1
|
Tsakem Nangap MJ, Walbadet L, Mbock MA, Adjieufack AI, Ongagna JM, Fokou R, Tenlep LN, Tchatat MB, Tsouh Fokou PV, Boyom FF, Gounoue Kamkumo R, Tsofack FN, Dimo T. In vitro, in vivo and in silico antiplasmodial profiling of the aqueous extract of Hibiscus asper HOOK F. Leaf (Malvaceae). JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118536. [PMID: 39004192 DOI: 10.1016/j.jep.2024.118536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plasmodium resistance to antimalarial drugs raises the urgent need to seek for alternative treatments. Aqueous extract of Hibiscus asper leaves is currently used in malaria management but remains less documented. AIM OF THE STUDY The study aims to evaluate antimalarial effects of the aqueous extract of Hibiscus asper. UHPLC/MS, was used to identify some likely compounds present in the plant that were thereafter docked to some malaria parasite proteins. STUDY DESIGN In vitro anti-plasmodium and antioxidant, UHPLC/Ms analysis, in vivo antimalarial of the plant extract, and in silico molecular docking prediction of some identified compounds were performed to investigate the pharmacological effects of H. asper. MATERIAL AND METHODS The in vitro antiplasmodial activity of the extract was carried out on Plasmodium falciparum strains using SYBR-green dye; then, the curative antimalarial activity was conducted on Plasmodium berghei NK65-infected male Wistar rats. The UHPLC/MS analysis was used to identify plant compounds, followed by interactions (docking affinity) between some compounds and parasitic enzymes such as P. falciparum purine nucleoside phosphorylase (2BSX) and 6-phosphogluconate dehydrogenase (6FQY) to explore potential mechanisms of action at the molecular level. RESULTS No hemolysis effect of the extract was observed at concentrations up to 100 mg/mL. In vitro test of the aqueous leaves extract of H. asper showed inhibitory activity against P. falciparum Dd2 and 3D7 strains with IC50 values of 19.75 and 21.97 μg/mL, respectively. The curative antimalarial test of the H. asper extract in infected rats exhibited significant inhibition of the parasite growth (p < 0.001) with inhibition percentage of 95.11%, 97.68% and 95.59% at all the doses (50, 100 and 200 mg/kg) respectively. The extract corrected major physiological alterations such as liver and kidney impairments, oxidative stress and architectural disorganization in liver, spleen and kidneys tissues. The UHPLC/MS analysis identified 7 compounds, namely chlorogenic acid, azulene, quercetin, rhodine, 1-ethyl-2,4-dimethyl benzene and phthalan. Out of seven compounds identified in the extract quercetin and phthalan showed higher in silico inhibitory activity against P. falciparum purine nucleoside phosphorylase and Plasmodium falciparum 6-phosphosgluconate dehydrogenase parasite enzymes. CONCLUSION These findings indicate that H. asper could be a promising complementary medicine to manage malaria. Meanwhile, the affinity of annoted compounds with these enzymes should be further confirmed.
Collapse
Affiliation(s)
- Marius Jaurès Tsakem Nangap
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, Cameroon; Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon
| | - Lucain Walbadet
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, Cameroon; Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon; Département des Sciences de La Vie et de La Terre, Ecole Normale Supérieure de N'Djamena, BP 206, N'Djamena, Chad
| | - Michel Arnaud Mbock
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, Cameroon; Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon; Department of Biochemistry, Laboratory of Biochemistry, Faculty of Science, University of Douala, Cameroon
| | - Abel Idrice Adjieufack
- Physical and Theoretical Chemistry Laboratory, Faculty of Science, University of Yaoundé I, Cameroon
| | - Jean Moto Ongagna
- Chemistry Unit, Department of Chemistry, Faculty of Science, University of Douala, Cameroon
| | - Roberto Fokou
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, Cameroon; Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon
| | - Loïc Ngwem Tenlep
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, Cameroon; Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon
| | - Mariscal Brice Tchatat
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon
| | - Patrick Valère Tsouh Fokou
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon; Department of Biochemistry, Laboratory of Biochemistry, Faculty of Science, University of Bamenda, Cameroon
| | - Fabrice Fekam Boyom
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon
| | - Raceline Gounoue Kamkumo
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, Cameroon; Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial and Biocontrol Agents Unit, Faculty of Science, University of Yaounde I, Cameroon.
