1
|
Su Y, Shen X, Zhao Z, Wu B, Chen W. Electromechanical Deformations and Bifurcations in Soft Dielectrics: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1499. [PMID: 38612014 PMCID: PMC11012969 DOI: 10.3390/ma17071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Dielectric elastomers have attracted considerable attention both from academia and industry alike over the last two decades due to their superior mechanical properties. In parallel, research on the mechanical properties of dielectrics has been steadily advancing, including the theoretical, experimental, and numerical aspects. It has been recognized that the electromechanical coupling property of dielectric materials can be utilized to drive deformations in functional devices in a more controllable and intelligent manner. This paper reviews recent advances in the theory of dielectrics, with specific attention focused on the theory proposed by Dorfmann and Ogden. Additionally, we provide examples illustrating the application of this theory to analyze the electromechanical deformations and the associated bifurcations in soft dielectrics. We compared the bifurcations in elastic and dielectric materials and found that only compressive bifurcation modes exist in elastic structures, whereas both compressive and tensile modes coexist in dielectric structures. We summarize two proposed ways to suppress and prevent the tensile bifurcations in dielectric materials. We hope that this literature survey will foster further advancements in the field of the electroelastic theory of soft dielectrics.
Collapse
Affiliation(s)
- Yipin Su
- Qihang Union & Innovation Center, Huanjiang Laboratory, Zhuji 311800, China;
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
| | - Xudong Shen
- Center for Soft Machines and Smart Devices, Huanjiang Laboratory, Zhuji 311800, China;
| | - Zinan Zhao
- Qihang Union & Innovation Center, Huanjiang Laboratory, Zhuji 311800, China;
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
| | - Bin Wu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
| | - Weiqiu Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China;
- Center for Soft Machines and Smart Devices, Huanjiang Laboratory, Zhuji 311800, China;
| |
Collapse
|
2
|
Lin TJ. The Influence of Large Pendent Groups on Chain Anisotropy and Electrical Energy Loss of Polyimides at High Frequency through All-Atomic Molecular Simulation. Chemphyschem 2023:e202300479. [PMID: 37802978 DOI: 10.1002/cphc.202300479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Polyimide is a potential material for high-performance printed circuit boards because of its chemical stability and excellent thermal and mechanical properties. Flexible printed circuit boards must have a low static dielectric constant and dielectric loss to reduce signal loss in high-speed communication devices. Engineering the molecular structure of polyimides with large pendant groups is a strategy to reduce their dielectric constant. However, there is no systematic study on how the large pendant groups influence electrical energy loss. We integrated all-atomic molecular dynamics and semi-empirical quantum mechanical calculations to examine the influence of pendant groups on polymer chain anisotropy and electrical energy loss at high frequencies. We analyzed the radius of gyration, relative shape anisotropy, dipole moment, and degree of polarization of the selected polyimides (TPAHF, TmBPHF, TpBPHF, MPDA, TriPMPDA, m-PDA, and m-TFPDA). The simulation results show that anisotropy perpendicular to chain direction and local chain rigidity correlate to electrical energy loss rather than dipole moment magnitudes. Polyimides with anisotropic pendant groups and significant local chain rigidity reduce electrical energy loss. The degree of polarization correlated well with the dielectric loss with a moderate computational cost, and difficulties in directly calculating the dielectric loss were circumvented.
