1
|
Martirosyan A, Kriegova E, Savara J, Abroyan L, Ghonyan S, Slobodova Z, Nesnadna R, Manukyan G. Impact of antiphospholipid syndrome on placenta and uterine NK cell function: insights from a mouse model. Sci Rep 2024; 14:31163. [PMID: 39732740 DOI: 10.1038/s41598-024-82451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment. Analyses of APS placentas showed a reduced cell proliferation, lower protein content and thinning of endothelial cells. Disturbances in APS trophoblast cells were linked to a cell cycle shift in cytotrophoblast cells, and a reduced number of spiral artery-associated trophoblast giant cells (SpA-TGC). Transcriptomic profiling of placental tissue highlighted disruptions in cell cycle regulation with notable downregulation of genes involved in developmental or signaling processes. Cellular senescence, metabolic and p53-related pathways were also enriched, suggesting potential mechanisms underlying placental dysfunction in APS. Thrombotic events, though occasionally detected, appeared to have no significant impact on the overall pathological changes. The increased number of dysfunctional uNK cells was not associated with enhanced cytotoxic capabilities. Transcriptomic data corroborated these findings, showing prominent suppression of NK cell secretory capacity and cytokine signaling pathways. Our study highlights the multifactorial nature of APS-associated placental pathologies, which involve disrupted angiogenesis, cell cycle regulation, and NK cell functionality.
Collapse
Affiliation(s)
- A Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan Str., Yerevan, 0014, Armenia
| | - E Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - J Savara
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - L Abroyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, 0014, Armenia
| | - S Ghonyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan Str., Yerevan, 0014, Armenia
| | - Z Slobodova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - R Nesnadna
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan Str., Yerevan, 0014, Armenia.
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Pradeepkiran JA, Baig J, Islam MA, Kshirsagar S, Reddy PH. Amyloid-β and Phosphorylated Tau are the Key Biomarkers and Predictors of Alzheimer's Disease. Aging Dis 2024:AD.2024.0286. [PMID: 38739937 DOI: 10.14336/ad.2024.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Alzheimer's disease (AD) is a age-related neurodegenerative disease and is a major public health concern both in Texas, US and Worldwide. This neurodegenerative disease is mainly characterized by amyloid-beta (Aβ) and phosphorylated Tau (p-Tau) accumulation in the brains of patients with AD and increasing evidence suggests that these are key biomarkers in AD. Both Aβ and p-tau can be detected through various imaging techniques (such as positron emission tomography, PET) and cerebrospinal fluid (CSF) analysis. The presence of these biomarkers in individuals, who are asymptomatic or have mild cognitive impairment can indicate an increased risk of developing AD in the future. Furthermore, the combination of Aβ and p-tau biomarkers is often used for more accurate diagnosis and prediction of AD progression. Along with AD being a neurodegenerative disease, it is associated with other chronic conditions such as cardiovascular disease, obesity, depression, and diabetes because studies have shown that these comorbid conditions make people more vulnerable to AD. In the first part of this review, we discuss that biofluid-based biomarkers such as Aβ, p-Tau in cerebrospinal fluid (CSF) and Aβ & p-Tau in plasma could be used as an alternative sensitive technique to diagnose AD. In the second part, we discuss the underlying molecular mechanisms of chronic conditions linked with AD and how they affect the patients in clinical care.
Collapse
Affiliation(s)
| | - Javaria Baig
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Zhong Q, Hong W, Xiong L. KIF3C: an emerging biomarker with prognostic and immune implications across pan-cancer types and its experiment validation in gastric cancer. Aging (Albany NY) 2024; 16:6163-6187. [PMID: 38552217 PMCID: PMC11042961 DOI: 10.18632/aging.205694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 04/23/2024]
Abstract
Kinesin Family Member 3C (KIF3C) assumes a crucial role in various biological processes of specific human cancers. Nevertheless, there exists a paucity of systematic assessments pertaining to the contribution of KIF3C in human malignancies. We conducted an extensive analysis of KIF3C, covering its expression profile, prognostic relevance, molecular function, tumor immunity, and drug sensitivity. Functional enrichment analysis was also carried out. In addition, we conducted in vitro experiments to substantiate the role of KIF3C in gastric cancer (GC). KIF3C expression demonstrated consistent elevation in various tumors compared to their corresponding normal tissues. We further unveiled that heightened KIF3C expression served as a prognostic indicator, and its elevated levels correlated with unfavorable clinical outcomes, encompassing reduced OS, DSS, and PFS in several cancer types. Notably, KIF3C expression exhibited positive associations with the pathological stages of several cancers. Moreover, KIF3C demonstrated varying relationships with the infiltration of various distinct immune cell types in gastric cancer. Functional analysis outcomes indicated that KIF3C played a role in the PI3K-AKT signaling pathway. Drug sensitivity unveiled a positive relationship between KIF3C in gastric cancer and the IC50 values of the majority of identified anti-cancer drugs. Additionally, KIF3C knockdown reduced the proliferation, migration, and invasion capabilities, increased apoptosis, and led to alterations in the cell cycle of gastric cancer cells. Our research has revealed the significant and functional role of KIF3C as a tumorigenic gene in diverse cancer types. These findings indicate that KIF3C may serve as a promising target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Qiangqiang Zhong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Wenbo Hong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
- Laboratory of Metabolic Abnormalities and Vascular Aging Huazhong University of Science and Technology, Wuhan 430077, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| |
Collapse
|
4
|
Pan Y, Wang J, Gao X, Du C, Hou C, Tang D, Zhu J. Expression Dynamics Indicate Potential Roles of KIF17 for Nuclear Reshaping and Tail Formation during Spermiogenesis in Phascolosoma esculenta. Int J Mol Sci 2023; 25:128. [PMID: 38203305 PMCID: PMC10779256 DOI: 10.3390/ijms25010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Kinesin family member17 (KIF17), a homologous dimer of the kinesin-2 protein family, has important microtubule-dependent and -independent roles in spermiogenesis. Little is known about KIF17 in the mollusk, Phascolosoma esculenta, a newly developed mariculture species in China. Here, we cloned the open reading frame of Pe-kif17 and its related gene, Pe-act, and performed bioinformatics analysis on both. Pe-KIF17 and Pe-ACT are structurally conserved, indicating that they may be functionally conserved. The expression pattern of kif17/act mRNA performed during spermiogenesis revealed their expression in diverse tissues, with the highest expression level in the coelomic fluid of P. esculenta. The expressions of Pe-kif17 and Pe-act mRNA were relatively high during the breeding season (July-September), suggesting that Pe-KIF17/ACT may be involved in spermatogenesis, particularly during spermiogenesis. Further analysis of Pe-kif17 mRNA via fluorescence in situ hybridization revealed the continuous expression of this mRNA during spermiogenesis, suggesting potential functions in this process. Immunofluorescence showed that Pe-KIF17 co-localized with α-tubulin and migrated from the perinuclear cytoplasm to one side of the spermatid, forming the sperm tail. Pe-KIF17 and Pe-ACT also colocalized. KIF17 may participate in spermiogenesis of P. esculenta, particularly in nuclear reshaping and tail formation by interacting with microtubule structures similar to the manchette. Moreover, Pe-KIF17 with Pe-ACT is also involved in nuclear reshaping and tail formation in the absence of microtubules. This study provides evidence for the role of KIF17 during spermiogenesis and provides theoretical data for studies of the reproductive biology of P. esculenta. These findings are important for spermatogenesis in mollusks.
