1
|
Parise LF, Iñiguez SD, Warren BL, Parise EM, Bachtell RK, Dietz DM, Nestler EJ, Bolaños-Guzmán CA. ERK2 Signaling in the Nucleus Accumbens Facilitates Stress Susceptibility and Cocaine Reinstatement. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100416. [PMID: 39896237 PMCID: PMC11786747 DOI: 10.1016/j.bpsgos.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 02/04/2025] Open
Abstract
Background Second-messenger signaling within the mesolimbic reward circuit plays a key role in the negative effects of stress and the underlying mechanisms that promote drug abuse. Because the nucleus accumbens (NAc) integrates reward valence, we investigated how ERK2 (extracellular signal-regulated protein kinase-2) signaling affects the development of stress-related comorbidities, including negative affect and drug sensitivity. Methods We assessed how chronic unpredictable stress influenced the phosphorylation of ERK2-signaling proteins within the NAc of male Sprague Dawley rats. Using a herpes simplex virus, we either upregulated or downregulated NAc ERK2 activation and evaluated behavioral responses to stress-eliciting stimuli (elevated plus maze, open field, forced swim test) and cocaine-seeking behavior (conditioned place preference, self-administration). We also examined ERK2-mediated modifications in spine morphology of medium spiny neurons within the NAc. Results Chronic unpredictable stress increased the phosphorylation of ERK2-signaling proteins within the NAc. Viral-mediated activation of NAc ERK2 enhanced susceptibility to both depression- and anxiety-related stimuli and increased cocaine-seeking behavior (conditioned place preference and reinstatement). These behavioral changes were associated with an increase in stubby and mushroom spines of NAc medium spiny neurons. Conversely, downregulation of ERK2 activation attenuated affect-related behavioral responses in the forced swim test and blunted cocaine's rewarding effects without influencing NAc spine morphology. Conclusions NAc ERK2 contributes to stress-induced behavioral deficits, including anxiety- and depression-like phenotypes, while promoting cocaine-seeking behavior. These findings suggest that ERK2 signaling in the NAc plays a role in the comorbidity of these related syndromes.
Collapse
Affiliation(s)
- Lyonna F. Parise
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas
| | - Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Brandon L. Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Eric M. Parise
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ryan K. Bachtell
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, Buffalo, New York
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
2
|
Cardona-Jordan KM, Lay-Rivera XX, Cartagena-López E, Bracho-Rincón DL, González-Bermejo R, Alvarado-Monefeldt GL, Del Toro JPG, Esquilín-Rodríguez CJ, Lloret-Torres M, Velázquez-Marrero C. Sex Differences in Contextual Extinction Learning After Single Binge-Like EtOH Exposure in Adolescent C57BL/6J Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620195. [PMID: 39484582 PMCID: PMC11527338 DOI: 10.1101/2024.10.25.620195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The relationship between chronic heavy drinking and post-traumatic stress disorder (PTSD) is well-documented; however, the impact of more common drinking patterns, such as a single episode leading to a blood alcohol concentration (BAC) of 0.09 g/dL (moderate intoxication), remains underexplored. Given the frequent co-occurrence of PTSD and alcohol misuse, it is essential to understand the biological and behavioral factors driving this comorbidity. We hypothesize that alcohol's immediate sedative effects are coupled with the development of persistent molecular alcohol tolerance, which may disrupt fear extinction learning. To investigate this, we employed a S ingle E pisode E thanol (SEE) in-vivo exposure to mimic binge-like alcohol consumption over a 6-hour period, following contextual conditioning trials. Extinction trials were conducted 24 hours later to assess the effects on extinction learning. Our findings reveal a significant deficit in fear extinction learning in alcohol-treated adolescent male mice compared to saline-treated controls, with no such effects observed in female adolescent mice. These results suggest that even non-chronic alcohol exposure may contribute to the development of trauma- and stress-related disorders, such as PTSD, in males. Additionally, histological analysis revealed significant alterations in FKBP5, β-catenin, and GSK-3β levels in the hippocampus, striatum, and basolateral amygdala of alcohol-treated mice following extinction. The insights gained from this study could reshape our understanding of the risk factors for PTSD and open new avenues for prevention and treatment, targeting the molecular mechanisms that mediate alcohol tolerance.
Collapse
Affiliation(s)
- Kiara M Cardona-Jordan
- University of Puerto Rico, Medical Sciences Campus, Dr. Jose Celso Barbosa, San Juan, PR, 00936
| | - Xiany X Lay-Rivera
- University of Puerto Rico, Medical Sciences Campus, Dr. Jose Celso Barbosa, San Juan, PR, 00936
| | - Eliezer Cartagena-López
- Institute of Neurobiology, UPR-Medical Sciences Campus, 201 Blvd del Valle, San Juan, PR, 00901
| | - Dina L Bracho-Rincón
- Neuroimaging and Electrophysiology Facility - Institute of Neurobiology, 201 Blvd del Valle, San Juan, PR, 00901
| | - Ruth González-Bermejo
- Institute of Neurobiology, UPR-Medical Sciences Campus, 201 Blvd del Valle, San Juan, PR, 00901
| | | | | | | | - Mario Lloret-Torres
- University of Puerto Rico, Medical Sciences Campus, Dr. Jose Celso Barbosa, San Juan, PR, 00936
| | | |
Collapse
|
3
|
Navarro-Sánchez M, Gil-Miravet I, Montero-Caballero D, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Some key parameters in contextual fear conditioning and extinction in adult rats. Behav Brain Res 2024; 462:114874. [PMID: 38266780 DOI: 10.1016/j.bbr.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Contextual fear conditioning is a behavioral paradigm used to assess hippocampal-dependent memory in experimental animals. Perception of the context depends on activation of a distinct population of neurons in the hippocampus and in hippocampal-related areas that process discrete aspects of context perception. In the absence of any putatively associated cue, the context becomes the salient element that may warn of an upcoming aversive event; and in particular conditions, animals generalize this warning to any new or similar context. In this study we evaluated the effects of the number of sessions, the number of unconditioned stimuli per acquisition session and the distribution of extinction sessions to assess fear acquisition and extinction and determine under which conditions generalization occurred in adult, male rats. We observed that the organization and spacing of sessions were relevant factors in the acquisition and extinction of contextual fear memories. Extinction occurred with significantly greater robustness when sessions were spread over two days. Furthermore, results indicated that exposure to a single 0.3 mA, 0.5 s footshock in two different sessions could produce context-specific fear, while more acquisition sessions or more footshocks within a single session produced a generalization of the fear response to a new context. Notably, when generalization occurred, successive re-exposure to the generalized context produced extinction in a similar way to the paired exposure. Together, the present findings identify clear procedural and behavioral parameters amenable to neural systems analysis of three clinically relevant outcomes of contextual fear conditioning, i.e., memory acquisition, storage and extinction.
Collapse
Affiliation(s)
- Mónica Navarro-Sánchez
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Daniel Montero-Caballero
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain; Spanish Stress Research Network, Ministry of Science and Innovation, Valencia, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrew L Gundlach
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain; Spanish Stress Research Network, Ministry of Science and Innovation, Valencia, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Parise LF, Iñiguez SD, Warren BL, Parise EM, Bachtell RK, Dietz D, Nestler EJ, Bolaños-Guzmán CA. Viral-mediated expression of Erk2 in the nucleus accumbens regulates responses to rewarding and aversive stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560689. [PMID: 37873069 PMCID: PMC10592906 DOI: 10.1101/2023.10.03.560689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Second-messenger signaling within the mesolimbic reward circuit is involved in both the long-lived effects of stress and in the underlying mechanisms that promote drug abuse liability. To determine the direct role of kinase signaling within the nucleus accumbens, specifically mitogen-activated protein kinase 1 (ERK2), in mood- and drug-related behavior, we used a herpes-simplex virus to up- or down-regulate ERK2 in adult male rats. We then exposed rats to a battery of behavioral tasks including the elevated plus-maze, open field test, forced-swim test, conditioned place preference, and finally cocaine self-administration. Herein, we show that viral overexpression or knockdown of ERK2 in the nucleus accumbens induces distinct behavioral phenotypes. Specifically, over expression of ERK2 facilitated depression- and anxiety-like behavior while also increasing sensitivity to cocaine. Conversely, down-regulation of ERK2 attenuated behavioral deficits, while blunting sensitivity to cocaine. Taken together, these data implicate ERK2 signaling, within the nucleus accumbens, in the regulation of affective behaviors and modulating sensitivity to the rewarding properties of cocaine.