| | | | - Théophile Dimo
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, Cameroon
| |
Collapse
|
2
|
Ishimoto CK, Paulino BN, Neri-Numa IA, Bicas JL. The blue palette of life: A comprehensive review of natural bluish colorants with potential commercial applications. Food Res Int 2024; 196:115082. [PMID: 39614567 DOI: 10.1016/j.foodres.2024.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 12/01/2024]
Abstract
Considering the growing interest for safer, environmentally friendly and healthier products, the search for natural colorants to replace their synthetic has been raised. This is particularly challenging for the rare and usually unstable bluish coloring substances. This comprehensive review describes several bluish pigments which can be obtained from natural sources (plants and mostly microorganisms), covering less known molecules to well established compounds (although no focus is given for anthocyanins). Key information about each compound, including sources, extraction procedures, properties, and potential applications, are presented. Despite many studies on these molecules, toxicological and stability studies are still lacking for many of them. Therefore, this text also discusses the regulatory requirements for approving new coloring substances. Given the increasing robustness of scientific data supporting the biological activities attributed to many of these pigments, it is possible to envisage that some of them may be commercially available for industrial applications in different fields, not only in traditional food or cosmetic uses but in pharmaceutical formulations as well.
Collapse
Affiliation(s)
- Caroline Kie Ishimoto
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Bruno Nicolau Paulino
- Department of Bromatological Analysis, Faculty of Pharmacy, Federal University of Bahia (UFBA), 40170-115 Salvador, BA, Brazil
| | - Iramaia Angelica Neri-Numa
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
3
|
Meng X, Ren K, Liu X, Lyu C, Jung HW, Zhang Y, Zhang S. Efficacy of Rhamnus utilis Decne. Aqueous extract in mice with acute alcoholic liver injury and metabolomic study. Heliyon 2024; 10:e32523. [PMID: 38952369 PMCID: PMC11215275 DOI: 10.1016/j.heliyon.2024.e32523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Rhamnus utilis Decne. (Family Rhamnaceae Juss.) leaf is commonly prepared as a anti-inflammatory herbal medicine and used for tea production. To investigate the mechanism of Rhamnus utilis Decne. aqueous extract (RDAE) against acute alcoholic liver disease (ALD) in mice. The ALD mouse (Male ICR) model was induced via intragastric administration of 52 % alcohol. Mice in each group were treated by gavage once daily with the RDAE (1.12, 2.25, 4.500 g/kg). The expression of proteins involved in the MAPKs/NF-κB/COX-2-iNOS pathway was measured by western blotting. Non-targeted metabolomics was used to determine metabolic profiles and critical pathways, while targeted metabolomics validated key amino acid metabolites. After administration of RDAE, the body mass of mice was significantly increased. The liver index was significantly decreased. Meanwhile, the serum levels of AST, ALT, TG, TC, MDA, TNF-α, IL-1β and IL-6 were significantly decreased (P < 0.05, P < 0.01), but GSH level was inversely increased (P < 0.05). Metabolomic analysis revealed nine major pathways involved in the therapeutic effect of RDAE, including fructose and mannose metabolism. The levels of 7 amino acids including leucine, proline and alanine/sarcosine were significantly upregulated. Additionally, protein levels of p-NF-κB (p65)/NF-κB (p65), p-ERK1/2/ERK1/2, p-JNK/JNK, p-p38/p38, COX-2 and iNOS were significantly decreased (P < 0.01, P < 0.05). RDAE is used to treat acute ALD by improving lipid metabolism, inhibiting the expression of pro-inflammatory cytokines and regulating MAPKs/NF-κB/COX-2-iNOS signalling pathway. These findings provide valuable insights for acute ALD therapy based on traditional Chinese medicine (TCM).