Collapse
Affiliation(s)
- Yue Pan
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; (Y.P.); (J.W.); (X.G.); (C.D.); (C.H.)
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jingqian Wang
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; (Y.P.); (J.W.); (X.G.); (C.D.); (C.H.)
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; (Y.P.); (J.W.); (X.G.); (C.D.); (C.H.)
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chen Du
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; (Y.P.); (J.W.); (X.G.); (C.D.); (C.H.)
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Congcong Hou
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; (Y.P.); (J.W.); (X.G.); (C.D.); (C.H.)
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Daojun Tang
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; (Y.P.); (J.W.); (X.G.); (C.D.); (C.H.)
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; (Y.P.); (J.W.); (X.G.); (C.D.); (C.H.)
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Ayyildiz D, Bergonzoni G, Monziani A, Tripathi T, Döring J, Kerschbamer E, Di Leva F, Pennati E, Donini L, Kovalenko M, Zasso J, Conti L, Wheeler VC, Dieterich C, Piazza S, Dassi E, Biagioli M. CAG repeat expansion in the Huntington's disease gene shapes linear and circular RNAs biogenesis. PLoS Genet 2023; 19:e1010988. [PMID: 37831730 PMCID: PMC10617732 DOI: 10.1371/journal.pgen.1010988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/31/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD). The expanded Htt CAG repeats further reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Integrative transcriptomic analyses unveil a network of transcriptionally altered micro-RNAs and RNA-binding proteins (Celf, hnRNPs, Ptbp, Srsf, Upf1, Ythd2) which might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might alter neural fitness, contributing to HD pathogenesis.
Collapse
Affiliation(s)
- Dilara Ayyildiz
- Bioinformatic facility, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
- Biomedical Sciences and Biotechnology, University of Udine, Udine, Italy
| | - Guendalina Bergonzoni
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Alan Monziani
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Jessica Döring
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Emanuela Kerschbamer
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Francesca Di Leva
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Elia Pennati
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Luisa Donini
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jacopo Zasso
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Luciano Conti
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Silvano Piazza
- Bioinformatic facility, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Marta Biagioli
- NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Trento, Italy
| |
Collapse
|
6
|
Yao M, Qu H, Han Y, Cheng CY, Xiao X. Kinesins in Mammalian Spermatogenesis and Germ Cell Transport. Front Cell Dev Biol 2022; 10:837542. [PMID: 35547823 PMCID: PMC9083010 DOI: 10.3389/fcell.2022.837542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
In mammalian testes, the apical cytoplasm of each Sertoli cell holds up to several dozens of germ cells, especially spermatids that are transported up and down the seminiferous epithelium. The blood-testis barrier (BTB) established by neighboring Sertoli cells in the basal compartment restructures on a regular basis to allow preleptotene/leptotene spermatocytes to pass through. The timely transfer of germ cells and other cellular organelles such as residual bodies, phagosomes, and lysosomes across the epithelium to facilitate spermatogenesis is important and requires the microtubule-based cytoskeleton in Sertoli cells. Kinesins, a superfamily of the microtubule-dependent motor proteins, are abundantly and preferentially expressed in the testis, but their functions are poorly understood. This review summarizes recent findings on kinesins in mammalian spermatogenesis, highlighting their potential role in germ cell traversing through the BTB and the remodeling of Sertoli cell-spermatid junctions to advance spermatid transport. The possibility of kinesins acting as a mediator and/or synchronizer for cell cycle progression, germ cell transit, and junctional rearrangement and turnover is also discussed. We mostly cover findings in rodents, but we also make special remarks regarding humans. We anticipate that this information will provide a framework for future research in the field.
Collapse
Affiliation(s)
- Mingxia Yao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Yating Han
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.,Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Christman DA, Curry HN, Rouhana L. Heterotrimeric Kinesin II is required for flagellar assembly and elongation of nuclear morphology during spermiogenesis in Schmidtea mediterranea. Dev Biol 2021; 477:191-204. [PMID: 34090925 PMCID: PMC8277772 DOI: 10.1016/j.ydbio.2021.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 05/08/2021] [Accepted: 05/22/2021] [Indexed: 11/19/2022]
Abstract
Development of sperm requires microtubule-based movements that drive assembly of a compact head and flagellated tails. Much is known about how flagella are built given their shared molecular core with motile cilia, but less is known about the mechanisms that shape the sperm head. The Kinesin Superfamily Protein 3A (KIF3A) pairs off with a second motor protein (KIF3B) and the Kinesin Associated Protein 3 (KAP3) to form Heterotrimeric Kinesin II. This complex drives intraflagellar transport (IFT) along microtubules during ciliary assembly. We show that KIF3A and KAP3 orthologs in Schmidtea mediterranea are required for axonemal assembly and nuclear elongation during spermiogenesis. Expression of Smed-KAP3 is enriched during planarian spermatogenesis with transcript abundance peaking in spermatocyte and spermatid cells. Disruption of Smed-kif3A or Smed-KAP3 expression by RNA-interference results in loss of spermatozoa and accumulation of unelongated spermatids. Confocal microscopy of planarian testis lobes stained with alpha-tubulin antibodies revealed that spermatids with disrupted Kinesin II function fail to assemble flagella, and visualization with 4',6-diamidino-2-phenylindole (DAPI) revealed reduced nuclear elongation. Disruption of Smed-kif3A or Smed-KAP3 expression also resulted in edema, reduced locomotion, and loss of epidermal cilia, which corroborates with somatic phenotypes previously reported for Smed-kif3B. These findings demonstrate that heterotrimeric Kinesin II drives assembly of cilia and flagella, as well as rearrangements of nuclear morphology in developing sperm. Prolonged activity of heterotrimeric Kinesin II in manchette-like structures with extended presence during spermiogenesis is hypothesized to result in the exaggerated nuclear elongation observed in sperm of turbellarians and other lophotrochozoans.