Collapse
Affiliation(s)
- Tzu-Jen Lin
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| |
Collapse
|
3
|
Ji D, Song S, Lyu Y, Ren W, Li L, Yang B, Zhang M. Novel Fabrication of Basalt Nanosheets with Ultrahigh Aspect Ratios Toward Enhanced Mechanical and Dielectric Properties of Aramid Nanofiber-Based Composite Nanopapers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302371. [PMID: 37485624 PMCID: PMC10520689 DOI: 10.1002/advs.202302371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Indexed: 07/25/2023]
Abstract
The rapid development of modern electrical equipment has led to urgent demands for electrical insulating materials with mechanical reliability and excellent dielectric properties. Herein, basalt nanosheets (BSNs) with high aspect ratios (≈780.1) are first exfoliated from basalt scales (BS) through a reliable chemical/mechanical approach. Meanwhile, inspired by the layered architecture of natural nacre, nacre-mimetic composite nanopapers are reported containing a 3D aramid nanofibers (ANF) framework as a matrix and BSNs as ideal building blocks through vacuum-assisted filtration. The as-prepared ANF-BSNs composite nanopapers exhibit considerably enhanced mechanical properties with ultralow BSNs content. These superiorities are wonderfully integrated with exceptional dielectric breakdown strength, prominent volume resistivity, and extremely low dielectric constant and loss, which are far superior to conventional nacre-mimetic composite nanopapers. Notably, the tensile strength and breakdown strength of ANF-BSNs composite nanopapers with a mere 1.0 wt% BSNs reach 269.40 MPa and 77.91 kV mm-1 , respectively, representing an 87% and 133% increase compared to those of the control ANF nanopaper. Their properties are superior to those of previously reported nacre-mimetic composite nanopapers and commercial insulating micropapers, indicating that ANF-BSNs composite nanopapers are a highly promising electrical insulating material for miniaturized high-power electrical equipment.
Collapse
Affiliation(s)
- Dexian Ji
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical IndustryMinistry of EducationShaanxi Province Key Laboratory of papermaking Technology and Specialty paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Shunxi Song
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical IndustryMinistry of EducationShaanxi Province Key Laboratory of papermaking Technology and Specialty paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and TechnologyShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Yuming Lyu
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical IndustryMinistry of EducationShaanxi Province Key Laboratory of papermaking Technology and Specialty paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Wei Ren
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical IndustryMinistry of EducationShaanxi Province Key Laboratory of papermaking Technology and Specialty paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Linghao Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical IndustryMinistry of EducationShaanxi Province Key Laboratory of papermaking Technology and Specialty paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Bin Yang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical IndustryMinistry of EducationShaanxi Province Key Laboratory of papermaking Technology and Specialty paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Meiyun Zhang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical IndustryMinistry of EducationShaanxi Province Key Laboratory of papermaking Technology and Specialty paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'an710021P. R. China
| |
Collapse
|
4
|
Hu Z, Chen L, Zhu Y, Zhang C, Jiang S, Hou H. In Situ Fabrication of High Dielectric Constant Composite Films with Good Mechanical and Thermal Properties by Controlled Reduction. Molecules 2023; 28:molecules28062535. [PMID: 36985509 PMCID: PMC10052922 DOI: 10.3390/molecules28062535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
As a common two-dimensional carbon material, graphene has been widely doped into polymers to prepare high-performance dielectric materials. However, the shortcomings of graphene, such as large specific surface area and poor dispersion, limit its further application. Therefore, in this work, to solve the problem regarding the uniform dispersion of graphene in the matrix, in situ polymerization was used to prepare graphene/polyimide films, in which 1,4-diiodobutane was used as a reduction agent to prevent the aggregation of graphene oxide (GO) during imidization. High dielectric constant composite films were obtained by adjusting the ratio of 1,4-diiodobutane in GO. The results show that the resulting graphene/polyimide composite film possessed a dielectric constant of up to 197.5, which was more than 58 times higher than that of the polyimide (PI) film. Furthermore, compared to the pure PI film, the composite films showed better thermal stability and mechanical properties. Thermal performance tests showed that the 1,4-diiodobutane added during the preparation of the composite film was thermally decomposed, and there was no residue. We believe our preparation method can be extended to other high dielectric composite films, which will facilitate their further development and application in high power density energy storage materials.
Collapse
Affiliation(s)
- Zhaoyu Hu
- Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China; (Z.H.); (Y.Z.)
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Yongmei Zhu
- Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China; (Z.H.); (Y.Z.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
- Correspondence: (S.J.); (H.H.)
| | - Haoqing Hou
- Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China; (Z.H.); (Y.Z.)
