1
|
Scherr F, Schwarzkopf D, Thomas-Rüddel D, Bauer M, Kiehntopf M. C-terminal alpha-1-antitrypsin peptides as novel predictor of hospital mortality in critically ill COVID-19 patients. Clin Chem Lab Med 2025; 63:e78-e81. [PMID: 39164989 DOI: 10.1515/cclm-2024-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Franziska Scherr
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Daniel Schwarzkopf
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Daniel Thomas-Rüddel
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital, Jena, Germany
| |
Collapse
|
2
|
Scherr F, Darisipudi MN, Börner FR, Austermeier S, Hoffmann F, Eberhardt M, Abdurrahman G, Saade C, von Eggeling F, Kasper L, Holtfreter S, Bröker BM, Kiehntopf M. Alpha-1-antitrypsin as novel substrate for S. aureus' Spl proteases - implications for virulence. Front Immunol 2024; 15:1481181. [PMID: 39628483 PMCID: PMC11611844 DOI: 10.3389/fimmu.2024.1481181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024] Open
Abstract
Background The serine protease like (Spl) proteases of Staphylococcus aureus are a family of six proteases whose function and impact on virulence are poorly understood. Here we propose alpha-1-antitrypsin (AAT), an important immunomodulatory serine protease inhibitor as target of SplD, E and F. AAT is an acute phase protein, interacting with many proteases and crucial for prevention of excess tissue damage by neutrophil elastase during the innate immune response to infections. Methods We used MALDI-TOF-MS to identify the cleavage site of Spl proteases within AAT's reactive center loop (RCL) and LC-MS/MS to quantify the resulting peptide cleavage product in in vitro digestions of AAT and heterologous expressed proteases or culture supernatants from different S. aureus strains. We further confirmed proteolytic cleavage and formation of a covalent complex with Western Blots, investigated AAT's inhibitory potential against Spls and examined the NETosis inhibitory activity of AAT-Spl-digestions. Results SplD, E and F, but not A or B, cleave AAT in its RCL, resulting in the release of a peptide consisting of AAT's C-terminal 36 amino acids (C36). Synthetic C36, as well as AAT-SplD/E/F-digestions exhibit NETosis inhibition. Only SplE, but not D or F, was partly inhibited by AAT, forming a covalent complex. Conclusion We unraveled a new virulence trait of S. aureus, where SplD/E/F cleave and inactivate AAT while the cleavage product C36 inhibits NETosis.
Collapse
Affiliation(s)
- Franziska Scherr
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | | | - Friedemann R. Börner
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology -Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Franziska Hoffmann
- Department of Otorhinolaryngology, Matrix-assisted Laser Desorption/Ionization (MALDI) Imaging and Clinical Biophotonics, Jena University Hospital, Jena, Germany
| | - Martin Eberhardt
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Goran Abdurrahman
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Christopher Saade
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Ferdinand von Eggeling
- Department of Otorhinolaryngology, Matrix-assisted Laser Desorption/Ionization (MALDI) Imaging and Clinical Biophotonics, Jena University Hospital, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology -Hans Knoell Institute Jena (HKI), Jena, Germany
- Institute of Novel and Emerging Infectious Diseases (INNT), Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Silva Holtfreter
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Barbara M. Bröker
- Institute of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Bigalke A, Sponholz C, Schnabel C, Bauer M, Kiehntopf M. Multiplex quantification of C-terminal alpha-1-antitrypsin peptides provides a novel approach for characterizing systemic inflammation. Sci Rep 2022; 12:3844. [PMID: 35264629 PMCID: PMC8907207 DOI: 10.1038/s41598-022-07752-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
C-terminal peptides (CAAPs) of the highly abundant serine protease alpha-1-antitrypsin (A1AT) have been identified at various lengths in several human materials and have been proposed to serve as putative biomarkers for a variety of diseases. CAAPs are enzymatically formed and these enzymatic activities are often associated with excessive immune responses (e.g. sepsis, allergies). However, most of those CAAPs have been either detected using in vitro incubation experiments or in human materials which are not easily accessible. To gain a comprehensive understanding about the occurrence and function of CAAPs in health and disease, a LC-MS/MS method for the simultaneous detection of nine CAAPs was developed and validated for human plasma (EDTA and lithium-heparin) and serum. Using this newly developed method, we were able to detect and quantify five CAAPs in healthy individuals thereby providing an initial proof for the presence of C36, C37, C40 and C44 in human blood. Concentrations of four CAAPs in a clinical test cohort of patients suffering from sepsis were significantly higher compared to healthy controls. These results reveal that in addition to C42 other fragments of A1AT seem to play a crucial role during systemic infections. The proposed workflow is simple, rapid and robust; thus this method could be used as diagnostic tool in routine clinical chemistry as well as for research applications for elucidating the diagnostic potential of CAAPs in numerous diseases. To this end, we also provide an overview about the current state of knowledge for CAAPs identified in vitro and in vivo.