Collapse
Affiliation(s)
- Donovan A Christman
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435-0001, USA
| | - Haley N Curry
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435-0001, USA
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435-0001, USA.
| |
Collapse
|
8
|
Markantoni M, Sarafidou T, Kyrgiafini MA, Chatziparasidou A, Christoforidis N, Dafopoulos K, Mamuris Z. Replicating a GWAS: two novel candidate markers for oligospermia in Greek population. Mol Biol Rep 2021; 48:4967-4972. [PMID: 34097203 DOI: 10.1007/s11033-021-06470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
Genome-wide association studies have paved the way for the discovery of new markers regarding many diseases, including male infertility. A previous study on Caucasians highlighted 172 polymorphisms for their putative association with male infertility and we attempted to replicate these findings on our dataset comprising of Greek male individuals (n = 360). We retrieved 59 out of 172 polymorphisms and tested for all association models on 278 normospermic men and 82 patients with an abnormal seminogram, later separated into oligozoospermic and asthenozoospermic groups. Our findings indicate that two SNPs (rs2296225 in KIF17, rs7224496 in SMYD4) are associated with male infertility in the Greek population and have not been recorded in literature as of yet. These novel markers need further validation via additional studies and an increased individual number. All in all, replication studies, possess the power to validate existing polymorphisms found across all population and thus increase both statistical significance as well as identify novel potentially diagnostic markers.
Collapse
Affiliation(s)
- Maria Markantoni
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, Greece
| | - Theologia Sarafidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, Greece
| | - Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, Greece
| | | | | | - Konstantinos Dafopoulos
- Obstetrics and Gynaecology Department, Department of Medicine, University of Thessaly, Larisa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Larisa, Greece.
| |
Collapse
|
9
|
Biallelic Variants in KIF17 Associated with Microphthalmia and Coloboma Spectrum. Int J Mol Sci 2021; 22:ijms22094471. [PMID: 33922911 PMCID: PMC8123208 DOI: 10.3390/ijms22094471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Microphthalmia, anophthalmia, and coloboma (MAC) are a group of congenital eye anomalies that can affect one or both eyes. Patients can present one or a combination of these ocular abnormalities in the so called “MAC spectrum”. The KIF17 gene encodes the kinesin-like protein Kif17, a microtubule-based, ATP-dependent, motor protein that is pivotal for outer segment development and disc morphogenesis in different animal models, including mice and zebrafish. In this report, we describe a Sicilian family with two siblings affected with congenital coloboma, microphthalmia, and a mild delay of motor developmental milestones. Genomic DNA from the siblings and their unaffected parents was sequenced with a clinical exome that revealed compound heterozygous variants in the KIF17 gene (NM_020816.4: c.1255C > T (p.Arg419Trp); c.2554C > T (p.Arg852Cys)) segregating with the MAC spectrum phenotype of the two affected siblings. Variants were inherited from the healthy mother and father, are present at a very low-frequency in genomic population databases, and are predicted to be deleterious in silico. Our report indicates the potential co-segregation of these biallelic KIF17 variants with microphthalmia and coloboma, highlighting a potential conserved role of this gene in eye development across different species.
Collapse
|
10
|
Xie MX, Cao XY, Zeng WA, Lai RC, Guo L, Wang JC, Xiao YB, Zhang X, Chen D, Liu XG, Zhang XL. ATF4 selectively regulates heat nociception and contributes to kinesin-mediated TRPM3 trafficking. Nat Commun 2021; 12:1401. [PMID: 33658516 PMCID: PMC7930092 DOI: 10.1038/s41467-021-21731-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Effective treatments for patients suffering from heat hypersensitivity are lacking, mostly due to our limited understanding of the pathogenic mechanisms underlying this disorder. In the nervous system, activating transcription factor 4 (ATF4) is involved in the regulation of synaptic plasticity and memory formation. Here, we show that ATF4 plays an important role in heat nociception. Indeed, loss of ATF4 in mouse dorsal root ganglion (DRG) neurons selectively impairs heat sensitivity. Mechanistically, we show that ATF4 interacts with transient receptor potential cation channel subfamily M member-3 (TRPM3) and mediates the membrane trafficking of TRPM3 in DRG neurons in response to heat. Loss of ATF4 also significantly decreases the current and KIF17-mediated trafficking of TRPM3, suggesting that the KIF17/ATF4/TRPM3 complex is required for the neuronal response to heat stimuli. Our findings unveil the non-transcriptional role of ATF4 in the response to heat stimuli in DRG neurons.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Xian-Ying Cao
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
- State Key Laboratory of Marine Resources Utilization of South China Sea, 58 Renmin Avenue, Haikou, China
| | - Wei-An Zeng
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Ren-Chun Lai
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Lan Guo
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Jun-Chao Wang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, China
| | - Yi-Bin Xiao
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Xi Zhang
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China
| | - Di Chen
- College of Food Science and Technology, Hainan University, 58 Renmin Avenue, Haikou, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, China.
| | - Xiao-Long Zhang
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
11
|
Zang J, Neuhauss SCF. Biochemistry and physiology of zebrafish photoreceptors. Pflugers Arch 2021; 473:1569-1585. [PMID: 33598728 PMCID: PMC8370914 DOI: 10.1007/s00424-021-02528-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
All vertebrates share a canonical retina with light-sensitive photoreceptors in the outer retina. These photoreceptors are of two kinds: rods and cones, adapted to low and bright light conditions, respectively. They both show a peculiar morphology, with long outer segments, comprised of ordered stacks of disc-shaped membranes. These discs host numerous proteins, many of which contribute to the visual transduction cascade. This pathway converts the light stimulus into a biological signal, ultimately modulating synaptic transmission. Recently, the zebrafish (Danio rerio) has gained popularity for studying the function of vertebrate photoreceptors. In this review, we introduce this model system and its contribution to our understanding of photoreception with a focus on the cone visual transduction cascade.
