1
|
Rzymski P, Jibril AT, Rahmah L, Abarikwu SO, Hashem F, Lawati AA, Morrison FMM, Marquez LP, Mohamed K, Khan A, Mushtaq S, Minakova K, Poniedziałek B, Zarębska-Michaluk D, Flisiak R. Is there still hope for the prophylactic hepatitis C vaccine? A review of different approaches. J Med Virol 2024; 96:e29900. [PMID: 39234788 DOI: 10.1002/jmv.29900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Despite remarkable progress in the treatment of hepatitis C virus (HCV) infection, it remains a significant global health burden, necessitating the development of an effective prophylactic vaccine. This review paper presents the current landscape of HCV vaccine candidates and approaches, including more traditional, based on inactivated virus, and more modern, such as subunit protein, vectored, based on nucleic acids (DNA and mRNA) and virus-like particles. The concept of the HCV vaccine is first put in the context of viral genetic diversity and adaptive responses to HCV infection, an understanding of which is crucial in guiding the development of an effective vaccine against such a complex virus. Because ethical dimensions are also significant in vaccine research, development, and potential deployment, we also address them in this paper. The road to a safe and effective vaccine to prevent HCV infection remains bumpy due to the genetic variation of HCV and its ability to evade immune responses. The progress in cell-culture systems allowed for the production of an inactivated HCV vaccine candidate, which can induce cross-neutralizing antibodies in vitro, but whether this could prevent infection in humans is unknown. Subunit protein vaccine candidates that entered clinical trials elicited HCV-specific humoral and cellular responses, though it remains to be shown whether they translate into effective prevention of HCV infection or progression of infection to a chronic state. Such responses were also induced by a clinically tested vector-based vaccine candidate, which decreased the viral HCV load but did not prevent chronic HCV infection. These disappointments were not readily predicted from preclinical animal studies. The vaccine platforms employing virus-like particles, DNA, and mRNA provide opportunities for the HCV vaccine, but their potential in this context has yet to be shown. Ensuring the designed vaccine is based on conserved epitope(s) and elicits broadly neutralizing immune responses is also essential. Given failures in developing a prophylactic HCV vaccine, it is crucial to continue supporting national strategies, including funding for screening and treatment programs. However, these actions are likely insufficient to permanently control the HCV burden, encouraging further mobilization of significant resources for HCV vaccine research as a missing element in the elimination of viral hepatitis as a global public health.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Universal Scientific Education and Research Network (USERN)
| | - Aliyu Tijani Jibril
- Universal Scientific Education and Research Network (USERN)
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Laila Rahmah
- Universal Scientific Education and Research Network (USERN)
- Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sunny O Abarikwu
- Universal Scientific Education and Research Network (USERN)
- Department of Biochemistry, University of Port Harcourt, Choba, PMB, Port Harcourt, Rivers State, Nigeria
| | - Fareeda Hashem
- Universal Scientific Education and Research Network (USERN)
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdullah Al Lawati
- Universal Scientific Education and Research Network (USERN)
- Sultan Qaboos University Hospital, Al Khoud, Muscat, Oman
| | | | - Leander Penaso Marquez
- Universal Scientific Education and Research Network (USERN)
- University of the Philippines Diliman, Quezon City, Philippines
| | - Kawthar Mohamed
- Universal Scientific Education and Research Network (USERN)
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amjad Khan
- Universal Scientific Education and Research Network (USERN)
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Mushtaq
- Universal Scientific Education and Research Network (USERN)
- Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Kseniia Minakova
- Universal Scientific Education and Research Network (USERN)
- Micro- and Nanoelectronics Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
2
|
Echeverría N, Comas V, Aldunate F, Perbolianachis P, Moreno P, Cristina J. In the era of rapid mRNA-based vaccines: Why is there no effective hepatitis C virus vaccine yet? World J Hepatol 2021; 13:1234-1268. [PMID: 34786164 PMCID: PMC8568586 DOI: 10.4254/wjh.v13.i10.1234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/14/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is responsible for no less than 71 million people chronically infected and is one of the most frequent indications for liver transplantation worldwide. Despite direct-acting antiviral therapies fuel optimism in controlling HCV infections, there are several obstacles regarding treatment accessibility and reinfection continues to remain a possibility. Indeed, the majority of new HCV infections in developed countries occur in people who inject drugs and are more plausible to get reinfected. To achieve global epidemic