1
|
Morino Y, Ito D, Otoyama M, Sano H. Influence of Atmospheric Gas Species on an Argyrodite-Type Sulfide Solid Electrolyte During Moisture Exposure. Chemphyschem 2024:e202400872. [PMID: 39476193 DOI: 10.1002/cphc.202400872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/14/2024] [Indexed: 11/21/2024]
Abstract
Sulfide solid electrolytes have potential in practical all-solid-state batteries owing to their high formability and ionic conductivity. However, sulfide solid electrolytes are limited by the generation of toxic hydrogen sulfide and conductivity deterioration upon moisture exposure. Although numerous studies have investigated the hydrolysis degradation induced by "moisture," the influence of "atmospheric gases" during moisture exposure has not been extensively investigated despite the importance for practical fabrication. Therefore, in this study, we investigated the impact of atmospheric gases during moisture exposure on an argyrodite-type Li6PS5Cl via electrochemical impedance spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. The electrolyte powder was exposed to various atmospheric gases, namely Ar, Ar+500 ppm CO2, O2, and O2+500 ppm CO2, with moisture at a dew point of -20 °C, and H2S gas generation was monitored. As a result, the amount of H2S gas did not depend on the atmospheric gases. However, the atmospheric gases had a significant effect on the decrease in conductivity. Spectroscopic analyses revealed that CO2 facilitates the formation of carbonates and that O2 promotes the formation of phosphates and sulfonates. The formation of these compounds leads to surface degradation, which further decreases the conductivity.
Collapse
Affiliation(s)
- Yusuke Morino
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto, 617-8555, Japan
| | - Daisuke Ito
- Murata Manufacturing Co., Ltd., 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto, 617-8555, Japan
| | - Misae Otoyama
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Hikaru Sano
- National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
2
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY Confer Tolerance to an Interspecies Redox-Active Antimicrobial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601769. [PMID: 39040146 PMCID: PMC11261909 DOI: 10.1101/2024.07.02.601769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been characterized, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. The transcriptional response of a pyocyanin tolerant CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. Firstly, the CodY mutant strongly suppressed metabolism, by downregulating pathways associated with core metabolism, especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Secondly, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain. Together, these results suggest that both transcriptional responses likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Chen SH, Liu H, Huang B, Zheng J, Zhang ZL, Pang DW, Huang P, Cui R. Biosynthesis of NIR-II Ag 2Se Quantum Dots with Bacterial Catalase for Photoacoustic Imaging and Alleviating-Hypoxia Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310795. [PMID: 38501992 DOI: 10.1002/smll.202310795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Developing the second near-infrared (NIR-II) photoacoustic (PA) agent is of great interest in bioimaging. Ag2Se quantum dots (QDs) are one kind of potential probe for applications in NIR-II photoacoustic imaging (PAI). However, the surfaces with excess anions of Ag2Se QDs, which increase the probability of nonradiative transitions of excitons benefiting PA imaging, are not conducive to binding electron donor ligands for potential biolabeling and imaging. In this study, Staphylococcus aureus (S. aureus) cells are driven for the biosynthesis of Ag2Se QDs with catalase (CAT). Biosynthesized Ag2Se (bio-Ag2Se-CAT) QDs are produced in Se-enriched environment of S. aureus and have a high Se-rich surface. The photothermal conversion efficiency of bio-Ag2Se-CAT QDs at 808 and 1064 nm is calculated as 75.3% and 51.7%, respectively. Additionally, the PA signal responsiveness of bio-Ag2Se-CAT QDs is ≈10 times that of the commercial PA contrast agent indocyanine green. In particular, the bacterial CAT is naturally attached to bio-Ag2Se-CAT QDs surface, which can effectively relieve tumor hypoxia. The bio-Ag2Se-CAT QDs can relieve heat-initiated oxidative stress while undergoing effective photothermal therapy (PTT). Such biosynthesis method of NIR-II bio-Ag2Se-CAT QDs opens a new avenue for developing multifunctional nanomaterials, showing great promise for PAI, hypoxia alleviation, and PTT.
Collapse
Affiliation(s)
- Shi-Hui Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| |
Collapse
|
4
|
Pugazhendhi AS, Neal CJ, Ta KM, Molinari M, Kumar U, Wei F, Kolanthai E, Ady A, Drake C, Hughes M, Yooseph S, Seal S, Coathup MJ. A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces. Biomaterials 2024; 307:122527. [PMID: 38518591 DOI: 10.1016/j.biomaterials.2024.122527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce-O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2-/NO3- are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces.