Collapse
Affiliation(s)
- Xianglong Meng
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Kele Ren
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| | - Xiaoqin Liu
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
- College of Pharmacy, Shandong Modern University, Jinan, 250104, China
| | - Chenzi Lyu
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea
| | - Yilong Zhang
- Shanxi Pengyakang Biotechnology Co., Ltd, Lyuliang, 033000, Shanxi, China
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
- Shanxi Key Laboratory of Traditional Herbal Medicines Processing, Jinzhong, 030619, Shanxi, China
| |
Collapse
|
4
|
Namachivayam A, Valsala Gopalakrishnan A. Effect of Lauric acid against ethanol-induced hepatotoxicity by modulating oxidative stress/apoptosis signalling and HNF4α in Wistar albino rats. Heliyon 2023; 9:e21267. [PMID: 37908709 PMCID: PMC10613920 DOI: 10.1016/j.heliyon.2023.e21267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Ethanol (EtOH) is most widely used in alcoholic beverages to prepare alcohol. As EtOH is mainly metabolised in the liver, the excessive consumption of EtOH forms a primary toxic metabolic product called acetaldehyde, as the gradual increase in acetaldehyde leads to liver injury, as reported. Lauric acid (LA) is rich in antioxidant, antifungal, antibacterial, anticancer, and antiviral properties. LA is an edible component highly present in coconut oil. However, no report on LA protective effects against the EtOH-instigated hepatotoxicity exists. Therefore, the experiment is carried out to investigate the potency effects of LA on EtOH-instigated hepatotoxicity in thirty male albino rats. Rats were divided into five groups (n-6): control DMSO alone, EtOH -intoxicated, EtOH + LA 180 mg/kg, EtOH + LA 360 mg/kg, and LA alone were administered orally using oral gavage. The study measured body weight every weekend in all rat groups. The rats were sacrificed and assessed for serum markers (alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase), antioxidant activity (superoxide dismutase, reduced glutathione, glutathione peroxidase), lipid peroxidation (malondialdehyde), histopathological, cytokine levels (TNF-α, IL-1β and IL-6), protein expression (caspase 3 and caspase 8 and Bcl-2 and HNF4α) were evaluated after the 56-days study period. The impact of EtOH intoxication reduces the rat's body weight by 90 g, upregulates the liver enzyme markers, depletes the antioxidant levels, produces malondialdehyde, changes the histoarchitecture (periportal inflammation and hepatocyte damage), downregulates the Bcl-2 expressions and HNF4α, and elevates the expression of cytokines and apoptotic markers. LA alleviated EtOH-induced liver toxicity by significant (p < 0.05) modulation of biochemical levels, caspase-8/3 signalling, reducing pro-inflammatory cytokines, and restoring the normal histoarchitecture, upregulating the Bcl-2 and HNF4α Expressions. In conclusion, LA treatment can protect the liver against EtOH-induced hepatotoxicity, evidenced by alleviating Oxidative stress, lipid peroxidation, inflammation, apoptosis, and upregulation of HNF4α.
Collapse
Affiliation(s)
- Arunraj Namachivayam
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| |
Collapse
|
5
|
Heya MS, García-Ponce R, Soto BAM, Verde-Star MJ, Soto-Domínguez A, García-Hernandez DG, Saucedo-Cárdenas O, Hernández-Salazar M, Guillén-Meléndez GA. Green Alternatives in Treatment of Liver Diseases: the Challenges of Traditional Medicine and Green Nanomedicine. Chem Biodivers 2023; 20:e202300463. [PMID: 37531499 DOI: 10.1002/cbdv.202300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Over the last decade, liver diseases have become a global problem, with approximately two million deaths per year. The high increase in the mortality rate of these diseases is mostly related to the limitations in the understanding of the evolutionary clinical cases of liver diseases, the low delivery of drugs in the liver, the non-specific administration of drugs, and the side effects generated at the systemic level by conventional therapeutic agents. Today it is common knowledge that phytochemicals have a high curative potential, even in the prevention and/or reversibility of liver disorders; however, even using these green molecules, researchers continue to deal with the same challenges implemented with conventional therapeutic agents, which limits the pharmacological potential of these friendly molecules. On the other hand, the latest advances in nanotechnology have proven that the use of nanocarriers as a delivery system for green active ingredients, as well as conventional ones, increases the pharmacological potential of these active ingredients due to their physicochemical characteristics (size, Zeta potential, etc.,) moldable depending on the therapeutic objective; in addition to the above, it should be noted that in recent years, nanoparticles have been developed for the specific delivery of drugs towards a specific target (stellar cells, hepatocytes, Kupffer cells), depending on the clinical state of the disease in the patient. The present review addresses the challenges of traditional medicine and green nanomedicine as alternatives in the treatment of liver diseases.