control of this virus the development of an effective prophylactic or therapeutic vaccine becomes a must. The coronavirus disease 19 (COVID-19) pandemic led to auspicious vaccine development against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, which has renewed interest on fighting HCV epidemic with vaccination. The aim of this review is to highlight the current situation of HCV vaccine candidates designed to prevent and/or to reduce HCV infectious cases and their complications. We will emphasize on some of the crossroads encountered during vaccine development against this insidious virus, together with some key aspects of HCV immunology which have, so far, hampered the progress in this area. The main focus will be on nucleic acid-based as well as recombinant viral vector-based vaccine candidates as the most novel vaccine approaches, some of which have been recently and successfully employed for SARS-CoV-2 vaccines. Finally, some ideas will be presented on which methods to explore for the design of live-attenuated vaccines against HCV.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Victoria Comas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabián Aldunate
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
3
|
Kardani K, Sadat SM, Kardani M, Bolhassani A. The next generation of HCV vaccines: a focus on novel adjuvant development. Expert Rev Vaccines 2021; 20:839-855. [PMID: 34114513 DOI: 10.1080/14760584.2021.1941895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Considerable efforts have been made to treat and prevent acute and chronic infections caused by the hepatitis C virus (HCV). Current treatments are unable to protect people from reinfection. Hence, there is a need for development of both preventive and therapeutic HCV vaccines. Many vaccine candidates are in development to fight against HCV, but their efficacy has so far proven limited partly due to low immunogenicity. AREAS COVERED We explore development of novel and powerful adjuvants to achieve an effective HCV vaccine. The basis for developing strong adjuvants is to understand the innate immunity pathway, which subsequently stimulates humoral and cellular immune responses. We have also investigated immunogenicity of developed adjuvants that have been used in recent studies available in online databases such as PubMed, PMC, ScienceDirect, Google Scholar, etc. EXPERT OPINION Adjuvants are used as a part of vaccine formulation to boost vaccine immunogenicity and antigen delivery. Several FDA-approved adjuvants are used in licensed human vaccines. Unfortunately, no adjuvant has yet been proven to boost HCV immune responses to the extent needed for an effective vaccine. One of the promising approaches for developing an effective adjuvant is the combination of various adjuvants to trigger several innate immune responses, leading to activation of adaptive immunity.[Figure: see text].
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Kardani
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
5
|
Bahrami AA, Bandehpour M, Kazemi B, Bozorgmehr M, Mosaffa N, Chegeni R. Assessment of a poly-epitope candidate vaccine against Hepatitis B, C, and poliovirus in interaction with monocyte-derived dendritic cells: An ex-vivo study. Hum Immunol 2020; 81:218-227. [PMID: 32113655 DOI: 10.1016/j.humimm.2020.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Design and application of epitope-based polyvalent vaccines have recently garnered attention as an efficient alternative for conventional vaccines. We previously have reported the in silico design of HHP antigen which encompasses the immune-dominant epitopes of Hepatitis B surface antigen (HBsAg), Hepatitis C core protein (HCVcp) and Poliovirus viral proteins (VPs). It has been shown that the HHP has desirable conformation to expose the epitopes, high antigenicity and other desired physicochemical and immunological properties. To confirm the accuracy of these predictions, the ex-vivo immunogenicity of the HHP was assessed. The HHP gene was chemically synthesized in pET28a and expressed in E. coli (BL21). The expressed protein was purified and its immunological potency was evaluated on dendritic cells (DCs) as antigen presenting cells (APCs). Functional analysis was assessed in co-cultivation of autologous T-cells with matured DCs (mDCs). T-cell activation, proliferation and cytokines secretion were evaluated using flowcytometry and ELISA methods. Our results indicated that the HHP could induce the DC maturation. The mDCs were able to trigger T-cell activation and proliferation. In silico design and ex-vivo confirmation of immunological potential could pave the way to introduce efficient immunogens for further analysis. The ability of HHP in DC maturation and T-cell activation makes it an amenable vaccine candidate for further in-vivo studies.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| |
Collapse
|
6
|