Collapse
Affiliation(s)
- Abinaya Sindu Pugazhendhi
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Craig J Neal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Khoa Minh Ta
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Marco Molinari
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom.
| | - Udit Kumar
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Fei Wei
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Andrew Ady
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States
| | - Christina Drake
- Kismet Technologies, 7101 TPC Drive, Suite 130, Orlando, FL, 32822, United States
| | - Megan Hughes
- University of Cardiff, Cardiff, CF10 3AT, Wales, United Kingdom
| | - Shibu Yooseph
- Kravis Department of Integrated Sciences, Claremont McKenna College, Claremont, CA 91711, United States
| | - Sudipta Seal
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, United States
| | - Melanie J Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL, 32827, United States.
| |
Collapse
|
5
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
6
|
Formagio MD, Silva JVDO, Silva AF, Campanerut-Sá PAZ, Urbano A, Bonfim-Mendonça PDS, Capoci IRG, Cotica ÉSK, Mikcha JMG. "Antibacterial effect and possible mechanism of action of 1,3,4-oxadiazole in Staphylococcus aureus". Lett Appl Microbiol 2024; 77:ovad138. [PMID: 38070878 DOI: 10.1093/lambio/ovad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Staphylococcus aureus is one of the main etiological agents causing foodborne diseases, and the development of new antibacterial agents is urgent. This study evaluated the antibacterial activity and the possible mechanism of action of the 1,3,4-oxadiazole LMM6 against S. aureus. The minimum inhibitory concentration (MIC) of LMM6 ranged from 1.95 to 7.81 µg ml-1. The time-kill assay showed that 48-h treatment at 1× to 8× MIC reduced S. aureus by 4 log colony forming unit (CFU), indicating a bacteriostatic effect. Regarding the possible mechanism of action of LMM6, there was accumulation of reactive oxygen species (ROS) and an increase in the absorption of crystal violet (∼50%) by the cells treated with LMM6 at 1× and 2× MIC for 6-12 h. In addition, there was increased propidium iodide uptake (∼84%) after exposure to LMM6 for 12 h at 2× MIC. After 48 h of treatment, 100% of bacteria had been injured. Scanning electron microscopy observations demonstrated that LMM6-treated cells were smaller compared with the untreated group. LMM6 exhibited bacteriostatic activity and its mechanism of action involves increase of intracellular ROS and disturbance of the cell membrane, which can be considered a key target for controlling the growth of S. aureus.
Collapse
Affiliation(s)
- Maíra Dante Formagio
- Postgraduate Program of Health Science, State University of Maringá, Maringá, Paraná, Brazil, 87020-900
| | | | - Alex Fiori Silva
- Department of Agricultural and Natural Sciences, State University of Minas Gerais, Ituiutaba, Minas Gerais, Brazil, 38302-192
| | - Paula Aline Zanetti Campanerut-Sá
- Postgraduate Program of Health Science, State University of Maringá, Maringá, Paraná, Brazil, 87020-900
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá Paraná, Brazil, 87020-900
| | - Alexandre Urbano
- Physics Department, State University of Londrina, Londrina, Brazil, 86057-970
| | | | - Isis Regina Grenier Capoci
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá Paraná, Brazil, 87020-900
| | - Érika Seki Kioshima Cotica
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá Paraná, Brazil, 87020-900
| | - Jane Martha Graton Mikcha
- Postgraduate Program of Health Science, State University of Maringá, Maringá, Paraná, Brazil, 87020-900
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá Paraná, Brazil, 87020-900
| |
Collapse
|
7
|
Loi VV, Busche T, Schnaufer F, Kalinowski J, Antelmann H. The neutrophil oxidant hypothiocyanous acid causes a thiol-specific stress response and an oxidative shift of the bacillithiol redox potential in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0325223. [PMID: 37930020 PMCID: PMC10715087 DOI: 10.1128/spectrum.03252-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus colonizes the skin and the airways but can also lead to life-threatening systemic and chronic infections. During colonization and phagocytosis by immune cells, S. aureus encounters the thiol-reactive oxidant HOSCN. The understanding of the adaptation mechanisms of S. aureus toward HOSCN stress is important to identify novel drug targets to combat multi-resistant S. aureus isolates. As a defense mechanism, S. aureus uses the flavin disulfide reductase MerA, which functions as HOSCN reductase and protects against HOSCN stress. Moreover, MerA homologs have conserved functions in HOSCN detoxification in other bacteria, including intestinal and respiratory pathogens. In this work, we studied the comprehensive thiol-reactive mode of action of HOSCN and its effect on the reversible shift of the E BSH to discover new defense mechanisms against the neutrophil oxidant. These findings provide new leads for future drug design to fight the pathogen at the sites of colonization and infections.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Franziska Schnaufer
