1
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
An X, He J, Bi B, Wu G, Xu J, Yu W, Ren Z. The role of astrocytes in Alzheimer's disease: a bibliometric analysis. Front Aging Neurosci 2024; 16:1481748. [PMID: 39665038 PMCID: PMC11632101 DOI: 10.3389/fnagi.2024.1481748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder marked by cognitive decline and memory loss. Recent research underscores the crucial role of astrocytes in AD. This study reviews research trends and contributions on astrocytes in AD from 2000 to 2024, shedding light on the evolving research landscape. Methods We conducted a bibliometric analysis using data from the Web of Science Core Collection, covering publications from January 1, 2000, to July 6, 2024, on "Alzheimer's disease" and "astrocytes." We identified 5,252 relevant English articles and reviews. For data visualization and analysis, we used VOSviewer, CiteSpace, and the R package "bibliometrix," examining collaboration networks, co-citation networks, keyword co-occurrence, and thematic evolution. Results Between 2000 and 2024, 5,252 publications were identified, including 4,125 original research articles and 1,127 review articles. Publications increased significantly after 2016. The United States had the most contributions (1,468), followed by China (836). Major institutions were the University of California system (517) and Harvard University (402). The Journal of Alzheimer's Disease published the most articles (215). Verkhratsky A was the top author with 51 papers and 1,585 co-citations. Conclusion Our extensive bibliometric analysis indicates a significant increase in research on astrocytes in AD over the past 20 years. This study emphasizes the growing acknowledgment of astrocytes' crucial role in AD pathogenesis and points to future research on their mechanisms and therapeutic potential.
Collapse
Affiliation(s)
- Xiaoqiong An
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
| | - Jun He
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bin Bi
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Gang Wu
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianwei Xu
- Guizhou Provincial Center for Clinical Laboratory, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Psychosomatic Department, The Second People's Hospital of Guizhou Province, Guiyang, China
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhenkui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, Guiyang, China
| |
Collapse
|
3
|
Zhang S, Gao Z, Feng L, Li M. Prevention and Treatment Strategies for Alzheimer's Disease: Focusing on Microglia and Astrocytes in Neuroinflammation. J Inflamm Res 2024; 17:7235-7259. [PMID: 39421566 PMCID: PMC11484773 DOI: 10.2147/jir.s483412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease characterized by its insidious onset and progressive development, making it the most common form of dementia. Despite its prevalence, the exact causes and mechanisms responsible for AD remain unclear. Recent studies have highlighted that inflammation in the central nervous system (CNS) plays a crucial role in both the initiation and progression of AD. Neuroinflammation, an immune response within the CNS triggered by glial cells in response to various stimuli, such as nerve injury, infection, toxins, or autoimmune reactions, has emerged as a significant factor alongside amyloid deposition and neurofibrillary tangles (NFTs) commonly associated with AD. This article aims to provide an overview of the most recent research regarding the involvement of neuroinflammation in AD, with a particular focus on elucidating the specific mechanisms involving microglia and astrocytes. By exploring these intricate processes, a new theoretical framework can be established to further probe the impact of neuroinflammation on the development and progression of AD. Through a deeper understanding of these underlying mechanisms, potential targets for therapeutic interventions and novel treatment strategies can be identified in the ongoing battle against AD.
Collapse
Affiliation(s)
- Shenghao Zhang
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| | - Zhejianyi Gao
- Department of Orthopaedics, Fushun Hospital of Chinese Medicine, Fushun, Liaoning Province, 113008, People’s Republic of China
| | - Lina Feng
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
- Shandong Key Laboratory of TCM Multi-Targets Intervention and Disease Control, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, 271000, People’s Republic of China
| | - Mingquan Li
- Department of Neurology, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin Province, 130021, People’s Republic of China
| |
Collapse
|
4
|
Del Moro L, Pirovano E, Rota E. Mind the Metabolic Gap: Bridging Migraine and Alzheimer's disease through Brain Insulin Resistance. Aging Dis 2024; 15:2526-2553. [PMID: 38913047 PMCID: PMC11567252 DOI: 10.14336/ad.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Brain insulin resistance has recently been described as a metabolic abnormality of brain glucose homeostasis that has been proven to downregulate insulin receptors, both in astrocytes and neurons, triggering a reduction in glucose uptake and glycogen synthesis. This condition may generate a mismatch between brain's energy reserve and expenditure, ??mainly during high metabolic demand, which could be involved in the chronification of migraine and, in the long run, at least in certain subsets of patients, in the prodromic phase of Alzheimer's disease, along a putative metabolic physiopathological continuum. Indeed, the persistent disruption of glucose homeostasis and energy supply to neurons may eventually impair protein folding, an energy-requiring process, promoting pathological changes in Alzheimer's disease, such as amyloid-β deposition and tau hyperphosphorylation. Hopefully, the "neuroenergetic hypothesis" presented herein will provide further insight on there being a conceivable metabolic bridge between chronic migraine and Alzheimer's disease, elucidating novel potential targets for the prophylactic treatment of both diseases.