Basen-Engquist K, Brown P, Coletta AM, Savage M, Maresso KC, Hawk E. Lifestyle and Cancer Prevention. ABELOFF'S CLINICAL ONCOLOGY 2020:337-374.e12. [DOI: 10.1016/b978-0-323-47674-4.00022-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Chernykh ER, Oleynik EA, Leplina OY, Starostina NM, Ostanin AA. Dendritic cells in the pathogenesis of viral hepatitis C. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2019. [DOI: 10.15789/2220-7619-2019-2-239-252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Chernykh E, Leplina O, Oleynik E, Tikhonova M, Tyrinova T, Starostina N, Ostanin A. Immunotherapy with interferon-α-induced dendritic cells for chronic HCV infection (the results of pilot clinical trial). Immunol Res 2019; 66:31-43. [PMID: 29164490 DOI: 10.1007/s12026-017-8967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The key role of T cells in hepatitis C virus (HCV) elimination and the ability of dendritic cells (DCs) to induce antiviral T cell responses suggest that DC vaccines could be a promising approach in the treatment of chronic HCV infection. The aim of our study was to evaluate, whether immunotherapy with DCs is safe and elicits anti-HCV T cell responses. Ten patients with HCV (genotype 1) were vaccinated with monocyte-derived DCs, generated in the presence of IFN-α (IFN-DCs) and pulsed with recombinant HCV Core and NS3 proteins. Treatment schedule included four subcutaneous vaccinations with 1 week interval and six vaccinations with month interval. No serious adverse events or an increase in hepatitis C biochemical activity were registered after vaccination. Using ex vivo assays for the detection of proliferative responses, IFN-γ production and CD8+ degranulation have shown that immunotherapy elicited antigen-specific responses in all patients although individual heterogeneity existed within their types, magnitude, and timing. Core/NS3-specific proliferative response and CD8+ T cell degranulation have already been registered after the first course of vaccination. Of note, Core-specific responses had higher magnitude. The appearance of antigen-specific IFN-γ responses was registered after the second vaccination course. Vaccination did not cause Th2 response and expansion of the CD4+CD25+CD127- regulatory T cells. Generated immune responses failed to provide virus elimination. Nevertheless, there were inverse correlations between viral load and NS3-specific proliferation (R S = 0.62; p = 0.05) and IFN-γ secretion (R S = - 0.82; p = 0.001) at 6-month post-treatment period. Immunotherapy with IFN-DCs was safe and elicited HCV-specific T cell responses which were insufficient to eliminate viruses but could be implicated in the restriction of viral replication.
Collapse
Affiliation(s)
- Elena Chernykh
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Olga Leplina
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia.
| | - Ekaterina Oleynik
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Marina Tikhonova
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Tamara Tyrinova
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Natalia Starostina
- Department of the Clinic of Immunopathology of Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Alexandr Ostanin
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| |
Collapse
|
9
|
Zhu F, Wang Y, Xu Z, Qu H, Zhang H, Niu L, Xue H, Jing D, He H. Novel adeno‑associated virus‑based genetic vaccines encoding hepatitis C virus E2 glycoprotein elicit humoral immune responses in mice. Mol Med Rep 2018; 19:1016-1023. [PMID: 30569131 PMCID: PMC6323296 DOI: 10.3892/mmr.2018.9739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major public health issue despite the introduction of several direct-acting antiviral agents (DAAs), with some 185 million individuals infected with HCV worldwide. There is an urgent need for an effective prophylactic HCV vaccine. In the present study, we constructed genetic vaccines based on novel recombinant adeno-associated viral (rAAV) vectors (AAV2/8 or AAV2/rh32.33) that express the envelope glycoprotein E2 from the HCV genotype 1b. Expression of HCV E2 protein in 293 cells was confirmed by western blot analysis. rAAV2/8.HCV E2 vaccine or rAAV2/rh32.33.HCV E2 vaccine was intramuscularly injected into C57BL/6 mice. HCV E2-specific antigen was produced, and long-lasting specific antibody responses remained detectable XVI weeks following immunization. In addition, the rAAV2/rh32.33 vaccine induced higher antigen-specific antibody levels than the rAAV2/8 vaccine or AAV plasmid. Moreover, both AAV vaccines induced neutralizing antibodies against HCV genotypes 1a and 1b. Finally, it is worth mentioning that neutralizing antibody levels directed against AAV2/rh32.33 were lower than those against AAV2/8 in both mouse and human serum. These results demonstrate that AAV vectors, especially the AAVrh32.33, have particularly favorable immunogenicity for development into an effective HCV vaccine.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhen Xu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Haiyang Qu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Lingling Niu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Honglu Xue
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
10
|