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Loi VV, Busche T, Kuropka B, Müller S, Methling K, Lalk M, Kalinowski J, Antelmann H. Staphylococcus aureus adapts to the immunometabolite itaconic acid by inducing acid and oxidative stress responses including S-bacillithiolations and S-itaconations. Free Radic Biol Med 2023; 208:859-876. [PMID: 37793500 DOI: 10.1016/j.freeradbiomed.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Staphylococcus aureus is a major pathogen, which has to defend against reactive oxygen and electrophilic species encountered during infections. Activated macrophages produce the immunometabolite itaconate as potent electrophile and antimicrobial upon pathogen infection. In this work, we used transcriptomics, metabolomics and shotgun redox proteomics to investigate the specific stress responses, metabolic changes and redox modifications caused by sublethal concentrations of itaconic acid in S. aureus. In the RNA-seq transcriptome, itaconic acid caused the induction of the GlnR, KdpDE, CidR, SigB, GraRS, PerR, CtsR and HrcA regulons and the urease-encoding operon, revealing an acid and oxidative stress response and impaired proteostasis. Neutralization using external urea as ammonium source improved the growth and decreased the expression of the glutamine synthetase-controlling GlnR regulon, indicating that S. aureus experienced ammonium starvation upon itaconic acid stress. In the extracellular metabolome, the amounts of acetate and formate were decreased, while secretion of pyruvate and the neutral product acetoin were strongly enhanced to avoid intracellular acidification. Exposure to itaconic acid affected the amino acid uptake and metabolism as revealed by the strong intracellular accumulation of lysine, threonine, histidine, aspartate, alanine, valine, leucine, isoleucine, cysteine and methionine. In the proteome, itaconic acid caused widespread S-bacillithiolation and S-itaconation of redox-sensitive antioxidant and metabolic enzymes, ribosomal proteins and translation factors in S. aureus, supporting its oxidative and electrophilic mode of action in S. aureus. In phenotype analyses, the catalase KatA, the low molecular weight thiol bacillithiol and the urease provided protection against itaconic acid-induced oxidative and acid stress in S. aureus. Altogether, our results revealed that under physiological infection conditions, such as in the acidic phagolysome, itaconic acid is a highly effective antimicrobial against multi-resistant S. aureus isolates, which acts as weak acid causing an acid, oxidative and electrophilic stress response, leading to S-bacillithiolation and itaconation.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, D-14195, Berlin, Germany
| | - Susanne Müller
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Karen Methling
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487, Greifswald, Germany
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487, Greifswald, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
9
|
Crompton ME, Gaessler LF, Tawiah PO, Polzer L, Camfield SK, Jacobson GD, Naudszus MK, Johnson C, Meurer K, Bennis M, Roseberry B, Sultana S, Dahl JU. Expression of RcrB confers resistance to hypochlorous acid in uropathogenic Escherichia coli. J Bacteriol 2023; 205:e0006423. [PMID: 37791752 PMCID: PMC10601744 DOI: 10.1128/jb.00064-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is the antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acid side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. Expression of the rcrARB operon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB. The rcrB gene encodes a hypothetical membrane protein, deletion of which substantially increases UPEC's susceptibility to HOCl. However, the mechanism behind protection by RcrB is unclear. In this study, we investigated whether (i) its mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. We provide evidence that RcrB expression is sufficient to protect E. coli from HOCl. Furthermore, RcrB expression is induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health, exacerbating the demand for alternative treatments. Uropathogenic Escherichia coli (UPEC), the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be equipped with powerful defense systems to fend off the toxic effects of reactive chlorine species. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system toward hypochlorous acid (HOCl) stress and phagocytosis. Thus, this novel HOCl stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.
Collapse
Affiliation(s)
- Mary E. Crompton
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Luca F. Gaessler
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Patrick O. Tawiah
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Lisa Polzer
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Sydney K. Camfield
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Grady D. Jacobson
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Maren K. Naudszus
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Colton Johnson
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Kennadi Meurer
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Mehdi Bennis
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Brendan Roseberry
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Sadia Sultana
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Jan-Ulrik Dahl
- Microbiology, School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| |
Collapse
|
10
|
Crompton ME, Gaessler LF, Tawiah PO, Pfirsching L, Camfield SK, Johnson C, Meurer K, Bennis M, Roseberry B, Sultana S, Dahl JU. Expression of RcrB confers resistance to hypochlorous acid in uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543251. [PMID: 37398214 PMCID: PMC10312555 DOI: 10.1101/2023.06.01.543251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acids side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections (UTIs), have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. The regulon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB . rcrB encodes the putative membrane protein RcrB, deletion of which substantially increases UPEC's susceptibility to HOCl. However, many questions regarding RcrB's role remain open including whether (i) the protein's mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. Here, we provide evidence that RcrB expression is sufficient to E. coli 's protection from HOCl and induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health exacerbating the demand for alternative treatment options. UPEC, the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be well equipped with powerful defense systems to fend off the toxic effects of RCS. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system towards HOCl-stress and phagocytosis. Thus, this novel HOCl-stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.