- Correspondence: (S.J.); (H.H.)
| |
Collapse
|
5
|
Yi Z, Wang Z, Li Y, Wu D, Xue Y. Improving the Energy Storage Performance of All-Polymer Composites By Blending PVDF and P(VDF-CTFE). Macromol Rapid Commun 2023; 44:e2200728. [PMID: 36153830 DOI: 10.1002/marc.202200728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Organic film capacitors have incredibly high power density and have an irreplaceable position in pulsed power systems, high-voltage power transmission networks and other fields. At present, the energy storage density and energy storage efficiency of organic film capacitors are relatively low, resulting in excessive equipment volume. The performance of organic film capacitors is determined by polymer materials, so it is crucial to develop a polymer composite with high energy storage density and high charge-discharge efficiency. Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) is incorporated into the polyvinylidene fluoride (PVDF) matrix by solution blending. The successful preparation of the all-polymer composite material solves the problems of low breakdown electric field strength, low discharge energy density, and low charge-discharge efficiency of high-dielectric ferroelectric materials. The discharge energy density of the PVDF/P(VDF-CTFE) (70/30) film is more than twice that of pure PVDF due to the increase of phases α and γ and the decrease of crystallinity. Under the breakdown electric field (380 kV mm-1 ), PVDF/P(VDF-CTFE) (70/30) film also has an ultrahigh energy storage efficiency of 64%. The relationship between the structure and properties of composite materials is investigated in this study, which has important implications for the development of capacitors with high energy storage density.
Collapse
Affiliation(s)
- Zhihui Yi
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Zhuo Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yanxin Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Dan Wu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Ying Xue
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
6
|
Zhang Y, Hu T, Hu R, Jiang S, Zhang C, Hou H. Thermal, Mechanical and Dielectric Properties of Polyimide Composite Films by In-Situ Reduction of Fluorinated Graphene. Molecules 2022; 27:8896. [PMID: 36558028 PMCID: PMC9788081 DOI: 10.3390/molecules27248896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Materials with outstanding mechanical properties and excellent dielectric properties are increasingly favored in the microelectronics industry. The application of polyimide (PI) in the field of microelectronics is limited because of the fact that PI with excellent mechanical properties does not have special features in the dielectric properties. In this work, PI composite films with high dielectric properties and excellent mechanical properties are fabricated by in-situ reduction of fluorinated graphene (FG) in polyamide acid (PAA) composites. The dielectric permittivity of pure PI is 3.47 and the maximum energy storage density is 0.664 J/cm3 at 100 Hz, while the dielectric permittivity of the PI composite films reaches 235.74 under the same conditions, a 68-times increase compared to the pure PI, and the maximum energy storage density is 5.651, a 9-times increase compared to the pure PI films. This method not only solves the problem of the aggregation of the filler particles in the PI matrix and maintains the intrinsic excellent mechanical properties of the PI, but also significantly improves the dielectric properties of the PI.
Collapse
Affiliation(s)
- Yuyin Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Tian Hu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rubei Hu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haoqing Hou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
7
|
Zhang W, Jiang H, Nie Y, Fang X, Chen G. Composite films with low dielectric constant and dielectric loss factor at high frequency prepared from polyimide and polytetrafluoroethylene. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wang Zhang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Hanzhou Jiang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Yong Nie
- College of Chemical Engineering Zhejiang University of Technology Hangzhou China
| | - Xingzhong Fang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Guofei Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| |
Collapse
|
8
|
Luo H, Wang F, Guo R, Zhang D, He G, Chen S, Wang Q. Progress on Polymer Dielectrics for Electrostatic Capacitors Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202438. [PMID: 35981884 PMCID: PMC9561874 DOI: 10.1002/advs.202202438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Polymer dielectrics are attracting increasing attention for electrical energy storage owing to their advantages of mechanical flexibility, corrosion resistance, facile processability, light weight, great reliability, and high operating voltages. However, the dielectric constants of most dielectric polymers are less than 10, which results in low energy densities and limits their applications in electrostatic capacitors for advanced electronics and electrical power systems. Therefore, intensive efforts have been placed on the development of high-energy-density polymer dielectrics. In this perspective, the most recent results on the all-organic polymer dielectrics are summarized, including molecular structure design, polymer blends, and layered structured polymers. The challenges in the field and suggestions for future research on high-energy-density polymer dielectrics are also presented.