Collapse
Affiliation(s)
- Michel Stephane Heya
- Faculty of Public Health and Nutrition, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolas de los Garza, 66451, Nuevo León, México
| | - Romario García-Ponce
- Biological Science School, Universidad Autónoma de Nuevo León, Ave., Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolás de los Garza, 66451, Nuevo León, México
| | - Beatriz Amari Medina Soto
- Department of Microbiology, Faculty of Veterinary Medicine and Zootechnics., Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex Hacienda El Canadá, Gral. Escobedo, Nuevo León, México
| | - María Julia Verde-Star
- Biological Science School, Universidad Autónoma de Nuevo León, Ave., Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolás de los Garza, 66451, Nuevo León, México
| | - Adolfo Soto-Domínguez
- Department of Histology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Madero y Aguirre Pequeño S/N, Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - David Gilberto García-Hernandez
- Biological Science School, Universidad Autónoma de Nuevo León, Ave., Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolás de los Garza, 66451, Nuevo León, México
| | - Odila Saucedo-Cárdenas
- Department of Histology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Madero y Aguirre Pequeño S/N, Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - Marcelo Hernández-Salazar
- Faculty of Public Health and Nutrition, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolas de los Garza, 66451, Nuevo León, México
| | - Gloria Arely Guillén-Meléndez
- Department of Histology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Madero y Aguirre Pequeño S/N, Mitras Centro, 64460, Monterrey, Nuevo León, México
| |
Collapse
|
6
|
Mahdi WA, AlGhamdi SA, Alghamdi AM, Imam SS, Alshehri S, Almaniea MA, Hajjar BM, Al-Abbasi FA, Sayyed N, Kazmi I. Effect of Europinidin against Alcohol-Induced Liver Damage in Rats by Inhibiting the TNF-α/TGF-β/IFN-γ/NF-kB/Caspase-3 Signaling Pathway. ACS OMEGA 2023; 8:22656-22664. [PMID: 37396259 PMCID: PMC10308532 DOI: 10.1021/acsomega.3c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/12/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The effect of europinidin on alcoholic liver damage in rats was examined in this research. METHODS A total of 24 Wistar rats were grouped in the same way into four groups: normal control (normal), ethanol control (EtOH), europinidin low dose (10 mg/kg), and europinidin higher dose (20 mg/kg). The test group rats were orally treated with europinidin-10 and europinidin-20 for 4 weeks, whereas 5 mL/kg distilled water was administered to control rats. In addition, 1 h after the last dose of the above-mentioned oral treatment, 5 mL/kg (i.p.) EtOH was injected to induce liver injury. After 5 h of EtOH treatment, samples of blood were withdrawn for biochemical estimations. RESULTS Administration of europinidin at both doses restored all of the estimated serum, i.e., liver function tests (ALT, AST, ALP), biochemical test (Creatinine, albumin, BUN, direct bilirubin, and LDH), lipid assessment (TC and TG), endogenous antioxidants (GSH-Px, SOD, and CAT), malondialdehyde (MDA), nitric oxide (NO), cytokines (TGF-β, TNF-α, IL-1β, IL-6, IFN-γ, and IL-12), caspase-3, and nuclear factor kappa B (NF-κB) associated with the EtOH group. CONCLUSION The results of the investigation showed that europinidin had favorable effects in rats given EtOH and may have hepatoprotective potential property.