Collapse
|
5
|
Joshi SA, Aupperle RL, Khalsa SS. Interoception in Fear Learning and Posttraumatic Stress Disorder. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2023; 21:266-277. [PMID: 37404967 PMCID: PMC10316209 DOI: 10.1176/appi.focus.20230007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric condition characterized by sustained symptoms, including reexperiencing, hyperarousal, avoidance, and mood alterations, following exposure to a traumatic event. Although symptom presentations in PTSD are heterogeneous and incompletely understood, they likely involve interactions between neural circuits involved in memory and fear learning and multiple body systems involved in threat processing. PTSD differs from other psychiatric conditions in that it is a temporally specific disorder, triggered by a traumatic event that elicits heightened physiological arousal, and fear. Fear conditioning and fear extinction learning have been studied extensively in relation to PTSD, because of their central role in the development and maintenance of threat-related associations. Interoception, the process by which organisms sense, interpret, and integrate their internal body signals, may contribute to disrupted fear learning and to the varied symptom presentations of PTSD in humans. In this review, the authors discuss how interoceptive signals may serve as unconditioned responses to trauma that subsequently serve as conditioned stimuli, trigger avoidance and higher-order conditioning of other stimuli associated with these interoceptive signals, and constitute an important aspect of the fear learning context, thus influencing the specificity versus generalization of fear acquisition, consolidation, and extinction. The authors conclude by identifying avenues for future research to enhance understanding of PTSD and the role of interoceptive signals in fear learning and in the development, maintenance, and treatment of PTSD.
Collapse
Affiliation(s)
- Sonalee A Joshi
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| |
Collapse
|
6
|
Choi GY, Kim HB, Cho JM, Sreelatha I, Lee IS, Kweon HS, Sul S, Kim SA, Maeng S, Park JH. Umbelliferone Ameliorates Memory Impairment and Enhances Hippocampal Synaptic Plasticity in Scopolamine-Induced Rat Model. Nutrients 2023; 15:nu15102351. [PMID: 37242234 DOI: 10.3390/nu15102351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by memory loss and cognitive decline. Among the suggested pathogenic mechanisms of AD, the cholinergic hypothesis proposes that AD symptoms are a result of reduced synthesis of acetylcholine (ACh). A non-selective antagonist of the muscarinic ACh receptor, scopolamine (SCOP) induced cognitive impairment in rodents. Umbelliferone (UMB) is a Apiaceae-family-derived 7-hydeoxycoumarin known for its antioxidant, anti-tumor, anticancer, anti-inflammatory, antibacterial, antimicrobial, and antidiabetic properties. However, the effects of UMB on the electrophysiological and ultrastructure morphological aspects of learning and memory are still not well-established. Thus, we investigated the effect of UMB treatment on cognitive behaviors and used organotypic hippocampal slice cultures for long-term potentiation (LTP) and the hippocampal synaptic ultrastructure. A hippocampal tissue analysis revealed that UMB attenuated a SCOP-induced blockade of field excitatory post-synaptic potential (fEPSP) activity and ameliorated the impairment of LTP by the NMDA and AMPA receptor antagonists. UMB also enhanced the hippocampal synaptic vesicle density on the synaptic ultrastructure. Furthermore, behavioral tests on male SD rats (7-8 weeks old) using the Y-maze test, passive avoidance test (PA), and Morris water maze test (MWM) showed that UMB recovered learning and memory deficits by SCOP. These cognitive improvements were in association with the enhanced expression of BDNF, TrkB, and the pCREB/CREB ratio and the suppression of acetylcholinesterase activity. The current findings indicate that UMB may be an effective neuroprotective reagent applicable for improving learning and memory against AD.
Collapse
Affiliation(s)
- Ga-Young Choi
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Hyun-Bum Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jae-Min Cho
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Inturu Sreelatha
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - In-Seo Lee
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee-Seok Kweon
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Sehyun Sul
- Undergraduate Programs, Rutgers University, 100 Rockafeller Road, Suite 1008, Piscataway, NJ 08854, USA
| | - Sun Ae Kim
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sungho Maeng
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ji-Ho Park
- Department of Gerontology (AgeTech Service Convergence Major), Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
7
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Maren S. Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Front Syst Neurosci 2022; 16:888461. [PMID: 35520882 PMCID: PMC9062589 DOI: 10.3389/fnsys.2022.888461] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic interventions for disorders of fear and anxiety rely on behavioral approaches that reduce pathological fear memories. For example, learning that threat-predictive stimuli are no longer associated with aversive outcomes is central to the extinction of conditioned fear responses. Unfortunately, fear memories are durable, long-lasting, and resistant to extinction, particularly under high levels of stress. This is illustrated by the "immediate extinction deficit," which is characterized by a poor long-term reduction of conditioned fear when extinction procedures are attempted within hours of fear conditioning. Here, I will review recent work that has provided new insight into the neural mechanisms underlying resistance to fear extinction. Emerging studies reveal that locus coeruleus norepinephrine modulates amygdala-prefrontal cortical circuits that are critical for extinction learning. These data suggest that stress-induced activation of brain neuromodulatory systems biases fear memory at the expense of extinction learning. Behavioral and pharmacological strategies to reduce stress in patients undergoing exposure therapy might improve therapeutic outcomes.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Sussman TJ, Posner J, Jackowski AP, Correa A, Hoffmann EV, Porto de Oliveira Peruzzi F, Grecco FR, Nitzsche SH, Mesquita ME, Foester BU, Benatti di Cillo F, Mello MF, Coelho Milani AC. The relationship between recent PTSD secondary to sexual assault, hippocampal volume and resting state functional connectivity in adolescent girls. Neurobiol Stress 2022; 17:100441. [PMID: 35257017 PMCID: PMC8897602 DOI: 10.1016/j.ynstr.2022.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Improved understanding of the time course of neural changes associated with adolescent PTSD would elucidate the development of the disorder and could inform approaches to treatment. We compared hippocampal volumes and resting state functional connectivity (RSFC) in adolescent girls with post-traumatic stress disorder (PTSD) secondary to sexual assault, within six months of onset and age- and gender-matched, non-trauma exposed healthy controls (HCs) in São Paulo, Brazil. We also examined the relationship between pre- and post-treatment PTSD symptoms and RSFC. Method We collected brain structure, RSFC, and PTSD symptoms in 30 adolescents with PTSD (mean age: 15.7 ± 1.04 years) and 21 HCs (mean age: 16.2 ± 1.21 years) at baseline. We collected repeated measures in 21 participants with PTSD following treatment; 9 participants dropped out. Hippocampal volume and RSFC from hippocampal and default mode network (DMN) seeds were compared between participants with PTSD and HCs. We examined associations between within-subject changes in RSFC and PTSD symptoms following treatment. Results No hippocampal volumetric differences between groups were found. Compared to HCs, adolescents with recent PTSD had reduced RSFC between hippocampus and the lateral parietal node of the DMN, encompassing the angular gyrus, peak coordinates: −38, −54, 16; 116 voxels; peak F1,47 = 31.76; FDR corrected p = 0.038. Improvements in PTSD symptoms were associated with increased RSFC between hippocampus and part of the lateral parietal node of the DMN, peak coordinates: −38, −84, 38; 316 voxels; peak F1,47 = 40.28; FDR corrected p < 0.001. Conclusion Adolescents with recent PTSD had reduced hippocampal-DMN RSFC, while no group differences in hippocampal volume were found, suggesting that hippocampal function, but not structure, is altered early in the course of PSTD. Following treatment, hippocampal-DMN RSFC increased with symptom improvement and may indicate an important neural mechanism related to successful PTSD treatment.
Collapse
Affiliation(s)
- Tamara J. Sussman
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
- Corresponding author. 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Jonathan Posner
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
| | - Andrea Parolin Jackowski
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Adriana Correa
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Elis Viviane Hoffmann
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Fernanda Porto de Oliveira Peruzzi
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Fernando Rodrigues Grecco
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Samara Hipolito Nitzsche
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Maria Eugenia Mesquita
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Bernd Uwe Foester
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Felipe Benatti di Cillo
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Marcelo Feijo Mello
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| | - Ana Carolina Coelho Milani
- Departamento de Psiquiatria, Universidade Federal de São Paulo, R Rua Major Maragliano, 241, Vila Clementino, São Paulo, SP, 04017030, Brazil
| |
Collapse
|
10
|
Jovasevic V, Zhang H, Sananbenesi F, Guedea AL, Soman KV, Wiktorowicz JE, Fischer A, Radulovic J. Primary cilia are required for the persistence of memory and stabilization of perineuronal nets. iScience 2021; 24:102617. [PMID: 34142063 PMCID: PMC8185192 DOI: 10.1016/j.isci.2021.102617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
It is well established that the formation of episodic memories requires multiple hippocampal mechanisms operating on different time scales. Early mechanisms of memory formation (synaptic consolidation) have been extensively characterized. However, delayed mechanisms, which maintain hippocampal activity as memories stabilize in cortical circuits, are not well understood. Here we demonstrate that contrary to the transient expression of early- and delayed-response genes, the expression of cytoskeleton- and extracellular matrix-associated genes remains dynamic even at remote time points. The most profound expression changes clustered around primary cilium-associated and collagen genes. These genes most likely contribute to memory by stabilizing perineuronal nets in the dorsohippocampal CA1 subfield, as revealed by targeted disruptions of the primary cilium or perineuronal nets. The findings show that nonsynaptic, primary cilium-mediated mechanisms are required for the persistence of context memory.