Collapse
Affiliation(s)
- Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrase 190, CH - 8057, Zürich, Switzerland.
| |
Collapse
|
12
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Beuriot A, Eichel CA, Dilanian G, Louault F, Melgari D, Doisne N, Coulombe A, Hatem SN, Balse E. Distinct calcium/calmodulin-dependent serine protein kinase domains control cardiac sodium channel membrane expression and focal adhesion anchoring. Heart Rhythm 2020; 17:786-794. [PMID: 31904424 DOI: 10.1016/j.hrthm.2019.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Membrane-associated guanylate kinase proteins function as adaptor proteins to mediate the recruitment and scaffolding of ion channels in the plasma membrane in various cell types. In the heart, the protein calcium/calmodulin-dependent serine protein kinase (CASK) negatively regulates the main cardiac sodium channel NaV1.5, which carries the sodium current (INa) by preventing its anterograde trafficking. CASK is also a new member of the dystrophin-glycoprotein complex and, like syntrophin, binds to the C-terminal domain of the channel. OBJECTIVE The purpose of this study was to unravel the mechanisms of CASK-mediated negative INa regulation and interaction with the dystrophin-glycoprotein complex in cardiac myocytes. METHODS CASK adenoviral truncated constructs with sequential single functional domain deletions were designed for overexpression in cardiac myocytes: CASKΔCAMKII, CASKΔL27A, CASKΔL27B, CASKΔPDZ, CASKΔSH3, CASKΔHOOK, and CASKΔGUK. A combination of whole-cell patch-clamp recording, total internal reflection fluorescence microscopy, and biochemistry experiments was conducted in cardiac myocytes to study the functional consequences of domain deletions. RESULTS We show that both L27B and GUK domains are required for the negative regulatory effect of CASK on INa and NaV1.5 surface expression and that the HOOK domain is essential for interaction with the cell adhesion dystrophin-glycoprotein complex. CONCLUSION This study demonstrates that the multimodular structure of CASK confers an ability to simultaneously interact with several targets within cardiomyocytes. Through its L27B, GUK, and HOOK domains, CASK potentially provides the ability to control channel delivery at adhesion points in cardiomyocytes.
Collapse
Affiliation(s)
- Adeline Beuriot
- INSERM UMRS 1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Catherine A Eichel
- INSERM UMRS 1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Gilles Dilanian
- INSERM UMRS 1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Florent Louault
- INSERM UMRS 1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Dario Melgari
- INSERM UMRS 1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Nicolas Doisne
- INSERM UMRS 1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Alain Coulombe
- INSERM UMRS 1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Stéphane N Hatem
- INSERM UMRS 1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France; Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elise Balse
- INSERM UMRS 1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France.
| |
Collapse
|
14
|
Wang HH, Zhang Y, Tang F, Pan MH, Wan X, Li XH, Sun SC. Rab23/Kif17 regulate oocyte meiotic progression by modulating tubulin acetylation and actin dynamics. Development 2019; 146:dev.171280. [DOI: 10.1242/dev.171280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
Cytoskeletal dynamics are involved in multiple cellular processes during oocyte meiosis, including spindle organization, actin-based spindle migration, and polar body extrusion. Here, we report that the vesicle trafficking protein Rab23, a GTPase, drives the motor protein Kif17 and that this is important for spindle organization and actin dynamics during mouse oocyte meiosis. GTP-bound Rab23 accumulated at the spindle and promoted migration of Kif17 to the spindle poles. Depletion of Rab23 or Kif17 caused polar body extrusion failure. Further analysis showed that depletion of Rab23/Kif17 perturbed spindle formation and chromosome alignment, possibly by affecting tubulin acetylation. Kif17 regulated tubulin acetylation by associating with αTAT and Sirt2, and depletion of Kif17 altered expression of these proteins. Moreover, depletion of Kif17 decreased the level of cytoplasmic actin, which abrogated spindle migration to the cortex. The tail domain of Kif17 associated with constituents of the RhoA-ROCK-LIMK-cofilin pathway to modulate assembly of actin filaments. Taken together, our results demonstrate that the Rab23-Kif17-cargo complex regulates tubulin acetylation for spindle organization and drives actin-mediated spindle migration during meiosis.
Collapse
Affiliation(s)
- Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
16
|
Lewis TR, Kundinger SR, Link BA, Insinna C, Besharse JC. Kif17 phosphorylation regulates photoreceptor outer segment turnover. BMC Cell Biol 2018; 19:25. [PMID: 30458707 PMCID: PMC6245759 DOI: 10.1186/s12860-018-0177-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/07/2018] [Indexed: 12/02/2022] Open
Abstract
Background KIF17, a kinesin-2 motor that functions in intraflagellar transport, can regulate the onset of photoreceptor outer segment development. However, the function of KIF17 in a mature photoreceptor remains unclear. Additionally, the ciliary localization of KIF17 is regulated by a C-terminal consensus sequence (KRKK) that is immediately adjacent to a conserved residue (mouse S1029/zebrafish S815) previously shown to be phosphorylated by CaMKII. Yet, whether this phosphorylation can regulate the localization, and thus function, of KIF17 in ciliary photoreceptors remains unknown. Results Using transgenic expression in zebrafish photoreceptors, we show that phospho-mimetic KIF17 has enhanced localization along the cone outer segment. Importantly, expression of phospho-mimetic KIF17 is associated with greatly enhanced turnover of the photoreceptor outer segment through disc shedding in a cell-autonomous manner, while genetic mutants of kif17 in zebrafish and mice have diminished disc shedding. Lastly, cone expression of constitutively active tCaMKII leads to a kif17-dependent increase in disc shedding. Conclusions Taken together, our data support a model in which phosphorylation of KIF17 promotes its photoreceptor outer segment localization and disc shedding, a process essential for photoreceptor maintenance and homeostasis. While disc shedding has been predominantly studied in the context of the mechanisms underlying phagocytosis of outer segments by the retinal pigment epithelium, this work implicates photoreceptor-derived signaling in the underlying mechanisms of disc shedding. Electronic supplementary material The online version of this article (10.1186/s12860-018-0177-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tylor R Lewis
- Department of Cell Biology, Neurobiology, and Anatomy Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sean R Kundinger
- Department of Ophthalmology and Visual Sciences Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine Insinna
- Department of Cell Biology, Neurobiology, and Anatomy Medical College of Wisconsin, Milwaukee, WI, USA.,Laboratory of Cell and Developmental Signaling National Cancer Institute-Frederick, Frederick, MD, USA
| | - Joseph C Besharse
- Department of Cell Biology, Neurobiology, and Anatomy Medical College of Wisconsin, Milwaukee, WI, USA. .,Department of Ophthalmology and Visual Sciences Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Camlin NJ, McLaughlin EA, Holt JE. Motoring through: the role of kinesin superfamily proteins in female meiosis. Hum Reprod Update 2017; 23:409-420. [PMID: 28431155 DOI: 10.1093/humupd/dmx010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/01/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The kinesin motor protein family consists of 14 distinct subclasses and 45 kinesin proteins in humans. A large number of these proteins, or their orthologues, have been shown to possess essential function(s) in both the mitotic and the meiotic cell cycle. Kinesins have important roles in chromosome separation, microtubule dynamics, spindle formation, cytokinesis and cell cycle progression. This article contains a review of the literature with respect to the role of kinesin motor proteins in female meiosis in model species. Throughout, we discuss the function of each class of kinesin proteins during oocyte meiosis, and where such data are not available their role in mitosis is considered. Finally, the review highlights the potential clinical importance of this family of proteins for human oocyte quality. OBJECTIVE AND RATIONALE To examine the role of kinesin motor proteins in oocyte meiosis. SEARCH METHODS A search was performed on the Pubmed database for journal articles published between January 1970 and February 2017. Search terms included 'oocyte kinesin' and 'meiosis kinesin' in addition to individual kinesin names with the terms oocyte or meiosis. OUTCOMES Within human cells 45 kinesin motor proteins have been discovered, with the role of only 13 of these proteins, or their orthologues, investigated in female meiosis. Furthermore, of these kinesins only half have been examined in mammalian oocytes, despite alterations occurring in gene transcripts or protein expression with maternal ageing, cryopreservation or behavioral conditions, such as binge drinking, for many of them. WIDER IMPLICATIONS Kinesin motor proteins have distinct and important roles throughout oocyte meiosis in many non-mammalian model species. However, the functions these proteins have in mammalian meiosis, particularly in humans, are less clear owing to lack of research. This review brings to light the need for more experimental investigation of kinesin motor proteins, particularly those associated with maternal ageing, cryopreservation or exposure to environmental toxicants.