Collapse
Affiliation(s)
- Lorenzo Del Moro
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elenamaria Pirovano
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy.
| | - Eugenia Rota
- Neurology Unit, San Giacomo Hospital, Novi Ligure, ASL AL, Italy.
| |
Collapse
|
5
|
Ma XN, Feng W, Chen SL, Zhong XQ, Lin CS, Xu Q. Methotrexate and the Risk of Dementia: A Two-Sample Mendelian Randomization Study. Neurol Ther 2024; 13:715-725. [PMID: 38592337 PMCID: PMC11136892 DOI: 10.1007/s40120-024-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Recent studies have suggested a potential association between methotrexate use and an increased risk of dementia. However, the causal relationship between methotrexate and dementia remains unclear. This study aims to investigate the potential causal effect of methotrexate use on the risk of dementia using a two-sample Mendelian randomization (TSMR) approach. METHODS We conducted a TSMR study using summary statistics from genome-wide association studies (GWAS) of methotrexate use and dementia. We obtained genetic instruments for methotrexate use from a large-scale GWAS meta-analysis and genetic instruments for dementia from a separate GWAS meta-analysis. We performed several statistical analyses, including inverse-variance weighted (IVW), weighted median (WM1), weighted mode (WM2), and MR-Egger regression methods, to estimate the causal effect of methotrexate on dementia risk. RESULTS Our TSMR analysis showed a significant positive association between genetic predisposition to methotrexate use and dementia risk. The IVW method estimated a causal odds ratio (OR) of 0.476 [95% confidence interval (CI) 0.362-0.626] per unit increase in the log odds ratio of methotrexate use. WM1, WM2, and MR-Egger methods provided consistent results. CONCLUSION The findings of this mendelian randomization (MR) study suggest a potential causal effect of methotrexate use on the risk of dementia. However, further research is needed to validate these findings and explore the underlying mechanisms. Since methotrexate is widely prescribed for various autoimmune diseases, a better understanding of its potential impact on dementia risk is crucial for optimizing treatment strategies and addressing potential adverse effects.
Collapse
Affiliation(s)
- Xiao-Na Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shu-Lin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiao-Qin Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chang-Song Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
6
|
Piccirillo S, Preziuso A, Cerqueni G, Serfilippi T, Terenzi V, Vinciguerra A, Amoroso S, Lariccia V, Magi S. A strategic tool to improve the study of molecular determinants of Alzheimer's disease: The role of glyceraldehyde. Biochem Pharmacol 2023; 218:115869. [PMID: 37871878 DOI: 10.1016/j.bcp.2023.115869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by progressive neurodegeneration leading to severe cognitive, memory, and behavioral impairments. The onset of AD involves a complex interplay among various factors, including age, genetics, chronic inflammation, and impaired energy metabolism. Despite significant efforts, there are currently no effective therapies capable of modifying the course of AD, likely owing to an excessive focus on the amyloid hypothesis and a limited consideration of other intracellular pathways. In the present review, we emphasize the emerging concept of AD as a metabolic disease, where alterations in energy metabolism play a critical role in its development and progression. Notably, glucose metabolism impairment is associated with mitochondrial dysfunction, oxidative stress, Ca2+ dyshomeostasis, and protein misfolding, forming interconnected processes that perpetuate a detrimental self-feeding loop sustaining AD progression. Advanced glycation end products (AGEs), neurotoxic compounds that accumulate in AD, are considered an important consequence of glucose metabolism disruption, and glyceraldehyde (GA), a glycolytic intermediate, is a key contributor to AGEs formation in both neurons and astrocytes. Exploring the impact of GA-induced glucose metabolism impairment opens up exciting possibilities for creating an easy-to-handle in vitro model that recapitulates the early stage of the disease. This model holds great potential for advancing the development of novel therapeutics targeting various intracellular pathways implicated in AD pathogenesis. In conclusion, looking beyond the conventional amyloid hypothesis could lead researchers to discover promising targets for intervention, offering the possibility of addressing the existing medical gaps in AD treatment.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Valentina Terenzi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| |
Collapse
|
7
|
Farina S, Voorsluijs V, Fixemer S, Bouvier DS, Claus S, Ellisman MH, Bordas SPA, Skupin A. Mechanistic multiscale modelling of energy metabolism in human astrocytes reveals the impact of morphology changes in Alzheimer's Disease. PLoS Comput Biol 2023; 19:e1011464. [PMID: 37729344 PMCID: PMC10545114 DOI: 10.1371/journal.pcbi.1011464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/02/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Astrocytes with their specialised morphology are essential for brain homeostasis as metabolic mediators between blood vessels and neurons. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes adopt reactive profiles with molecular and morphological changes that could lead to the impairment of their metabolic support and impact disease progression. However, the underlying mechanisms of how the metabolic function of human astrocytes is impaired by their morphological changes in AD are still elusive. To address this challenge, we developed and applied a metabolic multiscale modelling approach integrating the dynamics of metabolic energy pathways and physiological astrocyte morphologies acquired in human AD and age-matched control brain samples. The results demonstrate that the complex cell shape and intracellular organisation of energetic pathways determine the metabolic profile and support capacity of astrocytes in health and AD conditions. Thus, our mechanistic approach indicates the importance of spatial orchestration in metabolism and allows for the identification of protective mechanisms against disease-associated metabolic impairments.