Ashraf MU, Iman K, Khalid MF, Salman HM, Shafi T, Rafi M, Javaid N, Hussain R, Ahmad F, Shahzad-Ul-Hussan S, Mirza S, Shafiq M, Afzal S, Hamera S, Anwar S, Qazi R, Idrees M, Qureshi SA, Chaudhary SU. Evolution of efficacious pangenotypic hepatitis C virus therapies. Med Res Rev 2018; 39:1091-1136. [PMID: 30506705 DOI: 10.1002/med.21554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C compromises the quality of life of more than 350 million individuals worldwide. Over the last decade, therapeutic regimens for treating hepatitis C virus (HCV) infections have undergone rapid advancements. Initially, structure-based drug design was used to develop molecules that inhibit viral enzymes. Subsequently, establishment of cell-based replicon systems enabled investigations into various stages of HCV life cycle including its entry, replication, translation, and assembly, as well as role of host proteins. Collectively, these approaches have facilitated identification of important molecules that are deemed essential for HCV life cycle. The expanded set of putative virus and host-encoded targets has brought us one step closer to developing robust strategies for efficacious, pangenotypic, and well-tolerated medicines against HCV. Herein, we provide an overview of the development of various classes of virus and host-directed therapies that are currently in use along with others that are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Talha Shafi
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momal Rafi
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Nida Javaid
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rashid Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | | | - Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shafiq
- Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Hamera
- Department of Plant Genetics, Institute of Life Sciences, University of Rostock, Germany
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Idrees
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Sohail A Qureshi
- Institute of Integrative Biosciences, CECOS-University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
11
|
Guo X, Zhong JY, Li JW. Hepatitis C Virus Infection and Vaccine Development. J Clin Exp Hepatol 2018; 8:195-204. [PMID: 29892184 PMCID: PMC5992307 DOI: 10.1016/j.jceh.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
In the twenty-seven years since the discovery of hepatitis C virus (HCV) the majority of individuals exposed to HCV establish a persistent infection, which is a leading cause of chronic liver disease, cirrhosis and hepatocellular carcinoma. In developed nations, the cure rates of HCV infection could be over 90% with direct-acting antiviral (DAA) regimens, which has made the great progress in global eradication. However, the cost of these treatments is so expensive that the patients in developing nations, where the disease burden is the most severe, could not afford it, which highly restricted its access. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in risk groups due to limited surveillance. Consequently a protective vaccine and likely emergence of drug-resistant viral variants call for further studies of HCV biology. In the current review, the development and the progress of preventive and therapeutic vaccines against the HCV have been reviewed in the context of peptide vaccines, recombinant protein vaccines, HCV-like particle, DNA vaccines and viral vectors expressing HCV genes.
Collapse
Affiliation(s)
- Xuan Guo
- Research Institute of Chemical Defense, No.1 Huaiyin Road, Beijing 102205, China
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, No.1 Dali Road, Tianjin 300050, China
| | - Jin-Yi Zhong
- Research Institute of Chemical Defense, No.1 Huaiyin Road, Beijing 102205, China
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Health and Environmental Medicine, No.1 Dali Road, Tianjin 300050, China
| |
Collapse
|
12
|
A Dual-Type L2 11-88 Peptide from HPV Types 16/18 Formulated in Montanide ISA 720 Induced Strong and Balanced Th1/Th2 Immune Responses, Associated with High Titers of Broad Spectrum Cross-Reactive Antibodies in Vaccinated Mice. J Immunol Res 2018; 2018:9464186. [PMID: 29854852 PMCID: PMC5960516 DOI: 10.1155/2018/9464186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
E. coli-derived concatenated, multitype L2-conserved epitopes of human papillomavirus (HPV) L2 protein might represent a less expensive and pan-type vaccine alternative (compared to type-specific HPV L1 virus-like particles), if stable protein expression and strong immunogenicity features could be met. Herein, three dual-type- (DT-) HPV L2 fusion peptides comprising the three head-to-tail tandem repeats (multimers) of either HPV 16 epitope “17-36” or “69-81” or one copy (monomer) of 11-88 fused to the same residues of HPV 18 were constructed and expressed in E. coli. SDS-PAGE and Western blot analyses indicated the proper expression and stability of the E. coli-derived DT peptides. Mice immunized by formulation of the purified DT peptides and Freund's adjuvant (CFA/IFA) raised neutralizing antibodies (NAbs; the highest for DT: 11-88 peptide) which showed proper cross-reactivity to HPV types: 18, 16, 31, and 45 and efficiently neutralized HPV 18/16 pseudoviruses in vitro. Immunization studies in mice by formulation of the DT: 11-88 × 1 peptide with various adjuvants (alum, MF59, and Montanides ISA 720 and 50) indicated that Montanide adjuvants elicited the highest cross-reactive titers of NAbs and similar levels of IgG1 and IgG2a (switching towards balanced Th1/Th2 responses). The results implied development of low-cost E. coli-derived DT: 11-88 peptide formulated in human compatible ISA 720 adjuvant as a HPV vaccine.