Collapse
Affiliation(s)
- Nicole J Camlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Janet E Holt
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
18
|
Intraflagellar transport velocity is governed by the number of active KIF17 and KIF3AB motors and their motility properties under load. Proc Natl Acad Sci U S A 2017; 114:E6830-E6838. [PMID: 28761002 DOI: 10.1073/pnas.1708157114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Homodimeric KIF17 and heterotrimeric KIF3AB are processive, kinesin-2 family motors that act jointly to carry out anterograde intraflagellar transport (IFT), ferrying cargo along microtubules (MTs) toward the tips of cilia. How IFT trains attain speeds that exceed the unloaded rate of the slower, KIF3AB motor remains unknown. By characterizing the motility properties of kinesin-2 motors as a function of load we find that the increase in KIF3AB velocity, elicited by forward loads from KIF17 motors, cannot alone account for the speed of IFT trains in vivo. Instead, higher IFT velocities arise from an increased likelihood that KIF3AB motors dissociate from the MT, resulting in transport by KIF17 motors alone, unencumbered by opposition from KIF3AB. The rate of transport is therefore set by an equilibrium between a faster state, where only KIF17 motors move the train, and a slower state, where at least one KIF3AB motor on the train remains active in transport. The more frequently the faster state is accessed, the higher the overall velocity of the IFT train. We conclude that IFT velocity is governed by (i) the absolute numbers of each motor type on a given train, (ii) how prone KIF3AB is to dissociation from MTs relative to KIF17, and (iii) how prone both motors are to dissociation relative to binding MTs.
Collapse
|
19
|
Schwarz N, Lane A, Jovanovic K, Parfitt DA, Aguila M, Thompson CL, da Cruz L, Coffey PJ, Chapple JP, Hardcastle AJ, Cheetham ME. Arl3 and RP2 regulate the trafficking of ciliary tip kinesins. Hum Mol Genet 2017; 26:2480-2492. [PMID: 28444310 PMCID: PMC5808637 DOI: 10.1093/hmg/ddx143] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 11/14/2022] Open
Abstract
Ciliary trafficking defects are the underlying cause of many ciliopathies, including Retinitis Pigmentosa (RP). Anterograde intraflagellar transport (IFT) is mediated by kinesin motor proteins; however, the function of the homodimeric Kif17 motor in cilia is poorly understood, whereas Kif7 is known to play an important role in stabilizing cilia tips. Here we identified the ciliary tip kinesins Kif7 and Kif17 as novel interaction partners of the small GTPase Arl3 and its regulatory GTPase activating protein (GAP) Retinitis Pigmentosa 2 (RP2). We show that Arl3 and RP2 mediate the localization of GFP-Kif17 to the cilia tip and competitive binding of RP2 and Arl3 with Kif17 complexes. RP2 and Arl3 also interact with another ciliary tip kinesin, Kif7, which is a conserved regulator of Hedgehog (Hh) signaling. siRNA-mediated loss of RP2 or Arl3 reduced the level of Kif7 at the cilia tip. This was further validated by reduced levels of Kif7 at cilia tips detected in fibroblasts and induced pluripotent stem cell (iPSC) 3D optic cups derived from a patient carrying an RP2 nonsense mutation c.519C > T (p.R120X), which lack detectable RP2 protein. Translational read-through inducing drugs (TRIDs), such as PTC124, were able to restore Kif7 levels at the ciliary tip of RP2 null cells. Collectively, our findings suggest that RP2 and Arl3 regulate the trafficking of specific kinesins to cilia tips and provide additional evidence that TRIDs could be clinically beneficial for patients with this retinal degeneration.
Collapse
Affiliation(s)
- Nele Schwarz
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Amelia Lane
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | | | | | - Clare L. Thompson
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Lyndon da Cruz
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
| | | | - J. Paul Chapple
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | | | | |
Collapse
|
20
|
Seneviratne APB, Turan Z, Hermant A, Lecine P, Smith WO, Borg JP, Jaulin F, Kreitzer G. Modulation of estrogen related receptor alpha activity by the kinesin KIF17. Oncotarget 2017; 8:50359-50375. [PMID: 28881568 PMCID: PMC5584137 DOI: 10.18632/oncotarget.18104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 05/12/2017] [Indexed: 12/26/2022] Open
Abstract
Estrogen-related receptor alpha (ERR1) is an orphan nuclear receptor that can bind transcriptional co-activators constitutively. ERR1 expression correlates with poor patient outcomes in breast cancer, heightening interest in this nuclear receptor as a therapeutic target. Because ERR1 has no known regulatory ligand, a major challenge in targeting its activity is to find cellular or synthetic modulators of its function. We identified an interaction between ERR1 and KIF17, a kinesin-2 family microtubule motor, in a yeast-2-hybrid screen. We confirmed the interaction using in vitro biochemical assays and determined that binding is mediated by the ERR1 ligand-binding/AF2 domain and the KIF17 C-terminal tail. Expression of KIF17 tail domain in either ER-negative or ER-positive breast cancer epithelial cells attenuated nuclear accumulation of newly synthesized ERR1 and inhibited ERR1 transcriptional activity. Conversely, ERR1 transcriptional activity was elevated significantly in KIF17 knock-out cells. Sequence analysis of the KIF17 tail domain revealed it contains a nuclear receptor box with a conserved LXXLL motif found in transcriptional co-activators. Expression of a 12 amino-acid peptide containing this motif was sufficient to inhibit ERR1 transcriptional activity and cell invasion, while deletion of this region from the KIF17 tail resulted in increased ERR1 activity. Together, these data suggest KIF17 modifies ERR1 function by two possible, non-exclusive mechanisms: (i) by regulating nuclear-cytoplasmic distribution or (ii) by competing with transcriptional co-activators for binding to ERR1. Thus targeting the ERR1-KIF17 interaction has potential as a novel strategy for treating breast cancer.