Collapse
Affiliation(s)
- Sofia Farina
- Department of Engineering, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Valérie Voorsluijs
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University of Luxembourg, Luxembourg, Luxembourg
| | - Sonja Fixemer
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - David S. Bouvier
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Laboratoire national de santé (LNS), National Center of Pathology (NCP), Dudelange, Luxembourg
| | | | - Mark H. Ellisman
- Department of Neurosciences, University of California San Diego, California, United States of America
| | | | - Alexander Skupin
- LCSB-Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University of Luxembourg, Luxembourg, Luxembourg
- Department of Neurosciences, University of California San Diego, California, United States of America
| |
Collapse
|
8
|
Fernández-Moncada I, Eraso-Pichot A, Tor TD, Fortunato-Marsol B, Marsicano G. An enquiry to the role of CB1 receptors in neurodegeneration. Neurobiol Dis 2023:106235. [PMID: 37481040 DOI: 10.1016/j.nbd.2023.106235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
Neurodegenerative disorders are debilitating conditions that impair patient quality of life and that represent heavy social-economic burdens to society. Whereas the root of some of these brain illnesses lies in autosomal inheritance, the origin of most of these neuropathologies is scantly understood. Similarly, the cellular and molecular substrates explaining the progressive loss of brain functions remains to be fully described too. Indeed, the study of brain neurodegeneration has resulted in a complex picture, composed of a myriad of altered processes that include broken brain bioenergetics, widespread neuroinflammation and aberrant activity of signaling pathways. In this context, several lines of research have shown that the endocannabinoid system (ECS) and its main signaling hub, the type-1 cannabinoid (CB1) receptor are altered in diverse neurodegenerative disorders. However, some of these data are conflictive or poorly described. In this review, we summarize the findings about the alterations in ECS and CB1 receptors signaling in three representative brain illnesses, the Alzheimer's, Parkinson's and Huntington's diseases, and we discuss the relevance of these studies in understanding neurodegeneration development and progression, with a special focus on astrocyte function. Noteworthy, the analysis of ECS defects in neurodegeneration warrant much more studies, as our conceptual understanding of ECS function has evolved quickly in the last years, which now include glia cells and the subcellular-specific CB1 receptors signaling as critical players of brain functions.
Collapse
Affiliation(s)
| | - Abel Eraso-Pichot
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Tommaso Dalla Tor
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France; Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy
| | | | - Giovanni Marsicano
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
9
|
Chen W, Huang Q, Lazdon EK, Gomes A, Wong M, Stephens E, Royal TG, Frenkel D, Cai W, Kahn CR. Loss of insulin signaling in astrocytes exacerbates Alzheimer-like phenotypes in a 5xFAD mouse model. Proc Natl Acad Sci U S A 2023; 120:e2220684120. [PMID: 37186836 PMCID: PMC10214134 DOI: 10.1073/pnas.2220684120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Brain insulin signaling controls peripheral energy metabolism and plays a key role in the regulation of mood and cognition. Epidemiological studies have indicated a strong connection between type 2 diabetes (T2D) and neurodegenerative disorders, especially Alzheimer's disease (AD), linked via dysregulation of insulin signaling, i.e., insulin resistance. While most studies have focused on neurons, here, we aim to understand the role of insulin signaling in astrocytes, a glial cell type highly implicated in AD pathology and AD progression. To this end, we created a mouse model by crossing 5xFAD transgenic mice, a well-recognized AD mouse model that expresses five familial AD mutations, with mice carrying a selective, inducible insulin receptor (IR) knockout in astrocytes (iGIRKO). We show that by age 6 mo, iGIRKO/5xFAD mice exhibited greater alterations in nesting, Y-maze performance, and fear response than those of mice with the 5xFAD transgenes alone. This was associated with increased Tau (T231) phosphorylation, increased Aβ plaque size, and increased association of astrocytes with plaques in the cerebral cortex as assessed using tissue CLARITY of the brain in the iGIRKO/5xFAD mice. Mechanistically, in vitro knockout of IR in primary astrocytes resulted in loss of insulin signaling, reduced ATP production and glycolic capacity, and impaired Aβ uptake both in the basal and insulin-stimulated states. Thus, insulin signaling in astrocytes plays an important role in the control of Aβ uptake, thereby contributing to AD pathology, and highlighting the potential importance of targeting insulin signaling in astrocytes as a site for therapeutics for patients with T2D and AD.
