1
|
Sun G, Kropp KA, Kirchner M, Plückebaum N, Selich A, Serrero M, Dhingra A, Cabrera JR, Ritter B, Bauerfeind R, Wyler E, Landthaler M, Schambach A, Sodeik B, Mertins P, Viejo-Borbolla A. Herpes simplex virus type 1 modifies the protein composition of extracellular vesicles to promote neurite outgrowth and neuroinfection. mBio 2024; 15:e0330823. [PMID: 38275838 PMCID: PMC10865794 DOI: 10.1128/mbio.03308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.
Collapse
Affiliation(s)
- Guorong Sun
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Marieluise Kirchner
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manutea Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Akshay Dhingra
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit for Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Philipp Mertins
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Xu C, Du Y, Tian J, Liu C, Huang Y, Zhou T, Ning Y. Pigment epithelium-derived factor modulates periodontal homeostasis in mice and induces osteogenic differentiation of human periodontal ligament fibroblasts. Connect Tissue Res 2022; 63:485-497. [PMID: 35125056 DOI: 10.1080/03008207.2021.2025224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM The aim of this study was to investigate the influence of pigment epithelium-derived factor (PEDF) on periodontal homeostasis in mice and the osteogenic differentiation of human periodontal ligament fibroblasts (PDLFs). MATERIALS AND METHODS Micro-computed tomography and histology were performed to compare the alveolar bone volume, density, and bone-related markers between PEDF-deficient (PEDF-/-) and wild-type (WT) mice. Furthermore, after recombinant human PEDF treatment, the PDLF viability and osteogenic differentiation were examined using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, Von Kossa staining, Alizarin red staining, real-time quantitative polymerase chain reaction (qRT-PCR), and immunoblotting. RESULTS The alveolar bone volume and density of PEDF-/- mice were significantly lower than those of the WT mice. Higher receptor activator for nuclear factor-κB ligand (RANKL) expression and lower osteoprotegerin (OPG) expression levels were observed in the PEDF-/- group. Moreover, PEDF treatment did not affect the PDLF proliferation. PEDF dose-dependently improved mineral deposition. Compared with the control group, 250 ng/mL PEDF promoted OPG mRNA expression in PDLFs on Day 3 but inhibited RANKL, Wnt5a, GSK3b mRNA, and non-phosphorylated β-catenin protein expression. However, 250 ng/mL PEDF had no significant effect on the expression of Wnt3a. On Day 7, after culture with 250 ng/mL PEDF in osteogenic medium, the ALP and RUNX2 protein levels were upregulated. VEGF protein expression was reduced in a dose-dependent manner after PEDF stimulation. The PEDF protein expression increased as the osteogenic induction time increased. CONCLUSION PEDF gene knockout suppresses periodontal homeostasis in mice, and PEDF treatment induces PDLF osteogenic differentiation in vitro.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Du
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Tian
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chang Liu
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Ning
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
de Diego-Otero Y, Giráldez-Pérez RM, Lima-Cabello E, Heredia-Farfan R, Calvo Medina R, Sanchez-Salido L, Pérez Costillas L. Pigment epithelium-derived factor (PEDF) and PEDF-receptor in the adult mouse brain: Differential spatial/temporal localization pattern. J Comp Neurol 2020; 529:141-158. [PMID: 32427349 DOI: 10.1002/cne.24940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein which was initially described in the retina, although it is also present in other tissues. It functions as an antioxidant agent promoting neuronal survival. Recently, a PEDF receptor has shown an elevated binding affinity for PEDF. There are no relevant data regarding the distribution of both proteins in the brain, therefore the main goal of this work was to investigate the spatiotemporal presence of PEDF and PEDFR in the adult mouse brain, and to determine the PEDF blood level in mouse and human. The localization of both proteins was analyzed by different experimental methods such as immunohistochemistry, western-blotting, and also by enzyme-linked immunosorbent assay. Differential expression was found in some telencephalic structures and positive signals for both proteins were detected in the cerebellum. The magnitude of the PEDFR labeling pattern was higher than PEDF and included some cortical and subventricular areas. Age-dependent changes in intensity of both protein immunoreactions were found in the cortical and hippocampal areas with greater reactivity between 4 and 8 months of age, whilst others, like the subventricular zones, these differences were more evident for PEDFR. Although ubiquitous presence was not found in the brain for these two proteins, their relevant functions must not be underestimated. It has been described that PEDF plays an important role in neuroprotection and data provided in the present work represents the first extensive study to understand the relevance of these two proteins in specific brain areas.