Collapse
|
13
|
von Delft A, Donnison TA, Lourenço J, Hutchings C, Mullarkey CE, Brown A, Pybus OG, Klenerman P, Chinnakannan S, Barnes E. The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes. Vaccine 2018; 36:313-321. [PMID: 29203182 PMCID: PMC5756538 DOI: 10.1016/j.vaccine.2017.10.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/29/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) genomic variability is a major challenge to the generation of a prophylactic vaccine. We have previously shown that HCV specific T-cell responses induced by a potent T-cell vaccine encoding a single strain subtype-1b immunogen target epitopes dominant in natural infection. However, corresponding viral regions are highly variable at a population level, with a reduction in T-cell reactivity to these variants. We therefore designed and manufactured second generation simian adenovirus vaccines encoding genomic segments, conserved between viral genotypes and assessed these for immunogenicity. METHODS We developed a computer algorithm to identify HCV genomic regions that were conserved between viral subtypes. Conserved segments below a pre-defined diversity threshold spanning the entire HCV genome were combined to create novel immunogens (1000-1500 amino-acids), covering variation in HCV subtypes 1a and 1b, genotypes 1 and 3, and genotypes 1-6 inclusive. Simian adenoviral vaccine vectors (ChAdOx) encoding HCV conserved immunogens were constructed. Immunogenicity was evaluated in C57BL6 mice using panels of genotype-specific peptide pools in ex-vivo IFN-ϒ ELISpot and intracellular cytokine assays. RESULTS ChAdOx1 conserved segment HCV vaccines primed high-magnitude, broad, cross-reactive T-cell responses; the mean magnitude of total HCV specific T-cell responses was 1174 SFU/106 splenocytes for ChAdOx1-GT1-6 in C57BL6 mice targeting multiple genomic regions, with mean responses of 935, 1474 and 1112 SFU/106 against genotype 1a, 1b and 3a peptide panels, respectively. Functional assays demonstrated IFNg and TNFa production by vaccine-induced CD4 and CD8 T-cells. In silico analysis shows that conserved immunogens contain multiple epitopes, with many described in natural HCV infection, predicting immunogenicity in humans. CONCLUSIONS Simian adenoviral vectored vaccines encoding genetic segments that are conserved between all major HCV genotypes contain multiple T-cell epitopes and are highly immunogenic in pre-clinical models. These studies pave the way for the assessment of multi-genotypic HCV T-cell vaccines in humans.
Collapse
Affiliation(s)
- Annette von Delft
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Timothy A Donnison
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | | | - Claire Hutchings
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Caitlin E Mullarkey
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Anthony Brown
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | | | - Paul Klenerman
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Senthil Chinnakannan
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK.
| |
Collapse
|
14
|
Roohvand F, Shokri M, Abdollahpour-Alitappeh M, Ehsani P. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines. Expert Opin Ther Pat 2017; 27:929-951. [PMID: 28608761 DOI: 10.1080/13543776.2017.1339789] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.
