1
|
Yu H, Zhang S, Zhang X, Gao L, Chi W, Zhu M, Yuan Y, Zhang Y. Novel ZnO-TiO 2@MSC nanomaterial based on corn stover template enhances disease resistance in tomato plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124075. [PMID: 39827603 DOI: 10.1016/j.jenvman.2025.124075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Crop diseases significantly threaten global food security, driving the need for innovative control strategies. This study explored using ZnO-TiO2@MSC, a novel nanomaterial synthesized using a corn stover template, to enhance disease resistance in tomato plants. In vitro assays demonstrated potent antimicrobial activity of ZnO-TiO2@MSC against the pathogen Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000) by disrupting bacterial cell membranes and modulating oxidative stress-related gene expression. When applied to tomato leaves in pot trials, ZnO-TiO2@MSC achieved 79.83% control of bacterial leaf spot disease while promoting plant growth and photosynthesis. The nanomaterial triggered plant defense mechanisms, upregulating resistance genes and increasing the activities of key enzymes. Metabolomic profiling revealed elevated lipids, lipid-like molecules, and organic acid derivative levels in treated leaves, suggesting cell membrane remodeling as part of the defense response. These findings highlight the potential of biologically-templated nanomaterials like ZnO-TiO2@MSC as multifunctional tools for sustainable disease management in crops. The corn stover-based synthesis approach also provides a way to valorize agricultural waste. Further research is needed to understand the long-term impacts and viability of field-scale application of ZnO-TiO2@MSC as an alternative to conventional pesticides.
Collapse
Affiliation(s)
- Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyuan Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Longfei Gao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenshi Chi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mengmeng Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingcai Yuan
- Harbin Xunyang Internet of Things Technology Co., Ltd, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
2
|
Chen Y, Li H, Peng Y, Li T, Li X, Wang C, Xiao R, Dong J, Du X. Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through "On Site" Metal-Polyphenol Coordination Assembly for Improved Efficacy and Biosafety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39869849 DOI: 10.1021/acs.jafc.4c10948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe3+, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, H2O2, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens. The tebuconazole nanocapsules not only enhanced the fungicidal activity against Fusarium graminearum and effective control efficacy in wheat powdery mildew through foliar spray and seed coating, but also improved the biosafety of target plant growth and nontarget organisms. The facile, smart, efficient, safe, and green pesticide nanocapsules using the universal strategy have broad application prospects in ecoagriculture.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhui Peng
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tongtong Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaona Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruixi Xiao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiangtao Dong
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xuezhong Du
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Triller S, Amrute A, Schüth F. Scale-Up of Nanocorundum Synthesis by Mechanochemical Dehydration of Boehmite. Ind Eng Chem Res 2025; 64:1577-1586. [PMID: 39867354 PMCID: PMC11760161 DOI: 10.1021/acs.iecr.4c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
This work presents the scale-up of room-temperature mechanochemical synthesis of nanocorundum (high-surface-area α-Al2O3) from boehmite (γ-AlOOH). This transformation on the 1 g scale using a laboratory shaker mill had previously been reported. High-energy Simoloyer ball mills equipped with milling chambers of sizes ranging from 1 to 20 L were used to scale up the mechanochemical nanocorundum synthesis to the 50 g to 1 kg scale, which paves the way to further increase batch size. Milling chambers made of steel and lined with silicon nitride (Si3N4) and milling balls made of steel, zirconia (ZrO2), and silicon nitride (Si3N4) were investigated to address the abrasion problem, leading to contamination of the alumina. Furthermore, several other process parameters, such as ball-to-powder ratio, degree of chamber filling, and milling speed, were optimized to find the conditions for efficient formation of nanocorundum with minimum contamination. Impact forces were found to be decisive in driving the transformation from boehmite to corundum. The nanocorundum produced in the scaled-up experiments has a high specific surface area >110 m2/g with an average particle size of ∼13 nm at a low level of contamination. The optimal sample was also shown to possess improved stability of surface area when exposed to temperatures up to 1200 °C. These results successfully demonstrate the scale-up of 1 g scale results to up to the 1 kg scale and may serve as a blueprint for scaling up also other mechanochemistry processes.
Collapse
Affiliation(s)
- Sarah Triller
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Amol Amrute
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ferdi Schüth
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Pattanayak P, Saha S, Chatterjee T, Ranu BC. Sustainable and solvent-free synthesis of molecules of pharmaceutical importance by ball milling. Chem Commun (Camb) 2024; 61:247-265. [PMID: 39629561 DOI: 10.1039/d4cc05127k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The solvent-free mechanochemical reactions under ball milling have emerged as a promising alternative to traditional solution-based chemistry. This approach not only eliminates the necessity for large quantities of solvents and minimizes waste production, but it also facilitates a unique reaction environment that enables strategies, reactions, and compound syntheses that are typically unattainable in solution. This solvent-less synthetic strategy under ball-milling has been well employed in synthetic organic chemistry in accessing various potential organic molecules including pharmaceutically important molecules and pharmaceuticals or drug-molecules. This review highlights the potential of ball milling in the synthesis of pharmaceutically important classes of molecules without using any solvent (solvent-free conditions).
Collapse
Affiliation(s)
- Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India.
| | - Samiran Saha
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India.
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, India.
| | - Brindaban C Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
5
|
Cyniak J, Kasprzak A. Mechanochemical Synthesis of Molecular Chemoreceptors. ACS OMEGA 2024; 9:48870-48883. [PMID: 39713627 PMCID: PMC11656220 DOI: 10.1021/acsomega.4c06566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The design of environmentally friendly methods for synthesizing molecular receptors is an expanding area within applied organic chemistry. This work systematically summarizes advances in the mechanochemical synthesis of molecular chemoreceptors. It discusses key achievements related to the synthesis of chemoreceptors containing azine, Schiff base, thiosemicarbazone, hydrazone, rhodamine 6G, imide, or amide moieties. Additionally, it highlights the application potential of mechanochemically synthesized molecular chemoreceptors in the recognition of ions and small molecules, along with a discussion of the mechanisms of detection processes.
Collapse
Affiliation(s)
- Jakub
S. Cyniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| |
Collapse
|
6
|
Dong J, Wang G, Li X, Han A, Zhang W, Yue Y, Yang Y, Wang Y, Yuan B, Wang J, Peng Y, Liu R, Chen S, Du X. Bio-friendly multi-stimuli responsive α-CD polymer-gated mesoporous carbon nanoherbicides for enhanced paraquat delivery. J Adv Res 2024:S2090-1232(24)00561-7. [PMID: 39672232 DOI: 10.1016/j.jare.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
INTRODUCTION Weeds seriously affect crop yield in global agricultural production. Paraquat (PQ), as one of low cost and highly effective herbicide, is forbidden or severely restricted in production and sales owing to its lethal toxicity to humans. Creating an efficient and bio-friendly PQ formulation is crucial to facilitate the open use of PQ in world's agriculture. OBJECTIVES This study aims to construct one intelligent and bio-friendly mesoporous carbon nanoparticles (MCN) nanoherbicides coated with α-CD polymer (CDP) gatekeepers. METHODS MCN was prepared through the low-concentration hydrothermal way, calcined and carbonized. PEG stalks were immobilized on MCN surface by amidation reaction. The PQ was trapped in the MCN pores via physical diffusion adsorption and the robust π-π effects between electron-deficient PQ and electron-rich MCN. CDP gatekeepers were fastened via host-guest effects between the chamber of α-CD units and PEG stalks. RESULTS The PQ-loaded MCN-PEG@CDP nanoherbicides integrated with multi-stimuli responses to amylase, elevated temperature under sunlight, and competitors at leaf interface to control the PQ release for efficient weed control, while appeared low PQ leakage under the simulated human gastric or intestinal conditions, low cytotoxicity to human normal cells in vitro, and high mouse survival rate in vivo. Even through the nanoherbicides inevitably contact with water or intake by beneficial insects, they appear good biosafety on zebrafish (D. rerio) and honeybees (Apis mellifera L.). CONCLUSION The as-prepared nanoherbicides have high herbicidal efficacy and low risks to non-target species, and could promote the open use of PQ in agriculture.
Collapse
Affiliation(s)
- Jiangtao Dong
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China.
| | - Guoquan Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Xiaona Li
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Aohui Han
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Wanpeng Zhang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yuhang Yue
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yue Yang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yishan Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Bowen Yuan
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Jiahui Wang
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Yuhui Peng
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China
| | - Runqiang Liu
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China.
| | - Si Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, PR China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Zhang AY, Huang ZH, Du LH, Lin H, Xie HJ, Yan BL, Xue MM, Wang L, Shao WX, Fu GN, Luo XP. Pyrazine derivative synthesis in a continuous-flow system: a green synthesis of pyrazinamide from pyrazine esters and amines catalyzed by Lipozyme® TL IM from Thermomyces lanuginosus. RSC Adv 2024; 14:39560-39568. [PMID: 39687336 PMCID: PMC11648184 DOI: 10.1039/d4ra06761d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Pyrazinamide derivatives have been extensively studied for their biological activities, such as anti-tuberculosis activity and antiviral activities. In this work, a continuous-flow system was developed for the synthesis of pyrazinamide derivatives from pyrazine esters and amines (aliphatic amine, benzylamines and morpholine) catalyzed by Lipozyme® TL IM from Thermomyces lanuginosus, which was used for the first time. The reaction parameters including solvent, substrate ratio, reaction temperature and reaction time/flow rate were also studied in detail. A total of 23 pyrazinamide derivatives can be obtained through this method in parallel. Compared with other works, this method can be conducted at 45 °C for 20 min in a greener tert-amyl alcohol solvent and maximum yield (91.6%) was obtained as well. In brief, a more efficient and greener method for the synthesis of pyrazinamide derivatives was developed with good scalability, various substrates including aliphatic amines, benzylamines and morpholines can be applied to this method and achieve a desirable yield. Through the construction and research of amide bonds, this method provides a greener and more efficient biocatalytic continuous technology for the development of pyrazine-derived drugs, and provides a basis for the rapid synthesis of pyrazine-derived drugs in the future.