Collapse
Affiliation(s)
- Yolanda de Diego-Otero
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain.,Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Research Unit, International Institute of Innovation and Attention to Neurodevelopment and Language, Málaga, Spain
| | - Rosa María Giráldez-Pérez
- Cellular Biology, Physiology and Immunology Department, University of Cordoba, Edificio Charles Darwin, Córdoba, Spain
| | - Elena Lima-Cabello
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Raúl Heredia-Farfan
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Rocío Calvo Medina
- Pediatric Clinic Unit. Regional University Hospital, Hospital Materno-Infantil Avd, Arroyo de los Angeles, Málaga, Spain
| | - Lourdes Sanchez-Salido
- Research Laboratory, Hospital Civil, Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Lucía Pérez Costillas
- Mental Health Clinic Unit, .Regional University Hospital, Hospital Civil, Málaga, Spain.,Psychiatry and Physiotherapy Department, University of Malaga. Medical School, Málaga, Spain
| |
Collapse
|
4
|
Patel DP, Pastuszak AW, Hotaling JM. Emerging Treatments for Erectile Dysfunction: a Review of Novel, Non-surgical Options. Curr Urol Rep 2019; 20:44. [PMID: 31214818 DOI: 10.1007/s11934-019-0908-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To review novel, non-surgical therapies for erectile dysfunction (ED). RECENT FINDINGS Recently, a landmark study identified the SIM1 locus, involved in the leptin-melanocortin pathway, as an independent risk factor for ED and a potential target for novel therapies. The recent literature otherwise has focused on low-intensity shock wave therapy (LiSWT), with several randomized trials and meta-analyses suggesting therapeutic efficacy. There are few novel oral agents for ED. There is growing evidence suggesting efficacy of intracavernosal stem cells therapy and low-intensity shock wave therapy (LiSWT), although these therapies are still investigational. A better understanding of the pathophysiologic spectrum of ED will offer new opportunities for novel, non-surgical therapies for ED.
Collapse
Affiliation(s)
- Darshan P Patel
- Division of Urology, Department of Surgery, University of Utah School of Medicine, 30 N 1900 E, Rm # 3B420, Salt Lake City, UT, 84132, USA
| | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah School of Medicine, 30 N 1900 E, Rm # 3B420, Salt Lake City, UT, 84132, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, 30 N 1900 E, Rm # 3B420, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
5
|
Barry AM, Sondermann JR, Sondermann JH, Gomez-Varela D, Schmidt M. Region-Resolved Quantitative Proteome Profiling Reveals Molecular Dynamics Associated With Chronic Pain in the PNS and Spinal Cord. Front Mol Neurosci 2018; 11:259. [PMID: 30154697 PMCID: PMC6103001 DOI: 10.3389/fnmol.2018.00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
To obtain a thorough understanding of chronic pain, large-scale molecular mapping of the pain axis at the protein level is necessary, but has not yet been achieved. We applied quantitative proteome profiling to build a comprehensive protein compendium of three regions of the pain neuraxis in mice: the sciatic nerve (SN), the dorsal root ganglia (DRG), and the spinal cord (SC). Furthermore, extensive bioinformatics analysis enabled us to reveal unique protein subsets which are specifically enriched in the peripheral nervous system (PNS) and SC. The immense value of these datasets for the scientific community is highlighted by validation experiments, where we monitored protein network dynamics during neuropathic pain. Here, we resolved profound region-specific differences and distinct changes of PNS-enriched proteins under pathological conditions. Overall, we provide a unique and validated systems biology proteome resource (summarized in our online database painproteome.em.mpg.de), which facilitates mechanistic insights into somatosensory biology and chronic pain—a prerequisite for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Allison M Barry
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - Julia R Sondermann
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - Jan-Hendrik Sondermann
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - David Gomez-Varela
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| |
Collapse
|
6
|
Kenealey J, Subramanian P, Comitato A, Bullock J, Keehan L, Polato F, Hoover D, Marigo V, Becerra SP. Small Retinoprotective Peptides Reveal a Receptor-binding Region on Pigment Epithelium-derived Factor. J Biol Chem 2015; 290:25241-53. [PMID: 26304116 DOI: 10.1074/jbc.m115.645846] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
The cytoprotective effects of pigment epithelium-derived factor (PEDF) require interactions between an as of a yet undefined region with a distinct ectodomain on the PEDF receptor (PEDF-R). Here we characterized the area in PEDF that interacts with PEDF-R to promote photoreceptor survival. Molecular docking studies suggested that the ligand binding site of PEDF-R interacts with the neurotrophic region of PEDF (44-mer, positions 78-121). Binding assays demonstrated that PEDF-R bound the 44-mer peptide. Moreover, peptide P1 from the PEDF-R ectodomain had affinity for the 44-mer and a shorter fragment within it, 17-mer (positions 98-114). Single residue substitutions to alanine along the 17-mer sequence were designed and tested for binding and biological activity. Altered 17-mer[R99A] did not bind to the P1 peptide, whereas 17-mer[H105A] had higher affinity than the unmodified 17-mer. Peptides 17-mer, 17-mer[H105A], and 44-mer exhibited cytoprotective effects in cultured retina R28 cells. Intravitreal injections of these peptides and PEDF in the rd1 mouse model of retinal degeneration decreased the numbers of dying photoreceptors, 17-mer[H105A] being most effective. The blocking peptide P1 hindered their protective effects both in retina cells and in vivo. Thus, in addition to demonstrating that the region composed of positions 98-114 of PEDF contains critical residues for PEDF-R interaction that mediates survival effects, the findings reveal distinct small PEDF fragments with neurotrophic effects on photoreceptors.