Collapse
Affiliation(s)
- Vladimir Jovasevic
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Room 13-100, Montgomery Ward Memorial Building, Chicago, IL 60611, USA
| | - Hui Zhang
- Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Room 115, Bronx, NY 10461, USA
| | | | - Anita L. Guedea
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Kizhake V. Soman
- Division of Infectious Disease, Department of Internal Medicine, UTMB – Galveston, Galveston, TX 77555, USA
| | | | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
| | - Jelena Radulovic
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Room 13-100, Montgomery Ward Memorial Building, Chicago, IL 60611, USA
- Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Rose F. Kennedy Center, 1410 Pelham Parkway South, Room 115, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Iordanova MD, Yau JOY, McDannald MA, Corbit LH. Neural substrates of appetitive and aversive prediction error. Neurosci Biobehav Rev 2021; 123:337-351. [PMID: 33453307 PMCID: PMC7933120 DOI: 10.1016/j.neubiorev.2020.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Prediction error, defined by the discrepancy between real and expected outcomes, lies at the core of associative learning. Behavioural investigations have provided evidence that prediction error up- and down-regulates associative relationships, and allocates attention to stimuli to enable learning. These behavioural advances have recently been followed by investigations into the neurobiological substrates of prediction error. In the present paper, we review neuroscience data obtained using causal and recording neural methods from a variety of key behavioural designs. We explore the neurobiology of both appetitive (reward) and aversive (fear) prediction error with a focus on the mesolimbic dopamine system, the amygdala, ventrolateral periaqueductal gray, hippocampus, cortex and locus coeruleus noradrenaline. New questions and avenues for research are considered.
Collapse
Affiliation(s)
- Mihaela D Iordanova
- Department of Psychology/Centre for Studies in Behavioral Neurobiology, Concordia University, 7141 Sherbrooke St, Montreal, QC, H4B 1R6, Canada.
| | - Joanna Oi-Yue Yau
- School of Psychology, The University of New South Wales, UNSW Sydney, NSW, 2052, Australia.
| | - Michael A McDannald
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Avenue, 514 McGuinn Hall, Chestnut Hill, MA, 02467, USA.
| | - Laura H Corbit
- Departments of Psychology and Cell and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| |
Collapse
|
12
|
Wong H, Levenga J, LaPlante L, Keller B, Cooper-Sansone A, Borski C, Milstead R, Ehringer M, Hoeffer C. Isoform-specific roles for AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders. eLife 2020; 9:e56630. [PMID: 33325370 PMCID: PMC7787664 DOI: 10.7554/elife.56630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
AKT is implicated in neurological disorders. AKT has three isoforms, AKT1/AKT2/AKT3, with brain cell type-specific expression that may differentially influence behavior. Therefore, we examined single Akt isoform, conditional brain-specific Akt1, and double Akt1/3 mutant mice in behaviors relevant to neuropsychiatric disorders. Because sex is a determinant of these disorders but poorly understood, sex was an experimental variable in our design. Our studies revealed AKT isoform- and sex-specific effects on anxiety, spatial and contextual memory, and fear extinction. In Akt1 mutant males, viral-mediated AKT1 restoration in the prefrontal cortex rescued extinction phenotypes. We identified a novel role for AKT2 and overlapping roles for AKT1 and AKT3 in long-term memory. Finally, we found that sex-specific behavior effects were not mediated by AKT expression or activation differences between sexes. These results highlight sex as a biological variable and isoform- or cell type-specific AKT signaling as potential targets for improving treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Josien Levenga
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Linda Crnic Institute, Anschutz Medical Center, Aurora, United States
| | - Lauren LaPlante
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Bailey Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | | | - Curtis Borski
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Ryan Milstead
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Marissa Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Linda Crnic Institute, Anschutz Medical Center, Aurora, United States
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| |
Collapse
|
13
|
Lecei A, van Winkel R. Hippocampal pattern separation of emotional information determining risk or resilience in individuals exposed to childhood trauma: Linking exposure to neurodevelopmental alterations and threat anticipation. Neurosci Biobehav Rev 2020; 108:160-170. [DOI: 10.1016/j.neubiorev.2019.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022]
|
14
|
Serotonin 5-HT 4 Receptor Agonists Improve Facilitation of Contextual Fear Extinction in an MPTP-Induced Mouse Model of Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20215340. [PMID: 31717815 PMCID: PMC6862438 DOI: 10.3390/ijms20215340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Previously, we found that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease (PD) model mice (PD mice) showed facilitation of hippocampal memory extinction via reduced cyclic adenosine monophosphate (cAMP)/cAMP-dependent response element-binding protein (CREB) signaling, which may cause cognitive impairment in PD. Serotonergic neurons in the median raphe nucleus (MnRN) project to the hippocampus, and functional abnormalities have been reported. In the present study, we investigated the effects of the serotonin 5-HT4 receptor (5-HT4R) agonists prucalopride and velusetrag on the facilitation of memory extinction observed in PD mice. Both 5-HT4R agonists restored facilitation of contextual fear extinction in PD mice by stimulating the cAMP/CREB pathway in the dentate gyrus of the hippocampus. A retrograde fluorogold-tracer study showed that γ-aminobutyric acid-ergic (GABAergic) neurons in the reticular part of the substantia nigra (SNr), but not dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc), projected to serotonergic neurons in the MnRN, which are known to project their nerve terminals to the hippocampus. It is possible that the degeneration of the SNpc DAergic neurons in PD mice affects the SNr GABAergic neurons, and thereafter, the serotonergic neurons in the MnRN, resulting in hippocampal dysfunction. These findings suggest that 5HT4R agonists could be potentially useful as therapeutic drugs for treating cognitive deficits in PD.
Collapse
|
15
|
Ramanathan KR, Maren S. Nucleus reuniens mediates the extinction of contextual fear conditioning. Behav Brain Res 2019; 374:112114. [PMID: 31351844 DOI: 10.1016/j.bbr.2019.112114] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 11/15/2022]
Abstract
Learning and remembering the context in which events occur requires interactions between the hippocampus (HPC) and medial prefrontal cortex (mPFC). The nucleus reuniens (RE) is a ventral midline thalamic nucleus that coordinates activity in the mPFC and HPC and is involved in spatial and contextual memory. We recently found that the RE is critical for contextual fear conditioning in rats, a form of learning that involves interactions between the HPC and mPFC. Here we examined whether the RE mediates the extinction of contextual fear. After contextual fear conditioning, rats underwent an extinction procedure in which they were merely exposed to the conditioning context; freezing behavior during the extinction procedure and during a retrieval test 24 h later served as an index of conditioned fear. Muscimol inactivation of the RE prior to extinction impaired the acquisition of both short- and long-term extinction memories. Similarly, inactivation of the RE prior to the extinction retrieval test also impaired the expression of extinction; this effect was not state-dependent. Taken together, these results reveal that the extinction of contextual fear memories requires the RE, which is consistent with a broader role for the RE in forms of learning that require HPC-mPFC interactions.
Collapse
Affiliation(s)
- Karthik R Ramanathan
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA; Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Stephen Maren
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA; Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
16
|
Sugiyama A, Yamada M, Furuie H, Gotoh L, Saitoh A, Nagase H, Oka JI, Yamada M. Systemic administration of a delta opioid receptor agonist, KNT-127, facilitates extinction learning of fear memory in rats. J Pharmacol Sci 2019; 139:174-179. [DOI: 10.1016/j.jphs.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022] Open
|
17
|
N-Methyl D-aspartate receptor subunit signaling in fear extinction. Psychopharmacology (Berl) 2019; 236:239-250. [PMID: 30238131 PMCID: PMC6374191 DOI: 10.1007/s00213-018-5022-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/03/2018] [Indexed: 01/13/2023]
Abstract
N-Methyl D-aspartate receptors (NMDAR) are central mediators of glutamate actions underlying learning and memory processes including those required for extinction of fear and fear-related behaviors. Consistent with this view, in animal models, antagonists of NMDAR typically impair fear extinction, whereas partial agonists have facilitating effects. Promoting NMDAR function has thus been recognized as a promising strategy towards reduction of fear symptoms in patients suffering from anxiety disorders and post-traumatic disorder (PTSD). Nevertheless, application of these drugs in clinical trials has proved of limited utility. Here we summarize recent advances in our knowledge of NMDAR pharmacology relevant for fear extinction, focusing on molecular, cellular, and circuit aspects of NMDAR function as they relate to fear extinction at the level of behavior and cognition. We also discuss how these advances from animal models might help to understand and overcome the limitations of existing approaches in human anxiety disorders and how novel, more specific, and personalized approaches might help advance future therapeutic strategies.