Collapse
Affiliation(s)
- Arite Bigalke
- grid.275559.90000 0000 8517 6224Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Christoph Sponholz
- grid.275559.90000 0000 8517 6224Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, Jena, Germany
| | - Claudia Schnabel
- grid.275559.90000 0000 8517 6224Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- grid.275559.90000 0000 8517 6224Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- grid.275559.90000 0000 8517 6224Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
Serena TE, Bayliff SW, Brosnan PJ, DiMarco DT, Doner BA, Guthrie DA, Patel KD, Sabo MJ, Samies JH, Carter MJ. Bacterial protease activity as a biomarker to assess the risk of non-healing in chronic wounds: Results from a multicentre randomised controlled clinical trial. Wound Repair Regen 2021; 29:752-758. [PMID: 34057796 DOI: 10.1111/wrr.12941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
Millions worldwide suffer from chronic wounds challenging clinicians and burdening healthcare systems. Bacteria impede wound healing; however, the diagnosis of excessive bacterial burden or infection is elusive. Clinical signs and symptoms of infection are inaccurate and unreliable. This trial evaluated a novel, point-of-care, lateral flow diagnostic designed to detect virulence factors released by the most common bacteria found in chronic wounds. A multicentre prospective cohort clinical trial examined the efficacy of a diagnostic test in detecting bacterial proteases taken from swab samples of chronic venous, arterial, pressure and mixed aetiology chronic wounds. Two hundred and sixty six wounds were included in the analysis of the study. The wounds were tested at the start of the study after which investigators were permitted to use whatever dressings they desired for the next 12 weeks. Healing status at 12 weeks was assessed. The presence of elevated bacterial protease activity decreased the probability of wound healing at 12 weeks. In contrast, a greater proportion of wounds were healed at 12 weeks if they had little or no bacterial protease activity at study start. In addition, the presence of elevated bacterial protease activity increased the time it takes for a wound to heal and increased the risk that a wound would not heal, when compared to the absence of bacterial protease activity. The results of this clinical trial indicate that bacterial protease activity, as detected by this novel diagnostic test, is a valid clinical marker for chronicity in wounds. The diagnostic test offers a tool for clinicians to detect clinically significant bacteria in real time and manage bacteria load before the clinical signs and symptoms of infection are evident.
Collapse
Affiliation(s)
- Thomas E Serena
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | - Matthew J Sabo
- Foot and Ankle Wellness Center of Western PA, Ford City, Pennsylvania, USA
| | - John H Samies
- Palmetto Infectious Disease, Columbia, South Carolina, USA
| | | |
Collapse
|
5
|
Frey AM, Chaput D, Shaw LN. Insight into the human pathodegradome of the V8 protease from Staphylococcus aureus. Cell Rep 2021; 35:108930. [PMID: 33826899 PMCID: PMC8054439 DOI: 10.1016/j.celrep.2021.108930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/03/2020] [Accepted: 03/11/2021] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus possesses ten extracellular proteases with mostly unknown targets in the human proteome. To assist with bacterial protease target discovery, we have applied and compared two N-terminomics methods to investigate cleavage of human serum proteins by S. aureus V8 protease, discovering 85 host-protein targets. Among these are virulence-relevant complement, iron sequestration, clotting cascade, and host protease inhibitor proteins. Protein cleavage sites have been identified, providing insight into the disruption of host protein function by V8. Complement proteins are cleaved within peptidase and sushi domains, and host protease inhibitors are cleaved outside their protease-trapping motifs. Our data highlight the potential for further application of N-terminomics in discovery of bacterial protease substrates in other host niches and provide omics-scale insight into the role of the V8 protease in S. aureus pathogenesis. S. aureus-secreted proteases are central to disease causation, but the discovery of their host substrates has been limited. Frey et al. use N-terminomic approaches to uncover human serum targets of the V8 protease that are from virulence-relevant processes such as the host inflammatory network and nutrient sequestration.
Collapse
Affiliation(s)
- Andrew Michael Frey
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey Neil Shaw
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
6
|
Nenke MA, Lewis JG, Rankin W, Shaw D, Torpy DJ. Corticosteroid-binding globulin cleavage may be pathogen-dependent in bloodstream infection. Clin Chim Acta 2016; 464:176-181. [PMID: 27887960 DOI: 10.1016/j.cca.2016.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The process of enzymatic cleavage of high- to low-affinity corticosteroid-binding globulin (haCBG to laCBG) by neutrophil elastase leads to local tissue release of cortisol. Recently Pseudomonas aeruginosa was shown to instigate CBG cleavage with release of free cortisol in vitro. Hence, CBG cleavage with release of anti-inflammatory cortisol in infection may be pathogen-dependent. Our objective was to determine whether haCBG and laCBG levels are altered in infected patients compared with controls, and whether these alterations were particular to causative bacteria. DESIGN An observational, cross-sectional study at a public pathology institution and tertiary hospital in Adelaide, South Australia. METHODS 100 positive blood culture samples and 100 healthy control samples were analysed for serum total CBG, haCBG, laCBG, total and free cortisol, leukocyte and neutrophil count, C-reactive protein and Pitt severity score. RESULTS Patients with infection had lower serum total CBG, haCBG and laCBG, all P<0.0001, than healthy controls. This was true in patients with and without a systemic inflammatory response and in those with culture-positive and culture-negative infections. Pseudomonas aeruginosa infection was associated with the lowest total and laCBG levels of the pathogen groups despite having the lowest inflammatory markers. CONCLUSIONS There was evidence of CBG cleavage in early infection both in patients with and without systemic inflammation and regardless of culture status. Pseudomonas infection appeared to enhance cleavage. This observation, along with cleavage in severe neutropenia suggests mechanisms other than neutrophil elastase may be involved in CBG cleavage and local tissue cortisol release in infection.