Collapse
Affiliation(s)
| | | | - Antonella Comitato
- the Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy, and
| | - Jeanee Bullock
- From the National Eye Institute and the Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D. C. 20057
| | | | | | - David Hoover
- the Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892
| | - Valeria Marigo
- the Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy, and
| | | |
Collapse
|
7
|
Lei CT, Wu XL, Peng J, Chen XF, Qiao LF, Fan YC, Hu JB. Time-dependent expression of PEDF and VEGF in blood serum and retina of rats with oxygen-induced retinopathy. ACTA ACUST UNITED AC 2015; 35:135-139. [PMID: 25673207 DOI: 10.1007/s11596-015-1402-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/04/2015] [Indexed: 10/24/2022]
Abstract
The effects of the balance changes of pigment epithelium growth factor (PEDF) and vascular endothelial growth factor (VEGF) in whole-body and retinal tissue on rats with oxygen-induced retinopathy were investigated. Forty-eight neonatal SD rats at the age of 7 days were randomly divided into 4 groups. The neonatal rats in experimental groups were exposed to 75% to 80% oxygen for 5 days and then to normal air, and those in control groups were kept feeding in normal air. At the age of 17 and 22 days, all the neonatal rats received retina angiography with FITC-dextran and the pathological changes of retinal vessels and perfusion were observed. HE staining of the tissue section and the number counting of endothelial cells extending beyond the inner limiting membrane were performed to evaluate the endothelial proliferation. Immunohistochemistry was applied to detect the expression of PEDF and VEGF in retinal tissue, and ELISA to detect their expression in serum. A hypoxic-ischemic proliferation of retina and more endothelial cells extending beyond the inner limiting membrane were found in the neonatal rats in both experimental groups of 17-day old and 22-day old as compared with those in control group with the difference being statistically significant (P<0.01). VEGF staining of the rats in the 17-day old experimental group was significantly stronger, with an increasing positive rate, than that of the rats in the 17-day old control group (P<0.01). PEDF staining of the rats of 22 days old was weaker than that of the rats of 17 days old in the experimental groups (P<0.01). There was no significant difference in serum VEGF concentration among all groups (P>0.05). The serum PEDF concentration in the rats of 17 days old in experimental group was decreased significantly as compared with that in the rats of 17 days old in control group (P<0.01), and in experimental groups, the serum PEDF concentration of the rats of 22 days old was increased as compared with that of the rats of 17 days old (P<0.01). In conclusion, the obviously decreased serum PEDF concentration and the abnormal enhanced expression of VEGF density in local retinal tissue broke down the balance of PEDF/VEGF in whole-body or local tissues, which might play an important role in retinal vascular proliferation.
Collapse
Affiliation(s)
- Chun-Tao Lei
- Department of Ophthalmology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xiao-Ling Wu
- Department of Digestion, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Jie Peng
- Department of Ophthalmology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Xiao-Feng Chen
- Kangqiao Eye Hospital of Chengdu, Chengdu, 610041, China
| | - Li-Feng Qiao
- Department of Ophthalmology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Ying-Chuan Fan
- Department of Ophthalmology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jian-Bin Hu
- Department of Ophthalmology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
8
|
Chuderland D, Ben-Ami I, Friedler S, Hasky N, Ninio-Many L, Goldberg K, Bar-Joseph H, Grossman H, Shalgi R. Hormonal regulation of pigment epithelium-derived factor (PEDF) expression in the endometrium. Mol Cell Endocrinol 2014; 390:85-92. [PMID: 24769282 DOI: 10.1016/j.mce.2014.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 12/22/2022]
Abstract
Pigment epithelium-derived factor (PEDF) is highly expressed in the female reproductive system and is subjected to regulation by steroid hormones in the ovary. As the uterine endometrium exhibits morphological and functional changes in response to estrogen (E2) and progesterone (P4), we aimed at characterizing the expression of PEDF in this component of the female reproductive tract and further at exploring the hormonal regulation of its expression. We found that PEDF is expressed in human and mouse endometrium. We further showed that this expression is subjected to regulation by steroid hormones, both in vivo and in vitro, as follows: E2 decreased PEDF expression and P4 increased its levels. In human endometrial samples, PEDF levels were dynamically altered along the menstrual cycle; they were low at the proliferative and early secretory phases and significantly higher at the late secretory phase. The expression levels of PEDF were inversely correlated to that of vascular endothelial growth factor (VEGF). We also showed that PEDF receptor was expressed in the endometrium and that its stimulation reduced VEGF expression. Illustrating the pattern of PEDF expression during the menstrual cycle may contribute to our understanding of the endometrial complexity.