Collapse
Affiliation(s)
- Hang Luo
- State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaHunan Province410083China
| | - Fan Wang
- State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaHunan Province410083China
| | - Ru Guo
- State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaHunan Province410083China
| | - Dou Zhang
- State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaHunan Province410083China
| | - Guanghu He
- Key Laboratory of Polymeric Materials and Application Technology of Hunan ProvinceCollege of ChemistryXiangtan UniversityXiangtanHunan Province411105China
| | - Sheng Chen
- Key Laboratory of Polymeric Materials and Application Technology of Hunan ProvinceCollege of ChemistryXiangtan UniversityXiangtanHunan Province411105China
| | - Qing Wang
- Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
9
|
Zhang Y, Guo H, Jiang S, Hu Z, Zha G, Liu K, Hou H. Synthesis and properties of PI composite films using carbon quantum dots as fillers. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polyimide (PI) is widely used in the field of microelectronics because of its excellent thermal, mechanical, optical, and electrical properties. With the development of electronics and information industry, PI as a dielectric material needs to possess low dielectric loss. PI/carbon quantum dots (PI/CQDs) composite films with low dielectric loss were prepared by introducing CQDs into PI matrix. At 25°C and 1 kHz voltage, the dielectric loss of pure PI film is about 0.0057. The dielectric loss of PI/CQDs composite film is about 0.0018, which is about 68% lower than that of pure PI film. The dielectric loss of PI/CQD composite film is greatly reduced while the mechanical properties and thermal properties of PI/CQDs composite film roughly remain unchanged. Due to the cross-linking structure formed between CQDs and PI molecular chain, the relative movement of PI molecular chain is hindered.
Collapse
Affiliation(s)
- Yuyin Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang , China
| | - Hongtao Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Zhaoyu Hu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang , China
| | - Guojun Zha
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang , China
- School of New Energy Science and Engineering, Xinyu University , Xinyu , China
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology , Ganzhou 341000 , China
| | - Haoqing Hou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University , Nanchang , China
| |
Collapse
|
10
|
Materials Based on Quaternized Polysulfones with Potential Applications in Biomedical Field: Structure-Properties Relationship. Int J Mol Sci 2022; 23:ijms23094721. [PMID: 35563112 PMCID: PMC9104560 DOI: 10.3390/ijms23094721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Starting from the bactericidal properties of functionalized polysulfone (PSFQ) and due to its excellent biocompatibility, biodegradability, and performance in various field, cellulose acetate phthalate (CAP) and polyvinyl alcohol (PVA), as well as their blends (PSFQ/CAP and PSFQ/PVA), have been tested to evaluate their applicative potential in the biomedical field. In this context, because the polymer processing starts from the solution phase, in the first step, the rheological properties were followed in order to assess and control the structural parameters. The surface chemistry analysis, surface properties, and antimicrobial activity of the obtained materials were investigated in order to understand the relationship between the polymers’ structure–surface properties and organization form of materials (fibers and/or films), as important indicators for their future applications. Using the appropriate organization form of the polymers, the surface morphology and performance, including wettability and water permeation, were improved and controlled—these being the desired and needed properties for applications in the biomedical field. Additionally, after antimicrobial activity testing against different bacteria strains, the control of the inhibition mechanism for the analyzed microorganisms was highlighted, making it possible to choose the most efficient polymers/blends and, consequently, the efficiency as biomaterials in targeted applications.
Collapse
|
11
|
Yang Z, Yue D, Yao Y, Li J, Chi Q, Chen Q, Min D, Feng Y. Energy Storage Application of All-Organic Polymer Dielectrics: A Review. Polymers (Basel) 2022; 14:1160. [PMID: 35335491 PMCID: PMC8951409 DOI: 10.3390/polym14061160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 01/28/2023] Open
Abstract
With the wide application of energy storage equipment in modern electronic and electrical systems, developing polymer-based dielectric capacitors with high-power density and rapid charge and discharge capabilities has become important. However, there are significant challenges in synergistic optimization of conventional polymer-based composites, specifically in terms of their breakdown and dielectric properties. As the basis of dielectrics, all-organic polymers have become a research hotspot in recent years, showing broad development prospects in the fields of dielectric and energy storage. This paper reviews the research progress of all-organic polymer dielectrics from the perspective of material preparation methods, with emphasis on strategies that enhance both dielectric and energy storage performance. By dividing all-organic polymer dielectrics into linear polymer dielectrics and nonlinear polymer dielectrics, the paper describes the effects of three structures (blending, filling, and multilayer) on the dielectric and energy storage properties of all-organic polymer dielectrics. Based on the above research progress, the energy storage applications of all-organic dielectrics are summarized and their prospects discussed.