Collapse
Affiliation(s)
- Mary E. Crompton
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Luca F. Gaessler
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Patrick O. Tawiah
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Lisa Pfirsching
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Sydney K. Camfield
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Colton Johnson
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Kennadi Meurer
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Mehdi Bennis
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Brendan Roseberry
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Sadia Sultana
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| | - Jan-Ulrik Dahl
- School of Biological Sciences, Illinois State University, Microbiology, Normal, IL, USA
| |
Collapse
|
11
|
Liu S, Huang B, Cao J, Wang Y, Xiao H, Zhu Y, Zhang H. ROS fine-tunes the function and fate of immune cells. Int Immunopharmacol 2023; 119:110069. [PMID: 37150014 DOI: 10.1016/j.intimp.2023.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
The redox state is essential to the process of cell life, which determines cell fate. As an important signaling molecule of the redox state, reactive oxygen species (ROS) are crucial for the homeostasis of immune cells and participate in the pathological processes of different diseases. We discuss the underlying mechanisms and possible signaling pathways of ROS to fine-tune the proliferation, differentiation, polarization and function of immune cells, including T cells, B cells, neutrophils, macrophages, myeloid-derived inhibitory cells (MDSCs) and dendritic cells (DCs). We further emphasize how excessive ROS lead to programmed immune cell death such as apoptosis, ferroptosis, pyroptosis, NETosis and necroptosis, providing valuable insights for future therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Benqi Huang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Jingdong Cao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yifei Wang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Hao Xiao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yaxi Zhu
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| | - Huali Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| |
Collapse
|
12
|
Shearer HL, Loi VV, Weiland P, Bange G, Altegoer F, Hampton MB, Antelmann H, Dickerhof N. MerA functions as a hypothiocyanous acid reductase and defense mechanism in Staphylococcus aureus. Mol Microbiol 2023; 119:456-470. [PMID: 36779383 DOI: 10.1111/mmi.15035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/14/2023]
Abstract
The major pathogen Staphylococcus aureus has to cope with host-derived oxidative stress to cause infections in humans. Here, we report that S. aureus tolerates high concentrations of hypothiocyanous acid (HOSCN), a key antimicrobial oxidant produced in the respiratory tract. We discovered that the flavoprotein disulfide reductase (FDR) MerA protects S. aureus from this oxidant by functioning as a HOSCN reductase, with its deletion sensitizing bacteria to HOSCN. Crystal structures of homodimeric MerA (2.4 Å) with a Cys43 -Cys48 intramolecular disulfide, and reduced MerACys43 S (1.6 Å) showed the FAD cofactor close to the active site, supporting that MerA functions as a group I FDR. MerA is controlled by the redox-sensitive repressor HypR, which we show to be oxidized to intermolecular disulfides under HOSCN stress, resulting in its inactivation and derepression of merA transcription to promote HOSCN tolerance. Our study highlights the HOSCN tolerance of S. aureus and characterizes the structure and function of MerA as a major HOSCN defense mechanism. Crippling the capacity to respond to HOSCN may be a novel strategy for treating S. aureus infections.
Collapse
Affiliation(s)
- Heather L Shearer
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Vu V Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, Berlin, Germany
| | - Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Center for Tumor Biology and Immunology, Department of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology (SYNMIKRO), Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Institute of Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, Berlin, Germany
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
13
|
Fritsch VN, Loi VV, Kuropka B, Gruhlke M, Weise C, Antelmann H. The MarR/DUF24-Family QsrR Repressor Senses Quinones and Oxidants by Thiol Switch Mechanisms in Staphylococcus aureus. Antioxid Redox Signal 2022; 38:877-895. [PMID: 36242097 DOI: 10.1089/ars.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: The MarR/DUF24-family QsrR and YodB repressors control quinone detoxification pathways in Staphylococcus aureus and Bacillus subtilis. In S. aureus, the QsrR regulon also confers resistance to antimicrobial compounds with quinone-like elements, such as rifampicin, ciprofloxacin, and pyocyanin. Although QsrR was shown to be inhibited by thiol-S-alkylation of its conserved Cys4 residue by 1,4-benzoquinone, YodB senses quinones and diamide by the formation of reversible intermolecular disulfides. In this study, we aimed at further investigating the redox-regulation of QsrR and the role of its Cys4, Cys29, and Cys32 residues under quinone and oxidative stress in S. aureus. Results: The QsrR regulon was strongly induced by quinones and oxidants, such as diamide, allicin, hypochlorous acid (HOCl), and AGXX® in S. aureus. Transcriptional induction of catE2 by quinones and oxidants required Cys4 and either Cys29' or Cys32' of QsrR for redox sensing in vivo. DNA-binding assays revealed that QsrR is reversibly inactivated by quinones and oxidants, depending on Cys4. Using mass spectrometry, QsrR was shown to sense diamide by an intermolecular thiol-disulfide switch, involving Cys4 and Cys29' of opposing subunits in vitro. In contrast, allicin caused S-thioallylation of all three Cys residues in QsrR, leading to its dissociation from the operator sequence. Further, the QsrR regulon confers resistance against quinones and oxidants, depending on Cys4 and either Cys29' or Cys32'. Conclusion and Innovation: QsrR was characterized as a two-Cys-type redox-sensing regulator, which senses the oxidative mode of quinones and strong oxidants, such as diamide, HOCl, and the antimicrobial compound allicin via different thiol switch mechanisms.
Collapse
Affiliation(s)
| | - Vu Van Loi
- Institute of Biology-Microbiology; Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry; Freie Universität Berlin, Berlin, Germany
| | - Martin Gruhlke
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry; Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
14
|
Ashby LV, Springer R, Loi VV, Antelmann H, Hampton MB, Kettle AJ, Dickerhof N. Oxidation of bacillithiol during killing of Staphylococcus aureus USA300 inside neutrophil phagosomes. J Leukoc Biol 2022; 112:591-605. [PMID: 35621076 PMCID: PMC9796752 DOI: 10.1002/jlb.4hi1021-538rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
Targeting immune evasion tactics of pathogenic bacteria may hold the key to treating recalcitrant bacterial infections. Staphylococcus aureus produces bacillithiol (BSH), its major low-molecular-weight thiol, which is thought to protect this opportunistic human pathogen against the bombardment of oxidants inside neutrophil phagosomes. Here, we show that BSH was oxidized when human neutrophils phagocytosed S. aureus, but provided limited protection to the bacteria. We used mass spectrometry to measure the oxidation of BSH upon exposure of S. aureus USA300 to either a bolus of hypochlorous acid (HOCl) or a flux generated by the neutrophil enzyme myeloperoxidase. Oxidation of BSH and loss of bacterial viability were strongly correlated (r = 0.99, p < 0.001). BSH was fully oxidized after exposure of S. aureus to lethal doses of HOCl. However, there was no relationship between the initial BSH levels and the dose of HOCl required for bacterial killing. In contrast to the HOCl systems, only 50% of total BSH was oxidized when neutrophils killed the majority of phagocytosed bacteria. Oxidation of BSH was decreased upon inhibition of myeloperoxidase, implicating HOCl in phagosomal BSH oxidation. A BSH-deficient S. aureus USA300 mutant was slightly more susceptible to treatment with either HOCl or ammonia chloramine, or to killing within neutrophil phagosomes. Collectively, our data show that myeloperoxidase-derived oxidants react with S. aureus inside neutrophil phagosomes, leading to partial BSH oxidation, and contribute to bacterial killing. However, BSH offers only limited protection against the neutrophil's multifaceted killing mechanisms.