Collapse
Affiliation(s)
- Dana Chuderland
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | - Ido Ben-Ami
- IVF and Infertility Unit, Department of Obstetrics and Gynecology, Assaf Harofeh Medical Center, Zerifin 70300, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Shevach Friedler
- IVF and Infertility Unit, Department of Obstetrics and Gynecology, Assaf Harofeh Medical Center, Zerifin 70300, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel; Infertility Clinic Kupat Cholim Meuchedet, Sprinzak Branch, Tel-Aviv, Israel
| | - Noa Hasky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | - Lihi Ninio-Many
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | - Keren Goldberg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | - Hadas Bar-Joseph
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | - Hadas Grossman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
| |
Collapse
|
9
|
Glycosaminoglycan and Collagen Facilitate the Degradation of Pigment Epithelium-Derived Factor by Chymotrypsin. Biosci Biotechnol Biochem 2014; 77:1628-32. [DOI: 10.1271/bbb.130069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 2014; 59:134-65. [PMID: 24417953 DOI: 10.1016/j.survophthal.2013.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.
Collapse
|
11
|
Tripathy D, Sanchez A, Yin X, Martinez J, Grammas P. Age-related decrease in cerebrovascular-derived neuroprotective proteins: effect of acetaminophen. Microvasc Res 2012; 84:278-85. [PMID: 22944728 PMCID: PMC3483357 DOI: 10.1016/j.mvr.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/17/2012] [Accepted: 08/17/2012] [Indexed: 12/19/2022]
Abstract
As the population ages, the need for effective methods to maintain brain function in older adults is increasingly pressing. Vascular disease and neurodegenerative disorders commonly co-occur in older persons. Cerebrovascular products contribute to the neuronal milieu and have important consequences for neuronal viability. In this regard vascular derived neuroprotective proteins, Such as vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), and pituitary adenylate cyclase activating peptide (PACAP) are important for maintaining neuronal viability, especially in the face of injury and disease. The objective of this study is to measure and compare levels of VEGF, PEDF and PACAP released from isolated brain microvessels of Fischer 344 rats at 6, 12, 18, and 24 months of age. Addition of acetaminophen to isolated brain microvessels is employed to determine whether this drug affects vascular expression of these neuroprotective proteins. Experiments on cultured brain endothelial cells are performed to explore the mechanisms/mediators that regulate the effect of acetaminophen on endothelial cells. The data indicate cerebrovascular expression of VEGF, PEDF and PACAP significantly decreases with age. The age-associated decrease in VEGF and PEDF is ameliorated by addition of acetaminophen to isolated brain microvessels. Also, release of VEGF, PEDF, and PACAP from cultured brain endothelial cells decreases with exposure to the oxidant stressor menadione. Acetaminophen treatment upregulates VEGF, PEDF and PACAP in brain endothelial cells exposed to oxidative stress. The effect of acetaminophen on cultured endothelial cells is in part inhibited by the selective thrombin inhibitor hirudin. The results of this study suggest that acetaminophen may be a useful agent for preserving cerebrovascular function. If a low dose of acetaminophen can counteract the decrease in vascular-derived neurotrophic factors evoked by age and oxidative stress, this drug might be useful for improving brain function in the elderly.