Collapse
Affiliation(s)
- Wael A. Mahdi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental
Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amira M. Alghamdi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Sarim Imam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Almaniea
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Baraa Mohammed Hajjar
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Sayyed
- School
of Pharmacy, Glocal University, Saharanpur 247121, India
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Russo A, Graziano A, Bruno M, Cardile V, Rigano D. Apoptosis induction of essential oils from Artemisia arborescens L. in human prostate cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115929. [PMID: 36379416 DOI: 10.1016/j.jep.2022.115929] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prostate cancer originates from cells inside a gland, which begin to grow out of control. In the world, prostate cancer is the most common cancer in the male population. New therapeutic strategies are needed for this tumor which still has a high mortality. A. arborescens leaves and aerial parts have various ethnopharmacological uses such as anti-spasmodic, and their decoctions were used to resolve urticaria, neuralgia and several lung diseases. Often this species has been also used to treat different inflammatory-related diseases such as cancer. AIM OF THE STUDY In a continuation of our research on essential oils from medicinal plants, we have selected, two essential oils from Artemisia arborescens L. (Compositae), an aromatic shrub widely used in traditional medicine. We evaluated their pro-apototic effect on androgen-sensitive (LNCaP) and androgen-insensitive (DU-145) human prostate cancer cells. In this study, we also evaluated the anti-Signal transducer and transcription factor 3 (STAT-3) activity of both essential oils in the human prostate cancer cell lines, and the treatment with Tumor necrosis factor (TNF)-Related Apoptosis (TRAIL). MATERIALS AND METHODS The cells were exposed to essential oils for 72 h and cell viability and cell membrane integrity were evaluated. Genomic DNA and the activity of caspase-3 was tested to confirm the cell death for apoptosis. Western blot analysis was employed to evaluate the expression of Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9, Hsp70, STAT-3 and SOD proteins. Assays to evaluate reactive oxygen species (ROS) and GSH levels were also performed. RESULTS The results showed the capacity of two essential oils to activate an apoptotic process increasing the inhibition of Hsp70 and STAT-3 protein expression. In addition, our natural products sensitize LNCaP cells to Tumor necrosis factor (TNF)-Related Apoptosis (TRAIL)-induced apoptosis. CONCLUSIONS In summary, our study provides a further contribution to the hypothesis of the use of essential oils, from traditional medicinal plants, for the treatment of tumors, and suggests that the combination of our samples with other anti-prostate cancer therapies could be used to affect prostate cancer.
Collapse
Affiliation(s)
- Alessandra Russo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy.
| | - Adriana Graziano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy.
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Guo D, Yang Y, Wu Y, Liu Y, Cao L, Shi Y, Wan N, Wu Z. Chemical Composition Analysis and Discrimination of Essential Oils of Artemisia Argyi Folium from Different Germplasm Resources Based on Electronic Nose and GC/MS Combined with Chemometrics. Chem Biodivers 2023; 20:e202200991. [PMID: 36650717 DOI: 10.1002/cbdv.202200991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
In this study, the electronic nose and GC/MS were used to analyze the chemical components of essential oils from different germplasm resources of Artemisia argyi Folium (A. argyi), in order to quickly identify essential oils of A. argyi from different germplasm resources and clarify the differences among different A. argyi samples. The essential oils of A. argyi were extracted by steam distillation. This article describes for the first time that electronic nose combined with chemometrics can distinguish the essential oils of A. argyi from different germplasm, which proves the reliability and potential of this technology. GC/MS was used to identify 134 volatile components from the essential oil of A. argyi. The main bioactive components were cineole, thujarone, artemisia ketone, β-caryophyllene, (-)-4-terpinol, 3,3,6-trimethyl-1,5-heptadien-4-ol, (-)-α-thujone, camphor, borneol. In addition, the results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that there were significant differences in the essential oils of A. argyi from different germplasm resources, terpenes, alcohols and ketones played an important role in identifying the essential oils of A. argyi from different germplasm resources. This indicates that electronic nose and GC/MS combined with chemometrics can be used as reliable techniques to identify different germplasm resources of A. argyi, and provide certain reference value for quality evaluation, selection of high-quality varieties and rational development of resources of A. argyi.