Collapse
Affiliation(s)
- Marni A Nenke
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia.
| | - John G Lewis
- Steroid & Immunobiochemistry Laboratory, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Wayne Rankin
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia; Chemical Pathology Directorate, SA Pathology, Adelaide, SA 5000, Australia
| | - David Shaw
- Infectious Diseases Clinical Service, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia; Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Sumer-Bayraktar Z, Grant OC, Venkatakrishnan V, Woods RJ, Packer NH, Thaysen-Andersen M. Asn347 Glycosylation of Corticosteroid-binding Globulin Fine-tunes the Host Immune Response by Modulating Proteolysis by Pseudomonas aeruginosa and Neutrophil Elastase. J Biol Chem 2016; 291:17727-42. [PMID: 27339896 PMCID: PMC5016167 DOI: 10.1074/jbc.m116.735258] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/10/2016] [Indexed: 12/23/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues upon elastase-based proteolysis of the exposed reactive center loop (RCL). However, the molecular mechanisms that regulate the RCL proteolysis by co-existing host and bacterial elastases in inflamed/infected tissues remain unknown. We document that RCL-localized Asn(347) glycosylation fine-tunes the RCL cleavage rate by human neutrophil elastase (NE) and Pseudomonas aeruginosa elastase (PAE) by different mechanisms. NE- and PAE-generated fragments of native and exoglycosidase-treated blood-derived CBG of healthy individuals were monitored by gel electrophoresis and LC-MS/MS to determine the cleavage site(s) and Asn(347) glycosylation as a function of digestion time. The site-specific (Val(344)-Thr(345)) and rapid (seconds to minutes) NE-based RCL proteolysis was significantly antagonized by several volume-enhancing Asn(347) glycan features (i.e. occupancy, triantennary GlcNAc branching, and α1,6-fucosylation) and augmented by Asn(347) NeuAc-type sialylation (all p < 0.05). In contrast, the inefficient (minutes to hours) PAE-based RCL cleavage, which occurred equally well at Thr(345)-Leu(346) and Asn(347)-Leu(348), was abolished by the presence of Asn(347) glycosylation but was enhanced by sialoglycans on neighboring CBG N-sites. Molecular dynamics simulations of various Asn(347) glycoforms of uncleaved CBG indicated that multiple Asn(347) glycan features are modulating the RCL digestion efficiencies by NE/PAE. Finally, high concentrations of cortisol showed weak bacteriostatic effects toward virulent P. aeruginosa, which may explain the low RCL potency of the abundantly secreted PAE during host infection. In conclusion, site-specific CBG N-glycosylation regulates the bioavailability of cortisol in inflamed environments by fine-tuning the RCL proteolysis by endogenous and exogenous elastases. This study offers new molecular insight into host- and pathogen-based manipulation of the human immune system.
Collapse
Affiliation(s)
- Zeynep Sumer-Bayraktar
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia and
| | - Oliver C Grant
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Vignesh Venkatakrishnan
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia and
| | - Robert J Woods
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Nicolle H Packer
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia and
| | - Morten Thaysen-Andersen
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia and
| |
Collapse
|
8
|
Zhou X, Liu Z, Zhang J, Adelsberger JW, Yang J, Burton GF. Alpha-1-antitrypsin interacts with gp41 to block HIV-1 entry into CD4+ T lymphocytes. BMC Microbiol 2016; 16:172. [PMID: 27473095 PMCID: PMC4966588 DOI: 10.1186/s12866-016-0751-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Background Study of a clinic case reveals that alpha-1-antitrypsin (AAT) deficiency is related to CD4+ T cell count decline and AIDS progression, suggesting that AAT might be an endogenous inhibitor of HIV/AIDS. Previous study shows that AAT inhibits HIV-1 replication in infected host cells and the C-terminus fragment of AAT, VIRIP, interferes with HIV-1 infection. However, it is still unclear whether and how intact AAT inhibits HIV-1 infection. It is also unknown what the mechanism of AAT is and which critical step(s) are involved. Results In the present study, the C-terminus of AAT (C) was synthesized. C terminus-truncated AAT (ΔAAT) was also prepared by digesting AAT with metalloproteinase. Primary CD4+ T cells were then co-cultured with HIV-1 with the presence or absence of AAT/C/ΔAAT to detect cis-infection of HIV-1. The interaction between AAT/C/ΔAAT and gp120/gp41 was also measured. Meanwhile, HIV-1 reverse transcriptase activity and viral DNA integration were also detected in these lymphocytes. The results demonstrated that AAT and C, not ΔAAT, inhibited HIV-1 entry by directly interacting with gp41. Meanwhile, AAT, C and ΔAAT could not directly interfere with the steps of viral RNA reverse transcription and viral DNA integration. Conclusion AAT inhibits HIV-1 entry by directly interacting with gp41 through its C-terminus and thereby inhibits HIV-1 infection. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0751-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueyuan Zhou
- Clinic Services Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Zhu Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University, Haikou, Hainan, 570228, China.