Collapse
Affiliation(s)
- Wenqiang Chen
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Qian Huang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - Ekaterina Katie Lazdon
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Antonio Gomes
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| | - Marisa Wong
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - Emily Stephens
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX79430
| | - Tabitha Grace Royal
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Dan Frenkel
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv69978, Israel
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY11568
| | - C. Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA02215
| |
Collapse
|
10
|
Ahmad I, Singh R, Pal S, Prajapati S, Sachan N, Laiq Y, Husain H. Exploring the Role of Glycolytic Enzymes PFKFB3 and GAPDH in the Modulation of Aβ and Neurodegeneration and Their Potential of Therapeutic Targets in Alzheimer's Disease. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04340-0. [PMID: 36692648 DOI: 10.1007/s12010-023-04340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is presently the 6th major cause of mortality across the globe. However, it is expected to rise rapidly, following cancer and heart disease, as a leading cause of death among the elderly peoples. AD is largely characterized by metabolic changes linked to glucose metabolism and age-induced mitochondrial failure. Recent research suggests that the glycolytic pathway is required for a range of neuronal functions in the brain including synaptic transmission, energy production, and redox balance; however, alteration in glycolytic pathways may play a significant role in the development of AD. Moreover, it is hypothesized that targeting the key enzymes involved in glucose metabolism may help to prevent or reduce the risk of neurodegenerative disorders. One of the major pro-glycolytic enzyme is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3); it is normally absent in neurons but abundant in astrocytes. Similarly, another key of glycolysis is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which catalyzes the conversion of aldolase and glyceraldehyde 3 phosphates to 1,3 bisphosphoglycerate. GAPDH has been reported to interact with various neurodegenerative disease-associated proteins, including the amyloid-β protein precursor (AβPP). These findings indicate PFKFB3 and GAPDH as a promising therapeutic target to AD. Current review highlight the contributions of PFKFB3 and GAPDH in the modulation of Aβand AD pathogenesis and further explore the potential of PFKFB3 and GAPDH as therapeutic targets in AD.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Ranjana Singh
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Saurabh Pal
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Soni Prajapati
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Nidhi Sachan
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Yusra Laiq
- Department of Biochemistry, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Hadiya Husain
- Department of Zoology, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India
| |
Collapse
|
11
|
Bi W, Lei T, Cai S, Zhang X, Yang Y, Xiao Z, Wang L, Du H. Potential of astrocytes in targeting therapy for Alzheimer’s disease. Int Immunopharmacol 2022; 113:109368. [DOI: 10.1016/j.intimp.2022.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
12
|
Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, Javvaji K, Pradhan SR, Vallamkondu J, Dey A, Kalra RS, Jha NK, Jha SK, Reddy PH, Kandimalla R. Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022; 193:134-157. [PMID: 36206930 DOI: 10.1016/j.freeradbiomed.2022.09.032] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/06/2022]
Abstract
Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, 176061, Himachal Pradesh, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, 132001, Haryana, India
| | - Kalpana Javvaji
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India
| | | | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Rajkumar Singh Kalra
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 9040495, Japan
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India; Department of Biochemistry, Kakatiya Medical College, Warangal, India.
| |
Collapse
|
13
|
Rzepka Z, Rok J, Kowalska J, Banach K, Wrześniok D. Cobalamin Deficiency May Induce Astrosenescence-An In Vitro Study. Cells 2022; 11:3408. [PMID: 36359805 PMCID: PMC9655094 DOI: 10.3390/cells11213408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
Cobalamin (vitamin B12) deficiency is one of the major factors causing degenerative changes in the nervous system and, thus, various neurological and psychiatric symptoms. The underlying cellular mechanism of this phenomenon is not yet fully understood. An accumulation of senescent astrocytes has been shown to contribute to a wide range of pathologies of the nervous system, including neurodegenerative disorders. This study aimed to investigate whether cobalamin deficiency triggers astrosenescence. After inducing cobalamin deficiency in normal human astrocytes in vitro, we examined biomarkers of cellular senescence: SA-β-gal, p16INK4A, and p21Waf1/Cip1 and performed cell nuclei measurements. The obtained results may contribute to an increase in the knowledge of the cellular effects of cobalamin deficiency in the context of astrocytes. In addition, the presented data suggest a potential causative agent of astrosenescence that has not been proven to date.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | | | | | | | | |
Collapse
|
14
|
Henn RE, Noureldein MH, Elzinga SE, Kim B, Savelieff MG, Feldman EL. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol Dis 2022; 170:105766. [PMID: 35584728 PMCID: PMC10071699 DOI: 10.1016/j.nbd.2022.105766] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Dementia is a complex set of disorders affecting normal cognitive function. Recently, several clinical studies have shown that diabetes, obesity, and components of the metabolic syndrome (MetS) are associated with cognitive impairment, including dementias such as Alzheimer's disease. Maintaining normal cognitive function is an intricate process involving coordination of neuron function with multiple brain glia. Well-orchestrated bioenergetics is a central requirement of neurons, which need large amounts of energy but lack significant energy storage capacity. Thus, one of the most important glial functions is to provide metabolic support and ensure an adequate energy supply for neurons. Obesity and metabolic disease dysregulate glial function, leading to a failure to respond to neuron energy demands, which results in neuronal damage. In this review, we outline evidence for links between diabetes, obesity, and MetS components to cognitive impairment. Next, we focus on the metabolic crosstalk between the three major glial cell types, oligodendrocytes, astrocytes, and microglia, with neurons under physiological conditions. Finally, we outline how diabetes, obesity, and MetS components can disrupt glial function, and how this disruption might impair glia-neuron metabolic crosstalk and ultimately promote cognitive impairment.