Collapse
Affiliation(s)
- Dongyun Guo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang, 330004, China
| | - Yiqin Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yi Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Lan Cao
- Research Center for Traditional Chinese Medicine Resourcing and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yan Shi
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Jiangxi Province, Nanchang, 330004, China
| | - Na Wan
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
9
|
Ameliorative Impacts of Wheat Germ Oil against Ethanol-Induced Hepatic and Renal Dysfunction in Rats: Involvement of Anti-Inflammatory, Anti-Apoptotic, and Antioxidant Signaling Pathways. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101671. [PMID: 36295108 PMCID: PMC9605469 DOI: 10.3390/life12101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Wheat germ oil (WGO) is a well-known product with anti-inflammatory and antioxidant properties. The current study aimed to investigate the impacts of WGO against ethanol-induced liver and kidney dysfunction at the serum, anti-inflammatory, antioxidants and anti-apoptotic signaling pathways. Rats received saline orally as a negative control or WGO in a dose of 1.5 mL/kg (1400 mg/kg body weight orally) for 15 days. The affected group received ethanol 50% v/v 10 mL/kg (5 g/kg) body weight orally once a day for consecutive 15 days to induce hepatorenal injuries in ethanolic non-treated group. The protective group received WGO daily 1 h before ethanol administration. Serum (1.5 mL) from blood was extracted and examined for the changes in biochemical assessments in serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), bilirubin, serum γ-glutamyl transpeptidase (GGT), total protein, serum albumin, butyrylcholinesterase (BChE), total cholesterol (TC), total triglyceride (TG), urea, creatinine, uric acid, potassium (K+), Beta-2 microglobulin (β2M), malondialdehyde (MDA), catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD) and aspartate aminotransferase (AST). Kidney and liver homogenate was used to measure MDA, GSH and catalase activities. Quantitative real time PCR (qRT-PCR) was used to express Nrf2 and HO-1 in liver, and NF-kB and kidney injury molecule (KIM-1) in kidneys, which are correlated with oxidative stress and inflammation. Capase-3 and Bcl2 genes were examined using immunohistochemical analysis in the kidney and liver. Ethanol administration induced significant alteration in examined liver and kidney markers (AST, ALT, GGT, ALP, total proteins, urea, creatinine and uric acid). Moreover, alcohol administration decreased antioxidant activities at serum and hepatorenal tissues (GSH, catalase and SOD), while MDA was increased as a tissue degradation marker. Inflammatory cytokines, together with genes of oxidative stress markers (Nrf2 and HO-1), were all affected. At cellular levels, apoptotic marker caspase-3 was upregulated, while antiapoptotic marker B-cell lymphoma 2 (Bcl2), was down regulated using immunohistochemical analysis. Of interest, pretreatment with WGO improved the side effects induced by ethanol on hepatic, renal biomarkers and reversed its impact on serum and tissue antioxidant parameters. Nrf2/HO-1 were upregulated, while NFk-B and KIM-1 were downregulated using real time PCR. Immune reactivities of caspase-3 and Bcl2 genes were restored in the protective group. In conclusion, WGO ameliorated ethanol-induced hepatic and renal dysfunction at the biochemical, molecular and cellular levels by regulating some mechanisms that controls oxidative stress, apoptosis, inflammation and anti-apoptotic pathways.