Collapse
Affiliation(s)
- Ao-Ying Zhang
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Zong-Hao Huang
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Li-Hua Du
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Hang Lin
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Han-Jia Xie
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Bing-Lin Yan
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Miao Miao Xue
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Lin Wang
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Wen-Xuan Shao
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Guo-Neng Fu
- College of Pharmaceutical Science, ZheJiang University of Technology Zhejiang Hangzhou 310014 China +86-571-88320903 +86-189-690-693-99
| | - Xi-Ping Luo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University Zhejiang Hangzhou 311300 China
| |
Collapse
|
8
|
Vermeeren B, Van Praet S, Arts W, Narmon T, Zhang Y, Zhou C, Steenackers HP, Sels BF. From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Chem Soc Rev 2024; 53:11804-11849. [PMID: 39365265 DOI: 10.1039/d4cs00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Aliphatic amines encompass a diverse group of amines that include alkylamines, alkyl polyamines, alkanolamines and aliphatic heterocyclic amines. Their structural diversity and distinctive characteristics position them as indispensable components across multiple industrial domains, ranging from chemistry and technology to agriculture and medicine. Currently, the industrial production of aliphatic amines is facing pressing sustainability, health and safety issues which all arise due to the strong dependency on fossil feedstock. Interestingly, these issues can be fundamentally resolved by shifting toward biomass as the feedstock. In this regard, cellulose and hemicellulose, the carbohydrate fraction of lignocellulose, emerge as promising feedstock for the production of aliphatic amines as they are available in abundance, safe to use and their aliphatic backbone is susceptible to chemical transformations. Consequently, the academic interest in bio-based aliphatic amines via the catalytic reductive amination of (hemi)cellulose-derived substrates has systematically increased over the past years. From an industrial perspective, however, the production of bio-based aliphatic amines will only be the middle part of a larger, ideally circular, value chain. This value chain additionally includes, as the first part, the refinery of the biomass feedstock to suitable substrates and, as the final part, the implementation of these aliphatic amines in various applications. Each part of the bio-based aliphatic amine value chain will be covered in this Review. Applying a holistic perspective enables one to acknowledge the requirements and limitations of each part and to efficiently spot and potentially bridge knowledge gaps between the different parts.
Collapse
Affiliation(s)
- Benjamin Vermeeren
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Sofie Van Praet
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Wouter Arts
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Yingtuan Zhang
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | | | - Bert F Sels
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| |
Collapse
|
9
|
Ramu A, Rajendrakumar K. Evaluation of the Role of [{Cu(PMDETA)} 2(O 2 2-)] 2+ in Open-Air Photo ATRP of Methyl Methacrylate. ACS OMEGA 2024; 9:44916-44930. [PMID: 39554403 PMCID: PMC11561604 DOI: 10.1021/acsomega.4c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
Herein, we report an open-air, photo accelerated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) without employing any deoxygenating agent. Under open-air photo ATRP conditions, oxygen reversibly binds with [{Cu (PMDETA)}2(O2 2-)]2+ (1) to form the required activator, which was demonstrated by simple benchtop oxygen/nitrogen purging experiments. The binding mode of oxygen in (1) (μ(η2-η2) peroxo dicopper(II)) was investigated using UV Visible-NIR, FT-Raman and X-ray photoelectron (XPS) spectroscopic techniques. DFT studies and electrochemical measurements further support the catalytic role of (1) in open-air photo ATRP. With the synergistic involvement of Cu (II)Br2, PMDETA ligand and the intensity of light (365 nm, 4.2 mW cm-2), a well-controlled rapid polymerization of MMA under open-air condition was achieved (1.25< Đ < 1.47, 94% conversion in 200 min). The bromo chain end fidelity was exemplified by chain extension experiment, block copolymerization and MALDI-ToF analysis. Other monomers such as methyl acrylate, glycidyl methacrylate, and benzyl methacrylate were also polymerized under open-air condition with reasonable control over molecular weight and Đ. An open-air photo polymerization methodology would be fruitful for applications like photocurable printing, dental, optoelectronics, stereolithography, and protective coatings where simple but rapid photopolymerizations are desirable.
Collapse
Affiliation(s)
- Arumugam Ramu
- Department
of chemistry, School of Advanced Sciences Vellore Institute of Technology, Chennai 600127, India
| | - Kannapiran Rajendrakumar
- Centre
for Advanced Materials and Innovative Technologies (CAMIT) Vellore Institute of Technology, Chennai 600127, India
| |
Collapse
|
10
|
Zheng Z, Sun Z, Li M, Yang J, Yang Y, Liang H, Xiang H, Meng J, Zhou X, Liu L, Wu Z, Yang S. An update review on biopolymer Xanthan gum: Properties, modifications, nanoagrochemicals, and its versatile applications in sustainable agriculture. Int J Biol Macromol 2024; 281:136562. [PMID: 39423988 DOI: 10.1016/j.ijbiomac.2024.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
During the development of green agriculture and pesticide use, "reducing pesticides use and improving control efficiency" is imperative. To date, new pesticide formulations created by nanotechnology can be expected to overcome the difficulties that cannot be solved by the traditional pesticide processes and make pesticide formulations close to the needs of green agricultural production. As natural polysaccharides, Xanthan gum (XG) charactered by a repeated units and side chain of d-glucose, d-mannose, and d-glucuronic acid, and thereby having the unprecedented features in response to wide practice in various fields. This review introduces the properties of the natural polymer XG and its current status of application in agriculture, focusing on the pesticide adjuvant and preparation of novel pesticide and fertilizer delivery systems (such as core-shell and hydrogel), and combined with the applications in mulch film and soil engineering. Furthermore, the properties of Xantho-oligosaccharides suitable for agriculture were discussed. Finally, the potential of XG for the creation of nanopesticides and its future prospects are highlighted. Taken together, XG's excellent performance endows it with a wide range of applications in the agriculture field, and result in strong stimulating the sustainable development of agriculture and evolution of agricultural industry.
Collapse
Affiliation(s)
- Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingsha Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yike Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Liang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongmei Xiang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
11
|
Guo X, Chen S, Zhang D, Cao F, Cui Z, Li H, Li Z, Niyimbabazi O, Chen Z, Guan X, Pan X. Sustainable and Biosafe Approach to Control Potato Late Blight Using Mesoporous Silica Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23160-23172. [PMID: 39383313 DOI: 10.1021/acs.jafc.4c06096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Phytophthora infestans-induced potato late blight is considered the "cancer of the potato crop." In this work, mesoporous silica nanoparticles (MSNs) with ultrahigh specific surface area (786.28 m2/g) were synthesized, which significantly inhibited P. infestans compared with some commercial fungicides. Moreover, MSNs inhibited the growth and reproductive of P. infestans processes, including germination, sporangia infection, and zoospore release. MSNs targeted key biological pathways and induced a stress response in the P. infestans, leading to reactive oxygen species (•O2-, •OH, and 1O2) production and structural damage of sporangia. Pot experiments showed that MSNs are translocated from leaves to roots of potato plants, enhancing physiological and biochemical processes, alleviating drought stress, improving resistance to pathogens, and exhibiting soil microbe-friendly. This study systematically reveals the mechanism of MSNs to weaken the reproduction process of P. infestans and confirm the safety and feasibility of MSNs as a green and sustainable fungicide.
Collapse
Affiliation(s)
- Xueping Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Saili Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Dingyang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Ziqi Cui
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Huiyan Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Zhihao Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Obed Niyimbabazi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Zhi Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Xiaohong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
12
|
Willis-Fox N. In-situ monitoring of polymer mechanochemistry: what can be learned from small molecule systems. Front Chem 2024; 12:1490847. [PMID: 39478993 PMCID: PMC11521884 DOI: 10.3389/fchem.2024.1490847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Using mechanical energy to drive chemical transformations is an exciting prospect to improve the sustainability of chemical reactions and to produce products not achievable by more traditional methods. In-situ monitoring of reaction pathways and chemical transformations is vital to deliver the reproducible results required for scale up to realize the potential of mechanochemistry beyond the chemistry lab. This mini review will discuss the recent advances in in-situ monitoring of ball milling and polymer mechanochemistry, highlighting the potential for shared knowledge for scale up.