Collapse
Affiliation(s)
- Rosemary E Henn
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Bhumsoo Kim
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| | - Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States of America; Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
15
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
16
|
Salvadó G, Milà-Alomà M, Shekari M, Ashton NJ, Operto G, Falcon C, Cacciaglia R, Minguillon C, Fauria K, Niñerola-Baizán A, Perissinotti A, Benedet AL, Kollmorgen G, Suridjan I, Wild N, Molinuevo JL, Zetterberg H, Blennow K, Suárez-Calvet M, Gispert JD. Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer's continuum. Eur J Nucl Med Mol Imaging 2022; 49:4567-4579. [PMID: 35849149 DOI: 10.1007/s00259-022-05897-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([18F]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. METHODS We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-β (Aβ) positive. Associations between GFAP markers and [18F]FDG uptake were studied. We also investigated whether these associations were modified by Aβ and tau status (AT stages). RESULTS Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [18F]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of Aβ pathology but became negative in Aβ-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. CONCLUSIONS Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes.
Collapse
Affiliation(s)
- Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Institute of Psychiatry, King's College London, Maurice Wohl Clinical Neuroscience Institute, Psychology & Neuroscience, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Niñerola-Baizán
- Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.,Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andrés Perissinotti
- Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.,Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | | | | | | | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,H. Lundbeck A/S, Copenhagen, Denmark
| | - Henrik Zetterberg
- Universitat Pompeu Fabra, Barcelona, Spain.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Universitat Pompeu Fabra, Barcelona, Spain.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain. .,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.
| | | |
Collapse
|
17
|
Liu C. The Role of Mesenchymal Stem Cells in Regulating Astrocytes-Related Synapse Dysfunction in Early Alzheimer’s Disease. Front Neurosci 2022; 16:927256. [PMID: 35801178 PMCID: PMC9253587 DOI: 10.3389/fnins.2022.927256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disease, is characterized by the presence of extracellular amyloid-β (Aβ) aggregates and intracellular neurofibrillary tangles formed by hyperphosphorylated tau as pathological features and the cognitive decline as main clinical features. An important cellular correlation of cognitive decline in AD is synapse loss. Soluble Aβ oligomer has been proposed to be a crucial early event leading to synapse dysfunction in AD. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function have been suggested in the pathogenesis of AD. Astrocytes may contribute to synapse dysfunction at an early stage of AD by participating in Aβ metabolism, brain inflammatory response, and synaptic regulation. While mesenchymal stem cells can inhibit astrogliosis, and promote non-reactive astrocytes. They can also induce direct regeneration of neurons and synapses. This review describes the role of mesenchymal stem cells and underlying mechanisms in regulating astrocytes-related Aβ metabolism, neuroinflammation, and synapse dysfunction in early AD, exploring the open questions in this field.
Collapse
|
18
|
Brain Metabolic Alterations in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23073785. [PMID: 35409145 PMCID: PMC8998942 DOI: 10.3390/ijms23073785] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the body. Satisfying such energy demand requires compartmentalized, cell-specific metabolic processes, known to be complementary and intimately coupled. Thus, the brain relies on thoroughly orchestrated energy-obtaining agents, processes and molecular features, such as the neurovascular unit, the astrocyte-neuron metabolic coupling, and the cellular distribution of energy substrate transporters. Importantly, early features of the aging process are determined by the progressive perturbation of certain processes responsible for adequate brain energy supply, resulting in brain hypometabolism. These age-related brain energy alterations are further worsened during the prodromal stages of neurodegenerative diseases, namely Alzheimer's disease (AD), preceding the onset of clinical symptoms, and are anatomically and functionally associated with the loss of cognitive abilities. Here, we focus on concrete neuroenergetic features such as the brain's fueling by glucose and lactate, the transporters and vascular system guaranteeing its supply, and the metabolic interactions between astrocytes and neurons, and on its neurodegenerative-related disruption. We sought to review the principles underlying the metabolic dimension of healthy and AD brains, and suggest that the integration of these concepts in the preventive, diagnostic and treatment strategies for AD is key to improving the precision of these interventions.