Collapse
|
18
|
Sevenster D, Visser RM, D'Hooge R. A translational perspective on neural circuits of fear extinction: Current promises and challenges. Neurobiol Learn Mem 2018; 155:113-126. [PMID: 29981423 PMCID: PMC6805216 DOI: 10.1016/j.nlm.2018.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Fear extinction is the well-known process of fear reduction through repeated re-exposure to a feared stimulus without the aversive outcome. The last two decades have witnessed a surge of interest in extinction learning. First, extinction learning is observed across species, and especially research on rodents has made great strides in characterising the physical substrate underlying extinction learning. Second, extinction learning is considered of great clinical significance since it constitutes a crucial component of exposure treatment. While effective in reducing fear responding in the short term, extinction learning can lose its grip, resulting in a return of fear (i.e., laboratory model for relapse of anxiety symptoms in patients). Optimization of extinction learning is, therefore, the subject of intense investigation. It is thought that the success of extinction learning is, at least partly, determined by the mismatch between what is expected and what actually happens (prediction error). However, while much of our knowledge about the neural circuitry of extinction learning and factors that contribute to successful extinction learning comes from animal models, translating these findings to humans has been challenging for a number of reasons. Here, we present an overview of what is known about the animal circuitry underlying extinction of fear, and the role of prediction error. In addition, we conducted a systematic literature search to evaluate the degree to which state-of-the-art neuroimaging methods have contributed to translating these findings to humans. Results show substantial overlap between networks in animals and humans at a macroscale, but current imaging techniques preclude comparisons at a smaller scale, especially in sub-cortical areas that are functionally heterogeneous. Moreover, human neuroimaging shows the involvement of numerous areas that are not typically studied in animals. Results obtained in research aimed to map the extinction circuit are largely dependent on the methods employed, not only across species, but also across human neuroimaging studies. Directions for future research are discussed.
Collapse
Affiliation(s)
- Dieuwke Sevenster
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Tiensestraat 102, B-3000 Leuven, Belgium; Clinical Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands.
| | - Renée M Visser
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Tiensestraat 102, B-3000 Leuven, Belgium
| |
Collapse
|
19
|
More J, Casas MM, Sánchez G, Hidalgo C, Haeger P. Contextual Fear Memory Formation and Destabilization Induce Hippocampal RyR2 Calcium Channel Upregulation. Neural Plast 2018; 2018:5056181. [PMID: 30123252 PMCID: PMC6079367 DOI: 10.1155/2018/5056181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 06/03/2018] [Indexed: 12/17/2022] Open
Abstract
Hippocampus-dependent spatial and aversive memory processes entail Ca2+ signals generated by ryanodine receptor (RyR) Ca2+ channels residing in the endoplasmic reticulum membrane. Rodents exposed to different spatial memory tasks exhibit significant hippocampal RyR upregulation. Contextual fear conditioning generates robust hippocampal memories through an associative learning process, but the effects of contextual fear memory acquisition, consolidation, or extinction on hippocampal RyR protein levels remain unreported. Accordingly, here we investigated if exposure of male rats to contextual fear protocols, or subsequent exposure to memory destabilization protocols, modified the hippocampal content of type-2 RyR (RyR2) channels, the predominant hippocampal RyR isoforms that hold key roles in synaptic plasticity and spatial memory processes. We found that contextual memory retention caused a transient increase in hippocampal RyR2 protein levels, determined 5 h after exposure to the conditioning protocol; this increase vanished 29 h after training. Context reexposure 24 h after training, for 3, 15, or 30 min without the aversive stimulus, decreased fear memory and increased RyR2 protein levels, determined 5 h after reexposure. We propose that both fear consolidation and extinction memories induce RyR2 protein upregulation in order to generate the intracellular Ca2+ signals required for these distinct memory processes.
Collapse
Affiliation(s)
- Jamileth More
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Mercedes Casas
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Exercise, Metabolism and Cancer, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neurosciences and Physiology and Biophysics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paola Haeger
- Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
20
|
Absence of fear renewal and functional connections between prefrontal cortex and hippocampus in infant mice. Neurobiol Learn Mem 2018; 152:1-9. [DOI: 10.1016/j.nlm.2018.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/31/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022]
|
21
|
Greenwald JD, Shafritz KM. An Integrative Neuroscience Framework for the Treatment of Chronic Pain: From Cellular Alterations to Behavior. Front Integr Neurosci 2018; 12:18. [PMID: 29875641 PMCID: PMC5974053 DOI: 10.3389/fnint.2018.00018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic pain can result from many pain syndromes including complex regional pain syndrome (CRPS), phantom limb pain and chronic low back pain, among others. On a molecular level, chronic pain syndromes arise from hypersensitization within the dorsal horn of the spinal cord, a process known as central sensitization. Central sensitization involves an upregulation of ionotropic and metabotropic glutamate receptors (mGluRs) similar to that of long-term potentiation (LTP). Regions of the brain in which LTP occurs, such as the amygdala and hippocampus, are implicated in fear- and memory-related brain circuity. Chronic pain dramatically influences patient quality of life. Individuals with chronic pain may develop pain-related anxiety and pain-related fear. The syndrome also alters functional connectivity in the default-mode network (DMN) and salience network. On a cellular/molecular level, central sensitization may be reversed through degradative glutamate receptor pathways. This, however, rarely happens. Instead, cortical brain regions may serve in a top-down regulatory capacity for the maintenance or alleviation of pain. Specifically, the medial prefrontal cortex (mPFC), which plays a critical role in fear-related brain circuits, the DMN, and salience network may be the driving forces in this process. On a cellular level, the mPFC may form new neural circuits through LTP that may cause extinction of pre-existing pain pathways found within fear-related brain circuits, the DMN, and salience network. In order to promote new LTP connections between the mPFC and other key brain structures, such as the amygdala and insula, we propose a holistic rehabilitation program including cognitive behavioral therapy (CBT) and revolving around: (1) cognitive reappraisals; (2) mindfulness meditation; and (3) functional rehabilitation. Unlike current medical interventions focusing upon pain-relieving medications, we do not believe that chronic pain treatment should focus on reversing the effects of central sensitization. Instead, we propose here that it is critical to focus on non-invasive efforts to promote new neural circuits originating from the mPFC.
Collapse
Affiliation(s)
- Jess D. Greenwald
- Department of Psychology, Hofstra University, Hempstead, NY, United States
| | - Keith M. Shafritz
- Department of Psychology, Hofstra University, Hempstead, NY, United States
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
22
|
Abstract
Ketamine, principally an antagonist of N-methyl-ᴅ-aspartate receptors, induces schizophrenia-like symptoms in adult humans, warranting its use in the investigation of psychosis-related phenotypes in animal models. Genomic studies further implicate N-methyl-ᴅ-aspartate receptor-mediated processes in schizophrenia pathology, together with more broadly-defined synaptic plasticity and associative learning processes. Strong pathophysiological links have been demonstrated between fear learning and psychiatric disorders such as schizophrenia. To further investigate the impact of ketamine on associative fear learning, we studied the effects of pre- and post-training ketamine on the consolidation and extinction of contextual fear memory in rats. Administration of 25 mg/kg ketamine prior to fear conditioning did not affect consolidation when potentially confounding effects of state dependency were controlled for. Pre-training ketamine (25 mg/kg) impaired the extinction of the conditioned fear response, which was mirrored with the use of a lower dose (8 mg/kg). Post-training ketamine (25 mg/kg) had no effect on the consolidation or extinction of conditioned fear. These observations implicate processes relating to the extinction of contextual fear memory in the manifestation of ketamine-induced phenotypes, and are consistent with existing hypotheses surrounding abnormal associative learning in schizophrenia.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
23
|
Tabassum S, Haider S. Extensive but not Limited Repeated Trials in Passive Avoidance Task Induce Stress-like Symptoms and Affect Memory Function in Rats. Neuroscience 2018; 371:495-505. [DOI: 10.1016/j.neuroscience.2017.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
|
24
|
Agís-Balboa RC, Pinheiro PS, Rebola N, Kerimoglu C, Benito E, Gertig M, Bahari-Javan S, Jain G, Burkhardt S, Delalle I, Jatzko A, Dettenhofer M, Zunszain PA, Schmitt A, Falkai P, Pape JC, Binder EB, Mulle C, Fischer A, Sananbenesi F. Formin 2 links neuropsychiatric phenotypes at young age to an increased risk for dementia. EMBO J 2017; 36:2815-2828. [PMID: 28768717 PMCID: PMC5623844 DOI: 10.15252/embj.201796821] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Age-associated memory decline is due to variable combinations of genetic and environmental risk factors. How these risk factors interact to drive disease onset is currently unknown. Here we begin to elucidate the mechanisms by which post-traumatic stress disorder (PTSD) at a young age contributes to an increased risk to develop dementia at old age. We show that the actin nucleator Formin 2 (Fmn2) is deregulated in PTSD and in Alzheimer's disease (AD) patients. Young mice lacking the Fmn2 gene exhibit PTSD-like phenotypes and corresponding impairments of synaptic plasticity, while the consolidation of new memories is unaffected. However, Fmn2 mutant mice develop accelerated age-associated memory decline that is further increased in the presence of additional risk factors and is mechanistically linked to a loss of transcriptional homeostasis. In conclusion, our data present a new approach to explore the connection between AD risk factors across life span and provide mechanistic insight to the processes by which neuropsychiatric diseases at a young age affect the risk for developing dementia.