Collapse
Affiliation(s)
- Zhijie Yang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Dong Yue
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Yuanhang Yao
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Jialong Li
- School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Qingguo Chi
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Daomin Min
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yu Feng
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
12
|
Ning J, Tian C, Yang Y, Huang L, Lv J, Zeng F, Liu Q, Zhao F, Kong W, Cai X. A novel intrinsic semi-aromatic polyamide dielectric toward excellent thermal stability, mechanical robustness and dielectric performance. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Zhang H, Xie Y, Song Y, Qin X. Preparation of high-temperature resistant poly (m-phenylene isophthalamide)/polyacrylonitrile composite nanofibers membrane for air filtration. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Liu X, Ji M, Shao J. Estimating the dielectric constant of BaTiO 3-polymer nanocomposites by a developed Paletto model. RSC Adv 2021; 11:26056-26062. [PMID: 35479458 PMCID: PMC9037079 DOI: 10.1039/d1ra03912a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Polymer-based nanocomposites with high dielectric constant have attracted the attention of many researchers, owing to their wide applications in advanced electronics. The experimental measurement of dielectric constant for every polymer-based nanocomposite system is not practically feasible, due to there being many polymer matrixes and nanofiller combinations. Therefore, there is rising interest in predicting the dielectric constant of polymer nanocomposites, using mathematical methods. In this study, we estimate the dielectric constant of polymer nanocomposites by considering astounding interphase properties. The Paletto model is modified, in order to predict the dielectric constant of a BaTiO3-polymer nanocomposite by properly assuming the interphase parameters, including the thickness of the interphase layer and the dielectric constant of the interphase region. Results from the modified Paletto model are verified by experimental data, indicating that the predicted values agree well with the experimentally determined dielectric constant, and thus the accuracy of the developed model. In addition, the particle concentration will significantly be underestimated if the influence of the interphase volume is ignored. Furthermore, the effects of different parameters, including the dielectric constant of polymer substrate, dielectric constant of particles, particle content, particle size, the thickness of the interphase layer as well as the dielectric constant of the interphase region on the dielectric constant of a BaTiO3-polymer nanocomposite are also investigated. The developed model provides a useful tool for predicting the dielectric constant of a BaTiO3-polymer nanocomposite, accompanied by interphase analysis.
Collapse
Affiliation(s)
- Xue Liu
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou 450000 P. R. China
| | - Mingbo Ji
- Ocean University of China Qingdao 266100 P. R. China
| | - Jiang Shao
- Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
15
|
Ahmad A, Tong H, Fan T, Xu J. Binary polymer blend of
ArPTU
/
PI
with advanced comprehensive dielectric properties and ultra‐high thermally stability. J Appl Polym Sci 2021. [DOI: 10.1002/app.50997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aftab Ahmad
- Institute of Electrical Engineering Chinese Academy of Science Beijing China
- Department of Engineering and Science, University of Chinese Academy of Sciences Beijing China
| | - Hui Tong
- Institute of Electrical Engineering Chinese Academy of Science Beijing China
| | - Tao Fan
- Institute of Electrical Engineering Chinese Academy of Science Beijing China
- Department of Engineering and Science, University of Chinese Academy of Sciences Beijing China
| | - Ju Xu
- Institute of Electrical Engineering Chinese Academy of Science Beijing China
- Department of Engineering and Science, University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
16
|
Ahmad A, Tong H, Fan T, Xu J. All‐organic polymer blend dielectrics of poly (arylene ether urea) and polyimide: Toward high energy density and high temperature applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aftab Ahmad
- Institute of Electrical Engineering Chinese Academy of Science Beijing China