Collapse
Affiliation(s)
- Niamh Willis-Fox
- Department of Materials, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Bondar D, Karpichev Y. Poly(ADP-Ribose) Polymerase (PARP) Inhibitors for Cancer Therapy: Advances, Challenges, and Future Directions. Biomolecules 2024; 14:1269. [PMID: 39456202 PMCID: PMC11506039 DOI: 10.3390/biom14101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) are crucial nuclear proteins that play important roles in various cellular processes, including DNA repair, gene transcription, and cell death. Among the 17 identified PARP family members, PARP1 is the most abundant enzyme, with approximately 1-2 million molecules per cell, acting primarily as a DNA damage sensor. It has become a promising biological target for anticancer drug studies. Enhanced PARP expression is present in several types of tumors, such as melanomas, lung cancers, and breast tumors, correlating with low survival outcomes and resistance to treatment. PARP inhibitors, especially newly developed third-generation inhibitors currently undergoing Phase II clinical trials, have shown efficacy as anticancer agents both as single drugs and as sensitizers for chemo- and radiotherapy. This review explores the properties, characteristics, and challenges of PARP inhibitors, discussing their development from first-generation to third-generation compounds, more sustainable synthesis methods for discovery of new anti-cancer agents, their mechanisms of therapeutic action, and their potential for targeting additional biological targets beyond the catalytic active site of PARP proteins. Perspectives on green chemistry methods in the synthesis of new anticancer agents are also discussed.
Collapse
Affiliation(s)
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology (TalTech), Akadeemia tee 15, 12618 Tallinn, Estonia;
| |
Collapse
|
14
|
García-Rodríguez M, Cazorla-Amorós D, Morallón E. Eco-Friendly Mechanochemical Synthesis of Bifunctional Metal Oxide Electrocatalysts for Zn-Air Batteries. CHEMSUSCHEM 2024; 17:e202401055. [PMID: 38924618 DOI: 10.1002/cssc.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The development of green and environmentally friendly synthesis methods of electrocatalysts is a crucial aspect in decarbonizing energy generation. In this study, eco-friendly mechanochemical synthesis of perovskite metal oxide-carbon black composites is proposed using different conditions and additives such as KOH. Furthermore, the optimization of ball milling conditions, including time and rotational speed, is studied. The mechanochemical synthesis in solid-state conditions without additives produces electrocatalysts that exhibit the highest bifunctional electrochemical activity towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Moreover, this synthesis demonstrates a lower Environmental Impact Factor (E-factor), indicating its greener nature, and due to its simplicity, it has a great potential for scalability. The obtained bifunctional electrocatalysts have been tested in a rechargeable zinc-air battery (ZAB) for 22 h with similar performance compared to the commercial catalyst (Pt/C) at significantly lower cost. These promising findings are attributed to the enhanced interaction between the perovskite metal oxide and carbon material and the improved dispersion of the perovskite metal oxide on the carbon materials.
Collapse
Affiliation(s)
- M García-Rodríguez
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| |
Collapse
|
15
|
Wang P, Ge M, Luo X, Zhai Y, Meckbach N, Strehmel V, Li S, Chen Z, Strehmel B. Confinement of Sustainable Carbon Dots Results in Long Afterglow Emitters and Photocatalyst for Radical Photopolymerization. Angew Chem Int Ed Engl 2024; 63:e202402915. [PMID: 38569128 DOI: 10.1002/anie.202402915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Sustainable carbon dots based on cellulose, particularly carboxymethyl cellulose carbon dots (CMCCDs), were confined in an inorganic network resulting in CMCCDs@SiO2. This resulted in a material exhibiting long afterglow covering a time frame of several seconds also under air. Temperature-dependent emission spectra gave information on thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) while photocurrent experiments provided a deeper understanding of charge availability in the dark period, and therefore, its availability on the photocatalyst surface. The photo-ATRP initiator, ethyl α-bromophenylacetate (EBPA), quenched the emission from the millisecond to the nanosecond time frame indicating participation of the triplet state in photoinduced electron transfer (PET). Both free radical and controlled radical polymerization based on photo-ATRP protocol worked successfully. Metal-free photo-ATRP resulted in chain extendable macroinitiators based on a reductive mechanism with either MMA or in combination with styrene. Addition of 9 ppm Cu2+ resulted in Mw/Mn of 1.4 while an increase to 72 ppm improved uniformity of the polymers; that is Mw/Mn=1.03. Complementary experiments with kerria laca carbon dots confined materials, namely KCDs@SiO2, provided similar results. Deposition of Cu2+ (9 ppm) on the photocatalyst surface explains better uniformity of the polymers formed in the ATRP protocol.
Collapse
Affiliation(s)
- Ping Wang
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Min Ge
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Xiongfei Luo
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, 150040, Harbin, China
| | - Yingxiang Zhai
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Nicolai Meckbach
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Zhijun Chen
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Heilongjiang International Joint Lab of Advanced Biomass Materials, Northeast Forestry University, Hexing Road 26, 150040, Harbin, China
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| |
Collapse
|
16
|
Schmid SP, Schlosser L, Glorius F, Jorner K. Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis. Beilstein J Org Chem 2024; 20:2280-2304. [PMID: 39290209 PMCID: PMC11406055 DOI: 10.3762/bjoc.20.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Organocatalysis has established itself as a third pillar of homogeneous catalysis, besides transition metal catalysis and biocatalysis, as its use for enantioselective reactions has gathered significant interest over the last decades. Concurrent to this development, machine learning (ML) has been increasingly applied in the chemical domain to efficiently uncover hidden patterns in data and accelerate scientific discovery. While the uptake of ML in organocatalysis has been comparably slow, the last two decades have showed an increased interest from the community. This review gives an overview of the work in the field of ML in organocatalysis. The review starts by giving a short primer on ML for experimental chemists, before discussing its application for predicting the selectivity of organocatalytic transformations. Subsequently, we review ML employed for privileged catalysts, before focusing on its application for catalyst and reaction design. Concluding, we give our view on current challenges and future directions for this field, drawing inspiration from the application of ML to other scientific domains.
Collapse
Affiliation(s)
- Stefan P Schmid
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
| | - Leon Schlosser
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, 48149 Münster, Germany
| | - Kjell Jorner
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
17
|
Yaragorla S, Sneha Latha D, Kumar R. Mechanochemical Regioselective [3+3] Annulation of 6-Amino Uracil with Propargyl Alcohols Catalyzed by a Brønsted Acid/Hexafluoroisopropanol. Chemistry 2024; 30:e202401480. [PMID: 38727792 DOI: 10.1002/chem.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 06/19/2024]
Abstract
A mechanochemistry approach is developed for regioselective synthesis of functionalized dihydropyrido[2,3-d]pyrimidines by milling propargylic alcohols and 6-aminouracils with HFIP/p-TsOH. In the case of tert-propargyl alcohols, this [3+3] cascade annulation proceeded through allenylation of uracil followed by a 6-endo trig cyclization. With sec-propargyl alcohols, the reaction furnished the propargylation of uracil. This atom economy ball milling reaction allows access to a broad range of dihydropyrido[2,3-d]pyrimidine derivatives in excellent yields. We demonstrated the gram scale synthesis of 3 g and post-synthetic modifications to effect the cyclization of 5 to 6.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Dandugula Sneha Latha
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| | - Rituraj Kumar
- University of Hyderabad (an Institute of Eminence), P.O. Central University, Gachibowli, 500046, Hyderabad, Telangana State, India
| |
Collapse
|
18
|
Yaragorla S, Tiwari D, Lone MS. Mechanochemical Cascade Cyclization of Cyclopropyl Ketones with 1,2-Diamino Arenes for the Direct Synthesis of 1,2-Disubstituted Benzimidazoles†. J Org Chem 2024; 89:9427-9439. [PMID: 38905327 DOI: 10.1021/acs.joc.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
A mechanochemical synthesis of 1,2-disubstituted benzimidazoles from donor-acceptor cyclopropyl ketones and 1,2-diaminoarenes under metal-free and solventless conditions is reported. The reaction does not require inert conditions and is promoted by a stoichiometric amount of 1,1,1,3,3,3-hexafluoroisopropanol. This cascade reaction involves ring-opening, cyclization, and retro-Mannich reaction of cyclopropyl ketones with aryl 1,2-diamines. Compared to its solution-phase counterpart, this mechanochemical approach shows fast reactivity (24 vs 1.5 h). Mechanistic investigations by electrospray ionization mass spectrometry helped us to propose the reaction mechanism.