Collapse
Affiliation(s)
- Roberto Carlos Agís-Balboa
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Paulo S Pinheiro
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nelson Rebola
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
| | - Cemil Kerimoglu
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Benito
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Michael Gertig
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Sanaz Bahari-Javan
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alexander Jatzko
- Department of Psychosomatics, Westpfalzklinikum-Kaiserslautern, Teaching Hospital, University of Mainz, Mainz, Germany
| | - Markus Dettenhofer
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Patricia A Zunszain
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
| | - Julius C Pape
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Research Group for Genome Dynamics in Brain Diseases, Göttingen, Germany
| |
Collapse
|
25
|
Bhakta A, Gavini K, Yang E, Lyman-Henley L, Parameshwaran K. Chronic traumatic stress impairs memory in mice: Potential roles of acetylcholine, neuroinflammation and corticotropin releasing factor expression in the hippocampus. Behav Brain Res 2017; 335:32-40. [DOI: 10.1016/j.bbr.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022]
|
26
|
Kincheski GC, Valentim IS, Clarke JR, Cozachenco D, Castelo-Branco MTL, Ramos-Lobo AM, Rumjanek VMBD, Donato J, De Felice FG, Ferreira ST. Chronic sleep restriction promotes brain inflammation and synapse loss, and potentiates memory impairment induced by amyloid-β oligomers in mice. Brain Behav Immun 2017; 64:140-151. [PMID: 28412140 DOI: 10.1016/j.bbi.2017.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
It is increasingly recognized that sleep disturbances and Alzheimer's disease (AD) share a bidirectional relationship. AD patients exhibit sleep problems and alterations in the regulation of circadian rhythms; conversely, poor quality of sleep increases the risk of development of AD. The aim of the current study was to determine whether chronic sleep restriction potentiates the brain impact of amyloid-β oligomers (AβOs), toxins that build up in AD brains and are thought to underlie synapse damage and memory impairment. We further investigated whether alterations in levels of pro-inflammatory mediators could play a role in memory impairment in sleep-restricted mice. We found that a single intracerebroventricular (i.c.v.) infusion of AβOs disturbed sleep pattern in mice. Conversely, chronically sleep-restricted mice exhibited higher brain expression of pro-inflammatory mediators, reductions in levels of pre- and post-synaptic marker proteins, and exhibited increased susceptibility to the impact of i.c.v. infusion of a sub-toxic dose of AβOs (1pmol) on performance in the novel object recognition memory task. Sleep-restricted mice further exhibited an increase in brain TNF-α levels in response to AβOs. Interestingly, memory impairment in sleep-restricted AβO-infused mice was prevented by treatment with the TNF-α neutralizing monoclonal antibody, infliximab. Results substantiate the notion of a dual relationship between sleep and AD, whereby AβOs disrupt sleep/wake patterns and chronic sleep restriction increases brain vulnerability to AβOs, and point to a key role of brain inflammation in increased susceptibility to AβOs in sleep-restricted mice.
Collapse
Affiliation(s)
- Grasielle C Kincheski
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Isabela S Valentim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vivian M B D Rumjanek
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Kinoshita KI, Muroi Y, Unno T, Ishii T. Rolipram improves facilitation of contextual fear extinction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. J Pharmacol Sci 2017; 134:55-58. [PMID: 28456375 DOI: 10.1016/j.jphs.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/05/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022] Open
Abstract
Cognitive impairment often occurs in Parkinson's disease (PD), but the mechanism of onset remains unknown. Recently, we reported that PD model mice produced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) show facilitation of hippocampal memory extinction, which may be the cause of cognitive impairment in PD. When we examined the cAMP/CREB signaling in the hippocampus, decreased levels of cAMP and phosphorylated CREB were observed in the dentate gyrus (DG) of MPTP-treated mice. Administration of rolipram improved the memory deficits with concomitant recovery of cAMP and phosphorylated CREB levels, suggesting that reduced cAMP/CREB signaling in the DG leads to cognitive impairment in MPTP-treated mice.
Collapse
Affiliation(s)
- Ken-Ichi Kinoshita
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshikage Muroi
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Toshihiro Unno
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Laboratory of Pharmacology, Faculty of Applied Biological Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshiaki Ishii
- Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
28
|
Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear. Neurobiol Learn Mem 2017; 138:252-270. [DOI: 10.1016/j.nlm.2016.10.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
|
29
|
Keiser AA, Turnbull LM, Darian MA, Feldman DE, Song I, Tronson NC. Sex Differences in Context Fear Generalization and Recruitment of Hippocampus and Amygdala during Retrieval. Neuropsychopharmacology 2017; 42:397-407. [PMID: 27577601 PMCID: PMC5399239 DOI: 10.1038/npp.2016.174] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/21/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are commonly associated with increased generalization of fear from a stress- or trauma-associated environment to a neutral context or environment. Differences in context-associated memory in males and females may contribute to increased susceptibility to anxiety disorders in women. Here we examined sex differences in context fear generalization and its neural correlates. We observed stronger context fear conditioning and more generalization of fear to a similar context in females than males. In addition, context preexposure increased fear conditioning in males and decreased generalization in females. Accordingly, males showed stronger cFos activity in dorsal hippocampus during memory retrieval and context generalization, whereas females showed preferential recruitment of basal amygdala. Together, these findings are consistent with previous research showing that hippocampal activity correlates with reduced context fear generalization. Differential competition between hippocampus and amygdala-dependent processes may thus contribute to sex differences in retrieval of context fear and greater generalization of fear-associated memory.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Lacie M Turnbull
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Mara A Darian
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Dana E Feldman
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Iris Song
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA,Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA, Tel: +1 734 936 1495, E-mail:
| |
Collapse
|
30
|
Zhang Y, Smolen P, Alberini CM, Baxter DA, Byrne JH. Computational model of a positive BDNF feedback loop in hippocampal neurons following inhibitory avoidance training. ACTA ACUST UNITED AC 2016; 23:714-722. [PMID: 27918277 PMCID: PMC5110990 DOI: 10.1101/lm.042044.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/23/2016] [Indexed: 12/16/2022]
Abstract
Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins with an IA-induced release of brain-derived neurotrophic factor (BDNF), which in turn leads to rapid phosphorylation of the cAMP response element-binding protein (pCREB), and a subsequent increase in the level of the β isoform of the CCAAT/enhancer binding protein (C/EBPβ). Increased levels of C/EBPβ lead to increased bdnf expression. Simulations predicted that an empirically observed delay in the BDNF-pCREB-C/EBPβ feedback loop has a profound effect on the dynamics of consolidation. The model also predicted that at least two independent self-sustaining signaling pathways downstream from the BDNF-pCREB-C/EBPβ feedback loop contribute to consolidation. Currently, the nature of these downstream pathways is unknown.
Collapse
Affiliation(s)
- Yili Zhang
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas 77030, USA
| | - Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas 77030, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas 77030, USA
| |
Collapse
|
31
|
Schneider BL, Ghoddoussi F, Charlton JL, Kohler RJ, Galloway MP, Perrine SA, Conti AC. Increased Cortical Gamma-Aminobutyric Acid Precedes Incomplete Extinction of Conditioned Fear and Increased Hippocampal Excitatory Tone in a Mouse Model of Mild Traumatic Brain Injury. J Neurotrauma 2016; 33:1614-24. [DOI: 10.1089/neu.2015.4190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brandy L. Schneider
- Research and Development Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, Michigan
- Magnetic Resonance Core (MRC), Wayne State University School of Medicine, Detroit, Michigan
| | - Jennifer L. Charlton
- Research and Development Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert J. Kohler
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Matthew P. Galloway
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Alana C. Conti
- Research and Development Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
32
|
Diehl F, Ramos PB, Dos Santos JM, Barros DM, Yunes JS. Behavioral alterations induced by repeated saxitoxin exposure in drinking water. J Venom Anim Toxins Incl Trop Dis 2016; 22:18. [PMID: 27190499 PMCID: PMC4869272 DOI: 10.1186/s40409-016-0072-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/09/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Blooms of the saxitoxin-producing cyanobacterium Cylindrospermopsis raciborskii have been contaminating drinking water reservoirs in Brazil for many years. Although acute effects of saxitoxin intoxication are well known, chronic deleterious outcomes caused by repeated saxitoxin exposure still require further investigation. The aim of the present work is to investigate the effects of consumption of drinking water contaminated with C. raciborskii for 30 days on learning and memory processes in rats. METHODS The effects of saxitoxin (3 or 9 μg/L STX equivalents) or cyanobacteria on behavior was determined using the open field habituation task, elevated plus maze anxiety model task, inhibitory avoidance task, and referential Morris water maze task. RESULTS No effects of saxitoxin consumption was observed on anxiety and motor exploratory parameters in the elevated plus maze and open field habituation tasks, respectively. However, groups treated with 9 μg/L STX equivalents displayed a decreased memory performance in the inhibitory avoidance and Morris water maze tasks. CONCLUSIONS These results suggest an amnesic effect of saxitoxin on aversive and spatial memories.