Collapse
Affiliation(s)
- Louisa V Ashby
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Reuben Springer
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Vu Van Loi
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Haike Antelmann
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
15
|
The Catalase KatA Contributes to Microaerophilic H2O2 Priming to Acquire an Improved Oxidative Stress Resistance in Staphylococcus aureus. Antioxidants (Basel) 2022; 11:antiox11091793. [PMID: 36139867 PMCID: PMC9495333 DOI: 10.3390/antiox11091793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus has to cope with oxidative stress during infections. In this study, S. aureus was found to be resistant to 100 mM H2O2 during aerobic growth. While KatA was essential for this high aerobic H2O2 resistance, the peroxiredoxin AhpC contributed to detoxification of 0.4 mM H2O2 in the absence of KatA. In addition, the peroxiredoxins AhpC, Tpx and Bcp were found to be required for detoxification of cumene hydroperoxide (CHP). The high H2O2 tolerance of aerobic S. aureus cells was associated with priming by endogenous H2O2 levels, which was supported by an oxidative shift of the bacillithiol redox potential to −291 mV compared to −310 mV in microaerophilic cells. In contrast, S. aureus could be primed by sub-lethal doses of 100 µM H2O2 during microaerophilic growth to acquire an improved resistance towards the otherwise lethal triggering stimulus of 10 mM H2O2. This microaerophilic priming was dependent on increased KatA activity, whereas aerobic cells showed constitutive high KatA activity. Thus, KatA contributes to the high H2O2 resistance of aerobic cells and to microaerophilic H2O2 priming in order to survive the subsequent lethal triggering doses of H2O2, allowing the adaptation of S. aureus under infections to different oxygen environments.
Collapse
|
16
|
Zhou LJ, Wang YY, Li SL, Cao L, Jiang FL, Maskow T, Liu Y. Core-Shell Polydopamine/Cu Nanometer Rods Efficiently Deactivate Microbes by Mimicking Chloride-Activated Peroxidases. ACS OMEGA 2022; 7:29984-29994. [PMID: 36061688 PMCID: PMC9434747 DOI: 10.1021/acsomega.2c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Cu-modified nanoparticles have been designed to mimic peroxidase, and their potent antibacterial and anti-biofilm abilities have been widely investigated. In this study, novel core-shell polydopamine (PDA)/Cu4(OH)6SO4 crystal (PDA/Cu) nanometer rods were prepared. The PDA/Cu nanometer rods show similar kinetic behaviors to chloride-activated peroxidases, exhibit excellent photothermal properties, and are sensitive to the concentrations of pH values and the substrate (i.e., H2O2). PDA/Cu nanometer rods could adhere to the bacteria and catalyze hydrogen peroxide (H2O2) to generate more reactive hydroxy radicals (•OH) against Staphylococcus aureus and Escherichia coli, Furthermore, PDA/Cu nanometer rods show enhanced catalytic and photothermal synergistic antibacterial activity. This work provides a simple, inexpensive, and effective strategy for antibacterial applications.
Collapse
Affiliation(s)
- Lian-Jiao Zhou
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yu-Ying Wang
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shu-Lan Li
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State
Key Laboratory of Membrane Separation and Membrane Process & Tianjin
Key Laboratory of Green Chemical Technology and Process Engineering,
School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Ling Cao
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Thomas Maskow
- Department
of Environmental Microbiology, UFZ, Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Yi Liu
- Department
of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State
Key Laboratory of Membrane Separation and Membrane Process & Tianjin
Key Laboratory of Green Chemical Technology and Process Engineering,
School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
17
|
Ibrahim ES, Ohlsen K. The Old Yellow Enzyme OfrA Fosters Staphylococcus aureus Survival via Affecting Thiol-Dependent Redox Homeostasis. Front Microbiol 2022; 13:888140. [PMID: 35656003 PMCID: PMC9152700 DOI: 10.3389/fmicb.2022.888140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Old yellow enzymes (OYEs) are widely found in the bacterial, fungal, and plant kingdoms but absent in humans and have been used as biocatalysts for decades. However, OYEs’ physiological function in bacterial stress response and infection situations remained enigmatic. As a pathogen, the Gram-positive bacterium Staphylococcus aureus adapts to numerous stress conditions during pathogenesis. Here, we show that in S. aureus genome, two paralogous genes (ofrA and ofrB) encode for two OYEs. We conducted a bioinformatic analysis and found that ofrA is conserved among all publicly available representative staphylococcal genomes and some Firmicutes. Expression of ofrA is induced by electrophilic, oxidative, and hypochlorite stress in S. aureus. Furthermore, ofrA contributes to S. aureus survival against reactive electrophilic, oxygen, and chlorine species (RES, ROS, and RCS) via thiol-dependent redox homeostasis. At the host–pathogen interface, S. aureusΔofrA has defective survival in macrophages and whole human blood and decreased staphyloxanthin production. Overall, our results shed the light onto a novel stress response strategy in the important human pathogen S. aureus.