Collapse
|
19
|
Ramon-Duaso C, Conde-Moro AR, Busquets-Garcia A. Astroglial cannabinoid signaling and behavior. Glia 2022; 71:60-70. [PMID: 35293647 DOI: 10.1002/glia.24171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022]
Abstract
In neuroscience, the explosion of innovative and advanced technical accomplishments is fundamental to understanding brain functioning. For example, the possibility to distinguish glial and neuronal activities at the synaptic level and/or the appearance of new genetic tools to specifically monitor and manipulate astroglial functions revealed that astrocytes are involved in several facets of behavioral control. In this sense, the discovery of functional presence of type-1 cannabinoid receptors in astrocytes has led to identify important behavioral responses mediated by this specific pool of cannabinoid receptors. Thus, astroglial type-1 cannabinoid receptors are in the perfect place to play a role in a complex scenario in which astrocytes sense neuronal activity, release gliotransmitters and modulate the activity of other neurons, ultimately controlling behavioral responses. In this review, we will describe the known behavioral implications of astroglial cannabinoid signaling and highlight exciting unexplored research avenues on how astroglial cannabinoid signaling could affect behavior.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Ana Rocio Conde-Moro
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Arnau Busquets-Garcia
- Cell-Type Mechanisms in Normal and Pathological Behavior Research Group, Neuroscience Programme, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| |
Collapse
|
20
|
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022; 12:825816. [PMID: 35087428 PMCID: PMC8787066 DOI: 10.3389/fphys.2021.825816] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play key roles in the regulation of brain energy metabolism, which has a major impact on brain functions, including memory, neuroprotection, resistance to oxidative stress and homeostatic tone. Energy demands of the brain are very large, as they continuously account for 20–25% of the whole body’s energy consumption. Energy supply of the brain is tightly linked to neuronal activity, providing the origin of the signals detected by the widely used functional brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography. In particular, neuroenergetic coupling is regulated by astrocytes through glutamate uptake that triggers astrocytic aerobic glycolysis and leads to glucose uptake and lactate release, a mechanism known as the Astrocyte Neuron Lactate Shuttle. Other neurotransmitters such as noradrenaline and Vasoactive Intestinal Peptide mobilize glycogen, the reserve for glucose exclusively localized in astrocytes, also resulting in lactate release. Lactate is then transferred to neurons where it is used, after conversion to pyruvate, as a rapid energy substrate, and also as a signal that modulates neuronal excitability, homeostasis, and the expression of survival and plasticity genes. Importantly, glycolysis in astrocytes and more generally cerebral glucose metabolism progressively deteriorate in aging and age-associated neurodegenerative diseases such as Alzheimer’s disease. This decreased glycolysis actually represents a common feature of several neurological pathologies. Here, we review the critical role of astrocytes in the regulation of brain energy metabolism, and how dysregulation of astrocyte-mediated metabolic pathways is involved in brain hypometabolism. Further, we summarize recent efforts at preclinical and clinical stages to target brain hypometabolism for the development of new therapeutic interventions in age-related neurodegenerative diseases.
Collapse
|
21
|
Gao R, Ren L, Zhou Y, Wang L, Xie Y, Zhang M, Liu X, Ke S, Wu K, Zheng J, Liu X, Chen Z, Liu L. Recurrent non-severe hypoglycemia aggravates cognitive decline in diabetes and induces mitochondrial dysfunction in cultured astrocytes. Mol Cell Endocrinol 2021; 526:111192. [PMID: 33545179 DOI: 10.1016/j.mce.2021.111192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
The present study aimed to determine the relationship between astrocytes and recurrent non-severe hypoglycemia (RH)2 -associated cognitive decline in diabetes. RH induced cognitive impairment and neuronal cell death in the cerebral cortex of diabetic mice, accompanied by excessive activation of astrocytes. Levels of the neurotrophins BDNF and GDNF, together with BDNF and GDNF- related signaling, were downregulated by RH. In vitro, recurrent low glucose (RLG)3 impaired cell viability and induced apoptosis of high-glucose cultured astrocytes. Accumulating mitochondrial ROS and dysregulated mitochondrial functions, including abnormal morphology, decreased membrane potential, downregulated ATP levels, and disrupted bioenergetic status, were observed in these cells. SS-31 mediated protection of mitochondrial functions reversed RLG-induced cell viability defects and neurotrophin production. These findings demonstrate that RH induced astrocyte overactivation and mitochondrial dysfunction, leading to astrocyte-derived neurotrophin disturbance, which might contribute to diabetic cognitive decline. Targeting astrocyte mitochondria might represent a neuroprotective therapy for hypoglycemia-associated neurodegeneration in diabetes.
