Open
Abstract
Background There are substantial advances in diagnosis and treatment for idiopathic pulmonary fibrosis (IPF), but without much evidence available on recent mortality and survival trends. Methods A narrative synthesis approach was used to investigate the mortality trends, then meta-analyses for survival trends were carried out based on various time periods. Results Six studies reported the mortality data for IPF in 22 countries, and 62 studies (covering 63 307 patients from 20 countries) reported survival data for IPF. Age-standardised mortality for IPF varied from ∼0.5 to ∼12 per 100 000 population per year after year 2000. There were increased mortality trends for IPF in Australia, Brazil, Belgium, Canada, Czech Republic, Finland, France, Germany, Hungary, Italy, Lithuania, the Netherlands, Poland, Portugal, Spain, Sweden and UK, while Austria, Croatia, Denmark, Romania and the USA showed decreased mortality trends. The overall 3-year and 5-year cumulative survival rates (CSRs) were 61.8% (95% CI 58.7-64.9; I2=97.1%) and 45.6% (95% CI 41.5-49.7; I2=97.7%), respectively. Prior to 2010, the pooled 3-year CSR was 59.9% (95% CI 55.8-64.1; I2=95.8%), then not significantly (p=0.067) increased to 66.2% (95% CI 62.9-69.5; I2=92.6%) in the 2010s decade. After excluding three studies in which no patients received antifibrotics after year 2010, the pooled 3-year CSRs significantly (p=0.039) increased to 67.4% (95% CI 63.9-70.9; I2=93.1%) in the 2010s decade. Discussion IPF is a diagnosis associated with high mortality. There was no observed increasing survival trend for patients with IPF before year 2010, with then a switch to an improvement, which is probably multifactorial.
Collapse
Affiliation(s)
- Qiang Zheng
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
- Dept of Anesthesiology (High-Tech Branch), the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ingrid A. Cox
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
| | - Julie A. Campbell
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Qing Xia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Petr Otahal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Barbara de Graaff
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Tamera J. Corte
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
- Central Clinical School, The University of Sydney, Camperdown, Australia
- Dept of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Alan K.Y. Teoh
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
- Central Clinical School, The University of Sydney, Camperdown, Australia
- Dept of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Australia
| | - E. Haydn Walters
- School of Medicine, University of Tasmania, Hobart, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
- These authors contributed equally
| | - Andrew J. Palmer
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- NHMRC Centre of Research Excellence for Pulmonary Fibrosis, Camperdown, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, Australia
- These authors contributed equally
| |
Collapse
|
16
|
Kawano-Dourado L, Glassberg MK, Assayag D, Borie R, Johannson KA. Sex and gender in interstitial lung diseases. Eur Respir Rev 2021; 30:210105. [PMID: 34789464 PMCID: PMC9489177 DOI: 10.1183/16000617.0105-2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Sex and gender differences influence key domains of research, lung health, healthcare access and healthcare delivery. In interstitial lung diseases (ILDs), mouse models of pulmonary fibrosis are clearly influenced by sex hormones. Additionally, short telomeres, a biomarker of telomere regulation gene mutations, are impacted by sex, while heritability unexplained by genetic variation may be attributable to gendered environmental factors that drive epigenetic control. Diseases like idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, occupational ILDs, connective tissue-associated ILDs and lymphangioleiomyomatosis have different prevalence and prognosis between men and women. These differences arise from a complex interplay between biological sex and sociocultural gender influencing genetics, epigenomic modifiers, hormones, immune function, response to treatment and interaction with healthcare systems. Much work remains to be done to systematically integrate sex and gender analysis into relevant domains of science and clinical care in ILD, from strategic considerations for establishing research priorities to guidelines for establishing best clinical practices. Accounting for sex and gender in ILD is essential to the practice of individualised, patient-centred medicine.
Collapse
Affiliation(s)
- Leticia Kawano-Dourado
- HCor Research Institute, Hospital do Coracao, Sao Paulo, Brazil
- Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, Sao Paulo, Brazil
- INSERM 1152, University of Paris, Paris, France
| | - Marilyn K Glassberg
- Pulmonary, Critical Care, and Sleep Medicine Division, Dept of Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Raphaël Borie
- Pulmonary Division, Hospital Bichat, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Kerri A Johannson
- Depts of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|