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Joseph W Adelsberger
- Clinic Services Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jun Yang
- Clinic Services Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gregory F Burton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
9
|
Simard M, Hill LA, Underhill CM, Keller BO, Villanueva I, Hancock REW, Hammond GL. Pseudomonas aeruginosa elastase disrupts the cortisol-binding activity of corticosteroid-binding globulin. Endocrinology 2014; 155:2900-8. [PMID: 24848868 PMCID: PMC4098004 DOI: 10.1210/en.2014-1055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The serine protease inhibitor (SERPIN) family member corticosteroid-binding globulin (CBG) is the main carrier of glucocorticoids in plasma. Human CBG mediates the targeted release of cortisol at sites of inflammation through cleavage of its reactive center loop (RCL) by neutrophil elastase. The RCLs of SERPIN family members are targeted by diverse endogenous and exogenous proteases, including several bacterial proteases. We tested different bacteria for their ability to secrete proteases that disrupt CBG cortisol-binding activity, and characterized the responsible protease and site of CBG cleavage. Serum CBG integrity was assessed by Western blotting and cortisol-binding capacity assay. Effects of time, pH, temperature, and protease inhibitors were tested. Proteolytically active proteins from bacterial media were purified by fast protein liquid chromatography, and the active protease and CBG cleavage sites were identified by mass spectrometry. Among the bacteria tested, medium from Pseudomonas aeruginosa actively disrupted the cortisol-binding activity of CBG. This proteolytic activity was inhibited by zinc chelators and occurred most efficiently at pH 7 and elevated physiological temperature (ie, 41°C). Mass spectrometric analysis of a semi-purified fraction of P. aeruginosa media identified the virulence factor LasB as the responsible protease, and this was confirmed by assaying media from LasB-deficient P. aeruginosa. This metalloprotease cleaves the CBG RCL at a major site, distinct from that targeted by neutrophil elastase. Our results suggest that humoral responses to P. aeruginosa infection are influenced by this pathogen's ability to secrete a protease that promotes the release of the anti-inflammatory steroid, cortisol, from its plasma transport protein.
Collapse
Affiliation(s)
- Marc Simard
- Department of Cellular and Physiological Sciences (M.S., L.A.H., C.M.U., G.L.H.), University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada, V6T 1Z3; Department of Pathology and Laboratory Medicine (B.O.K.), University of British Columbia, Child and Family Research Institute, 950 W 28th Ave, Vancouver, British Columbia, Canada, V5Z 4H4; Department of Microbiology and Immunology (I.V.), University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada, V6T 1Z3; and Department of Microbiology and Immunology (R.E.W.H.), University of British Columbia, Centre for Microbial Diseases and Immunity Research, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | | | | | | | | | |
Collapse
|
10
|
Kantyka T, Pyrc K, Gruca M, Smagur J, Plaza K, Guzik K, Zeglen S, Ochman M, Potempa J. Staphylococcus aureus proteases degrade lung surfactant protein A potentially impairing innate immunity of the lung. J Innate Immun 2012; 5:251-60. [PMID: 23235402 DOI: 10.1159/000345417] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
The pulmonary surfactant is a complex mixture of lipids and proteins that is important for respiratory lung functions, which also provides the first line of innate immune defense. Pulmonary surfactant protein-A (SP-A) is a major surfactant component with immune functions with importance during Staphylococcus aureus infections that has been demonstrated in numerous studies. The current study showed that S. aureus can efficiently cleave the SP-A protein using its arsenal of proteolytic enzymes. This degradation appears to be mediated by cysteine proteases, in particular staphopain A (ScpA). The staphopain-mediated proteolysis of SP-A resulted in a decrease or complete abolishment of SP-A biological activity, including the promotion of S. aureus phagocytosis by neutrophils, aggregation of Gram-negative bacteria and bacterial cell adherence to epithelium. Significantly, ScpA has also efficiently degraded SP-A in complete bronchi-alveolar lavage fluid from human lungs. This indicates that staphopain activity in the lungs is resistant to protease inhibitors, thus suggesting that SP-A can be cleaved in vivo. Collectively, this study showed that the S. aureus protease ScpA is an important virulence factor that may impair innate immunity of the lungs.
Collapse
Affiliation(s)
- Tomasz Kantyka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 2011; 62:726-59. [PMID: 21079042 DOI: 10.1124/pr.110.002733] [Citation(s) in RCA: 611] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-618 Protéases et Vectorisation Pulmonaires, Université François Rabelais, Faculté de médecine, 10 Boulevard Tonnellé, Tours, France.
| | | | | | | |
Collapse
|
12
|
α1-Antitrypsin deficiency, chronic obstructive pulmonary disease and the serpinopathies. Clin Sci (Lond) 2009; 116:837-50. [DOI: 10.1042/cs20080484] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
α1-Antitrypsin is the prototypical member of the serine proteinase inhibitor or serpin superfamily of proteins. The family includes α1-antichymotrypsin, C1 inhibitor, antithrombin and neuroserpin, which are all linked by a common molecular structure and the same suicidal mechanism for inhibiting their target enzymes. Point mutations result in an aberrant conformational transition and the formation of polymers that are retained within the cell of synthesis. The intracellular accumulation of polymers of mutant α1-antitrypsin and neuroserpin results in a toxic gain-of-function phenotype associated with cirrhosis and dementia respectively. The lack of important inhibitors results in overactivity of proteolytic cascades and diseases such as COPD (chronic obstructive pulmonary disease) (α1-antitrypsin and α1-antichymotrypsin), thrombosis (antithrombin) and angio-oedema (C1 inhibitor). We have grouped these conditions that share the same underlying disease mechanism together as the serpinopathies. In the present review, the molecular and pathophysiological basis of α1-antitrypsin deficiency and other serpinopathies are considered, and we show how understanding this unusual mechanism of disease has resulted in the development of novel therapeutic strategies.