Collapse
Affiliation(s)
- Srinivasarao Yaragorla
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Divyanshu Tiwari
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| | - Mehak Saba Lone
- School of Chemistry, University of Hyderabad, P.O. Central University, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
19
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
20
|
Geib R, Colacino E, Gremaud L. Sustainable Beckmann Rearrangement using Bead-Milling Technology: The Route to Paracetamol. CHEMSUSCHEM 2024; 17:e202301921. [PMID: 38353034 DOI: 10.1002/cssc.202301921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
To address the growing demand for more sustainable and greener chemistry, mechanochemical methodologies are emerging as key players. However, to date there has been little data highlighting the benefits of these rising mechanochemical technologies with regard to process scale-up activities or implementation in commercial production scale. Herein, we report the first application of bead-mill technology (Dyno®-mill) for the sustainable mechanochemical synthesis of Acetaminophen, known under the brand name Paracetamol. Using the Beckmann rearrangement, the optimized solvent-free methodology delivered a final product on a scale of several tens of grams. In comparison to current production solvent-based process, the proposed process achieves a higher yield while also allowing the removal of solvents in the chemical reaction, hereby reducing one of the extensive drivers to waste generation. The mechanochemical approach was compared to solvent-based process using a combination of green metrics and EcoScale score. The mechanochemical synthesis of paracetamol scores the highest for all the metrics over currently used solution-based processes.
Collapse
Affiliation(s)
- Romain Geib
- School of Engineering and Architecture of Fribourg, Department of Chemistry -, Institute of Chemical Technology, HES-SO University of Applied Sciences and Arts Western Switzerland, Boulevard de Pérolles, 80, 1700, Fribourg, Switzerland
| | | | - Ludovic Gremaud
- School of Engineering and Architecture of Fribourg, Department of Chemistry -, Institute of Chemical Technology, HES-SO University of Applied Sciences and Arts Western Switzerland, Boulevard de Pérolles, 80, 1700, Fribourg, Switzerland
| |
Collapse
|
21
|
Nayek P, Mal P. Mimicking Ozonolysis via Mechanochemistry: Internal Alkynes to 1,2-Diketones using H 5IO 6. Chemistry 2024; 30:e202401027. [PMID: 38634437 DOI: 10.1002/chem.202401027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
Utilizing periodic acid as an environmentally benign oxidizing agent, this study introduces a novel mechanochemical method that mimics ozonolysis to convert internal alkynes into 1,2-diketones, showcasing effective emulation of ozone's reactivity. Notably, this oxidation occurs at room temperature in aerobic conditions, eliminating the need for toxic transition metals, hazardous oxidants, or expensive solvents. Through control experiments validating the mechanism, substantial evidence supports a concerted reaction pathway. This progress marks a significant stride toward cleaner and more efficient chemical synthesis, mitigating the environmental impact of conventional processes. Assessing the green chemistry metrics in both solvent-free and previously reported solvent-based methods, our eco-friendly protocol demonstrates an E-factor of 7.40, a 51.7 % atom economy, a 45.5 % atom efficiency, 100 % carbon efficiency, and 11.9 % reaction mass efficiency when solvents are not used.
Collapse
Affiliation(s)
- Pravat Nayek
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
22
|
Jin X, Xiao R, Cao Z, Du X. Smart controlled-release nanopesticides based on metal-organic frameworks. Chem Commun (Camb) 2024; 60:6082-6092. [PMID: 38813806 DOI: 10.1039/d4cc01390e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The practical utilization rates of conventional pesticide formulations by target organisms are very low, which results in the pollution of ecological environments and the formation of pesticide residues in agricultural products. Water-based nanopesticide formulations could become alternative and effective formulations to eventually resolve the main issues of conventional pesticide formulations. In this feature article, we describe the design concept of smart (stimuli-responsive) controlled-release nanopesticides, which are created toward hierarchical targets (pests, pathogens, and foliage) in response to multidimensional stimuli from physiological and environmental factors (such as sunlight) of target organisms and plants, for achieving enhanced insecticidal and fungicidal efficacies. The pore sizes and functionalities of metal-organic frameworks (MOFs) can be fine-tuned through the choice of metal-containing units and organic ligands. Tailor-made MOF nanoparticles with large microporous or mesoporous sizes, as well as good biocompatibility and high thermal, mechanical, and chemical durabilities, are used to load pesticides within these pores followed by coating of plant polyphenols and natural polymers for stimuli-responsive controlled pesticide release. This feature article highlights our works on smart controlled-release MOF-based nanopesticides and also includes related works from other laboratories. The future challenges and promising prospects of smart controlled-release MOF-based nanopesticides are also discussed.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Ruixi Xiao
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zejun Cao
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
23
|
Kadri L, Carta M, Lampronti G, Delogu F, Tajber L. Mechanochemically Induced Solid-State Transformations of Levofloxacin. Mol Pharm 2024; 21:2838-2853. [PMID: 38662637 DOI: 10.1021/acs.molpharmaceut.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Levofloxacin hemihydrate (LVXh) is a complex fluoroquinolone drug that exists in both hydrated and anhydrous/dehydrated forms. Due to the complexity of such a compound, the primary aim of this study was to investigate the amorphization capabilities and solid-state transformations of LVXh when exposed to mechanical treatment using ball milling. Spray drying was utilized as a comparative method for investigating the capabilities of complete LVX amorphous (LVXam) formation. The solid states of the samples produced were comprehensively characterized by powder X-ray diffraction, thermal analysis, infrared spectroscopy, Rietveld method, and dynamic vapor sorption. The kinetics of the process and the quantification of phases at different time points were conducted by Rietveld refinement. The impact of the different mills, milling conditions, and parameters on the composition of the resulting powders was examined. A kinetic investigation of samples produced using both mills disclosed that it was in fact possible to partially amorphize LVXh upon mechanical treatment. It was discovered that LVXh first transformed to the anhydrous/dehydrated form γ (LVXγ), as an intermediate phase, before converting to LVXam. The mechanism of LVXam formation by ball milling was successfully revealed, and a new method of forming LVXγ and LVXam by mechanical forces was developed. Spray drying from water depicted that complete amorphization of LVXh was possible. The amorphous form of LVX had a glass transition temperature of 80 °C. The comparison of methods highlighted that the formation of LVXam is thus both mechanism- and process-dependent. Dynamic vapor sorption studies of both LVXam samples showed comparable stability properties and crystallized to the most stable hemihydrate form upon analysis. In summary, this work contributed to the detailed understanding of solid-state transformations of essential fluoroquinolones while employing greener and more sustainable manufacturing methods.
Collapse
Affiliation(s)
- Lena Kadri
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
- The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Limerick V94 T9PX, Ireland
| | - Maria Carta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, CSGI Research Unit, via Marengo 2, Cagliari 09123, Italy
| | - Giulio Lampronti
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Francesco Delogu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, CSGI Research Unit, via Marengo 2, Cagliari 09123, Italy
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
- The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Limerick V94 T9PX, Ireland
| |
Collapse
|
24
|
Rao W, Yue Q, Gao S, Lei M, Lin T, Pan X, Hu J, Fan G. Visible-light-driven water-soluble zinc oxide quantum dots for efficient control of citrus canker. PEST MANAGEMENT SCIENCE 2024; 80:3022-3034. [PMID: 38318944 DOI: 10.1002/ps.8010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is a devastating bacterial disease that reduces citrus yield and quality, posing a serious threat to the citrus industry. Several conventional chemicals have been used to control citrus canker. However, this approach often leads to the excessive use of chemical agents, can exacerbate environmental pollution and promotes the development of resistant Xcc. Therefore, there is significant interest in the development of efficient and environmentally friendly technologies to control citrus canker. RESULTS In this study, water-soluble ZnO quantum dots (ZnO QDs) were synthesised as an efficient nanopesticide against Xcc. The results showed that the antibacterial activity of ZnO QDs irradiated with visible light [half-maximal effective concentration (EC50) = 33.18 μg mL-1] was ~3.5 times higher than that of the dark-treated group (EC50 = 114.80 μg mL-1). ZnO QDs induced the generation of reactive oxygen species (•OH, •O- 2 and 1O2) under light irradiation, resulting in DNA damage, cytoplasmic destruction, and decreased catalase and superoxide dismutase activities. Transcription analysis showed downregulation of Xcc genes related to 'biofilms, virulence, adhesion' and 'DNA transfer' exposure to ZnO QDs. More importantly, ZnO QDs also promoted the growth of citrus. CONCLUSION This research provides new insights into the photocatalytic antibacterial mechanisms of ZnO QDs and supports the development of more efficient and safer ZnO QDs-based nanopesticides to control citrus canker. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Qi Yue
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Shang Gao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Meiling Lei
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Xiaohong Pan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| |
Collapse
|
25
|
Li MJ, Xiao HJ, Xu P, Wu LT, Chen SQ, Zhang Z, Xu H. Mechanosynthesis of Pyrrole-2-carboxylic Acids via Copper-Catalyzed Spiroannulation/Ring-Opening Aromatization of 4-Arylidene Isoxazol-5-ones with Enamino Esters. Org Lett 2024; 26:4189-4193. [PMID: 38743432 DOI: 10.1021/acs.orglett.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An efficient and practical tandem reaction of 4-arylidene isoxazol-5-ones with enamino esters catalyzed by an inexpensive copper salt has been established in a ball mill. This innovative approach yields a diverse array of structurally novel pyrrole-2-carboxylic acids, showing excellent tolerance toward different functional groups. By integrating spiroannulation and ring-opening aromatization processes, this protocol introduces a facile and cost-effective strategy for synthesizing highly functionalized pyrrole derivatives.