Collapse
Affiliation(s)
- Eslam S Ibrahim
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Meireles DA, da Silva Neto JF, Domingos RM, Alegria TGP, Santos LCM, Netto LES. Ohr - OhrR, a neglected and highly efficient antioxidant system: Structure, catalysis, phylogeny, regulation, and physiological roles. Free Radic Biol Med 2022; 185:6-24. [PMID: 35452809 DOI: 10.1016/j.freeradbiomed.2022.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/09/2022] [Accepted: 04/02/2022] [Indexed: 12/24/2022]
Abstract
Ohrs (organic hydroperoxide resistance proteins) are antioxidant enzymes that play central roles in the response of microorganisms to organic peroxides. Here, we describe recent advances in the structure, catalysis, phylogeny, regulation, and physiological roles of Ohr proteins and of its transcriptional regulator, OhrR, highlighting their unique features. Ohr is extremely efficient in reducing fatty acid peroxides and peroxynitrite, two oxidants relevant in host-pathogen interactions. The highly reactive Cys residue of Ohr, named peroxidatic Cys (Cp), composes together with an arginine and a glutamate the catalytic triad. The catalytic cycle of Ohrs involves a condensation between a sulfenic acid (Cp-SOH) and the thiol of the second conserved Cys, leading to the formation of an intra-subunit disulfide bond, which is then reduced by dihydrolipoamide or lipoylated proteins. A structural switch takes place during catalysis, with the opening and closure of the active site by the so-called Arg-loop. Ohr is part of the Ohr/OsmC super-family that also comprises OsmC and Ohr-like proteins. Members of the Ohr, OsmC and Ohr-like subgroups present low sequence similarities among themselves, but share a high structural conservation, presenting two Cys residues in their active site. The pattern of gene expression is also distinct among members of the Ohr/OsmC subfamilies. The expression of ohr genes increases upon organic hydroperoxides treatment, whereas the signals for the upregulation of osmC are entry into the stationary phase and/or osmotic stress. For many ohr genes, the upregulation by organic hydroperoxides is mediated by OhrR, a Cys-based transcriptional regulator that only binds to its target DNAs in its reduced state. Since Ohrs and OhrRs are involved in virulence of some microorganisms and are absent in vertebrate and vascular plants, they may represent targets for novel therapeutic approaches based on the disruption of this key bacterial organic peroxide defense system.
Collapse
Affiliation(s)
- Diogo A Meireles
- Laboratório de Fisiologia e Bioquímica de Microrganismos (LFBM) da Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - José F da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Brazil
| | | | - Thiago G P Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Lene Clara M Santos
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis Eduardo S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil.
| |
Collapse
|
19
|
Van Loi V, Busche T, Fritsch VN, Weise C, Gruhlke MCH, Slusarenko AJ, Kalinowski J, Antelmann H. The two-Cys-type TetR repressor GbaA confers resistance under disulfide and electrophile stress in Staphylococcus aureus. Free Radic Biol Med 2021; 177:120-131. [PMID: 34678418 PMCID: PMC8693949 DOI: 10.1016/j.freeradbiomed.2021.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus has to cope with oxidative and electrophile stress during host-pathogen interactions. The TetR-family repressor GbaA was shown to sense electrophiles, such as N-ethylmaleimide (NEM) via monothiol mechanisms of the two conserved Cys55 or Cys104 residues in vitro. In this study, we further investigated the regulation and function of the GbaA repressor and its Cys residues in S. aureus COL. The GbaA-controlled gbaAB-SACOL2595-97 and SACOL2592-nmrA-2590 operons were shown to respond only weakly 3-10-fold to oxidants, electrophiles or antibiotics in S. aureus COL, but are 57-734-fold derepressed in the gbaA deletion mutant, indicating that the physiological inducer is still unknown. Moreover, the gbaA mutant remained responsive to disulfide and electrophile stress, pointing to additional redox control mechanisms of both operons. Thiol-stress induction of the GbaA regulon was strongly diminished in both single Cys mutants, supporting that both Cys residues are required for redox-sensing in vivo. While GbaA and the single Cys mutants are reversible oxidized under diamide and allicin stress, these thiol switches did not affect the DNA binding activity. The repressor activity of GbaA could be only partially inhibited with NEM in vitro. Survival assays revealed that the gbaA mutant confers resistance under diamide, allicin, NEM and methylglyoxal stress, which was mediated by the SACOL2592-90 operon encoding for a putative glyoxalase and oxidoreductase. Altogether, our results support that the GbaA repressor functions in the defense against oxidative and electrophile stress in S. aureus. GbaA represents a 2-Cys-type redox sensor, which requires another redox-sensing regulator and an unknown thiol-reactive ligand for full derepression of the GbaA regulon genes.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, D-14195, Berlin, Germany