Collapse
|
10
|
Beigi T, Safi A, Satvati M, Kalantari-Hesari A, Ahmadi R, Meshkibaf MH. Protective role of ellagic acid and taurine against fluoxetine induced hepatotoxic effects on biochemical and oxidative stress parameters, histopathological changes, and gene expressions of IL-1β, NF-κB, and TNF-α in male Wistar rats. Life Sci 2022; 304:120679. [PMID: 35662648 DOI: 10.1016/j.lfs.2022.120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
Abstract
PURPOSES Hepatic bioactivation of fluoxetine (FXN) could increase free radicals' generation provoking hepatotoxicity. Therefore, the protective effects of ellagic acid (EA) and taurine (TAU) treatments against fluoxetine-induced liver damage in rats were examined. MATERIALS AND METHODS Sixty four male Wistar rats were randomly assigned to 8 groups (n = 8). Group (1) Control, group (2) FXN, group (3) FXN + EA, group (4) FXN + TAU, group (5) FXN + EA + TAU, group (6) EA, group (7) TAU, and group (8) EA + TAU. Then, the serum and tissue parameters of the oxidative stress were examined. KEY FINDINGS FXN significantly raised serum MDA, protein carbonyl, lipid profile, ALT, AST, ALP, total bilirubin, serum IL-1β; and gene expressions of IL-1β, NF-κB, and TNF-α. Moreover, it significantly decreased HDL-C, ferric reducing antioxidant power (FRAP), catalase activity, vitamin C, and SOD activity in the liver compared to group 1. When compared to group 2, EA and TAU treatment dramatically increased antioxidant capacity and lowered hepatotoxic biochemical markers and cellular inflammation. Results also showed a protective effect of treatment against oxidative damage caused by hepatocytes' cytoarchitecture. SIGNIFICANCE Our study concluded the beneficial effects of EA and TAU on FXN-induced hepatotoxicity. These effects were derived from free radical scavenging properties and the anti-inflammatory effects related to IL-1β, NF-κB, and TNF-α gene expression inhibition.
Collapse
Affiliation(s)
- Tayebeh Beigi
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Satvati
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ali Kalantari-Hesari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | | |
Collapse
|
11
|
Chlorogenic Acid Protects against Advanced Alcoholic Steatohepatitis in Rats via Modulation of Redox Homeostasis, Inflammation, and Lipogenesis. Nutrients 2021; 13:nu13114155. [PMID: 34836410 PMCID: PMC8617701 DOI: 10.3390/nu13114155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the therapeutic effects of chlorogenic acid (CGA) in rats with advanced alcoholic steatohepatitis. The rats were fed on a high-fat diet and gavaged with ethanol (4 g/kg) for 8 weeks. The livers of ethanol-treated rats showed steatosis; necrosis and mononuclear infiltration; and significant upregulation of the mRNA expression of the prooxidant (Cyp2e1, iNos), lipogenic (Srebp1, Acc), proinflammatory (Tlr4, Nf-κb, TnfA, Il-1B, and Il-6), and profibrogenic (TgfB, Col1, VegfA) genes. Simultaneously, a downregulation of level of Sod and Nrf2 was observed, which was accompanied by increased serum transaminase, TnfA, and serum and liver triglycerides levels. CGA administration (40 and 80 mg/kg, 8 weeks) to ethanol-fed group reduced the liver expression levels of Cyp2e1 and iNos, whereas it markedly enhanced the expression of Sod, Nrf2, and Ho-1. CGA at both doses downregulated the expressions of lipogenic, proinflammatory, and profibrogenic genes, while the expression of Tlr4 was lowered only after the higher dose of CGA. The higher dose of CGA efficiently prevented the progression of alcohol-induced steatosis and reduced inflammation through regulation of the expression of genes encoding the proteins involved in the Tlr4/Nf-κB signaling pathway and fibrosis. The study revealed hepatoprotective and anti-inflammatory effects of CGA through the regulation of expression of genes encoding Cyp2e1/Nrf2 involved in oxidative stress modulation. These results demonstrate CGA as a therapeutic candidate for the prevention and treatment of alcoholic steatohepatitis.