Collapse
Affiliation(s)
- Ming-Jun Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui-Juan Xiao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Luan-Ting Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Si-Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
26
|
Iacob BC, Bodoki AE, Da Costa Carvalho DF, Serpa Paulino AA, Barbu-Tudoran L, Bodoki E. Unlocking New Avenues: Solid-State Synthesis of Molecularly Imprinted Polymers. Int J Mol Sci 2024; 25:5504. [PMID: 38791542 PMCID: PMC11122393 DOI: 10.3390/ijms25105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Molecularly imprinted polymers (MIPs) are established artificial molecular recognition platforms with tailored selectivity towards a target molecule, whose synthesis and functionality are highly influenced by the nature of the solvent employed in their synthesis. Steps towards the "greenification" of molecular imprinting technology (MIT) has already been initiated by the elaboration of green MIT principles; developing MIPs in a solvent-free environment may not only offer an eco-friendly alternative, but could also significantly influence the affinity and expected selectivity of the resulting binding sites. In the current study the first solvent-free mechanochemical synthesis of MIPs via liquid-assisted grinding (LAG) is reported. The successful synthesis of the imprinted polymer was functionally demonstrated by measuring its template rebinding capacity and the selectivity of the molecular recognition process in comparison with the ones obtained by the conventional, non-covalent molecular imprinting process in liquid media. The results demonstrated similar binding capacities towards the template molecule and superior chemoselectivity compared to the solution-based MIP synthesis method. The adoption of green chemistry principles with all their inherent advantages in the synthesis of MIPs may not only be able to alleviate the potential environmental and health concerns associated with their analytical (e.g., selective adsorbents) and biomedical (e.g., drug carriers or reservoirs) applications, but might also offer a conceptual change in molecular imprinting technology.
Collapse
Affiliation(s)
- Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| | - Andreea Elena Bodoki
- Inorganic Chemistry Department, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 12 Ion Creangă St., 400010 Cluj-Napoca, Romania;
| | - Diogo Filipe Da Costa Carvalho
- Instituto Politécnico de Lisboa, Escola Superior de Tecnologia da Saúde de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal; (D.F.D.C.C.); (A.A.S.P.)
| | - Antonio Augusto Serpa Paulino
- Instituto Politécnico de Lisboa, Escola Superior de Tecnologia da Saúde de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal; (D.F.D.C.C.); (A.A.S.P.)
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center, Faculty of Biology and Geology, “Babes-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania;
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur St., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
27
|
Jeong J, Hu X, Yin R, Fantin M, Das SR, Matyjaszewski K. Nucleic Acid-Binding Dyes as Versatile Photocatalysts for Atom-Transfer Radical Polymerization. J Am Chem Soc 2024; 146:13598-13606. [PMID: 38691811 PMCID: PMC11100002 DOI: 10.1021/jacs.4c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Nucleic acid-binding dyes (NuABDs) are fluorogenic probes that light up after binding to nucleic acids. Taking advantage of their fluorogenicity, NuABDs have been widely utilized in the fields of nanotechnology and biotechnology for diagnostic and analytical applications. We demonstrate the potential of NuABDs together with an appropriate nucleic acid scaffold as an intriguing photocatalyst for precisely controlled atom-transfer radical polymerization (ATRP). Additionally, we systematically investigated the thermodynamic and electrochemical properties of the dyes, providing insights into the mechanism that drives the photopolymerization. The versatility of the NuABD-based platform was also demonstrated through successful polymerizations using several NuABDs in conjunction with diverse nucleic acid scaffolds, such as G-quadruplex DNA or DNA nanoflowers. This study not only extends the horizons of controlled photopolymerization but also broadens opportunities for nucleic acid-based materials and technologies, including nucleic acid-polymer biohybrids and stimuli-responsive ATRP platforms.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marco Fantin
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, Padova 35131, Italy
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
28
|
Shangguan W, Huang Q, Chen H, Zheng Y, Zhao P, Cao C, Yu M, Cao Y, Cao L. Making the Complicated Simple: A Minimizing Carrier Strategy on Innovative Nanopesticides. NANO-MICRO LETTERS 2024; 16:193. [PMID: 38743342 PMCID: PMC11093950 DOI: 10.1007/s40820-024-01413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/07/2024] [Indexed: 05/16/2024]
Abstract
The flourishing progress in nanotechnology offers boundless opportunities for agriculture, particularly in the realm of nanopesticides research and development. However, concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides. It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return, and if the complex material composition genuinely improves the efficiency, safety, and circularity of nanopesticides. Herein, we introduced the concept of nanopesticides with minimizing carriers (NMC) prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations, and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers (NNC). We further summarized the current development strategy of NMC and examined potential challenges in its preparation, performance, and production. Overall, we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides, offering a way out of the current predicament.
Collapse
Affiliation(s)
- Wenjie Shangguan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Qiliang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Huiping Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yingying Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- State Key Laboratory of Element-Organic Chemistry, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Pengyue Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Manli Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Lidong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests , Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
29
|
Periasamy K, van Bonn P, Orloff RT, Völcker N, Lu Q, Rissanen K, Bolm C. Synthesis of Benzo[ e][1,4,3]oxathiazin-3-one 1-Oxides from NH- S-(2-Hydroxyaryl)sulfoximines. J Org Chem 2024. [PMID: 38743919 DOI: 10.1021/acs.joc.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cyclizations of NH-S-(2-hydroxyaryl)sulfoximines with 1,1'-carbonyldiimidazol (CDI) give unprecedented benzo[e][1,4,3]oxathiazin-3-one 1-oxides in good yields. The standard synthetic protocol involves the use of DCE at an increased temperature for 16 h. Under mechanochemical conditions, a representative product was obtained without a solvent at ambient temperature in only 60 min. X-ray single-crystal structure analysis confirmed the molecular scaffold representing a three-dimensional heterocycle.
Collapse
Affiliation(s)
- Kiruthika Periasamy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Pit van Bonn
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Nils Völcker
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Qiulan Lu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, Survontie 9 B, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
30
|
Ding X, Gao F, Cui B, Du Q, Zeng Z, Zhao X, Sun C, Wang Y, Cui H. The key factors of solid nanodispersion for promoting the bioactivity of abamectin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105897. [PMID: 38685223 DOI: 10.1016/j.pestbp.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.
Collapse
Affiliation(s)
- Xiquan Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Qian Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
31
|
Luo X, Zhai Y, Wang P, Tian B, Liu S, Li J, Yang C, Strehmel V, Li S, Matyjaszewski K, Yilmaz G, Strehmel B, Chen Z. Light-Mediated Polymerization Catalyzed by Carbon Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202316431. [PMID: 38012084 DOI: 10.1002/anie.202316431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, Harbin, 150040, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Ping Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Chenhui Yang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA-15213, USA
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Hexing Road 26, Harbin, 150040, China
| |
Collapse
|
32
|
Maestro A, Malviya BK, Auer G, Ötvös SB, Kappe CO. A robust heterogeneous chiral phosphoric acid enables multi decagram scale production of optically active N, S-ketals. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:4593-4599. [PMID: 38654978 PMCID: PMC11033974 DOI: 10.1039/d4gc00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Asymmetric organocatalysis has been recognized as one of the "top 10 emerging technologies" in chemistry by IUPAC in 2019. Its potential to make chemical processes more sustainable is promising, but there are still challenges that need to be addressed. Developing new and reliable enantioselective processes for reproducing batch reactions on a large scale requires a combination of chemical and technical solutions. In this manuscript, we combine a robust immobilized chiral phosphoric acid with a new packed-bed reactor design. This combination allows scaling up of the enantioselective addition of thiols to imines from a few milligrams to a multi-decagram scale in a continuous flow process without physical or chemical degradation of the catalyst.
Collapse
Affiliation(s)
- Aitor Maestro
- Department of Organic Chemistry I, University of the Basque Country, UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
| | - Bhanwar K Malviya
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| | - Gerald Auer
- Department of Earth Sciences, University of Graz, NAWI Graz Geocenter A-8010 Graz Austria
| | - Sándor B Ötvös
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz A-8010 Graz Austria
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE) A-8010 Graz Austria
| |
Collapse
|
33
|
Wang H, Chi X, Zhang X, Zhang L, Liu Q, Zhao Z, Zhang D, Cui H, Liu H. Electromagnetic Mill-Promoted Palladium-Catalyzed Heck-Type Cyclization/Decarboxylative Coupling of ( Z)-1-Iodo-1,6-diene with Propiolic Acids. J Org Chem 2024; 89:5320-5327. [PMID: 38554091 DOI: 10.1021/acs.joc.3c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Electromagnetic mill (EMM)-promoted solid-state cascade Heck-type cyclization/decarboxylative coupling of propiolic acid with (Z)-1-iodo-1,6-diene derivate was demonstrated. The reaction was realized via palladium catalysis, which is solvent-free and involves no additional heating. The collision between ferromagnetic rods could not only be a favor to the mixing between the solid substrates and the catalyst system, but also the thermogenic action could accelerate this transformation. More importantly, this EMM strategy realized multiple bond construction under mechanochemical conditions in one pot.