- Department of Engineering and Science University of Chinese Academy of Sciences Beijing China
| | - Hui Tong
- Institute of Electrical Engineering Chinese Academy of Science Beijing China
| | - Tao Fan
- Institute of Electrical Engineering Chinese Academy of Science Beijing China
- Department of Engineering and Science University of Chinese Academy of Sciences Beijing China
| | - Ju Xu
- Institute of Electrical Engineering Chinese Academy of Science Beijing China
- Department of Engineering and Science University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
17
|
Wahab MA, Karim MR, Aijaz MO, Salahuddin B, Aziz S, Sina AAI. A Study on the Interfacial Compatibility, Microstructure and Physico-Chemical Properties of Polyimide/Organically Modified Silica Nanocomposite Membrane. Polymers (Basel) 2021; 13:1328. [PMID: 33919649 PMCID: PMC8072626 DOI: 10.3390/polym13081328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022] Open
Abstract
Polyimide-silica (PI-Silica) composites are of tremendous research interest as high-performance materials because of their excellent thermal and mechanical properties and chemical resistance to organic solvents. Particularly, the sol-gel method of fabricating such composites is popular for manipulating their properties. In this work, PI-silica composite films are synthesized by the sol-gel method and thermal imidization from the solution mixtures of hydrolyzed tetraethoxysilane (TEOS) (or glycidoxypropyltrimethoxysilane (GPMS)) modified silica and an aromatic polyamic acid (PAA) based on 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA)-p-phenylenediamine (PDA). The phase morphology of composites is found to be controlled by the substitution of TEOS with GPMS. Solid-state NMR spectroscopy is used to confirm the structural components of silica and GPMS-modified silica, whereas FT-IR results confirm the complete imidization of polyimide and composite film and suggest successful incorporation of Si-O-Si bonds into polyimide. The thermal, optical transmittance, and dielectric constant characterizations of pure polyimide and composite films are also carried out. Thermal stability of pure polyimide is found to be increased significantly by the addition of silica, whereas the partial substitution of TEOS with GPMS decreases the thermal stability of the composite, due to the presence of the alkyl organic segment of GPMS. The optical transmittance and dielectric constant of the composite films are controlled by manipulating the GPMS content.
Collapse
Affiliation(s)
- Md A. Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- Institute of Materials Research and Engineering (IMRE) of The Agency for Science, Technology, and Research (A*STAR), 3 Research Link, Singapore 117602, Singapore
| | - Mohammad R. Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.)
- K. A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Muhammad O. Aijaz
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.)
| | - Bidita Salahuddin
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2522, Australia;
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, QLD 4072, Australia
| | - Abu A. I. Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD 4072, Australia
| |
Collapse
|
18
|
Enhanced dielectric properties and breakdown strength of polymer/carbon nanotube composites by coating an SrTiO3 layer. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this work, strontium titanate (STO) was coated on the surface of carbon nanotubes (MWCNTs) through a sol–gel method to form a core–shell structure hybrid powder (STO@MWCNTs). This powder was then added to polydimethylsiloxane to prepare a flexible high-K composite. As coating, STO effectively prevents the overlap and agglomeration of MWCNTs, thereby passivating the percolation threshold of the composite. STO increases the dielectric properties of the composite as a high dielectric ceramic. Under a low filler loading amount of 11 wt%, the dielectric constant and dielectric loss of the composite are 53 and 0.1, respectively. In addition, the composite can still maintain superior breakdown strength and mechanical properties, given the relatively low filler concentration. The enhanced dielectric properties, breakdown strength, and tensile strength make the composite suitable for application as dielectric material in flexible and stretchable energy storage equipment.