Collapse
|
12
|
Bayliak MM, Dmytriv TR, Melnychuk AV, Strilets NV, Storey KB, Lushchak VI. Chamomile as a potential remedy for obesity and metabolic syndrome. EXCLI JOURNAL 2021; 20:1261-1286. [PMID: 34602925 PMCID: PMC8481792 DOI: 10.17179/excli2021-4013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Obesity is an increasing health concern related to many metabolic disorders, including metabolic syndrome, diabetes type 2 and cardiovascular diseases. Many studies suggest that herbal products can be useful dietary supplements for weight management due to the presence of numerous biologically active compounds, including antioxidant polyphenols that can counteract obesity-related oxidative stress. In this review we focus on Matricaria chamomilla, commonly known as chamomile, and one of the most popular medicinal plants in the world. Thanks to a high content of phenolic compounds and essential oils, preparations from chamomile flowers demonstrate a number of pharmacological effects, including antioxidant, anti-inflammatory, antimicrobial and sedative actions as well as improving gastrointestinal function. Several recent studies have shown certain positive effects of chamomile preparations in the prevention of obesity and complications of diabetes. These effects were associated with modulation of signaling pathways involving the AMP-activated protein kinase, NF-κB, Nrf2 and PPARγ transcription factors. However, the potential of chamomile in the management of obesity seems to be underestimated. This review summarizes current data on the use of chamomile and its individual components (apigenin, luteolin, essential oils) to treat obesity and related metabolic disorders in cell and animal models and in human studies. Special attention is paid to molecular mechanisms that can be involved in the anti-obesity effects of chamomile preparations. Limitation of chamomile usage is also analyzed.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Tetiana R Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Antonina V Melnychuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia V Strilets
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.,I. Horbachevsky Ternopil National Medical University, 46002, Ternopil, Ukraine.,Research and Development University, Shota Rustaveli Str., 76018, Ivano-Frankivsk, Ukraine
| |
Collapse
|
13
|
Avram S, Stan MS, Udrea AM, Buiu C, Boboc AA, Mernea M. 3D-ALMOND-QSAR Models to Predict the Antidepressant Effect of Some Natural Compounds. Pharmaceutics 2021; 13:pharmaceutics13091449. [PMID: 34575524 PMCID: PMC8470101 DOI: 10.3390/pharmaceutics13091449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
The current treatment of depression involves antidepressant synthetic drugs that have a variety of side effects. In searching for alternatives, natural compounds could represent a solution, as many studies reported that such compounds modulate the nervous system and exhibit antidepressant effects. We used bioinformatics methods to predict the antidepressant effect of ten natural compounds with neuroleptic activity, reported in the literature. For all compounds we computed their drug-likeness, absorption, distribution, metabolism, excretion (ADME), and toxicity profiles. Their antidepressant and neuroleptic activities were predicted by 3D-ALMOND-QSAR models built by considering three important targets, namely serotonin transporter (SERT), 5-hydroxytryptamine receptor 1A (5-HT1A), and dopamine D2 receptor. For our QSAR models we have used the following molecular descriptors: hydrophobicity, electrostatic, and hydrogen bond donor/acceptor. Our results showed that all compounds present drug-likeness features as well as promising ADME features and no toxicity. Most compounds appear to modulate SERT, and fewer appear as ligands for 5-HT1A and D2 receptors. From our prediction, linalyl acetate appears as the only ligand for all three targets, neryl acetate appears as a ligand for SERT and D2 receptors, while 1,8-cineole appears as a ligand for 5-HT1A and D2 receptors.
Collapse
Affiliation(s)
- Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
| | - Miruna Silvia Stan
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91–95, SplaiulIndependentei, 050095 Bucharest, Romania;
| | - Ana Maria Udrea
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 91–95, SplaiulIndependentei, 050095 Bucharest, Romania;
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Cătălin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 SplaiulIndependenţei, 060042 Bucharest, Romania
- Correspondence: ; Tel.: +40-021-402-9167
| | - Anca Andreea Boboc
- “Maria Sklodowska Curie” Emergency Children’s Hospital, 20, Constantin Brancoveanu Bd., 077120 Bucharest, Romania;
- Department of Pediatrics 8, “Carol Davila” University of Medicine and Pharmacy, EroiiSanitari Bd., 020021 Bucharest, Romania
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, SplaiulIndependentei, No 91-95, 050095 Bucharest, Romania; (S.A.); (M.S.S.); (M.M.)
| |
Collapse
|