Collapse
Affiliation(s)
- Felipe Diehl
- Postgraduate Program in Physical, Chemical and Geological Oceanography, Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil ; Institute of Oceanography, Federal University of Rio Grande (FURG), Caixa Postal 474, Rio Grande, RS CEP 96203-900 Brazil
| | - Patricia Baptista Ramos
- Postgraduate Program in Physical, Chemical and Geological Oceanography, Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil
| | - Juliane Marques Dos Santos
- Postgraduate Program in Physical, Chemical and Geological Oceanography, Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil
| | - Daniela Martí Barros
- Postgraduate Program in Compared Animal Physiology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil
| | - João Sarkis Yunes
- Postgraduate Program in Physical, Chemical and Geological Oceanography, Institute of Oceanography, Federal University of Rio Grande (FURG), Rio Grande, RS Brazil
| |
Collapse
|
33
|
Abstract
The extinction of learned fear is a hippocampus-dependent process thought to embody new learning rather than erasure of the original fear memory, although it is unknown how these competing contextual memories are represented in the hippocampus. We previously demonstrated that contextual fear conditioning results in hippocampal place cell remapping and long-term stabilization of novel representations. Here we report that extinction learning also induces place cell remapping in C57BL/6 mice. Specifically, we observed cells that preferentially remapped during different stages of learning. While some cells remapped in both fear conditioning and extinction, others responded predominantly during extinction, which may serve to modify previous representations as well as encode new safe associations. Additionally, we found cells that remapped primarily during fear conditioning, which could facilitate reacquisition of the original fear association. Moreover, we also observed cells that were stable throughout learning, which may serve to encode the static aspects of the environment. The short-term remapping observed during extinction was not found in animals that did not undergo fear conditioning, or when extinction was conducted outside of the conditioning context. Finally, conditioning and extinction produced an increase in spike phase locking to the theta and gamma frequencies. However, the degree of remapping seen during conditioning and extinction only correlated with gamma synchronization. Our results suggest that the extinction learning is a complex process that involves both modification of pre-existing memories and formation of new ones, and these traces coexist within the same hippocampal representation.
Collapse
|
34
|
Byeon JH, Kim GH, Kim JY, Sun W, Kim H, Eun BL. Cognitive Dysfunction and Hippocampal Damage Induced by Hypoxic-Ischemic Brain Injury and Prolonged Febrile Convulsions in Immature Rats. J Korean Neurosurg Soc 2015; 58:22-9. [PMID: 26279809 PMCID: PMC4534735 DOI: 10.3340/jkns.2015.58.1.22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/02/2022] Open
Abstract
Objective Perinatal hypoxic-ischemic encephalopathy (HIE) and prolonged febrile seizures (pFS) are common neurologic problems that occur during childhood. However, there is insufficient evidence from experimental studies to conclude that pFS directly induces hippocampal injury. We studied cognitive function and histological changes in a rat model and investigated which among pFS, HIE, or a dual pathologic effect is most detrimental to the health of children. Methods A rat model of HIE at postnatal day (PD) 7 and a pFS model at PD10 were used. Behavioral and cognitive functions were investigated by means of weekly open field tests from postnatal week (PW) 3 to PW7, and by daily testing with the Morris water maze test at PW8. Pathological changes in the hippocampus were observed in the control, pFS, HIE, and HIE+pFS groups at PW9. Results The HIE priming group showed a seizure-prone state. The Morris water maze test revealed a decline in cognitive function in the HIE and HIE+pFS groups compared with the pFS and control groups. Additionally, the HIE and HIE+pFS groups showed significant hippocampal neuronal damage, astrogliosis, and volume loss, after maturation. The pFS alone induced minimal hippocampal neuronal damage without astrogliosis or volume loss. Conclusion Our findings suggest that pFS alone causes no considerable memory or behavioral impairment, or cellular change. In contrast, HIE results in lasting memory impairment and neuronal damage, gliosis, and tissue loss. These findings may contribute to the understanding of the developing brain concerning conditions caused by HIE or pFS.
Collapse
Affiliation(s)
- Jung Hye Byeon
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Gun-Ha Kim
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Joo Yeon Kim
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Baik-Lin Eun
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Ménard C, Gaudreau P, Quirion R. Signaling pathways relevant to cognition-enhancing drug targets. Handb Exp Pharmacol 2015; 228:59-98. [PMID: 25977080 DOI: 10.1007/978-3-319-16522-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.
Collapse
Affiliation(s)
- Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Perry Pavilion, 6875 LaSalle Boulevard, Montreal, QC, Canada, H4H 1R3
| | | | | |
Collapse
|
36
|
McDermott CM, Liu D, Ade C, Schrader LA. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice. Neurobiol Learn Mem 2014; 118:167-77. [PMID: 25555360 DOI: 10.1016/j.nlm.2014.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders.
Collapse
Affiliation(s)
- Carmel M McDermott
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Dan Liu
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Catherine Ade
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States
| | - Laura A Schrader
- Dept. of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, United States; Neuroscience Program, Tulane University, New Orleans, LA 70118, United States.
| |
Collapse
|
37
|
Fan C, Zhang M, Shang L, Cynthia NA, Li Z, Yang Z, Chen D, Huang J, Xiong K. Short-term environmental enrichment exposure induces proliferation and maturation of doublecortin-positive cells in the prefrontal cortex. Neural Regen Res 2014; 9:318-28. [PMID: 25206818 PMCID: PMC4146142 DOI: 10.4103/1673-5374.128231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2013] [Indexed: 11/04/2022] Open
Abstract
Previous studies have demonstrated that doublecortin-positive immature neurons exist predominantly in the superficial layer of the cerebral cortex of adult mammals such as guinea pigs, and these neurons exhibit very weak properties of self-proliferation during adulthood under physiological conditions. To verify whether environmental enrichment has an impact on the proliferation and maturation of these immature neurons in the prefrontal cortex of adult guinea pigs, healthy adult guinea pigs were subjected to short-term environmental enrichment. Animals were allowed to play with various cognitive and physical stimulating objects over a period of 2 weeks, twice per day, for 60 minutes each. Immunofluorescence staining results indicated that the number of doublecortin-positive cells in layer II of the prefrontal cortex was significantly increased after short-term environmental enrichment exposure. In addition, these doublecortin-positive cells co-expressed 5-bromo-2-deoxyuridine (a marker of cell proliferation), c-Fos (a marker of cell viability) and NeuN (a marker of mature neurons). Experimental findings showed that short-term environmental enrichment can induce proliferation, activation and maturation of doublecortin-positive cells in layer II of the prefrontal cortex of adult guinea pigs.
Collapse
Affiliation(s)
- Chunling Fan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| | - Mengqi Zhang
- Grade 2006, Eight-year Medicine Doctor Program, Central South University Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Lei Shang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| | - Ngobe Akume Cynthia
- Grade 2011, Six-year Medicine Program of International Student, Central South University Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Zhi Li
- Grade 2008, Eight-year Medicine Doctor Program, Central South University Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Zhenyu Yang
- Grade 2008, Eight-year Medicine Doctor Program, Central South University Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan Province, China
| |
Collapse
|
38
|
Tsai LH, Gräff J. On the resilience of remote traumatic memories against exposure therapy-mediated attenuation. EMBO Rep 2014; 15:853-61. [PMID: 25027989 DOI: 10.15252/embr.201438913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How to attenuate traumatic memories has long been the focus of intensive research efforts, as traumatic memories are extremely persistent and heavily impinge on the quality of life. Despite the fact that traumatic memories are often not readily amenable to immediate intervention, surprisingly few studies have investigated treatment options for remote traumata in animal models. The few that have unanimously concluded that exposure therapy-based approaches, the most successful behavioral intervention for the attenuation of recent forms of traumata in humans, fail to effectively reduce remote fear memories. Here, we provide an overview of these animal studies with an emphasis on why remote traumatic memories might be refractory to behavioral interventions: A lack of neuroplasticity in brain areas relevant for learning and memory emerges as a common denominator of such resilience. We then outline the findings of a recent study in mice showing that by combining exposure therapy-like approaches with small molecule inhibitors of histone deacetylases (HDACis), even remote memories can be persistently attenuated. This pharmacological intervention reinstated neuroplasticity to levels comparable to those found upon successful attenuation of recent memories. Thus, HDACis-or any other agent capable of heightening neuroplasticity-in conjunction with exposure therapy-based treatments might constitute a promising approach to overcome remote traumata.
Collapse
Affiliation(s)
- Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Gräff
- Brain Mind Institute, School of Life Sciences Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
39
|
Colavito V, Fabene PF, Grassi-Zucconi G, Pifferi F, Lamberty Y, Bentivoglio M, Bertini G. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci 2013; 7:106. [PMID: 24379759 PMCID: PMC3861693 DOI: 10.3389/fnsys.2013.00106] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/19/2022] Open
Abstract
Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. Studies that have accurately described methodological aspects of the SD protocol are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation in order to propose SD protocols that could be employed as cognitive challenge. Thus, a platform of knowledge is provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer's disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed.