| | | | - Alan John Slusarenko
- Department of Plant Physiology, RWTH Aachen University, D-52056, Aachen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
20
|
Cattò C, Villa F, Cappitelli F. Understanding the Role of the Antioxidant Drug Erdosteine and Its Active Metabolite on Staphylococcus aureus Methicillin Resistant Biofilm Formation. Antioxidants (Basel) 2021; 10:antiox10121922. [PMID: 34943025 PMCID: PMC8698571 DOI: 10.3390/antiox10121922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
Increasing numbers of researches have suggested that some drugs with reactive oxygen species (ROS)-mediated mechanisms of action modulate biofilm formation of some pathogenic strains. However, the full contribution of ROS to biofilm development is still an open question. In this paper, the correlations between the antioxidant drug Erdosteine (Er) and its active Metabolite I (Met I), ROS and biofilm development of two strains of methicillin resistant Staphylococcus aureus are presented. Experiments revealed that Er and Met I at 2 and 5 mg/L increased up to three orders of magnitude the number of biofilm-dwelling cells, while the content of ROS within the biofilms was reduced above the 87%, with a major effect of Met I in comparison to Er. Comparative proteomics showed that, 5 mg/L Met I modified the expression of 30% and 65% of total proteins in the two strains respectively. Some proteins involved in cell replication were upregulated, and a nitric oxide-based mechanism is assumed to modulate the biofilm development by changing quorum sensitive pathways. Additionally, several proteins involved in virulence were downregulated in the presence of Met I, suggesting that treated cells, despite being greater in number, might have lost part of their virulence.
Collapse
|
21
|
Repurposing Eltrombopag for Multidrug Resistant Staphylococcus aureus Infections. Antibiotics (Basel) 2021; 10:antibiotics10111372. [PMID: 34827309 PMCID: PMC8615030 DOI: 10.3390/antibiotics10111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The continuous rise of antimicrobial resistance urgently demands new therapeutic agents for human health. Drug repurposing is an attractive strategy that could significantly save time delivering new antibiotics to clinics. We screened 182 US Food and Drug Administration (FDA)-approved drugs to identify potential antibiotic candidates against Staphylococcus aureus, a major pathogenic bacterium. This screening revealed the significant antibacterial activity of three small molecule drugs against S. aureus: (1) LDK378 (Ceritinib), an anaplastic lymphoma kinase (ALK) inhibitor for the treatment of lung cancer, (2) dronedarone HCl, an antiarrhythmic drug for the treatment of atrial fibrillation, and (3) eltrombopag, a thrombopoietin receptor agonist for the treatment of thrombocytopenia. Among these, eltrombopag showed the highest potency against not only a drug-sensitive S. aureus strain but also 55 clinical isolates including 35 methicillin-resistant S. aureus (Minimum inhibitory concentration, MIC, to inhibit 50% growth [MIC50] = 1.4–3.2 mg/L). Furthermore, we showed that eltrombopag inhibited bacterial growth in a cell infection model and reduced bacterial loads in infected mice, demonstrating its potential as a new antibiotic agent against S. aureus that can overcome current antibiotic resistance.
Collapse
|
22
|
Bispo M, Suhani S, van Dijl JM. Empowering antimicrobial photodynamic therapy of Staphylococcus aureus infections with potassium iodide. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112334. [PMID: 34678616 DOI: 10.1016/j.jphotobiol.2021.112334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
Infections caused by the Gram-positive bacterium Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), impose a great burden on global healthcare systems. Thus, there is an urgent need for alternative approaches to fight staphylococcal infections, such as targeted antimicrobial photodynamic therapy (aPDT). We recently reported that targeted aPDT with the S. aureus-specific immunoconjugate 1D9-700DX can be effectively applied to eradicate MRSA. Nonetheless, the efficacy of aPDT in the human body may be diminished by powerful antioxidant activities. In particular, we observed that the efficacy of aPDT with 1D9-700DX towards MRSA was reduced in human plasma. Here we show that this antagonistic effect can be attributed to human serum albumin, which represents the largest pool of free thiols in plasma for trapping reactive oxygen species. Importantly, we also show that our targeted aPDT approach with 1D9-700DX can be empowered by the non-toxic inorganic salt potassium iodide (KI), which reacts with the singlet oxygen produced upon aPDT, resulting in the formation of free iodine. The targeted iodine formation allows full eradication of MRSA (more than 6-log reduction) without negatively affecting other non-targeted bacterial species or human cells. Altogether, we show that the addition of KI allows a drastic reduction of both the amount of the immunoconjugate 1D9-700DX and the irradiation time needed for effective elimination of MRSA by aPDT in the presence of human serum albumin.