Collapse
Affiliation(s)
- Hui Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Xiaochen Chi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
- Shandong Xinhua Pharmaceutical Company Limited, No.1, Lutai Road, Zibo 255000, People's Republic of China
| | - Xianqing Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Hongyou Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| |
Collapse
|
34
|
Sil S, Krishnapriya AU, Mandal P, Kuniyil R, Mandal SK. Cross-Coupling Between Aryl Halides and Aryl Alkynes Catalyzed by an Odd Alternant Hydrocarbon. Chemistry 2024:e202400895. [PMID: 38584581 DOI: 10.1002/chem.202400895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/09/2024]
Abstract
Catalytic cross-coupling between aryl halides and alkynes is considered an extremely important organic transformation (popularly known as the Sonogashira coupling) and it requires a transition metal-based catalyst. Accomplishing such transformation without any transition metal-based catalyst in the absence of any external stimuli such as heat, photoexcitation or cathodic current is highly challenging. This work reports transition-metal-free cross-coupling between aryl halides and alkynes synthesizing a rich library of internal alkynes without any external stimuli. A chemically double-reduced phenalenyl (PLY)-based molecule with the super-reducing property was employed for single electron transfer to activate aryl halides generating reactive aryl radicals, which subsequently react with alkyne. This protocol covers not only various types of aryl, heteroaryl and polyaryl halides but also applies to a large variety of aromatic alkynes at room temperature. With a versatile substrate scope successfully tested on more than 75 entries, this radical-mediated pathway has been explained by several control experiments. All the key reactive intermediates have been characterized with spectroscopic evidence. Detailed DFT calculations have been instrumental in portraying the mechanistic pathway. Furthermore, we have successfully extended this transition-metal-free catalytic strategy for the first time towards solvent-free cross-coupling between solid aryl halide and alkyne substrates.
Collapse
Affiliation(s)
- Swagata Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | | | - Pallabi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology, Palakkad, Palakkad, 678557, Kerala, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
35
|
Li MJ, Lu MM, Xu P, Chen SQ, Wu LT, Zhang Z, Xu H. Chemodivergent mechanosynthesis of cyclopentenyl and pyrrolinyl spirobarbiturates from unsaturated barbiturates and enamino esters. Chem Commun (Camb) 2024; 60:3958-3961. [PMID: 38501223 DOI: 10.1039/d3cc06327e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A novel and interesting controllable spirocyclization of unsaturated barbiturates with enamino esters for the assembly of cyclopentenyl and pyrrolinyl spirobarbiturates has been developed under ball-milling conditions. The present protocol features high chemoselectivity and efficiency, excellent functional group tolerance and mild reaction conditions.
Collapse
Affiliation(s)
- Ming-Jun Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Ming-Ming Lu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Si-Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Luan-Ting Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.
| |
Collapse
|
36
|
Gomollón-Bel F, García-Martínez J. Connecting chemical worlds for a sustainable future. Chem Sci 2024; 15:5056-5060. [PMID: 38577374 PMCID: PMC10988580 DOI: 10.1039/d3sc06815c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Chemistry plays a central role in science and is the basis of one of the major, more impactful, and diverse industries. However, to address the most pressing global challenges, we must learn to create connections in an effective and meaningful way, with other disciplines, industries, and society at large. Here, we present the IUPAC Top Ten Emerging Technologies in Chemistry as an example of an initiative that highlights the value of the most promising advances in chemistry and contributes to creating connections to accelerate sustainable solutions for our society and our planet.
Collapse
|
37
|
Tang Q, Sun Y, Li J, Zhou M, Yang D, Pang Y. Preparations of 25 wt% of Pyraclostrobin Nanosuspension Concentrate (SC) Using Lignosulfonate-Based Colloidal Spheres to Improve Its Thermal Storage Stability. Molecules 2024; 29:1419. [PMID: 38611699 PMCID: PMC11013202 DOI: 10.3390/molecules29071419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Improving the thermal storage stability of nanosuspension concentrate (SC) prepared from low-melting-point pesticide is a recognized problem. In this work, using pyraclostrobin as the raw material, 25 wt% of pyraclostrobin nano-SC was prepared through a water-based grinding method, and the optimal grinding conditions were obtained as follows: a grinding time of 23 h, D-3911 as dispersant and a dispersant dosage of 12 wt%. The pyraclostrobin nano-SC D90 size prepared based on this best formula was 216 nm. Adding glycerin could improve the stability of nano-SC at room temperature, but its thermal storage stability was still poor. For this problem, sodium lignosulfonate and cetyltrimethylammonium bromide (NaLS/CTAB) colloidal spheres were prepared through electrostatic and hydrophobic self-assembly and characterized. The delamination and precipitation of nano-SC can be significantly improved by adding an appropriate amount of colloidal spheres, and the nano-SC D90 size decreased from 2726 to 1023 nm after 7 days of thermal storage. Farmland experiments indicated the control efficiency of pyraclostrobin nano-SC against flowering cabbage downy mildew disease was about 30% higher than that of SC. Especially after adding the wetting agent, the effect of nano-SC could be comparable to that of commercial Kairun (currently the best pyraclostrobin formulation in the world).
Collapse
Affiliation(s)
- Qianqian Tang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, 6 Jiqing Road, Yibin District, Luoyang 471934, China; (Q.T.); (J.L.)
| | - Yu Sun
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; (Y.S.); (D.Y.); (Y.P.)
| | - Jinnuo Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, 6 Jiqing Road, Yibin District, Luoyang 471934, China; (Q.T.); (J.L.)
| | - Mingsong Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; (Y.S.); (D.Y.); (Y.P.)
| | - Dongjie Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; (Y.S.); (D.Y.); (Y.P.)
| | - Yuxia Pang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; (Y.S.); (D.Y.); (Y.P.)
| |
Collapse
|
38
|
Bodach A, Portet A, Winkelmann F, Herrmann B, Gallou F, Ponnusamy E, Virieux D, Colacino E, Felderhoff M. Scalability of Pharmaceutical Co-Crystal Formation by Mechanochemistry in Batch. CHEMSUSCHEM 2024; 17:e202301220. [PMID: 37975728 DOI: 10.1002/cssc.202301220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
The development of mechanochemistry is considerably growing. Benign by design, this technology complies with several principles of green chemistry, contributing to the achievement of the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal objectives. Herein, we report the use of mechanochemical processes in batch to prepare kilogram-scale of the Active Pharmaceutical Ingredient (API): Ibuprofen-Nicotinamide (rac-IBP:NCT) co-crystal in an industrial eccentric vibration mill. This scenario shows a sustainable approach to the industrial up-scaling of pharmaceutical co-crystals by a solvent-free mechanochemical process in batch. The quantitative assessment of the greenness of the mechanochemical process against the Twelve Principles of Green Chemistry was performed using the DOZN 2.0 Green Chemistry Evaluator.
Collapse
Affiliation(s)
- Alexander Bodach
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Anaïs Portet
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frederik Winkelmann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Bastian Herrmann
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | | | - Ettigounder Ponnusamy
- Merck, SIGMA-ALDRICH Production GmbH, Industriestrasse 25, CH-9471, Buchs, Switzerland
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Michael Felderhoff
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
39
|
Sander M, Magar SD, Etter M, Balducci A, Borchardt L. The "In situ electrolyte" as a sustainable alternative for the realization of high-power devices. CHEMSUSCHEM 2024; 17:e202301746. [PMID: 38214055 DOI: 10.1002/cssc.202301746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
The "in situ electrolyte" displays a concept for electric double-layer- as well as metal-ion capacitors in which the by-products formed during carbon synthesis serve directly as electrolyte salt to minimize waste. In this work, the concept is applied for lithium- and sodium-based systems realizing EDLCs containing aqueous, "Water in Salt" (up to 1.8 V) as well as organic (2.4 V) electrolytes. Via the mechanochemical synthesis, carbon materials with surface areas up to 2000 m2 g-1 and an optimal amount of remaining by-product are designed from the renewable resource lignin. Different cation-anion combinations are enabled by further modification directly inside the pores creating imide-based salts which are tracked by synchrotron in situ XRD. By the addition of solvents, the EDLCs show good capacitances up to 21 F g-1 combined with excellent rate performances and stabilities. Moreover, the LiTFSI loaded carbon as positive electrode introduces a new tunable lithium alternative for the pre-lithiation of Li-ion capacitors displaying a good rate performance and cyclability.