Collapse
Affiliation(s)
- Valeria Colavito
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | - Paolo F Fabene
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | | | - Fabien Pifferi
- Mécanismes Adaptatifs et Evolution, UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle Brunoy, France
| | - Yves Lamberty
- Neuroscience Therapeutic Area, UCB Pharma s.a. Braine l'Alleud, Belgium
| | - Marina Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| | - Giuseppe Bertini
- Department of Neurological and Movement Sciences, University of Verona Verona, Italy
| |
Collapse
|
40
|
Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol Psychiatry 2013; 18:1077-89. [PMID: 23711981 PMCID: PMC4163749 DOI: 10.1038/mp.2013.71] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/08/2013] [Accepted: 04/19/2013] [Indexed: 12/30/2022]
Abstract
Autism spectrum disorders (ASDs) have been suggested to arise from abnormalities in the canonical and non-canonical Wnt signaling pathways. However, a direct connection between a human variant in a Wnt pathway gene and ASD-relevant brain pathology has not been established. Prickle2 (Pk2) is a post-synaptic non-canonical Wnt signaling protein shown to interact with post-synaptic density 95 (PSD-95). Here, we show that mice with disruption in Prickle2 display behavioral abnormalities including altered social interaction, learning abnormalities and behavioral inflexibility. Prickle2 disruption in mouse hippocampal neurons led to reductions in dendrite branching, synapse number and PSD size. Consistent with these findings, Prickle2 null neurons show decreased frequency and size of spontaneous miniature synaptic currents. These behavioral and physiological abnormalities in Prickle2 disrupted mice are consistent with ASD-like phenotypes present in other mouse models of ASDs. In 384 individuals with autism, we identified two with distinct, heterozygous, rare, non-synonymous PRICKLE2 variants (p.E8Q and p.V153I) that were shared by their affected siblings and inherited paternally. Unlike wild-type PRICKLE2, the PRICKLE2 variants found in ASD patients exhibit deficits in morphological and electrophysiological assays. These data suggest that these PRICKLE2 variants cause a critical loss of PRICKLE2 function. The data presented here provide new insight into the biological roles of Prickle2, its behavioral importance, and suggest disruptions in non-canonical Wnt genes such as PRICKLE2 may contribute to synaptic abnormalities underlying ASDs.
Collapse
|
41
|
Cestari V, Rossi-Arnaud C, Saraulli D, Costanzi M. The MAP(K) of fear: from memory consolidation to memory extinction. Brain Res Bull 2013; 105:8-16. [PMID: 24080449 DOI: 10.1016/j.brainresbull.2013.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 11/25/2022]
Abstract
The highly conserved mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascade is involved in several intracellular processes ranging from cell differentiation to proliferation, as well as in synaptic plasticity. In the last two decades, the role of MAPK/ERK in long-term memory formation in mammals, particularly in fear-related memories, has been extensively investigated. In this review we describe knowledge advancement on the role of MAPK/ERK in orchestrating the intracellular processes that lead to the consolidation, reconsolidation and extinction of fear memories. In doing so, we report studies in which the specific role of MAP/ERK in switching from memory formation to memory erasure has been suggested. The possibility to target MAPK/ERK in developing and/or refining pharmacological approaches to treat psychiatric disorders in which fear regulation is defective has also been envisaged.
Collapse
Affiliation(s)
- Vincenzo Cestari
- Institute of Cellular Biology and Neurobiology, National Research Council and Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy.
| | - Clelia Rossi-Arnaud
- Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Daniele Saraulli
- Institute of Cellular Biology and Neurobiology, National Research Council and Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Marco Costanzi
- Institute of Cellular Biology and Neurobiology, National Research Council and Fondazione Santa Lucia, via del Fosso di Fiorano 64, 00143 Rome, Italy; Department of Human Sciences, LUMSA University, p.zza delle Vaschette 101, 00193 Rome, Italy
| |
Collapse
|
42
|
Leaderbrand K, Corcoran KA, Radulovic J. Co-activation of NR2A and NR2B subunits induces resistance to fear extinction. Neurobiol Learn Mem 2013; 113:35-40. [PMID: 24055686 DOI: 10.1016/j.nlm.2013.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/28/2013] [Accepted: 09/06/2013] [Indexed: 12/19/2022]
Abstract
Unpredictable stress is known to profoundly enhance susceptibility to fear and anxiety while reducing the ability to extinguish fear when threat is no longer present. Accordingly, partial aversive reinforcement, via random exposure to footshocks, induces fear that is resistant to extinction. Here we sought to determine the hippocampal mechanisms underlying susceptibility versus resistance to context fear extinction as a result of continuous (CR) and partial (PR) reinforcement, respectively. We focused on N-methyl-D-aspartate receptor (NMDAR) subunits 2A and B (NR2A and NR2B) as well as their downstream signaling effector, extracellular signal-regulated kinase (ERK), based on their critical role in the acquisition and extinction of fear. Pharmacological inactivation of NR2A, but not NR2B, blocked extinction after CR, whereas inactivation of NR2A, NR2B, or both subunits facilitated extinction after PR. The latter finding suggests that co-activation of NR2A and NR2B contributes to persistent fear following PR. In contrast to CR, PR increased membrane levels of ERK and NR2 subunits after the conditioning and extinction sessions, respectively. In parallel, nuclear activation of ERK was significantly reduced after the extinction session. Thus, co-activation and increased surface expression of NR2A and NR2B, possibly mediated by ERK, may cause persistent fear. These findings suggest that patients with post-traumatic stress disorder (PTSD) may benefit from antagonism of specific NR2 subunits.
Collapse
Affiliation(s)
- Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, Northwestern University, 303 E Chicago Ave Ward 9-217, Chicago, IL, USA.
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, Northwestern University, 303 E Chicago Ave Ward 9-217, Chicago, IL, USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, 303 E Chicago Ave Ward 9-217, Chicago, IL, USA
| |
Collapse
|
43
|
Rudenko A, Dawlaty MM, Seo J, Cheng AW, Meng J, Le T, Faull KF, Jaenisch R, Tsai LH. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 2013; 79:1109-1122. [PMID: 24050401 PMCID: PMC4543319 DOI: 10.1016/j.neuron.2013.08.003] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2013] [Indexed: 12/22/2022]
Abstract
The ten-eleven translocation (Tet) family of methylcytosine dioxygenases catalyze oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and promote DNA demethylation. Despite the abundance of 5hmC and Tet proteins in the brain, little is known about the functions of the neuronal Tet enzymes. Here, we analyzed Tet1 knockout mice (Tet1KO) and found downregulation of multiple neuronal activity-regulated genes, including Npas4, c-Fos, and Arc. Furthermore, Tet1KO animals exhibited abnormal hippocampal long-term depression and impaired memory extinction. Analysis of the key regulatory gene, Npas4, indicated that its promoter region, containing multiple CpG dinucleotides, is hypermethylated in both naive Tet1KO mice and after extinction training. Such hypermethylation may account for the diminished expression of Npas4 itself and its downstream targets, impairing transcriptional programs underlying cognitive processes. In summary, we show that neuronal Tet1 regulates normal DNA methylation levels, expression of activity-regulated genes, synaptic plasticity, and memory extinction.
Collapse
Affiliation(s)
- Andrii Rudenko
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Howard Hughes Medical Institute, Cambridge, MA
| | | | - Jinsoo Seo
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Howard Hughes Medical Institute, Cambridge, MA
| | - Albert W. Cheng
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Computational and Systems Biology Program, Cambridge, MA 02142, USA
| | - Jia Meng
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA, 02139
| | - Thuc Le
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
- Howard Hughes Medical Institute, Cambridge, MA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA
| |
Collapse
|
44
|
Extinguishing trace fear engages the retrosplenial cortex rather than the amygdala. Neurobiol Learn Mem 2013; 113:41-54. [PMID: 24055593 DOI: 10.1016/j.nlm.2013.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/28/2013] [Accepted: 09/10/2013] [Indexed: 12/26/2022]
Abstract
Extinction learning underlies the treatment for a variety of anxiety disorders. Most of what is known about the neurobiology of extinction is based on standard "delay" fear conditioning, in which awareness is not required for learning. Little is known about how complex, explicit associations extinguish, however. "Trace" conditioning is considered to be a rodent model of explicit fear because it relies on both the cortex and hippocampus and requires explicit contingency awareness in humans. Here, we explore the neural circuit supporting trace fear extinction in order to better understand how complex memories extinguish. We first show that the amygdala is selectively involved in delay fear extinction; blocking intra-amygdala glutamate receptors disrupted delay, but not trace extinction. Further, ERK phosphorylation was increased in the amygdala after delay, but not trace extinction. We then identify the retrosplenial cortex (RSC) as a key structure supporting trace extinction. ERK phosphorylation was selectively increased in the RSC following trace extinction and blocking intra-RSC NMDA receptors impaired trace, but not delay extinction. These findings indicate that delay and trace extinction require different neural circuits; delay extinction requires plasticity in the amygdala whereas trace extinction requires the RSC. Anxiety disorders linked to explicit memory may therefore depend on cortical processes that have not been traditionally targeted by extinction studies based on delay fear.