Collapse
Affiliation(s)
- Debjani Tripathy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Alma Sanchez
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joseph Martinez
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Paula Grammas
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
12
|
Pigment epithelium-derived factor (PEDF) protects cortical neurons in vitro from oxidant injury by activation of extracellular signal-regulated kinase (ERK) 1/2 and induction of Bcl-2. Neurosci Res 2011; 72:1-8. [PMID: 21946416 DOI: 10.1016/j.neures.2011.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 12/31/2022]
Abstract
Mitigating oxidative stress-induced damage is critical to preserve neuronal function in diseased or injured brains. This study explores the mechanisms contributing to the neuroprotective effects of pigment epithelium-derived factor (PEDF) in cortical neurons. Cultured primary neurons are exposed to PEDF and H₂O₂ as well as inhibitors of phosphoinositide-3 kinase (PI3K) or extracellular signal-regulated kinase 1/2 (ERK1/2). Neuronal survival, cell death and levels of caspase 3, PEDF, phosphorylated ERK1/2, and Bcl-2 are measured. The data show cortical cultures release PEDF and that H₂O₂ treatment causes cell death, increases activated caspase 3 levels and decreases release of PEDF. Exogenous PEDF induces a dose-dependent increase in Bcl-2 expression and neuronal survival. Blocking Bcl-2 expression by siRNA reduced PEDF-induced increases in neuronal survival. Treating cortical cultures with PEDF 24 h before H₂O₂ exposure mitigates oxidant-induced decreases in neuronal survival, Bcl-2 expression, and phosphorylation of ERK1/2 and also reduces elevated caspase 3 level and activity. PEDF pretreatment effect on survival is blocked by inhibiting ERK or PI3K. However, only inhibition of ERK reduced the ability of PEDF to protect neurons from H₂O₂-induced Bcl-2 decrease and neuronal death. These data demonstrate PEDF-mediated neuroprotection against oxidant injury is largely mediated via ERK1/2 and Bcl-2 and suggest the utility of PEDF in preserving the viability of oxidatively challenged neurons.
Collapse
|
13
|
Abstract
Clade B serpin family of proteins regulate a variety of cellular functions including cell adhesion and motility. One key member of the clade B serpin family is maspin (SERPINB5). Maspin is classified as a type II tumor suppressor that regulates cell adhesion and invasion. It is expressed in normal mammary epithelial cells but is reduced in benign breast tumors and absent in invasive breast carcinomas. Although maspin regulates cell apoptosis, cell adhesion, migration, and invasion in breast cancer cell culture systems, mouse models are necessary to verify this in vivo. In this chapter, we review the development of transgenic and syngeneic mouse models to study the role of maspin in mammary tumorigenesis and in normal mammary development.
Collapse
Affiliation(s)
- Michael P Endsley
- Robert H. Lurie Comprehensive Cancer Center and Center for Genetic Medicine, Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
14
|
Abstract
Angiogenesis is regulated by a local balance between the levels of endogenous stimulators and inhibitors of angiogenesis. Understanding of the mechanism of angiogenesis has advanced significantly since the discovery of two members of the family of angiogenesis stimulators, i.e., vascular endothelial growth factor family proteins and angiopoietins. These factors act on endothelial cells to stimulate angiogenesis. In contrast, most of angiogenesis inhibitors do not seem to have such characteristics. Very few genes encoding molecules that selectively inhibit angiogenesis have been discovered. This review will focus on our current understanding of endogenous inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.
| |
Collapse
|
15
|
Sarojini H, Estrada R, Lu H, Dekova S, Lee MJ, Gray RD, Wang E. PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J Cell Biochem 2008; 104:1793-802. [PMID: 18348263 DOI: 10.1002/jcb.21748] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Conditioned medium (secretome) derived from an enriched stem cell culture stimulates chemotaxis of human fibroblasts. These cells are classified as multipotent murine mesenchymal stromal cells (mMSC) by immunochemical analysis of marker proteins. Proteomic analysis of mMSC secretome identifies nineteen secreted proteins, including extracellular matrix structural proteins, collagen processing enzymes, pigment epithelium-derived factor (PEDF) and cystatin C. Immunodepletion and reconstitution experiments show that PEDF is the predominant fibroblast chemoattractant in the conditioned medium, and immunofluorescence microscopy shows strong staining for PEDF in the cytoplasm, at the cell surface, and in intercellular space between mMSCs. This stimulatory effect of PEDF on fibroblast chemotaxis is in contrast to the PEDF-mediated inhibition of endothelial cell migration, reported previously. These differential functional effects of PEDF toward fibroblasts and endothelial cells may serve to program an ordered temporal sequence of scaffold building followed by angiogenesis during wound healing.