Collapse
Affiliation(s)
- Am Pramodh Bandara Seneviratne
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA.,Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA.,The City University of New York School of Medicine, New York, NY, USA
| | - Zeynep Turan
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA.,California Institute of Technology, Pasadena, CA, USA
| | - Aurelie Hermant
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Institut Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell Signalling and Cancer, Equipe labellisée Ligue Contre le Cancer, Marseille, France
| | - Patrick Lecine
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Institut Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell Signalling and Cancer, Equipe labellisée Ligue Contre le Cancer, Marseille, France.,BIOASTER, Tony Garnier, Lyon, France
| | - William O Smith
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Institut Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, Cell Polarity, Cell Signalling and Cancer, Equipe labellisée Ligue Contre le Cancer, Marseille, France
| | - Fanny Jaulin
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA.,Gustave Roussy Institute, Villejuif, France
| | - Geri Kreitzer
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA.,Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, NY, USA.,The City University of New York School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Norcini M, Sideris A, Adler SM, Hernandez LAM, Zhang J, Blanck TJJ, Recio-Pinto E. NR2B Expression in Rat DRG Is Differentially Regulated Following Peripheral Nerve Injuries That Lead to Transient or Sustained Stimuli-Evoked Hypersensitivity. Front Mol Neurosci 2016; 9:100. [PMID: 27803647 PMCID: PMC5068091 DOI: 10.3389/fnmol.2016.00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/26/2016] [Indexed: 12/30/2022] Open
Abstract
Following injury, primary sensory neurons undergo changes that drive central sensitization and contribute to the maintenance of persistent hypersensitivity. NR2B expression in the dorsal root ganglia (DRG) has not been previously examined in neuropathic pain models. Here, we investigated if changes in NR2B expression within the DRG are associated with hypersensitivities that result from peripheral nerve injuries. This was done by comparing the NR2B expression in the DRG derived from two modalities of the spared nerve injury (SNI) model, since each variant produces different neuropathic pain phenotypes. Using the electronic von Frey to stimulate the spared and non-spared regions of the hindpaws, we demonstrated that sural-SNI animals develop sustained neuropathic pain in both regions while the tibial-SNI animals recover. NR2B expression was measured at Day 23 and Day 86 post-injury. At Day 23 and 86 post-injury, sural-SNI animals display strong hypersensitivity, whereas tibial-SNI animals display 50 and 100% recovery from post-injury-induced hypersensitivity, respectively. In tibial-SNI at Day 86, but not at Day 23 the perinuclear region of the neuronal somata displayed an increase in NR2B protein. This retention of NR2B protein within the perinuclear region, which will render them non-functional, correlates with the recovery observed in tibial-SNI. In sural-SNI at Day 86, DRG displayed an increase in NR2B mRNA which correlates with the development of sustained hypersensitivity in this model. The increase in NR2B mRNA was not associated with an increase in NR2B protein within the neuronal somata. The latter may result from a decrease in kinesin Kif17, since Kif17 mediates NR2B transport to the soma’s plasma membrane. In both SNIs, microglia/macrophages showed a transient increase in NR2B protein detected at Day 23 but not at Day 86, which correlates with the initial post-injury induced hypersensitivity in both SNIs. In tibial-SNI at Day 86, but not at Day 23, satellite glia cells (SGCs) displayed an increase in NR2B protein. This study is the first to characterize of cell-specific changes in NR2B expression within the DRG following peripheral nerve injury. We discuss how the observed NR2B changes in DRG can contribute to the different neuropathic pain phenotypes displayed by each SNI variant.
Collapse
Affiliation(s)
- Monica Norcini
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Alexandra Sideris
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Samantha M Adler
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Lourdes A M Hernandez
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Jin Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New York NY, USA
| | - Thomas J J Blanck
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New YorkNY, USA; Department of Neuroscience and Physiology, NYU Langone Medical Center, New York University, New YorkNY, USA
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Langone Medical Center, New York University, New YorkNY, USA; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University, New YorkNY, USA
| |
Collapse
|
22
|
Carter C. The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes. Neurochem Int 2016; 99:42-51. [DOI: 10.1016/j.neuint.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
|
23
|
Tumour Suppressor Adenomatous Polyposis Coli (APC) localisation is regulated by both Kinesin-1 and Kinesin-2. Sci Rep 2016; 6:27456. [PMID: 27272132 PMCID: PMC4895226 DOI: 10.1038/srep27456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
Microtubules and their associated proteins (MAPs) underpin the polarity of specialised cells. Adenomatous polyposis coli (APC) is one such MAP with a multifunctional agenda that requires precise intracellular localisations. Although APC has been found to associate with kinesin-2 subfamily members, the exact mechanism for the peripheral localization of APC remains unclear. Here we show that the heavy chain of kinesin-1 directly interacts with the APC C-terminus, contributing to the peripheral localisation of APC in fibroblasts. In rat hippocampal neurons the kinesin-1 binding domain of APC is required for its axon tip enrichment. Moreover, we demonstrate that APC requires interactions with both kinesin-2 and kinesin-1 for this localisation. Underlining the importance of the kinesin-1 association, neurons expressing APC lacking kinesin-1-binding domain have shorter axons. The identification of this novel kinesin-1-APC interaction highlights the complexity and significance of APC localisation in neurons.
Collapse
|
24
|
Bai X, Karasmanis EP, Spiliotis ET. Septin 9 interacts with kinesin KIF17 and interferes with the mechanism of NMDA receptor cargo binding and transport. Mol Biol Cell 2016; 27:897-906. [PMID: 26823018 PMCID: PMC4791134 DOI: 10.1091/mbc.e15-07-0493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Kinesin motor interactions with cargo and their regulation are not well understood. Septin 9 (SEPT9) interacts directly with kinesin KIF17 and interferes with binding of the cargo adaptor/scaffold mLin-10/Mint1, which links the NMDA receptor subunit 2B (NR2B) to KIF17. SEPT9 down-regulates NR2B transport without affecting the motile properties of KIF17. Intracellular transport involves the regulation of microtubule motor interactions with cargo, but the underlying mechanisms are not well understood. Septins are membrane- and microtubule-binding proteins that assemble into filamentous, scaffold-like structures. Septins are implicated in microtubule-dependent transport, but their roles are unknown. Here we describe a novel interaction between KIF17, a kinesin 2 family motor, and septin 9 (SEPT9). We show that SEPT9 associates directly with the C-terminal tail of KIF17 and interacts preferentially with the extended cargo-binding conformation of KIF17. In developing rat hippocampal neurons, SEPT9 partially colocalizes and comigrates with KIF17. We show that SEPT9 interacts with the KIF17 tail domain that associates with mLin-10/Mint1, a cargo adaptor/scaffold protein, which underlies the mechanism of KIF17 binding to the NMDA receptor subunit 2B (NR2B). Significantly, SEPT9 interferes with binding of the PDZ1 domain of mLin-10/Mint1 to KIF17 and thereby down-regulates NR2B transport into the dendrites of hippocampal neurons. Measurements of KIF17 motility in live neurons show that SEPT9 does not affect the microtubule-dependent motility of KIF17. These results provide the first evidence of an interaction between septins and a nonmitotic kinesin and suggest that SEPT9 modulates the interactions of KIF17 with membrane cargo.