Collapse
|
13
|
He QY, Yang H, Wong BCY, Chiu JF. Serological proteomics of gastritis: degradation of apolipoprotein A-I and alpha1-antitrypsin is a common response to inflammation irrespective of Helicobacter pylori infection. Dig Dis Sci 2008; 53:3112-8. [PMID: 18594986 DOI: 10.1007/s10620-008-0269-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 03/26/2008] [Indexed: 01/23/2023]
Abstract
Proteomic technology was employed to analyze serum samples from healthy subjects (10 cases) and gastritis patients with negative and positive Helicobacter pylori (Hp) infection (15 cases each). The serum proteins were separated by two-dimensional (2-D) gel electrophoresis and analyzed by a computer-aided program. The altered proteins in expression were then identified by mass spectrometry and validated by Western blotting. Compared to those in normal control, proteins in at least six areas of 2-D gels were found to significantly increase their expression levels in both Hp-negative and Hp-positive serum samples. These proteins were identified by mass peptide fingerprinting and confirmed by Western blotting to be the truncated or cleaved protein fragments of apolipoprotein A-I and alpha-1 antitrypsin, two well-known acute-phase proteins. We conclude that the degradation or metabolization of acute-phase proteins, apolipoprotein A-I, and alpha1-antitrypsin, is a common response to gastric inflammation irrespective of Hp infection.
Collapse
Affiliation(s)
- Qing-Yu He
- Institute of Life and Health Engineering, Jinan University, Guangzhou, 510632, China.
| | | | | | | |
Collapse
|
14
|
Attucci S, Gauthier A, Korkmaz B, Delépine P, Martino MFD, Saudubray F, Diot P, Gauthier F. EPI-hNE4, a proteolysis-resistant inhibitor of human neutrophil elastase and potential anti-inflammatory drug for treating cystic fibrosis. J Pharmacol Exp Ther 2006; 318:803-9. [PMID: 16627747 DOI: 10.1124/jpet.106.103440] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
EPI-hNE4 (depelstat) is a potent inhibitor of human neutrophil elastase derived from human inter-alpha-trypsin inhibitor and designed to control the excess proteolytic activity in the sputum of cystic fibrosis patients. We analyzed its resistance to the proteolysis it is likely to encounter at inflammatory sites in vivo. EPI-hNE4 resisted hydrolysis by neutrophil matrix metalloproteases (MMPs) and serine proteases that are released from activated neutrophils in inflammatory lung secretions, including MMP-8 and MMP-9, and the elastase-related protease 3 and cathepsin G. It also resisted degradation by epithelial lung cell MMP-7 but was broken down by the Pseudomonas aeruginosa metalloelastase pseudolysin, when used in a purified system, but not when this protease competed with equimolar amounts of neutrophil elastase. We also investigated the inhibitory properties of EPI-hNE4 at the surface of purified blood neutrophils and in the sputum of cystic fibrosis patients where neutrophil elastase is in both a soluble and a gel phase. The elastase at the neutrophil surface was fully inhibited by EPI-hNE4 and formed soluble complexes. The elastase in cystic fibrosis sputum supernatants was inhibited by stoichiometric amounts of EPI-hNE4, allowing titration of the protease. But the percentage of inhibition in whole sputum homogenates varied from 50 to 100%, depending on the sample tested. EPI-hNE4 was rapidly cleaved by the digestive protease pepsin in vitro. Therefore, EPI-hNE4 seems to be an elastase inhibitor suitable for use in aerosols to treat patients with cystic fibrosis.
Collapse
Affiliation(s)
- Sylvie Attucci
- Institut National de la Santé et de la Recherche Médicale U618 (Protéases et Vectorisation Pulmonaires), Université François Rabelais, 10 Bd Tonnellé, 37032 Tours Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Martin SL, Downey D, Bilton D, Keogan MT, Edgar J, Elborn JS. Safety and efficacy of recombinant alpha(1)-antitrypsin therapy in cystic fibrosis. Pediatr Pulmonol 2006; 41:177-83. [PMID: 16372352 DOI: 10.1002/ppul.20345] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neutrophil elastase (NE) is thought to be the most important protease which damages the cystic fibrosis (CF) lung. Attempts have been made to suppress this activity using the plasma-derived inhibitor, alpha(1)-antitrypsin (AAT). In this pilot study, the safety and efficacy of inhaled recombinant human AAT (rAAT) as a treatment for CF were investigated. Thirty-nine patients participated in a prospective, double-blinded, randomized, placebo-controlled phase II trial to examine the effect of rAAT (500, 250, and 125 mg) on sputum NE activity. Sputum myeloperoxidase (MPO), interleukin-8, tumor necrosis factor receptors, sputum and plasma NE/AAT complexes, and safety parameters were also measured. Subjects were randomized to receive nebulized treatment once a day for 4 weeks, followed by 2-4 weeks with no study treatment, and then a 2-week rechallenge phase. Trends toward a reduction in NE activity were observed in patients treated with 500 mg and 250 mg of rAAT compared to placebo. Sputum NE/AAT complex and MPO levels were lower on rAAT compared to placebo. No major adverse events and, in particular, no allergic reactions to rAAT were observed. Although significant differences between rAAT and placebo for sputum NE activity were not observed, some improvements were found for secondary efficacy variables. This study demonstrated that nebulized rAAT is safe and well-tolerated, but has a limited effect on NE activity and other markers of inflammation.