Collapse
Affiliation(s)
- Harshini Sarojini
- Gheens Center on Aging, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Buhimschi IA, Zhao G, Rosenberg VA, Abdel-Razeq S, Thung S, Buhimschi CS. Multidimensional proteomics analysis of amniotic fluid to provide insight into the mechanisms of idiopathic preterm birth. PLoS One 2008; 3:e2049. [PMID: 18431506 PMCID: PMC2315798 DOI: 10.1371/journal.pone.0002049] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 03/16/2008] [Indexed: 11/19/2022] Open
Abstract
Background Though recent advancement in proteomics has provided a novel perspective on several distinct pathogenetic mechanisms leading to preterm birth (inflammation, bleeding), the etiology of most preterm births still remains elusive. We conducted a multidimensional proteomic analysis of the amniotic fluid to identify pathways related to preterm birth in the absence of inflammation or bleeding. Methodology/Principal Findings A proteomic fingerprint was generated from fresh amniotic fluid using surface-enhanced laser desorbtion ionization time of flight (SELDI-TOF) mass spectrometry in a total of 286 consecutive samples retrieved from women who presented with signs or symptoms of preterm labor or preterm premature rupture of the membranes. Inflammation and/or bleeding proteomic patterns were detected in 32% (92/286) of the SELDI tracings. In the remaining tracings, a hierarchical algorithm was applied based on descriptors quantifying similarity/dissimilarity among proteomic fingerprints. This allowed identification of a novel profile (Q-profile) based on the presence of 5 SELDI peaks in the 10–12.5 kDa mass area. Women displaying the Q-profile (mean±SD, gestational age: 25±4 weeks, n = 40) were more likely to deliver preterm despite expectant management in the context of intact membranes and normal amniotic fluid clinical results. Utilizing identification-centered proteomics techniques (fluorescence two-dimensional differential gel electrophoresis, robotic tryptic digestion and mass spectrometry) coupled with Protein ANalysis THrough Evolutionary Relationships (PANTHER) ontological classifications, we determined that in amniotic fluids with Q-profile the differentially expressed proteins are primarily involved in non-inflammatory biological processes such as protein metabolism, signal transduction and transport. Conclusion/Significance Proteomic profiling of amniotic fluid coupled with non-hierarchical bioinformatics algorithms identified a subgroup of patients at risk for preterm birth in the absence of intra-amniotic inflammation or bleeding, suggesting a novel pathogenetic pathway leading to preterm birth. The altered proteins may offer opportunities for therapeutical intervention and future drug development to prevent prematurity.
Collapse
Affiliation(s)
- Irina A Buhimschi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America.
| | | | | | | | | | | |
Collapse
|
17
|
Iizuka H, Awata T, Osaki M, Neda T, Kurihara S, Inoue K, Inukai K, Kabasawa S, Mori K, Yoneya S, Katayama S. Promoter polymorphisms of the pigment epithelium-derived factor gene are associated with diabetic retinopathy. Biochem Biophys Res Commun 2007; 361:421-6. [PMID: 17658465 DOI: 10.1016/j.bbrc.2007.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Accepted: 07/09/2007] [Indexed: 12/30/2022]
Abstract
Pigment epithelium-derived factor (PEDF or SERPINF1), a neuroprotective and anti-angiogenic factor, may play an important role in the pathogenesis of diabetic retinopathy (DR). In 416 patients with type 2 diabetes, four polymorphisms in the PEDF SNPs were identified, rs12150053 and rs12948385 in the promoter region, rs9913583 in the 5'-untranslated region, and rs1136287 (Met72Thr) in exon 3. Based on case-control studies, rs12150053 and rs12948385, but not rs9913583 and rs1136287, were significantly associated with DR. A logistic regression analysis revealed that the TC or CC genotype of rs12150053 was a significant risk factor for DR (odds ratio 2.40, p=0.0004). The GA or AA genotype of rs12948385 was also a significant risk factor for DR. In addition, a significant interaction between the vascular endothelial growth factor (VEGF) and PEDF SNPs in the susceptibility to DR was found. These results demonstrate that the PEDF gene, in cooperation with the VEGF gene, may contribute to the development of DR.