Collapse
Affiliation(s)
- Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lingjia Ren
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yunzhen Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Mengjun Zhang
- Department of pharmacy, Zhongshan Hopital, Fudan University (Xiamen Branch), Xiamen, 361000, China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Sujie Ke
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Kejun Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jiaping Zheng
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaohong Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhou Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
22
|
Sarkar S, Biswas SC. Astrocyte subtype-specific approach to Alzheimer's disease treatment. Neurochem Int 2021; 145:104956. [PMID: 33503465 DOI: 10.1016/j.neuint.2021.104956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes respond to any pathological condition in the central nervous system (CNS) including Alzheimer's disease (AD), and this response is called astrocyte reactivity. Astrocyte reaction to a CNS insult is a highly heterogeneous phenomenon in which the astrocytes undergo a set of morphological, molecular and functional changes with a characteristic secretome profile. Such astrocytes are termed as 'reactive astrocytes'. Controversies regarding the reactive astrocytes abound. Recently, a continuum of reactive astrocyte profiles with distinct transcriptional states has been identified. Among them, disease-associated astrocytes (DAA) were uniquely present in AD mice and expressed a signature set of genes implicated in complement cascade, endocytosis and aging. Earlier, two stimulus-specific reactive astrocyte subtypes with their unique transcriptomic signatures were identified using mouse models of neuroinflammation and ischemia and termed as A1 astrocytes (detrimental) and A2 astrocytes (beneficial) respectively. Interestingly, although most of the A1 signature genes were also detected in DAA, as opposed to A2 astrocyte signatures, some of the A1 specific genes were expressed in other astrocyte subtypes, indicating that these nomenclature-based signatures are not very specific. In this review, we elaborate the disparate functions and cytokine profiles of reactive astrocyte subtypes in AD and tried to distinguish them by designating neurotoxic astrocytes as A1-like and neuroprotective ones as A2-like without directly referring to the A1/A2 original nomenclature. We have also focused on the dual nature from a functional perspective of some cytokines depending on AD-stage, highlighting a number of them as major candidates in AD therapy. Therefore, we suggest that promoting subtype-specific beneficial roles, inhibiting subtype-specific detrimental roles or targeting subtype-specific cytokines constitute a novel therapeutic approach to AD treatment.
Collapse
Affiliation(s)
- Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
23
|
Brain cells derived from Alzheimer's disease patients have multiple specific innate abnormalities in energy metabolism. Mol Psychiatry 2021; 26:5702-5714. [PMID: 33863993 PMCID: PMC8758493 DOI: 10.1038/s41380-021-01068-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023]
Abstract
Altered energy metabolism has been implicated both in aging and the pathogenesis of late-onset Alzheimer's disease (LOAD). However, it is unclear which anomalies are acquired phenotypes and which are inherent and predispose to disease. We report that neural progenitor cells and astrocytes differentiated from LOAD patient-derived induced pluripotent stem cells exhibit multiple inter-related bioenergetic alterations including: changes in energy production by mitochondrial respiration versus glycolysis, as a consequence of alterations in bioenergetic substrate processing and transfer of reducing agents, reduced levels of NAD/NADH, diminished glucose uptake and response rates to insulin (INS)/IGF-1 signaling, decreased INS receptor and glucose transporter 1 densities, and changes in the metabolic transcriptome. Our data confirm that LOAD is a "multi-hit" disorder and provide evidence for innate inefficient cellular energy management in LOAD that likely predisposes to neurodegenerative disease with age. These processes may guide the development and testing of diagnostic procedures or therapeutic agents.
Collapse
|
24
|
Yubolphan R, Phuagkhaopong S, Sangpairoj K, Sibmooh N, Power C, Vivithanaporn P. Intracellular nickel accumulation induces apoptosis and cell cycle arrest in human astrocytic cells. Metallomics 2020; 13:6035243. [PMID: 33570137 DOI: 10.1093/mtomcs/mfaa006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Nickel, a heavy metal found in electronic wastes and fume from electronic cigarettes, induces neuronal cell death and is associated with neurocognitive impairment. Astrocytes are the first line of defense against nickel after entering the brain; however, the effects of nickel on astrocytes remain unknown. Herein, we investigated the effect of nickel exposure on cell survival and proliferation and the underlying mechanisms in U-87 MG human astrocytoma cells and primary human astrocytes. Intracellular nickel levels were elevated in U-87 MG cells in a dose- and time-dependent manner after exposure to nickel chloride. The median toxic concentrations of nickel in astrocytoma cells and primary human astrocytes were 600.60 and >1000 µM at 48 h post-exposure, respectively. Nickel exposure triggered apoptosis in concomitant with the decreased expression of anti-apoptotic B-cell lymphoma protein (Bcl-2) and increased caspase-3/7 activity. Nickel induced reactive oxygen species formation. Additionally, nickel suppressed astrocyte proliferation in a dose- and time-dependent manner by delaying G2 to M phase transition through the upregulation of cyclin B1 and p27 protein expression. These results indicate that nickel-induced cytotoxicity of astrocytes is mediated by the activation of apoptotic pathway and disruption of cell cycle regulation.