Collapse
Affiliation(s)
- S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Kagawa TF, O'toole PW, Cooney JC. SpeB-Spi: a novel protease-inhibitor pair from Streptococcus pyogenes. Mol Microbiol 2005; 57:650-66. [PMID: 16045611 DOI: 10.1111/j.1365-2958.2005.04708.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study presents evidence for a novel protease-protease inhibitor couple, SpeB-Spi, in the human pathogen Streptococcus pyogenes. The gene for the inhibitor Spi is located directly downstream of the gene for the streptococcal cysteine protease SpeB. Spi is 37% identical and 70% similar to the sequence of the SpeB propeptide, suggesting that Spi and the SpeB propeptide might bind to SpeB in an analogous manner. Secondary structure predictions and molecular modelling suggested that Spi would adopt a structure similar to the SpeB propeptide. The spi gene was co-transcribed with speB on the 1.7 knt and 2.2 knt transcripts previously identified for speB. The Spi protein was purified by SpeB-affinity chromatography from the S. pyogenes cytoplasm. Recombinant Spi was produced and purified, and shown to bind to SpeB and to inhibit its protease activity. Although a similar genetic arrangement of protease and inhibitor is present in staphylococci, this is the first example of an inhibitor molecule that is a structural homologue of the cognate propeptide, and which is genetically linked to the protease gene. Thus, this represents a novel system whereby bacteria may control the intracellular activity of their proteases.
Collapse
Affiliation(s)
- Todd F Kagawa
- Department of Chemical and Environmental Sciences, and Materials and Surfaces Sciences Institute, University of Limerick, Limerick, Ireland
| | | | | |
Collapse
|
17
|
Korkmaz B, Attucci S, Moreau T, Godat E, Juliano L, Gauthier F. Design and Use of Highly Specific Substrates of Neutrophil Elastase and Proteinase 3. Am J Respir Cell Mol Biol 2004; 30:801-7. [PMID: 14693667 DOI: 10.1165/rcmb.2003-0139oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have exploited differences in the structures of S2' subsites of proteinase 3 (Pr3) and human neutrophil elastase (HNE) to prepare new fluorogenic substrates specific for each of these proteases. The positively charged residue at position 143 in Pr3 prevents it from accommodating an arginyl residue at S2' and improves the binding of P2' aspartyl-containing substrates, as judged by the decreased K(m). As a result, the k(cat)/K(m) for Abz-VADCADQ-EDDnp is over 500 times greater for Pr3 than for HNE, and that for Abz-APEEIMRRQ-EDDnp is over 500 times greater for HNE than for Pr3. This allows each protease activity to be measured in the presence of a large excess of the other, as might occur in vivo. Placing a prolyl residue in position P2' greatly impaired substrate binding to both HNE and Pr3, which further emphasizes the importance of S' subsites in these proteases. HNE and Pr3 activities were measured with these substrates at the surface of fixed polymorphonuclear leukocytes (PMNs) before and after activation. This demonstrated that their active site remains accessible when they are exposed to the cell surface. Both membrane-bound proteases were strongly inhibited by low M(r) serine protease inhibitors, but only partially by inhibitors of larger M(r) such as alpha1-protease inhibitor, the main physiologic inhibitor in lung secretions. Most of membrane-bound HNE and Pr3 can be released from the membrane surface of fixed cells by a buffer containing detergent, suggesting that hydrophobic interactions are involved in membrane binding.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U618 Proteases et Vectorisation Pulmonaires, University François Rabelais, 2 bis Bd Tonnellé, 37032 Tours Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Janciauskiene S, Zelvyte I, Jansson L, Stevens T. Divergent effects of alpha1-antitrypsin on neutrophil activation, in vitro. Biochem Biophys Res Commun 2004; 315:288-96. [PMID: 14766206 DOI: 10.1016/j.bbrc.2004.01.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Indexed: 11/17/2022]
Abstract
alpha1-Antitrypsin (AAT) is a major circulating serine proteinase inhibitor in humans. The anti-proteinase activity of AAT is inhibited by chemical modification. These include inter- or intramolecular polymerisation, oxidation, complex formation with target proteinases (e.g., neutrophil elastase), and/or cleavage by multi-specific proteinases. In vivo, several modified forms of AAT have been identified which stimulate biological activity in vitro unrelated to inhibition of serine proteinases. In this study we have examined the effects of native and polymerised AAT and C-36 peptide, a proteolytic cleavage product of AAT, on human neutrophil activation, in vitro. We show that the C-36 peptide displays striking concentration-dependent pro-inflammatory effects on human neutrophils, including induction of neutrophil chemotaxis, adhesion, degranulation, and superoxide generation. In contrast to C-36 peptide, native and polymerised AAT at similar and higher concentrations showed no effects on neutrophil activation. These results suggest that cleavage of AAT may not only abolish its proteinase inhibitor activity, but can also generate a powerful pro-inflammatory activator for human neutrophils.