Collapse
Affiliation(s)
- Hiroyuki Iizuka
- Division of RI Laboratory, Biomedical Research Center, Saitama Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Notari L, Baladron V, Aroca-Aguilar JD, Balko N, Heredia R, Meyer C, Notario PM, Saravanamuthu S, Nueda ML, Sanchez-Sanchez F, Escribano J, Laborda J, Becerra SP. Identification of a lipase-linked cell membrane receptor for pigment epithelium-derived factor. J Biol Chem 2006; 281:38022-37. [PMID: 17032652 DOI: 10.1074/jbc.m600353200] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is an extracellular multifunctional protein belonging to the serpin superfamily with demonstrable neurotrophic, gliastatic, neuronotrophic, antiangiogenic, and antitumorigenic properties. We have previously provided biochemical evidence for high affinity PEDF-binding sites and proteins in plasma membranes of retina, retinoblastoma, and CNS cells. This study was designed to reveal a receptor involved in the biological activities of PEDF. Using a yeast two-hybrid screening, we identified a novel gene from pigment epithelium of the human retina that codes for a PEDF-binding partner, which we term PEDF-R. The derived polypeptide has putative transmembrane, intracellular and extracellular regions, and a phospholipase domain. Recently, PEDF-R (TTS-2.2/independent phospholipase A(2) (PLA(2))zeta and mouse desnutrin/ATGL) has been described in adipose cells as a member of the new calcium-independent PLA(2)/nutrin/patatin-like phospholipase domain-containing 2 (PNPLA2) family that possesses triglyceride lipase and acylglycerol transacylase activities. Here we describe the PEDF-R gene expression in the retina and its heterologous expression by bacterial and eukaryotic systems, and we demonstrate that its protein product has specific and high binding affinity for PEDF, has a potent phospholipase A(2) activity that liberates fatty acids, and is associated with eukaryotic cell membranes. Most importantly, PEDF binding stimulates the enzymatic phospholipase A(2) activity of PEDF-R. In conclusion, we have identified a novel PEDF-R gene in the retina for a phospholipase-linked membrane protein with high affinity for PEDF, suggesting a molecular pathway by which ligand/receptor interaction on the cell surface could generate a cellular signal.
Collapse
Affiliation(s)
- Luigi Notari
- National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chang YP, Mahadeva R, Chang WSW, Shukla A, Dafforn TR, Chu YH. Identification of a 4-mer peptide inhibitor that effectively blocks the polymerization of pathogenic Z alpha1-antitrypsin. Am J Respir Cell Mol Biol 2006; 35:540-8. [PMID: 16778151 DOI: 10.1165/rcmb.2005-0207oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
alpha(1)-Antitrypsin (AT) is a major proteinase inhibitor within the lung. The Z variant of AT (E342K) polymerizes within the liver and lung, resulting in hepatic aggregation of AT and tissue deficiency, predisposing to early onset of cirrhosis and emphysema, respectively. Polymerization of the aberrant protein can be prevented in vitro by specific peptides such as FLEAIG. This peptide serves as a lead molecule to design a shorter peptide that may be effective as a therapeutic agent. In this study we employed a systematic chemical approach using alanine scanning of Ac-FLEAIG-OH and subsequent peptide shortening to study the binding of shorter peptides to Z-AT. While two additional 6-mer peptides Ac-FLAAIG-OH and Ac-FLEAAG-OH were found to bind to Z-AT, their daughter peptides Ac-FLEAA-NH(2) and Ac-FLAA-NH(2) also bound avidly to Z-AT and prevented polymerization of the protein. Further comparative studies revealed that the binding of Ac-FLAA-NH(2) was more specific for Z-AT. The peptide-AT complex formation was enhanced by the presence of C-terminal amide group on the peptide, and circular dichroism analysis demonstrated that a random coil rather than a beta-helical conformation favored binding of the peptide to AT. In summary, this study has identified novel small peptides that inhibit Z-AT polymerization, and are a significant advance towards the treatment of Z-AT-related cirrhosis and emphysema.
Collapse
Affiliation(s)
- Yi-Pin Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chia-Yi, Taiwan 62102, ROC
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Angiogenesis, the formation of new blood vessels, is required for many pathologic processes, including invasive tumor growth as well as physiologic organ/tissue maintenance. Angiogenesis during development and adulthood is likely regulated by a balance between endogenous proangiogenic and antiangiogenic factors. It is speculated that tumor growth requires disruption of such balance; thus, the angiogenic switch must be turned "on" for cancer progression. If the angiogenic switch needs to be turned on to facilitate the tumor growth, the question remains as to what the physiologic status of this switch is in the adult human body; is it "off," with inhibitors outweighing the stimulators, or maintained at a fine "balance," keeping the proangiogenic properties of many factors at a delicate "activity" balance with endogenous inhibitors of angiogenesis. The physiologic status of this balance is important to understand as it might determine an individual's predisposition to turn the switch on during pathologic events dependent on angiogenesis. Conceivably, if the physiologic angiogenesis balance in human population exists somewhere between off and even balance, an individual's capacity and rate to turn the switch on might reflect their normal physiologic angiogenic status. In this regard, although extensive knowledge has been gained in our understanding of endogenous growth factors that stimulate angiogenesis, the activities associated with endogenous inhibitors are poorly understood. In this review, we will present an overview of the knowledge gained in studies related to the identification and characterization of 27 different endogenous inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Pia Nyberg
- Center for Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
21
|
Cosgrove GP, Brown KK, Schiemann WP, Serls AE, Parr JE, Geraci MW, Schwarz MI, Cool CD, Worthen GS. Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med 2004; 170:242-51. [PMID: 15117744 DOI: 10.1164/rccm.200308-1151oc] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a 50-kD protein with angiostatic and neurotrophic activities that regulates vascular development within the eye. PEDF expression was increased in the lungs of patients with idiopathic pulmonary fibrosis (IPF) based on microarray analyses. Angiogenesis has been implicated in the pathogenesis of fibrotic lung diseases, we therefore hypothesized that regional abnormalities in vascularization occur in IPF as a result of an imbalance between PEDF and vascular endothelial growth factor. We demonstrated that vascular density is regionally decreased in IPF within the fibroblastic foci, and that within these areas PEDF was increased, whereas vascular endothelial growth factor was decreased. PEDF colocalized with the fibrogenic cytokine, transforming growth factor (TGF)-beta 1, particularly within the fibrotic interstitium and the fibroblastic focus, and prominently within the epithelium directly overlying the fibroblastic focus. This suggested that TGF-beta 1 might regulate PEDF expression. Using 3T3-L1 fibroblasts and human lung fibroblasts, we showed that PEDF was indeed a TGF-beta 1 target gene. Collectively, our findings implicate PEDF as a regulator of pulmonary angiogenesis and an important mediator in IPF.