Collapse
|
19
|
Jauhari J, Almafie MR, Marlina L, Nawawi Z, Sriyanti I. Physicochemical properties and performance of graphene oxide/polyacrylonitrile composite fibers as supercapacitor electrode materials. RSC Adv 2021; 11:11233-11243. [PMID: 35423620 PMCID: PMC8695891 DOI: 10.1039/d0ra10257a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/10/2021] [Indexed: 11/30/2022] Open
Abstract
Graphene oxide derived from palm kernel shells (rGOPKS) and polyacrylonitrile (PAN) were electrospun into composite fiber mats and evaluated as supercapacitor electrode materials. Their morphologies and crystalline properties were examined, and chemical interactions between rGOPKS and PAN were investigated. The diameters of individual fibers in the rGOPKS/PAN composite mats ranged from 1.351 to 1506 μm and increased with increasing rGOPKS content. A broad peak centered near 23° in the X-ray diffraction (XRD) pattern of rGOPKS corresponded to the (002) planes in graphitic carbon. Characteristic rGOPKS and PAN peaks were observed in the XRD patterns of all the composite fibers, and their Fourier-transform infrared (FTIR) spectra indicated hydrogen bond formation between rGOPKS and PAN. The composite fiber mats had smooth and homogeneous surfaces, and they exhibited excellent flexibility and durability. Their electrochemical performance as electrodes was assessed, and a maximum specific capacitance of 203 F g-1 was achieved. The cycling stability of this electrode was excellent, and it retained over 90% of its capacitance after 5000 cycles. The electrode had an energy density of 17 W h kg-1 at a power density of 3000 W kg-1. Dielectric results showed a nanofiber composite dielectric constant of 72.3 with minor leakage current (tan δ) i.e., 0.33 at 51 Hz. These results indicate that the rGOPKS/PAN composite fibers have great promise as supercapacitor electrode materials.
Collapse
Affiliation(s)
- Jaidan Jauhari
- Laboratory of Instrumentation and Nanotechnology Applications, Faculty of Computer Science, Universitas Sriwijaya Palembang-Prabumulih Street KM.32 Indralaya 30662 Indonesia
| | - M Rama Almafie
- Physics Education, Faculty of Education, Universitas Sriwijaya Palembang-Prabumulih Street KM.32 Indralaya 30662 Indonesia
| | - Leni Marlina
- Physics Education, Faculty of Education, Universitas Sriwijaya Palembang-Prabumulih Street KM.32 Indralaya 30662 Indonesia
| | - Zainuddin Nawawi
- Department of Electrical Engineering, Universitas Sriwijaya Palembang-Prabumulih Street KM.32 Indralaya 30662 Indonesia
| | - Ida Sriyanti
- Laboratory of Instrumentation and Nanotechnology Applications, Faculty of Computer Science, Universitas Sriwijaya Palembang-Prabumulih Street KM.32 Indralaya 30662 Indonesia
- Physics Education, Faculty of Education, Universitas Sriwijaya Palembang-Prabumulih Street KM.32 Indralaya 30662 Indonesia
| |
Collapse
|
20
|
Xu Q, Zhang W. Improvement of the electromechanical properties of thermoplastic polyurethane composite by ionic liquid modified multiwall carbon nanotubes. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Carbon nanotubes (CNTs) were non-covalently modified by two categories of ionic liquids (ILs), including 1-vinyl-3-ethylimidazole bromide (VEIMBr) and 1-vinyl-3-hexylimidazole bromide (VHIMBr) in the ratio of 1:1 and 1:4, respectively. The surface interaction between CNTs and ILs was well-characterized by FTIR, Raman spectra, XPS, etc. Thermoplastic polyurethane (TPU) containing different amounts of CNTs/ILs was fabricated by melting blending method. TPU-CNTs/ILs composites exhibited simultaneously enhanced electromechanical properties with improved dielectric constant and lowered elastic modulus. The electromechanical sensitivity of sample TPU-3CNT/12VHIMBr increased by approximately 45 times in comparison with that of pure TPU at 200 Hz. Besides, improved dispersion of CNTs/ILs in the TPU matrix was also exhibited.