Collapse
Affiliation(s)
- Xiaobo Bai
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Eva P Karasmanis
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
25
|
Ratta-Apha W, Mouri K, Boku S, Ishiguro H, Okazaki S, Otsuka I, Sora I, Arinami T, Shirakawa O, Hishimoto A. A decrease in protein level and a missense polymorphism of KIF17 are associated with schizophrenia. Psychiatry Res 2015; 230:424-9. [PMID: 26421900 DOI: 10.1016/j.psychres.2015.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/04/2015] [Accepted: 09/20/2015] [Indexed: 11/20/2022]
Abstract
It has been shown that the dysfunction of N-methyl-d-asparate (NMDA) receptors-mediated neurotransmission plays a role in the pathophysiology of schizophrenia. Especially, GluN2B, a subunit of NMDA receptors, associated trafficking complex is altered in the prefrontal cortex of schizophrenia. The kinesin superfamily motor protein 17 (KIF17) is known as a transporter of NR2B.Previous studies showed that a structural variant of KIF17 gene is associated with a schizophrenic phenotype. Therefore, here we investigated KIF17 levels in postmortem prefrontal cortex in schizophrenia and the association of a missense polymorphism (Ile341Val) in KIF17 with schizophrenia. The protein expression of KIF17 in schizophrenic postmortem brains was significantly lower than that in controls. Next, the association of missense polymorphisms (rs631375, rs13375609, rs522496 and rs2296225) of KIF17 gene in 567 schizophrenia and 710 healthy subjects was examined. Both genotypic distribution and allelic frequency of rs2296225 polymorphism were significantly different between the chronic schizophrenia subjects and controls. However, our findings described above were not replicated with the independent subjects (555 schizophrenia and 814 healthy controls). Furthermore, the two alleles of rs2296225 polymorphism did not affect the mRNA expression of KIF17. These results suggest that the dysfunction of KIF17 might be involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Woraphat Ratta-Apha
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan0
| | - Kentaro Mouri
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan0
| | - Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan0
| | - Hiroki Ishiguro
- Department of Psychiatry, Tsukuba University Graduate School of Medicine, Tsukuba, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan0
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan0
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan0
| | - Tadao Arinami
- Department of Psychiatry, Tsukuba University Graduate School of Medicine, Tsukuba, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, Kinki University School of Medicine, Osaka, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan0.
| |
Collapse
|
26
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Jiang L, Wei Y, Ronquillo CC, Marc RE, Yoder BK, Frederick JM, Baehr W. Heterotrimeric kinesin-2 (KIF3) mediates transition zone and axoneme formation of mouse photoreceptors. J Biol Chem 2015; 290:12765-78. [PMID: 25825494 DOI: 10.1074/jbc.m115.638437] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 11/06/2022] Open
Abstract
Anterograde intraflagellar transport (IFT) employing kinesin-2 molecular motors has been implicated in trafficking of photoreceptor outer segment proteins. We generated embryonic retina-specific (prefix "emb") and adult tamoxifen-induced (prefix "tam") deletions of KIF3a and IFT88 in adult mice to study photoreceptor ciliogenesis and protein trafficking. In (emb)Kif3a(-/-) and in (emb)Ift88(-/-) mice, basal bodies failed to extend transition zones (connecting cilia) with outer segments, and visual pigments mistrafficked. In contrast, (tam)Kif3a(-/-) and (tam)Ift88(-/-) photoreceptor axonemes disintegrated slowly post-induction, starting distally, but rhodopsin and cone pigments trafficked normally for more than 2 weeks, a time interval during which the outer segment is completely renewed. The results demonstrate that visual pigments transport to the retinal outer segment despite removal of KIF3 and IFT88, and KIF3-mediated anterograde IFT is responsible for photoreceptor transition zone and axoneme formation.
Collapse
Affiliation(s)
- Li Jiang
- From the Departments of Ophthalmology and Visual Sciences and
| | - Yuxiao Wei
- From the Departments of Ophthalmology and Visual Sciences and
| | | | - Robert E Marc
- From the Departments of Ophthalmology and Visual Sciences and
| | - Bradley K Yoder
- the Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, and
| | | | - Wolfgang Baehr
- From the Departments of Ophthalmology and Visual Sciences and the Department of Biology, University of Utah, Salt Lake City, Utah 84112 Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, Utah 84132,
| |
Collapse
|
28
|
Liu M, Liu Y, Hou B, Bu D, Shi L, Gu X, Ma Z. Kinesin superfamily protein 17 contributes to the development of bone cancer pain by participating in NR2B transport in the spinal cord of mice. Oncol Rep 2015; 33:1365-71. [PMID: 25573412 DOI: 10.3892/or.2015.3706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/10/2014] [Indexed: 11/06/2022] Open
Abstract
Τreatment of bone cancer pain remains a challenge, while the mechanisms causing the pain remain elusive. We demonstrated that the expression of the N‑methyl‑D‑aspartate (NMDA) receptor NR2B subunit was upregulated in mice with bone cancer pain. Kinesin superfamily protein 17 (KIF17), a recently characterized member of the kinesin superfamily proteins, has been demonstrated to transport and deliver the NR2B subunit to dendrites in mammalian neurons. In the present study, we induced bone cancer pain via femur bone cavity osteosarcoma NCTC 2472 tumor cell implantation (TCI) in mice. The results showed that TCI in mice increased the number of spontaneous flinches, mechanical allodynia events, expression of spinal KIF17 and NR2B subunits. Intrathecal administration of KIF17 antisense oligodeoxynucleotide (ODN) attenuated the behavioral signs of bone cancer pain and suppressed the increased expression of NR2B induced by TCI. In addition, KIF17 binds to a protein complex that contains mLin‑10 to transport NR2B, and we determined that the increase of mLin‑10 was suppressed following admini-stration. Thus, these findings suggested that KIF17 contributed to the development of bone cancer pain in the spinal cord through NR2B transport and that mLin‑10 may also play a role in pain development.