Collapse
Affiliation(s)
- Gregory P Cosgrove
- Pulmonary Division, Department of Medicine, National Jewish Medical and Research Center and Program in Cell Biology, Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado CO 80206, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu H, Ren JG, Cooper WL, Hawkins CE, Cowan MR, Tong PY. Identification of the antivasopermeability effect of pigment epithelium-derived factor and its active site. Proc Natl Acad Sci U S A 2004; 101:6605-10. [PMID: 15096582 PMCID: PMC404092 DOI: 10.1073/pnas.0308342101] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular permeability plays a key role in a wide array of life-threatening and sight-threatening diseases. Vascular endothelial growth factor can increase vascular permeability. Using a model system for nonproliferative diabetic retinopathy, we found that pigment epithelium-derived factor (PEDF) effectively abated vascular endothelial growth factor-induced vascular permeability. A 44-amino acid region of PEDF was sufficient to confer the antivasopermeability activity. Additionally, we identified four amino acids (glutamate-101, isoleucine-103, leucine-112, and serine-115) critical for this activity. PEDF, or a derivative, could potentially abate or restore vision loss from diabetic macular edema. Furthermore, PEDF may represent a superior therapeutic approach to sepsis-associated hypotension, nephrotic syndrome, and other sight-threatening and life-threatening diseases resulting from excessive vascular permeability.
Collapse
Affiliation(s)
- Hua Liu
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD 21287-8984, USA
| | | | | | | | | | | |
Collapse
|
23
|
Eurell TE, Brown DR, Gerding PA, Hamor RE. Alginate as a new biomaterial for the growth of porcine retinal pigment epithelium. Vet Ophthalmol 2003; 6:237-43. [PMID: 12950655 DOI: 10.1046/j.1463-5224.2003.00300.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Determine the effect of a 3-dimensional alginate matrix on the growth and differentiation of cells isolated from porcine retinal pigment epithelium (RPE). PROCEDURES Porcine RPE cells were harvested from enucleated eyecups, isolated by differential gravity sedimentation and cultured in either alginate alone (Group 1) or on plastic tissue culture plates followed by alginate (Group 2). Group 1 cells were cultured in alginate to evaluate the efficacy of the matrix as a culture medium. Group 2 cells were initially cultured on plastic to induce dedifferentiation. The cells were then harvested, suspended in alginate beads, and incubated for a second culture period to determine if the induced dedifferentiation was reversible. RESULTS The number of Group 1 cells was significantly greater (P < or = 0.01) at the end of the culture period. The amount of pigment and cell morphology of Group 1 cells at the end of the culture period was similar to that seen at initial cell isolation. The initial culture of Group 2 cells on plastic showed characteristic features of dedifferentiation marked by the loss of pigment and alterations in microscopic appearance. Secondary culture of dedifferentiated Group 2 cells in alginate beads resulted in a return to pigmentation and characteristic morphology for a majority of the cultured cells. CONCLUSIONS Porcine RPE cells can be propagated in alginate culture with a significant increase in cell numbers while maintaining normal morphology. Under the conditions described in the present study, the dedifferentiation of porcine RPE induced by standard in vitro culture methods is reversible.
Collapse
Affiliation(s)
- Thomas E Eurell
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA.
| | | | | | | |
Collapse
|