Collapse
Affiliation(s)
- Miriam Sander
- Inorganic Chemistry I, Ruhr-University Bochum, Universitätstraße 150, 44801, Bochum, Germany
| | - Sandesh Darlami Magar
- Institute for Technical Chemistry and Environmental Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University, Philosophenweg 7a, 07743, Jena, Germany
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - Andrea Balducci
- Institute for Technical Chemistry and Environmental Chemistry and Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University, Philosophenweg 7a, 07743, Jena, Germany
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-University Bochum, Universitätstraße 150, 44801, Bochum, Germany
| |
Collapse
|
40
|
Chetty LC, Kruger HG, Arvidsson PI, Naicker T, Govender T. Investigating the efficacy of green solvents and solvent-free conditions in hydrogen-bonding mediated organocatalyzed model reactions. RSC Adv 2024; 14:7992-7998. [PMID: 38454950 PMCID: PMC10918449 DOI: 10.1039/d4ra00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024] Open
Abstract
In this study, we have delved into various reactions conducted using green solvents or under solvent-free conditions, employing hydrogen bonding organocatalysis to advance more sustainable practices in chemical synthesis. The outcomes suggest that cyclopentyl methyl ether could potentially replace non-polar organic solvents such as hexane and toluene with comparable enantioselectivity and yields. The non-polar nature of liquefied or supercritical CO2 restricts its application to reactions that require non-polar solvents. Furthermore, pursuing solvent-free conditions, even without liquid substrates, might result in similar conversion rates with reduced catalyst loading. These findings highlight the potential of exploring solvent-free conditions when enantioselectivity is not of concern. Based on the results, solvent-free conditions and bio-based solvents can serve as viable alternatives to conventional organic solvents without compromising performance. This is expected to influence the way chemists approach reaction optimisation within method development in the field, fostering a broader adoption of environmentally friendly approaches.
Collapse
Affiliation(s)
- Lloyd C Chetty
- Catalysis and Peptide Research Unit, University of KwaZulu Natal Durban 4001 South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu Natal Durban 4001 South Africa
| | - Per I Arvidsson
- Catalysis and Peptide Research Unit, University of KwaZulu Natal Durban 4001 South Africa
- Science for Life Laboratory, Drug Discovery & Development Platform & Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm Sweden
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, University of KwaZulu Natal Durban 4001 South Africa
| | - Thavendran Govender
- Department of Chemistry, University of Zululand Private Bag X1001 KwaDlangezwa 3886 South Africa
| |
Collapse
|
41
|
Biswas S, Bolm C. Rhodium(II)-Catalyzed N-H Insertions of Carbenes under Mechanochemical Conditions. Org Lett 2024; 26:1511-1516. [PMID: 38358095 DOI: 10.1021/acs.orglett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Under mechanochemical conditions in a mixer mill, Rh2(OAc)4 catalyzes the reaction between aryldiazoesters and anilines to give α-amino esters. The process proceeds under mild conditions and is insensitive to air. It is solvent-free and scalable. A broad substrate scope, short reaction times, operational simplicity, and good functional group tolerance are additional salient features of this protocol.
Collapse
Affiliation(s)
- Sourav Biswas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
42
|
Huang Y, Liang Y, Chen Y, Xiong Q, Li X, Li J, Wang L, Cui J. Emamectin-sodium alginate nano-formulation based on charge attraction with highly improved systemic translocation and photolysis resistance. Int J Biol Macromol 2024; 254:127996. [PMID: 37949281 DOI: 10.1016/j.ijbiomac.2023.127996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Nano pesticides offer an effective means of improving the bioavailability of pesticide due to their excellent solubility and wettability, superior foliar adhesion, and permeability to target insects. By using high-speed homogenization and ultrasonic dispersion technology, an emamectin-sodium alginate nano-formulation (EB@SA) with a particle size ranging from 30 to 50 nm was successfully fabricated using electrostatic self-assembly. The microscopic morphology and structure of EB@SA were further analyzed through transmission electron microscopy, dynamic light scattering, infrared spectroscopy, and 1H NMR. The photolysis resistance behavior of EB@SA demonstrated an improved anti-photolysis ability more than double that of conventional formulations while also exhibiting good sustained-release properties. Not only does EB@SA maintain the inherent insecticidal toxicity of emamectin benzoate (EB), but it also significantly prolongs its insecticidal duration. At a concentration of 20 mg/L, the lethality rate against Armyworms remains above 70 % over a period of 16 days compared to <50 % for general emamectin emulsifiable concentrate. Furthermore, EB@SA greatly enhances the systemic translocation of EB in corn plants by exhibiting favorable bidirectional systemic translocation characteristics. This research presents an efficient and environmentally friendly pesticide nano-formulation that can be effectively utilized for field pest control.
Collapse
Affiliation(s)
- Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Yinze Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Yong Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Qipeng Xiong
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China.
| | - Xiangying Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Jiansheng Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Linlin Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China.
| |
Collapse
|
43
|
Dong J, Han A, Zhao Y, Li H, Yang Y, Yuan B, Wang Y, Liu R, Yin X, Du X. Smart, degradable, and eco-friendly carboxymethyl cellulose-Ca II hydrogel-like networks gated MIL-101(Fe III) nanoherbicides for paraquat delivery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166424. [PMID: 37634715 DOI: 10.1016/j.scitotenv.2023.166424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Nanopesticides have been selected as one of the top 10 chemical innovations for enhancing the efficacy and safety of agrochemicals. Herein, smart, degradable, and eco-friendly metal-organic framework MIL-101(FeIII) nanoherbicides coated with carboxymethyl cellulose-CaII (CMC-CaII) cross-linking hydrogel-like networks are synthesized via a simple strategy. The coating of the CMC-CaII hydrogel-like gatekeepers is oriented by the coordination unsaturated FeIII clusters on the surfaces of the MIL-101(FeIII) nanocarriers to form a dense film network to prevent paraquat (PQ) leakage. Based on the stimuli factors (acid/basic pH, GSH, phosphates, and EDTA) of physiological and natural environments of target plants, the nanoherbicides are combined with five stimuli-responsive properties to attain the various controlled release of packaged PQ by the disassembly of the gatekeepers and/or the degradation of the MOF skeleton structure. More importantly, based on the stimuli-responsive controlled release mechanisms, the eco-friendly nanocarriers are ultimately degraded against bioaccumulation in plants or soil. The coating of natural CMC could promote the spreading of PQ owing to improvement of wettability for aqueous droplets of nanoherbicides on hydrophobic foliage. The PQ trapped in nanocarriers can effectively prevent PQ degradation, which showed that cumulative degradation rate is ca. 2.6 times lower than that of technical PQ under UV irradiation. The prepared nanoherbicides loaded with PQ show good control efficacy against weeds by controlling the release of PQ; good safety on seed germination (germination rate 97.32-99.67 %), seedling emergence (emergence rate 95.53-99.67 %), and are beneficial for the growth of wheat seedling (increase rate of plant height 1.89-6.97 % and 0.54-5.67 % after 7 and 15 days of seedling emergence, respectively) in the greenhouse; good biosafety for honeybees (Apis mellifera L.), which shows that lethal rates were 2.04 and 2.55 times lower than technical PQ for incubation 24 and 48 h, respectively. The nanoherbicides have potential applications in the field for PQ green agriculture.
Collapse
Affiliation(s)
- Jiangtao Dong
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China.
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yanli Zhao
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Haoming Li
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yue Yang
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Bowen Yuan
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yishan Wang
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China
| | - Runqiang Liu
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China; Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, Henan Institute of Science and Technology, Xinxiang 453003, Henan Province, People's Republic of China.
| | - Xinming Yin
- College of Agronomy Post-Doctoral Research Station, Henan Agricultural University, Zhengzhou 450002, Henan Province, People's Republic of China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
44
|
Marchetti D, Pedrini A, Massera C, Faye Diouf MD, Jandl C, Steinfeld G, Gemmi M. 3D electron diffraction analysis of a novel, mechanochemically synthesized supramolecular organic framework based on tetrakis-4-(4-pyridyl)phenylmethane. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2023; 79:432-436. [PMID: 37811771 PMCID: PMC10833357 DOI: 10.1107/s2052520623007680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Tetrakis-4-(4-pyridyl)phenylmethane (TPPM) is a tetrahedral rigid molecule that crystallizes forming a dynamically responsive supramolecular organic framework (SOF). When exposed to different stimuli, this supramolecular network can reversibly switch from an empty to a filled solvated solid phase. This article describes a novel expanded form of a TPPM-based SOF that has been mechanochemically synthesized and whose crystal structure has been determined by 3D electron diffraction analysis using a novel electron diffractometer.
Collapse
Affiliation(s)
- Danilo Marchetti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Alessandro Pedrini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Chiara Massera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, University of Parma, Parco Area delle Scienze 17/A, Parma, 43123, Italy
| | - Moussa Diame Faye Diouf
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Christian Jandl
- ELDICO Scientific AG, PARK INNOVAARE: deliveryLAB, Villigen, 5234, Switzerland
| | - Gunther Steinfeld
- ELDICO Scientific AG, PARK INNOVAARE: deliveryLAB, Villigen, 5234, Switzerland
| | - Mauro Gemmi
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
45
|
Lee JS, Han GF, Baek JB. Mechanochemical Ammonia Synthesis: Old is New Again. CHEMSUSCHEM 2023; 16:e202300459. [PMID: 37300339 DOI: 10.1002/cssc.202300459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/12/2023]
Abstract
Hydrogen is a promising clean energy source, an alternative to fossil fuels, and can potentially play a crucial role in reducing carbon emissions. The transportation and storage of hydrogen are the biggest hurdles to realizing a hydrogen economy. Ammonia is considered to be one of the most promising hydrogen carriers, because of its high hydrogen content and easy liquefaction in mild conditions. To date, ammonia is mostly produced by the 'thermocatalytic' Haber-Bosch process, which requires high temperature and pressure. As a result, it can only produce ammonia in 'centralized' manufacturing systems. Mechanochemistry, a newly emerging method for efficient ammonia synthesis, offers potential advantages over the Haber-Bosch process. Mechanochemical ammonia synthesis under near ambient conditions can be connected with 'localized' sustainable energy systems. In this perspective, the state-of-the-art mechanochemical ammonia synthesis processes will be introduced. Challenges and opportunities are also discussed in relation to its role in a hydrogen economy.