Collapse
|
19
|
Shaw L, Golonka E, Potempa J, Foster SJ. The role and regulation of the extracellular proteases of Staphylococcus aureus. MICROBIOLOGY-SGM 2004; 150:217-228. [PMID: 14702415 DOI: 10.1099/mic.0.26634-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus has several extracellular proteases with proposed roles in virulence. SspA (serine protease), SspB (cysteine protease) and Aur (metalloprotease) have been characterized previously and SspA and SspB were found to be cotranscribed. The coding region for the cysteine protease ScpA has been identified and characterized. It is in a probable bi-cistronic operon with scpA located immediately upstream of a coding region for a 108 aa protein that is a specific inhibitor of ScpA. Using primer extension analysis promoters have been mapped and it was found that sigmaA is the only sigma factor involved in the transcription of scpA, sspABC and aur. The transcription of all the genes occurs maximally at post-exponential phase, being positively regulated by agr (accessory gene regulator) and negatively regulated by sarA (staphylococcal accessory regulator). Furthermore sigmaB represses transcription from the aur and scp operons similarly to the previously shown effect on ssp [Horsburgh, M., Aish, J., White, I., Shaw, L., Lithgow, J. & Foster, S. (2002). J Bacteriol 184, 5457-5467]. Using mutations in each protease gene the proteolytic cascade of activation has been analysed. Aur, SspA, SspB and ScpA are all produced as zymogens, activated by proteolytic cleavage. Although the metalloprotease, Aur, does catalyse activation of the SspA zymogen, it is not the sole agent capable of conducting this process. Site-directed mutagenesis revealed that Aur is not capable of undergoing auto-proteolysis to achieve activation. The cysteine protease, ScpA, appears to reside outside this cascade of activation, as mature ScpA was observed in the aur, sspA and sspB mutant strains. Using a mouse abscess model, it has been shown that insertional inactivation of sspA or sspB results in significant attenuation of virulence, whilst mutations in aur or scpA do not. It is likely the attenuation observed in the sspA strain is due to polarity on the sspB gene.
Collapse
Affiliation(s)
- Lindsey Shaw
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ewa Golonka
- Department of Microbiology, Faculty of Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Kraków, Poland
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
20
|
Huang H, Campbell SC, Nelius T, Bedford DF, Veliceasa D, Bouck NP, Volpert OV. α1-antitrypsin inhibits angiogenesis and tumor growth. Int J Cancer 2004; 112:1042-8. [PMID: 15316942 DOI: 10.1002/ijc.20494] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Disturbances of the ratio between angiogenic inducers and inhibitors in tumor microenvironment are the driving force behind angiogenic switch critical for tumor progression. Angiogenic inhibitors may vary depending on organismal age and the tissue of origin. We showed that alpha(1)-antitrypsin (AAT), a serine protease inhibitor (serpin) is an inhibitor of angiogenesis, which induced apoptosis and inhibited chemotaxis of endothelial cells. S- and Z-type mutations that cause abnormal folding and defective serpin activity abrogated AAT antiangiogenic activity. Removal of the C-terminal reactive site loop had no effect on its angiostatic activity. Both native AAT and AAT truncated on C-terminus (AATDelta) inhibited neovascularization in the rat cornea and delayed the growth of subcutaneous tumors in mice. Treatment with native AAT and truncated AATDelta, but not control vehicle reduced tumor microvessel density, while increasing apoptosis within tumor endothelium. Comparative analysis of the human tumors and normal tissues of origin showed correlation between reduced local alpha(1)-antitrypsin expression and more aggressive tumor growth.
Collapse
Affiliation(s)
- Hanhua Huang
- Department of Urology and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Janciauskiene S, Moraga F, Lindgren S. C-terminal fragment of alpha1-antitrypsin activates human monocytes to a pro-inflammatory state through interactions with the CD36 scavenger receptor and LDL receptor. Atherosclerosis 2001; 158:41-51. [PMID: 11500173 DOI: 10.1016/s0021-9150(00)00767-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monocyte scavenger receptor, CD36 has been implicated in the pathogenesis of atherosclerosis as a major oxidised LDL receptor mediating lipid accumulation and foam cell formation. Previously, we found that treatment of monocyte cultures with the carboxyl terminal fragment of alpha1-antitrypsin (C-36) increases lipid binding and uptake, induces LDL receptor mRNA and CD36 receptor protein expression, and also significantly increases production of pro-inflammatory molecules. To assess the role of the CD36 receptor in proatherogenic monocyte activation by the C-36 fragment, we tested whether specific anti-CD36 receptor antibodies would block the effects of C-36 on monocyte activation. We find that pre-incubation of cells with anti-LDL and anti-CD36 receptor antibodies (10 microg/ml) blocks binding of 125I-C-36 by about 50%. Similarly, cells pre-incubated with oxidised LDL or native LDL at concentrations from 2.5 to 10 microg/ml showed a loss of 125I-C-36 binding (up to 49 and 57%) and uptake (up to 47 and 59.8%), respectively. In parallel experiments, monocytes were first incubated for 1 or 6 h with anti-CD36 antibodies (10 microg/ml) prior to adding C-36 peptide. Anti-CD36 antibodies suppressed C-36-induced production of gelatinase B, monocyte chemoattractant protein-1, interleukin-6 and cellular oxygen consumption to control levels, whereas levels of TNFalpha were unaffected. In contrast, saturation of LDL receptors with excess of anti-LDL (20 microg/ml) significantly inhibited C-36 induced TNFalpha levels. Results indicate that the C-36 peptide binds to both LDL and CD36 scavenger receptors which involves selective upregulation of pro-inflammatory molecules and activation of the respiratory burst in human monocytes. This also supports important roles for CD36 and LDL receptors in atherogenesis and suggests that blockade of CD36 receptor can be protective in pro-inflammatory activation of human monocytes.