Collapse
Affiliation(s)
- Qianwei Xu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , No. 4800 Caoan Road , Shanghai , 201804 , China
| | - Weijia Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , No. 4800 Caoan Road , Shanghai , 201804 , China
| |
Collapse
|
21
|
Wen S, Sun Y, Liu R, Chen L, Wang J, Peng S, Ma C, Yuan Y, Gong W, Wang N. Supramolecularly Poly(amidoxime)-Loaded Macroporous Resin for Fast Uranium Recovery from Seawater and Uranium-Containing Wastewater. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3246-3258. [PMID: 33406816 DOI: 10.1021/acsami.0c21046] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Uranium is an extremely abundant resource in seawater that could supply nuclear fuel for over the long-term, but it is tremendously difficult to extract. Here, a new supramolecular poly(amidoxime) (PAO)-loaded macroporous resin (PLMR) adsorbent has been explored for highly efficient uranium adsorption. Through simply immersing the macroporous resin in the PAO solution, PAOs can be firmly loaded on the surface of the nanopores mainly by hydrophobic interaction, to achieve the as-prepared PLMR. Unlike existing amidoxime-based adsorbents containing many inner minimally effective PAOs, almost all the PAOs of PLMR have high uranium adsorption efficiency because they can form a PAO-layer on the nanopores with molecular-level thickness and ultrahigh specific surface area. As a result, this PLMR has highly efficient uranium adsorbing performance. The uranium adsorption capacity of the PLMR was 157 mg/g (the UPAO in the PLMR was 1039 mg/g), in 32 ppm uranium-spiked seawater for 120 h. Additionally, uranium in 1.0 L 100 ppb U-spiked both water and seawater can be removed quickly and the recovery efficiency can reach 91.1 ± 1.7% and 86.5 ± 1.9%, respectively, after being filtered by a column filled with 200 mg PLMR at 300 mL/min for 24 h. More importantly, after filtering 200 T natural seawater with 200 g PLMR for only 10 days, the uranium-uptake amount of the PLMR reached 2.14 ± 0.21 mg/g, and its average uranium adsorption speed reached 0.214 mg/(g·day) which is very fast among reported amidoxime-based adsorbents. This new adsorbent has great potential to quickly and massively recover uranium from seawater and uranium-containing wastewater. Most importantly, this work will provide a simple but general strategy to greatly enhance the uranium adsorption efficiency of amidoxime-functionalized adsorbents with ultrahigh specific surface area via supramolecular interaction, and even inspire the exploration of other adsorbents.
Collapse
Affiliation(s)
- Shunxi Wen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Rongrong Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Lin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Jiawen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
22
|
A review of smart electrospun fibers toward textiles. COMPOSITES COMMUNICATIONS 2020; 22:100506. [PMCID: PMC7497400 DOI: 10.1016/j.coco.2020.100506] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Electrospinning as a versatile technology has attracted a large amount of attention in the past few decades due to the facile way to produce micro- and nano-scale fibers featuring flexibility, large specific surface area and high porosity. Stimuli-responsive polymers are a class of smart materials that are capable of sensing surround environment and interacting with them. Therefore, the combination of electrospinning and smart materials could have a great deal of benefits over the development of smart fibers. In this review, it offers a comprehensive understanding of smart electrospun fibers toward textile applications. Firstly, the definition of smart fibers and the differences between interactive fibers and passive interactive fibers are briefly introduced. Then some interactive fibers made from temperature-, pH-, light-, electric field/electricity-, magnetic field-, multi-responsive polymers, as well as some polymers featuring piezoelectric and triboelectric effect which are suitable flexible electrics, are emphasized with their applications in the form of electrospun fibers. Afterwards, some passive and hybrid smart electrospun fibers are introduced. Finally, associated challenges and perspectives are summarized and discussed. Understanding of passive smart electrospun fibers and interactive smart electrospun fibers. The recent progress in flexible electronics from electrospun fibers. The recent progress in stimuli-responsive polymers applied in interactive smart electrospun fibers.
Collapse
|
23
|
Yang X, Wang J, Guo H, Liu L, Xu W, Duan G. Structural design toward functional materials by electrospinning: A review. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0068] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractElectrospinning as one of the most versatile technologies have attracted a lot of scientists’ interests in past decades due to its great diversity of fabricating nanofibers featuring high aspect ratio, large specific surface area, flexibility, structural abundance, and surface functionality. Remarkable progress has been made in terms of the versatile structures of electrospun fibers and great functionalities to enable a broad spectrum of applications. In this article, the electrospun fibers with different structures and their applications are reviewed. First, several kinds of electrospun fibers with different structures are presented. Then the applications of various structural electrospun fibers in different fields, including catalysis, drug release, batteries, and supercapacitors, are reviewed. Finally, the application prospect and main challenges of electrospun fibers are discussed. We hope that this review will provide readers with a comprehensive understanding of the structural design and applications of electrospun fibers in different fields.
Collapse
Affiliation(s)
- Xiuling Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jingwen Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongtao Guo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Li Liu
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wenhui Xu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|