Collapse
Affiliation(s)
- Ruedeemars Yubolphan
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Suttinee Phuagkhaopong
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kant Sangpairoj
- Division of Anatomy, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nathawut Sibmooh
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Christopher Power
- Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Pornpun Vivithanaporn
- Pharmacology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| |
Collapse
|
25
|
Cserép C, Pósfai B, Dénes Á. Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions. Neuron 2020; 109:222-240. [PMID: 33271068 DOI: 10.1016/j.neuron.2020.11.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The functional contribution of microglia to normal brain development, healthy brain function, and neurological disorders is increasingly recognized. However, until recently, the nature of intercellular interactions mediating these effects remained largely unclear. Recent findings show microglia establishing direct contact with different compartments of neurons. Although communication between microglia and neurons involves intermediate cells and soluble factors, direct membrane contacts enable a more precisely regulated, dynamic, and highly effective form of interaction for fine-tuning neuronal responses and fate. Here, we summarize the known ultrastructural, molecular, and functional features of direct microglia-neuron interactions and their roles in brain disease.
Collapse
Affiliation(s)
- Csaba Cserép
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Balázs Pósfai
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary; Szentágothai János Doctoral School of Neurosciences, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary.
| |
Collapse
|
26
|
Lee JA, Hall B, Allsop J, Alqarni R, Allen SP. Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol 2020; 112:123-136. [PMID: 32773177 DOI: 10.1016/j.semcdb.2020.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Astrocytes are the most abundant glial cell in the central nervous system and are involved in multiple processes including metabolic homeostasis, blood brain barrier regulation and neuronal crosstalk. Astrocytes are the main storage point of glycogen in the brain and it is well established that astrocyte uptake of glutamate and release of lactate prevents neuronal excitability and supports neuronal metabolic function. However, the role of lipid metabolism in astrocytes in relation to neuronal support has been until recently, unclear. Lipids play a fundamental role in astrocyte function, including energy generation, membrane fluidity and cell to cell signaling. There is now emerging evidence that astrocyte storage of lipids in droplets has a crucial physiological and protective role in the central nervous system. This pathway links β-oxidation in astrocytes to inflammation, signalling, oxidative stress and mitochondrial energy generation in neurons. Disruption in lipid metabolism, structure and signalling in astrocytes can lead to pathogenic mechanisms associated with a range of neurological disorders.
Collapse
Affiliation(s)
- James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Jessica Allsop
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Razan Alqarni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.
| |
Collapse
|
27
|
Mason S. A Novel, Multi-Faceted Perception of Lactate in Neurology. Front Neurosci 2020; 14:460. [PMID: 32499676 PMCID: PMC7242720 DOI: 10.3389/fnins.2020.00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Shayne Mason
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
28
|
Gonzalez A. Antioxidants and Neuron-Astrocyte Interplay in Brain Physiology: Melatonin, a Neighbor to Rely on. Neurochem Res 2020; 46:34-50. [PMID: 31989469 DOI: 10.1007/s11064-020-02972-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
This manuscript is a review focused onto the role of astrocytes in the protection of neurons against oxidative stress and how melatonin can contribute to the maintenance of brain homeostasis. The first part of the review is dedicated to the dependence of neurons on astrocytes by terms of survival under oxidative stress conditions. Additionally, the effects of melatonin against oxidative stress in the brain and its putative role in the protection against diseases affecting the brain are highlighted. The effects of melatonin on the physiology of neurons and astrocytes also are reviewed.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, 10003, Cáceres, Spain.
| |
Collapse
|
29
|
Abstract
Adrenomedullin, a peptide with multiple physiological functions in nervous system injury and disease, has aroused the interest of researchers. This review summarizes the role of adrenomedullin in neuropathological disorders, including pathological pain, brain injury and nerve regeneration, and their treatment. As a newly characterized pronociceptive mediator, adrenomedullin has been shown to act as an upstream factor in the transmission of noxious information for various types of pathological pain including acute and chronic inflammatory pain, cancer pain, neuropathic pain induced by spinal nerve injury and diabetic neuropathy. Initiation of glia-neuron signaling networks in the peripheral and central nervous system by adrenomedullin is involved in the formation and maintenance of morphine tolerance. Adrenomedullin has been shown to exert a facilitated or neuroprotective effect against brain injury including hemorrhagic or ischemic stroke and traumatic brain injury. Additionally, adrenomedullin can serve as a regulator to promote nerve regeneration in pathological conditions. Therefore, adrenomedullin is an important participant in nervous system diseases.
Collapse
Affiliation(s)
- Feng-Jiao Li
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Si-Ru Zheng
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Dong-Mei Wang
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| |
Collapse
|
30
|
Bartsch JW, Rust MB. Highlight: dynamics of the nervous system in health and disease. Biol Chem 2019; 400:1087-1088. [PMID: 31318688 DOI: 10.1515/hsz-2019-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jörg-Walter Bartsch
- Department of Neurosurgery, University of Marburg, Baldingerstraße, D-35033 Marburg, Germany
- Center for Mind, Brain, and Behavior (CMBB), Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group Institute of Physiological Chemistry, University of Marburg, Karl-von-Frisch-Straße 1, D-35032 Marburg, Germany
- DFG Research Training Group "Membrane Plasticity in Tissue Development and Remodeling", GRK 2213, University of Marburg, 35032 Marburg, Germany
| |
Collapse
|