Collapse
Affiliation(s)
- S Janciauskiene
- Gastroenterology-Hepatology Section, Department of Medicine, University Hospital Malmö, 20502 Malmö, Sweden.
| | | | | |
Collapse
|
22
|
Kukkonen M, Lähteenmäki K, Suomalainen M, Kalkkinen N, Emödy L, Lång H, Korhonen TK. Protein regions important for plasminogen activation and inactivation of alpha2-antiplasmin in the surface protease Pla of Yersinia pestis. Mol Microbiol 2001; 40:1097-111. [PMID: 11401715 DOI: 10.1046/j.1365-2958.2001.02451.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plasminogen activator, surface protease Pla, of the plague bacterium Yersinia pestis is an important virulence factor that enables the spread of Y. pestis from subcutaneous sites into circulation. Pla-expressing Y. pestis and recombinant Escherichia coli formed active plasmin in the presence of the major human plasmin inhibitor, alpha2-antiplasmin, and the bacteria were found to inactivate alpha2-antiplasmin. In contrast, only poor plasminogen activation and no cleavage of alpha2-antiplasmin was observed with recombinant bacteria expressing the homologous gene ompT from E. coli. A beta-barrel topology model for Pla and OmpT predicted 10 transmembrane beta-strands and five surface-exposed loops L1-L5. Hybrid Pla-OmpT proteins were created by substituting each of the loops between Pla and OmpT. Analysis of the hybrid molecules suggested a critical role of L3 and L4 in the substrate specificity of Pla towards plasminogen and alpha2-antiplasmin. Substitution analysis at 25 surface-located residues showed the importance of the conserved residues H101, H208, D84, D86, D206 and S99 for the proteolytic activity of Pla-expressing recombinant E. coli. The mature alpha-Pla of 292 amino acids was processed into beta-Pla by an autoprocessing cleavage at residue K262, and residues important for the self-recognition of Pla were identified. Prevention of autoprocessing of Pla, however, had no detectable effect on plasminogen activation or cleavage of alpha2-antiplasmin. Cleavage of alpha2-antiplasmin and plasminogen activation were influenced by residue R211 in L4 as well as by unidentified residues in L3. OmpT, which is not associated with invasive bacterial disease, was converted into a Pla-like protease by deleting residues D214 and P215, by substituting residue K217 for R217 in L4 of OmpT and also by substituting the entire L3 with that from Pla. This simple modification of the surface loops and the substrate specificity of OmpT exemplifies the evolution of a housekeeping protein into a virulence factor by subtle mutations at critical protein regions. We propose that inactivation of alpha2-antiplasmin by Pla of Y. pestis promotes uncontrolled proteolysis and contributes to the invasive character of plague.
Collapse
Affiliation(s)
- M Kukkonen
- Division of General Microbiology, Department of Biosciences, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Janciauskiene S. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1535:221-35. [PMID: 11278163 DOI: 10.1016/s0925-4439(01)00025-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serine proteinase inhibitors (Serpins) are irreversible suicide inhibitors of proteases that regulate diverse physiological processes such as coagulation, fibrinolysis, complement activation, angiogenesis, apoptosis, inflammation, neoplasia and viral pathogenesis. The molecular structure and physical properties of serpins permit these proteins to adopt a number of variant conformations under physiological conditions including the native inhibitory form and several inactive, non-inhibitory forms, such as complexes with protease or other ligands, cleaved, polymerised and oxidised. Alterations of a serpin which affect its structure and/or secretion and thus reduce its functional levels may result in pathology. Serpin dysfunction has been implicated in thrombosis, emphysema, liver cirrhosis, immune hypersensitivity and mental disorders. The loss of inhibitory activity of serpins necessarily results in an imbalance between proteases and their inhibitors, but it may also have other physiological effects through the generation of abnormal concentrations of modified, non-inhibitory forms of serpins. Although these forms of inhibitory serpins are detected in tissues and fluids recovered from inflammatory sites, the important questions of which conditions result in generation of different molecular forms of serpins, what biological function these forms have, and which of them are directly linked to pathologies and/or may be useful markers for characterisation of disease states, remain to be answered. Elucidation of the biological activities of non-inhibitory forms of serpins may provide useful insights into the pathogenesis of diseases and suggest new therapeutic strategies.
Collapse
Affiliation(s)
- S Janciauskiene
- Department of Medicine, Wallenberg Laboratory, Ing. 46, Malmö University Hospital, S-20502, Malmö, Sweden.
| |
Collapse
|