Collapse
Affiliation(s)
- Jae Seong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, 5988 Renmin St., Changchun, 130022, China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
46
|
Jeong J, An SY, Hu X, Zhao Y, Yin R, Szczepaniak G, Murata H, Das SR, Matyjaszewski K. Biomass RNA for the Controlled Synthesis of Degradable Networks by Radical Polymerization. ACS NANO 2023; 17:21912-21922. [PMID: 37851525 PMCID: PMC10655241 DOI: 10.1021/acsnano.3c08244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Nucleic acids extracted from biomass have emerged as sustainable and environmentally friendly building blocks for the fabrication of multifunctional materials. Until recently, the fabrication of biomass nucleic acid-based structures has been facilitated through simple crosslinking of biomass nucleic acids, which limits the possibility of material properties engineering. This study presents an approach to convert biomass RNA into an acrylic crosslinker through acyl imidazole chemistry. The number of acrylic moieties on RNA was engineered by varying the acylation conditions. The resulting RNA crosslinker can undergo radical copolymerization with various acrylic monomers, thereby offering a versatile route for creating materials with tunable properties (e.g., stiffness and hydrophobic characteristics). Further, reversible-deactivation radical polymerization methods, such as atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT), were also explored as additional approaches to engineer the hydrogel properties. The study also demonstrated the metallization of the biomass RNA-based material, thereby offering potential applications in enhancing electrical conductivity. Overall, this research expands the opportunities in biomass-based biomaterial fabrication, which allows tailored properties for diverse applications.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - So Young An
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Hironobu Murata
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
47
|
Julien PA, Arhangelskis M, Germann LS, Etter M, Dinnebier RE, Morris AJ, Friščić T. Illuminating milling mechanochemistry by tandem real-time fluorescence emission and Raman spectroscopy monitoring. Chem Sci 2023; 14:12121-12132. [PMID: 37969588 PMCID: PMC10631231 DOI: 10.1039/d3sc04082h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023] Open
Abstract
In pursuit of accessible and interpretable methods for direct and real-time observation of mechanochemical reactions, we demonstrate a tandem spectroscopic method for monitoring of ball-milling transformations combining fluorescence emission and Raman spectroscopy, accompanied by high-level molecular and periodic density-functional theory (DFT) calculations, including periodic time-dependent (TD-DFT) modelling of solid-state fluorescence spectra. This proof-of-principle report presents this readily accessible dual-spectroscopy technique as capable of observing changes to the supramolecular structure of the model pharmaceutical system indometacin during mechanochemical polymorph transformation and cocrystallisation. The observed time-resolved in situ spectroscopic and kinetic data are supported by ex situ X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy measurements. The application of first principles (ab initio) calculations enabled the elucidation of how changes in crystalline environment, that result from mechanochemical reactions, affect vibrational and electronic excited states of molecules. The herein explored interpretation of both real-time and ex situ spectroscopic data through ab initio calculations provides an entry into developing a detailed mechanistic understanding of mechanochemical milling processes and highlights the challenges of using real-time spectroscopy.
Collapse
Affiliation(s)
- Patrick A Julien
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada 13 General Crerar Crescent K7K 7B4 Kingston Canada
| | - Mihails Arhangelskis
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Faculty of Chemistry, University of Warsaw 1 Pasteura St. 02-093 Warsaw Poland
| | - Luzia S Germann
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Max-Planck Institute for Solid State Research Heisenbergstrasse 1 D-70569 Stuttgart Germany
| | - Martin Etter
- Deutsches-Elektronen Synchrotron (DESY) Notkestrasse 85 22607 Hamburg Germany
| | - Robert E Dinnebier
- Max-Planck Institute for Solid State Research Heisenbergstrasse 1 D-70569 Stuttgart Germany
| | - Andrew J Morris
- School of Metallurgy and Materials, University of Birmingham Birmingham B15 2TT UK
| | - Tomislav Friščić
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
48
|
Correa-Navarro Y, López GD, Carazzone C, Giraldo L, Moreno-Piraján JC. Mechanochemical Degradation of Caffeine and Diclofenac Using Biochar of Fique Bagasse in the Presence of Al: Monitoring by Mass Spectrometry. ACS OMEGA 2023; 8:38905-38915. [PMID: 37901549 PMCID: PMC10601424 DOI: 10.1021/acsomega.3c03051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
Much research has been carried out to remove emerging contaminants using diverse materials. Furthermore, studies related to pollutant degradation have increased over the past decade. Mechanochemical degradation can successfully decompose molecules that are persistent in the environment. In this study, the biochar of fique bagasse with mixtures SiO2, Al, Al2O3, and Al-Al2O3 was treated with a mechanochemical technique using a planetary ball mill to investigate the degradation of caffeine and diclofenac. These tests resulted in the transformation of caffeine and diclofenac due to the use of Al employing mechanochemistry. In fact, through the use of liquid chromatography coupled with mass spectrometry, eight and six subproducts were identified for caffeine and diclofenac, respectively. Additionally, analysis of the molecules proposed for caffeine and diclofenac transformation suggested hydroxylation, demethylation, decarboxylation, oxidation reactions, and cleavage of the C-C and C-N bonds in the pollutants studied. The formation of these transformation products could be possible by reductant oxygen species generated from the molecular oxygen in the presence of aluminum and the energy delivered for ball milling. The results obtained show the potential application in the environmental management of mechanochemical treatment in the elimination of emerging contaminants caffeine and diclofenac.
Collapse
Affiliation(s)
- Yaned
Milena Correa-Navarro
- Departamento
de Química, Facultad de Ciencias Exactas y Naturales, Grupo
de investigación Estudios Ambientales en Agua y Suelo, Universidad de Caldas, Manizales, Caldas 170004, Colombia
- Departamento
de Química, Facultad de Ciencias, Grupo de investigación
en Sólidos Porosos y Calorimetría, Universidad de los Andes, Carrera 1 No. 18 A-12, Bogotá, D.C. 111711, Colombia
| | - Gerson-Dirceu López
- PhysCheMath
Research Group, Facultad de Ciencias y Humanidades, Universidad de América, Avda. Circunvalar No. 20-53, Bogotá, D.C. 111711, Colombia
| | - Chiara Carazzone
- Laboratory
of Advanced Analytical Techniques in Natural Products (LATNAP), Departamento
de Química, Facultad de Ciencias, Universidad de los Andes, Carrera 1 No. 18 A-12, Bogotá, D.C. 111711, Colombia
| | - Liliana Giraldo
- Departamento
de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, D.C. 11001, Colombia
| | - Juan Carlos Moreno-Piraján
- Departamento
de Química, Facultad de Ciencias, Grupo de investigación
en Sólidos Porosos y Calorimetría, Universidad de los Andes, Carrera 1 No. 18 A-12, Bogotá, D.C. 111711, Colombia
| |
Collapse
|
49
|
Fantozzi N, Volle JN, Porcheddu A, Virieux D, García F, Colacino E. Green metrics in mechanochemistry. Chem Soc Rev 2023; 52:6680-6714. [PMID: 37691600 DOI: 10.1039/d2cs00997h] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry.
Collapse
Affiliation(s)
| | - Jean-Noël Volle
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042, Monserrato (CA), Italy
| | - David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, 34293 Montpellier, France.
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo, 33006, Asturias, Spain.
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
50
|
Li X, Chen Y, Xu J, Lynch I, Guo Z, Xie C, Zhang P. Advanced nanopesticides: Advantage and action mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108051. [PMID: 37820512 DOI: 10.1016/j.plaphy.2023.108051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
The use of various chemical substances to control pests, diseases, and weeds in the field is a necessary part of the agricultural development process in every country. While the application of pesticides can improve the quality and yield of crops, plant resistance and the harm caused by pesticide residues to the environment and humans have led to the search for greener and safer pesticide formulations to improve the current situation. In recent years, nanopesticides (NPts) have shown great potential in agriculture due to their high efficiency, low toxicity, targeting, resistance, and controlled slow release demonstrated in the experimental stage. Commonly used approaches to prepare NPts include the use of nanoscale metal materials as active ingredients (AI) (ingredients that can play a role in insecticide, sterilization and weeding) or the construction of carriers based on commonly used pesticides to make them stable in nano-sized form. This paper systematically summarizes the advantages and effects of NPts over conventional pesticides, analyzes the formation and functions of NPts in terms of structure, AI, and additives, and describes the mechanism of action of NPts. Despite the feasibility of NPts use, there is not enough comprehensive research on NPts, which must be supplemented by more experiments in terms of biotoxicology and ecological effects to provide strong support for NPts application.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yiqing Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianing Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Changjian Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|