Collapse
Affiliation(s)
- Ming Liu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Yue Liu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Bailing Hou
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Dan Bu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Linyu Shi
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Xiaoping Gu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Zhengliang Ma
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| |
Collapse
|
29
|
Abstract
Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY, 14203, USA
| |
Collapse
|
30
|
Gill I, Droubi S, Giovedi S, Fedder KN, Bury LAD, Bosco F, Sceniak MP, Benfenati F, Sabo SL. Presynaptic NMDA receptors - dynamics and distribution in developing axons in vitro and in vivo. J Cell Sci 2014; 128:768-80. [PMID: 25526735 DOI: 10.1242/jcs.162362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During cortical development, N-methyl-D-aspartate (NMDA) receptors (NMDARs) facilitate presynaptic terminal formation, enhance neurotransmitter release and are required in presynaptic neurons for spike-timing-dependent long-term depression (tLTD). However, the extent to which NMDARs are found within cortical presynaptic terminals has remained controversial, and the sub-synaptic localization and dynamics of axonal NMDARs are unknown. Here, using live confocal imaging and biochemical purification of presynaptic membranes, we provide strong evidence that NMDARs localize to presynaptic terminals in vitro and in vivo in a developmentally regulated manner. The NR1 and NR2B subunits (also known as GRIN1 and GRIN2B, respectively) were found within the active zone membrane, where they could respond to synaptic glutamate release. Surprisingly, NR1 also appeared in glutamatergic and GABAergic synaptic vesicles. During synaptogenesis, NR1 was mobile throughout axons - including growth cones and filopodia, structures that are involved in synaptogenesis. Upon synaptogenic contact, NMDA receptors were quickly recruited to terminals by neuroligin-1 signaling. Unlike dendrites, the trafficking and distribution of axonal NR1 were insensitive to activity changes, including NMDA exposure, local glutamate uncaging or action potential blockade. These results support the idea that presynaptic NMDARs play an early role in presynaptic development.
Collapse
Affiliation(s)
- Ishwar Gill
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Sammy Droubi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Silvia Giovedi
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Karlie N Fedder
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Federica Bosco
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Michael P Sceniak
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Fabio Benfenati
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
31
|
Association of KIF21B genetic polymorphisms with ankylosing spondylitis in a Chinese Han population of Shandong Province. Clin Rheumatol 2014; 34:1729-36. [PMID: 25149646 DOI: 10.1007/s10067-014-2761-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 07/08/2014] [Accepted: 08/15/2014] [Indexed: 12/13/2022]
Abstract
Previous studies have found that the kinesin family member (KIF) 21B may contribute to the autoimmune disease process. It has been reported that the KIF21B gene is relevant to the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC). We hypothesized that KIF21B might be a key gene for ankylosing spondylitis (AS) development. To test this hypothesis, 11 tag single nucleotide polymorphisms (SNPs) covering KIF21B were investigated in 904 Chinese (Han ethnic) patients of Shandong Province with AS and 898 age- and sex-matched controls of the same ethnic origin. The T allele of rs756254 was linked to increased risk of AS (P = 0.022). The AA genotype of rs296560 and TT and AT genotypes of rs756254 were also relevant with AS (P = 0.044, P = 0.033, and P = 0.033, respectively). Haplotype analysis identified that the KIF21B gene region contains two haplotype blocks of eight and two SNPs, respectively. The haplotype GCGGTAAA in block 1 appeared to reduce the risk of AS (P = 0.005), while the haplotype AA in block 2 was significantly associated with an increased risk of AS (P = 0.039). There were no significant differences between the AS patients and the controls in polymorphisms of rs10920091, rs3198583, rs56368827, rs3738255, rs296565, rs12087649, rs12568529, rs7536000, and rs957957. These results indicated that KIF21B was associated with AS in a Chinese population of Shandong Province.
Collapse
|
32
|
Kinesin-2 family motors in the unusual photoreceptor cilium. Vision Res 2012; 75:33-6. [PMID: 23123805 DOI: 10.1016/j.visres.2012.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 01/13/2023]
Abstract
This review focuses on recent advances in the understanding of kinesin-2 family motors in vertebrate photoreceptor development. Zebrafish photoreceptors develop by the 3rd day of embryogenesis, making it possible to study mutant phenotypes without the use of conditional alleles. Recent work using a zebrafish kif3b mutant allele validates the concept that the heterotrimeric kinesin II motor is generally required for ciliogenesis. In zebrafish photoreceptors, however, loss of kif3b function delays but does not block cilium formation. This is thought to occur because both kif3b or kif3c can dimerize with kif3a and function redundantly. The second ciliary kinesin thought to function in photoreceptor cells is kif17. Prior work has shown that either morpholino knockdown of this gene or the overexpression of its dominant negative form can reduce or delay photoreceptor cilium development without any evident impact on ciliogenesis in general. This has led to the idea that kif17 may play an important role only in some specialized cilium types, such the one in photoreceptor cells. In a recently identified kif17 mutant, however, photoreceptor outer segments are formed by 5 dpf and an obvious delay of outer segment formation is seen only at the earliest stage analyzed (3 dpf). This work suggests that kif17 plays a significant role mainly at an early stage of photoreceptor development. Taken together, these studies lead to an intriguing concept that as they differentiate photoreceptors alter their kinesin repertoire.
Collapse
|
33
|
Bader JR, Kusik BW, Besharse JC. Analysis of KIF17 distal tip trafficking in zebrafish cone photoreceptors. Vision Res 2012; 75:37-43. [PMID: 23099049 DOI: 10.1016/j.visres.2012.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/12/2012] [Accepted: 10/13/2012] [Indexed: 12/30/2022]
Abstract
Multiple proteins are targeted to photoreceptor outer segments (OSs) where they function in phototransduction. Intraflagellar transport (IFT), a highly conserved bidirectional transport pathway occurring along the microtubules of the ciliary axoneme has been implicated in OS trafficking. The canonical anterograde motor for IFT is the heterotrimeric kinesin II or KIF3 complex. Previous work from our laboratory has demonstrated a role for an additional kinesin 2 family motor, the homodimeric KIF17. To gain a better understanding of KIF17 function in photoreceptor OS we utilized transgenic zebrafish expressing zfKIF17-GFP to assess the localization and dynamics of zfKIF17. Our data indicate that both endogenous KIF17 and KIF17-GFP are associated with the axoneme of zebrafish cones at both early (5dpf) and late (21 dfp) stages of development. Strikingly, KIF17-GFP accumulates at the OS distal tip in a phenomenon referred to as "tipping". Tipping occurs in the large majority of photoreceptors and also occurs when mammalian KIF17-mCherry is expressed in ciliated epithelial cells in culture. In some cases KIF17-GFP is shed with the OS tip as part of the disc shedding process. We have also found that KIF17-GFP moves within the OS at rates consistent with those observed for IFT and other kinesins.
Collapse
Affiliation(s)
- Jason R Bader
- Department of Cell Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226-0509, USA
| | | | | |
Collapse
|