Collapse
|
45
|
Tano MC, Molina VA, Pedreira ME. The involvement of the GABAergic system in the formation and expression of the extinction memory in the crab Neohelice granulata. Eur J Neurosci 2013; 38:3302-13. [PMID: 23914974 DOI: 10.1111/ejn.12328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 11/28/2022]
Abstract
There is growing interest in the neurobiological mechanisms involved in the extinction of aversive memory. This cognitive process usually occurs after repeated or prolonged presentation of a conditioned stimulus that was previously associated with an unconditioned stimulus. If extinction is considered to be a new memory, the role of the γ-aminobutyric acid system (GABAergic system) during extinction memory consolidation should be similar to that described for the original trace. It is also accepted that negative modulation of the GABAergic system before testing can impair extinction memory expression. However, it seems possible to speculate that inhibitory mechanisms may be required in order to acquire a memory that is inhibitory in nature. Using a combination of behavioral protocols, such as weak and robust extinction training procedures, and pharmacological treatments, such as the systemic administration of GABAA agonist (muscimol) and antagonist (bicuculline), we investigated the role of the GABAergic system in the different phases of the extinction memory in the crab Neohelice granulata. We show that the stimulation of the GABAergic system impairs and its inactivation facilitates the extinction memory consolidation. Moreover, fine variations in the GABAergic tone affect its expression at testing. Finally, an active GABAergic system is necessary for the acquisition of the extinction memory. This detailed description may contribute to the understanding of the role of the GABAergic system in diverse aspects of the extinction memory.
Collapse
Affiliation(s)
- Martin Carbó Tano
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Argentina
| | | | | |
Collapse
|
46
|
Malvaez M, McQuown SC, Rogge GA, Astarabadi M, Jacques V, Carreiro S, Rusche JR, Wood MA. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A 2013; 110:2647-52. [PMID: 23297220 PMCID: PMC3574934 DOI: 10.1073/pnas.1213364110] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nonspecific histone deacetylase (HDAC) inhibition has been shown to facilitate the extinction of drug-seeking behavior in a manner resistant to reinstatement. A key open question is which specific HDAC is involved in the extinction of drug-seeking behavior. Using the selective HDAC3 inhibitor RGFP966, we investigated the role of HDAC3 in extinction and found that systemic treatment with RGFP966 facilitates extinction in mice in a manner resistant to reinstatement. We also investigated whether the facilitated extinction is related to the enhancement of extinction consolidation during extinction learning or to negative effects on performance or reconsolidation. These are key distinctions with regard to any compound being used to modulate extinction, because a more rapid decrease in a defined behavior is interpreted as facilitated extinction. Using an innovative combination of behavioral paradigms, we found that a single treatment of RGFP966 enhances extinction of a previously established cocaine-conditioned place preference, while simultaneously enhancing long-term object-location memory within subjects. During extinction consolidation, HDAC3 inhibition promotes a distinct pattern of histone acetylation linked to gene expression within the infralimbic cortex, hippocampus, and nucleus accumbens. Thus, the facilitated extinction of drug-seeking cannot be explained by adverse effects on performance. These results demonstrate that HDAC3 inhibition enhances the memory processes involved in extinction of drug-seeking behavior.
Collapse
Affiliation(s)
- Melissa Malvaez
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697
| | - Susan C. McQuown
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697
- Dart NeuroScience, San Diego, CA 92121; and
| | - George A. Rogge
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697
| | - Mariam Astarabadi
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697
| | | | | | | | - Marcelo A. Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697
| |
Collapse
|
47
|
Lattal KM, Wood MA. Epigenetics and persistent memory: implications for reconsolidation and silent extinction beyond the zero. Nat Neurosci 2013; 16:124-9. [PMID: 23354385 PMCID: PMC3740093 DOI: 10.1038/nn.3302] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022]
Abstract
Targeting epigenetic mechanisms during initial learning or memory retrieval can lead to persistent memory. Retrieval induces plasticity that may result in reconsolidation of the original memory, in which critical molecular events are needed to stabilize the memory, or extinction, in which new learning during the retrieval trial creates an additional memory that reflects the changed environmental contingencies. A canonical feature of extinction is that the original response is temporarily suppressed, but returns under various conditions. These characteristics have defined whether a given manipulation alters extinction (when persistence does not occur) or reconsolidation (when persistence does occur). A problem arises with these behavioral definitions when considering the potential for persistent memory of extinction. Recent studies have found that epigenetic modulation of memory processes leads to surprisingly robust and persistent extinction. We discuss evidence from behavioral epigenetic approaches that forces a re-evaluation of widely used behavioral definitions of extinction and reconsolidation.
Collapse
|
48
|
Fani N, King TZ, Jovanovic T, Glover EM, Bradley B, Choi K, Ely T, Gutman DA, Ressler KJ. White matter integrity in highly traumatized adults with and without post-traumatic stress disorder. Neuropsychopharmacology 2012; 37:2740-6. [PMID: 22871912 PMCID: PMC3473340 DOI: 10.1038/npp.2012.146] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/20/2022]
Abstract
Prior structural imaging studies of post-traumatic stress disorder (PTSD) have observed smaller volumes of the hippocampus and cingulate cortex, yet little is known about the integrity of white matter connections between these structures in PTSD samples. The few published studies using diffusion tensor imaging (DTI) to measure white matter integrity in PTSD have described individuals with focal trauma rather than chronically stressed individuals, which limits generalization of findings to this population; in addition, these studies have lacked traumatized comparison groups without PTSD. The present DTI study examined microstructural integrity of white matter tracts in a sample of highly traumatized African-American women with (n=25) and without (n=26) PTSD using a tract-based spatial statistical approach, with threshold-free cluster enhancement. Our findings indicated that, relative to comparably traumatized controls, decreased integrity (measured by fractional anisotropy) of the posterior cingulum was observed in participants with PTSD (p<0.05). These findings indicate that reduced microarchitectural integrity of the cingulum, a white matter fiber that connects the entorhinal and cingulate cortices, appears to be associated with PTSD symptomatology. The role of this pathway in problems that characterize PTSD, such as inadequate extinction of learned fear, as well as attention and explicit memory functions, are discussed.
Collapse
Affiliation(s)
- Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Reexposure to trauma reminders is an integral element of trauma-focused cognitive behavioral therapy (Roberts et al., 2009), but little is known about the physiological processes underlying the therapeutic progress. While it is well established that amygdala, prefrontal cortex and hippocampus are key brain structures in fear memory processing (McGaugh, 2004; Herry et al., 2008; Likhtik et al., 2008), it is not well known which neurotransmitters or neuromodulators are involved. Here with a translational approach we investigated the role of dynorphins in the formation and extinction of fear memories in mice and in humans. Mice lacking dynorphin showed an enhanced cue-dependent fear conditioning, as well as delayed extinction in contextual conditioning/extinction paradigms. The pharmacological blockade of κ-opioid receptors before the extinction trials but not before or after the conditioning produced a similar effect. Analysis of neuronal activity, using the immediate early gene c-fos, demonstrated a reduced neuronal activity in key limbic structures during extinction in the absence of dynorphin. Translating these findings into the human domain, fear conditioning and extinction, coupled with functional MRI was then performed in volunteers preselected for a functionally relevant polymorphism in the dynorphin gene. Human volunteers bearing the (T) allele of PDYN (prodynorphin) at rs1997794 showed reduced fear extinction and a significantly diminished functional connectivity between amygdala and ventromedial prefrontal cortex. Our findings establish a role of dynorphin κ-opioid receptor signaling in fear extinction.
Collapse
|
50
|
Stevens HE, Jiang GY, Schwartz ML, Vaccarino FM. Learning and memory depend on fibroblast growth factor receptor 2 functioning in hippocampus. Biol Psychiatry 2012; 71:1090-8. [PMID: 22541947 PMCID: PMC3371339 DOI: 10.1016/j.biopsych.2012.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 02/28/2012] [Accepted: 03/11/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Fibroblast growth factor (FGF) signaling controls self-renewal of neural stem cells during embryonic telencephalic development. FGF receptor 2 (FGFR2) has a significant role in the production of cortical neurons during embryogenesis, but its role in the hippocampus during development and in adulthood has not been described. METHODS Here we dissociate the role of FGFR2 in the hippocampus during development and during adulthood with the use of embryonic knockout and inducible knockout mice. RESULTS Embryonic knockout of FGFR2 causes a reduction of hippocampal volume and impairment in adult spatial memory in mice. Spatial reference memory, as assessed by performance on the water maze probe trial, was correlated with reduced hippocampal parvalbumin+ cells, whereas short-term learning was correlated with reduction in immature neurons in the dentate gyrus. Furthermore, short-term learning and newly generated neurons in the dentate gyrus were deficient even when FGFR2 was lacking only in adulthood. CONCLUSIONS Taken together, these findings support a dual role for FGFR2 in hippocampal short-term learning and long-term reference memory, which appear to depend on the abundance of two separate cellular components, parvalbumin interneurons and newly generated granule cells in the hippocampus.
Collapse
Affiliation(s)
- Hanna E. Stevens
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT O6520
| | - Ginger Y. Jiang
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT O6520
| | - Michael L. Schwartz
- Department of Neurobiology, Yale University, 333 Cedar St., New Haven, CT 06519
| | - Flora M. Vaccarino
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT O6520,Department of Neurobiology, Yale University, 333 Cedar St., New Haven, CT 06519
| |
Collapse
|