Collapse
Affiliation(s)
- Mafalda Bispo
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Sabrina Suhani
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
23
|
Linzner N, Antelmann H. The Antimicrobial Activity of the AGXX® Surface Coating Requires a Small Particle Size to Efficiently Kill Staphylococcus aureus. Front Microbiol 2021; 12:731564. [PMID: 34456898 PMCID: PMC8387631 DOI: 10.3389/fmicb.2021.731564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) isolates are often resistant to multiple antibiotics and pose a major health burden due to limited treatment options. The novel AGXX® surface coating exerts strong antimicrobial activity and successfully kills multi-resistant pathogens, including MRSA. The mode of action of AGXX® particles involves the generation of reactive oxygen species (ROS), which induce an oxidative and metal stress response, increased protein thiol-oxidations, protein aggregations, and an oxidized bacillithiol (BSH) redox state in S. aureus. In this work, we report that the AGXX® particle size determines the effective dose and time-course of S. aureus USA300JE2 killing. We found that the two charges AGXX®373 and AGXX®383 differ strongly in their effective concentrations and times required for microbial killing. While 20–40 μg/ml AGXX®373 of the smaller particle size of 1.5–2.5 μm resulted in >99.9% killing after 2 h, much higher amounts of 60–80 μg/ml AGXX®383 of the larger particle size of >3.2 μm led to a >99% killing of S. aureus USA300JE2 within 3 h. Smaller AGXX® particles have a higher surface/volume ratio and therefore higher antimicrobial activity to kill at lower concentrations in a shorter time period compared to the larger particles. Thus, in future preparations of AGXX® particles, the size of the particles should be kept at a minimum for maximal antimicrobial activity.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute for Biology-Microbiology, Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Berlin, Germany
| |
Collapse
|
24
|
Villanueva M, Roch M, Lasa I, Renzoni A, Kelley WL. The Role of ArlRS and VraSR in Regulating Ceftaroline Hypersusceptibility in Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10070821. [PMID: 34356742 PMCID: PMC8300640 DOI: 10.3390/antibiotics10070821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus infections are a global health problem. New control strategies, including fifth-generation cephalosporins such as ceftaroline, have been developed, however rare sporadic resistance has been reported. Our study aimed to determine whether disruption of two-component environmental signal systems detectably led to enhanced susceptibility to ceftaroline in S. aureus CA-MRSA strain MW2 at sub-MIC concentrations where cells normally continue to grow. A collection of sequential mutants in all fifteen S. aureus non-essential two-component systems (TCS) was first screened for ceftaroline sub-MIC susceptibility, using the spot population analysis profile method. We discovered a role for both ArlRS and VraSR TCS as determinants responsible for MW2 survival in the presence of sub-MIC ceftaroline. Subsequent analysis showed that dual disruption of both arlRS and vraSR resulted in a very strong ceftaroline hypersensitivity phenotype. Genetic complementation analysis confirmed these results and further revealed that arlRS and vraSR likely regulate some common pathway(s) yet to be determined. Our study shows that S. aureus uses particular TCS environmental sensing systems for this type of defense and illustrates the proof of principle that if these TCS were inhibited, the efficacy of certain antibiotics might be considerably enhanced.
Collapse
Affiliation(s)
- Maite Villanueva
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1206 Geneva, Switzerland; (M.V.); (M.R.)
- Departament de Investigación y Desarrollo, Bioinsectis SL, 31110 Noain, Spain
| | - Melanie Roch
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1206 Geneva, Switzerland; (M.V.); (M.R.)
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain;
| | - Adriana Renzoni
- Service of Infectious Diseases, University Hospital and Medical School of Geneva, 1206 Geneva, Switzerland;
| | - William L. Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1206 Geneva, Switzerland; (M.V.); (M.R.)
- Correspondence: ; Tel.: +41-22-379-5651
| |
Collapse
|
25
|
Fassler R, Zuily L, Lahrach N, Ilbert M, Reichmann D. The Central Role of Redox-Regulated Switch Proteins in Bacteria. Front Mol Biosci 2021; 8:706039. [PMID: 34277710 PMCID: PMC8282892 DOI: 10.3389/fmolb.2021.706039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023] Open
Abstract
Bacteria possess the ability to adapt to changing environments. To enable this, cells use reversible post-translational modifications on key proteins to modulate their behavior, metabolism, defense mechanisms and adaptation of bacteria to stress. In this review, we focus on bacterial protein switches that are activated during exposure to oxidative stress. Such protein switches are triggered by either exogenous reactive oxygen species (ROS) or endogenous ROS generated as by-products of the aerobic lifestyle. Both thiol switches and metal centers have been shown to be the primary targets of ROS. Cells take advantage of such reactivity to use these reactive sites as redox sensors to detect and combat oxidative stress conditions. This in turn may induce expression of genes involved in antioxidant strategies and thus protect the proteome against stress conditions. We further describe the well-characterized mechanism of selected proteins that are regulated by redox switches. We highlight the diversity of mechanisms and functions (as well as common features) across different switches, while also presenting integrative methodologies used in discovering new members of this family. Finally, we point to future challenges in this field, both in uncovering new types of switches, as well as defining novel additional functions.
Collapse
Affiliation(s)
- Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisa Zuily
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Nora Lahrach
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Marianne Ilbert
- Aix-Marseille University, CNRS, BIP, UMR 7281, IMM, Marseille, France
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Herrmann JM, Becker K, Dick TP. Dynamics of thiol-based redox switches: redox at its peak! Biol Chem 2021; 402:221-222. [PMID: 33544502 DOI: 10.1515/hsz-2020-0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Katja Becker
- Biochemistry and Molecular Biology, University of Giessen, Giessen, Germany
| | - Tobias P Dick
- Redox Regulation, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|