Collapse
Affiliation(s)
- Farzin Roohvand
- a Department of Virology , Pasteur Institute of Iran , Pasteur Ave, Tehran , Iran
| | - Mehdi Shokri
- a Department of Virology , Pasteur Institute of Iran , Pasteur Ave, Tehran , Iran.,b Department of Immunology , Pasteur Institute of Iran , Tehran , Iran
| | | | - Parastoo Ehsani
- c Department of Molecular Biology , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
15
|
Abdelwahab KS, Ahmed Said ZN. Status of hepatitis C virus vaccination: Recent update. World J Gastroenterol 2016; 22:862-873. [PMID: 26811632 PMCID: PMC4716084 DOI: 10.3748/wjg.v22.i2.862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is still a major public health problem worldwide since its first identification in 1989. At the start, HCV infection was post-transfusion viral infection, particularly in developing countries. Recently, due to iv drug abuse, HCV infection became number one health problem in well-developed countries as well. Following acute HCV infection, the innate immune response is triggered in the form of activated coordinated interaction of NK cells, dendritic cells and interferon α. The acquired immune response is then developed in the form of the antibody-mediated immune response (ABIR) and the cell-mediated immune response (CMIR). Both are responsible for clearance of HCV infection in about 15% of infected patients. However, HCV has several mechanisms to evade these antivirus immune reactions. The current review gives an overview of HCV structure, immune response and viral evasion mechanisms. It also evaluates the available preventive and therapeutic vaccines that induce innate, ABIR, CMIR. Moreover, this review highlights the progress in recent HCV vaccination studies either in preclinical or clinical phases. The unsatisfactory identification of HCV infection by the current screening system and the limitations of currently available treatments, including the ineligibility of some chronic HCV patients to such antiviral agents, mandate the development of an effective HCV vaccine.
Collapse
|
16
|
Zhu F, Chen T, Zhang Y, Sun H, Cao H, Lu J, Zhao L, Li G. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine. PLoS One 2015; 10:e0142349. [PMID: 26556235 PMCID: PMC4640878 DOI: 10.1371/journal.pone.0142349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
More than 170 million individuals worldwide are infected with hepatitis C virus (HCV), and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV) vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Tian Chen
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Yeqiong Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Haixia Sun
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Jianxi Lu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Linshan Zhao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Gang Li
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
17
|
Mohammadzadeh S, Roohvand F, Ajdary S, Ehsani P, Hatef Salmanian A. Heterologous Expression of Hepatitis C Virus Core Protein in Oil Seeds of Brassica napus L. Jundishapur J Microbiol 2015; 8:e25462. [PMID: 26855744 PMCID: PMC4735835 DOI: 10.5812/jjm.25462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 02/07/2023] Open
Abstract
Background: Hepatitis c virus (HCV), prevalent among 3% of the world population, is a major worldwide public health concern and an effective vaccination could help to overcome this problem. Plant seeds as low-cost vaccine expression platforms are highly desirable to produce antigens. Objectives: The present study was aimed at investigating the possible expression of recombinant HCV core protein, as a leading HCV vaccine candidate, in canola (Brassica napus) plant seeds in order to be used as an effective immunogen for vaccine researches. Materials and Methods: A codon-optimized gene harboring the Kozak sequence, 6 × His-tag, HCVcp (1 - 122 residues) and KDEL (Lys-Asp-Glu-Leu) peptide in tandem was designed and expressed under the control of the seed specific promoter, fatty acid elongase 1 (FAE1), to accumulate the recombinant protein in canola (B. napus L.) seeds. Transgenic lines were screened and the presence of the transgene was confirmed in the T0 plants by polymerase chain reaction (PCR). The quantity and quality of the HCV core protein (HCVcp) in transgenic seeds were evaluated by enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. Results: Western blot analysis using anti-His antibody confirmed the presence of a 15 kDa protein in the seeds of T1 transgenic lines. The amount of antigenic protein accumulated in the seeds of these transgenic lines was up to 0.05% of the total soluble protein (TSP). Conclusions: The canola oilseeds could provide a useful expression system to produce HCV core protein as a vaccine candidate.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Farzin Roohvand
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Soheila Ajdary
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Ehsani
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding authors: Parastoo Ehsani, Molecular Biology Department, Pasteur Institute of Iran, P. O. Box: 1316943551, Tehran, IR Iran. Tel/Fax: +98-2164112219, E-mail: ; Ali Hatef Salmanian, Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, P. O. Box: 14965-161, Tehran, IR Iran. Tel: +98-2144580365, Fax: +98-2144580395, E-mail:
| | - Ali Hatef Salmanian
- Agricultural Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
- Corresponding authors: Parastoo Ehsani, Molecular Biology Department, Pasteur Institute of Iran, P. O. Box: 1316943551, Tehran, IR Iran. Tel/Fax: +98-2164112219, E-mail: ; Ali Hatef Salmanian, Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, P. O. Box: 14965-161, Tehran, IR Iran. Tel: +98-2144580365, Fax: +98-2144580395, E-mail:
| |
Collapse
|
18
|
Gholizadeh M, Khanahmad H, Memarnejadian A, Aghasadeghi MR, Roohvand F, Sadat SM, Cohan RA, Nazemi A, Motevalli F, Asgary V, Arezumand R. Design and expression of fusion protein consists of HBsAg and Polyepitope of HCV as an HCV potential vaccine. Adv Biomed Res 2015; 4:243. [PMID: 26682209 PMCID: PMC4673707 DOI: 10.4103/2277-9175.168610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/16/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a serious public health threat worldwide. Cellular immune responses, especially cytotoxic T-lymphocytes (CTLs), play a critical role in immune response toward the HCV clearance. Since polytope vaccines have the ability to stimulate the cellular immunity, a recombinant fusion protein was developed in this study. MATERIALS AND METHODS The designed fusion protein is composed of hepatitis B surface antigen (HBsAg), as an immunocarrier, fused to an HCV polytope sequence. The polytope containing five immunogenic epitopes of HCV was designed to induce specific CTL responses. The construct was cloned into the pET-28a, and its expression was investigated in BL21 (DE3), BL21 pLysS, BL21 pLysE, and BL21 AI Escherichia coli strains using 12% gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Finally, the identity of expressed fusion protein was confirmed by Western blotting using anti-His monoclonal antibody and affinity chromatography was applied to purify the expressed protein. RESULTS The accuracy of the construct was confirmed by restriction map analysis and sequencing. The transformation of the construct into the BL21 (DE3), pLysS, and pLysE E. coli strains did not lead to any expression. The fusion protein was found to be toxic for E. coli DE3. By applying two steps inhibition, the fusion protein was successfully expressed in BL21 (AI) E. coli strain. CONCLUSION The HBsAg-polytope fusion protein expressed in this study can be further evaluated for its immunogenicity in animal models.
Collapse
Affiliation(s)
- Monireh Gholizadeh
- Department of Biology, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Hossein Khanahmad
- Department of Genetics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Farzin Roohvand
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ali Nazemi
- Department of Biology, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Fatemeh Motevalli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Asgary
- Department Of Rabies, Pasteur Institute of Iran, Tehran, Iran ; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Li D, Huang Z, Zhong J. Hepatitis C virus vaccine development: old challenges and new opportunities. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv040] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Hepatitis C virus (HCV), an enveloped positive-sense single-stranded RNA virus, can cause chronic and end-stage liver diseases. Approximately 185 million people worldwide are infected with HCV. Tremendous progress has been achieved in the therapeutics of chronic hepatitis C thanks to the development of direct-acting antiviral agents (DAAs), but the worldwide use of these highly effective DAAs is limited due to their high treatment cost. In addition, drug-resistance mutations remain a potential problem as DAAs are becoming a standard therapy for chronic hepatitis C. Unfortunately, no vaccine is available for preventing new HCV infection. Therefore, HCV still imposes a big threat to human public health, and the worldwide eradication of HCV is critically dependent on an effective HCV vaccine. In this review, we summarize recent progresses on HCV vaccine development and present our views on the rationale and strategy to develop an effective HCV vaccine.
Collapse
Affiliation(s)
- Dapeng Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhong Huang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Zhong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
20
|
Shehat MG, Bahey-El-Din M, Kassem MA, Farghaly FA, Abdul-Rahman MH, Fanaki NH. Recombinant expression of the alternate reading frame protein (ARFP) of hepatitis C virus genotype 4a (HCV-4a) and detection of ARFP and anti-ARFP antibodies in HCV-infected patients. Arch Virol 2015; 160:1939-52. [PMID: 26036563 DOI: 10.1007/s00705-015-2465-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 05/23/2015] [Indexed: 01/27/2023]
Abstract
HCV is a single-stranded RNA virus with a single open reading frame (ORF) that is translated into a polyprotein that is then processed to form 10 viral proteins. An additional eleventh viral protein, the alternative reading frame protein (ARFP), was discovered relatively recently. This protein results from a translational frameshift in the core region during the expression of the viral proteins. Recombinant expression of different forms of ARFP was previously done for HCV genotypes 1 and 2, and more recently, genotype 3. However, none of the previous studies addressed the expression of ARFP of HCV genotype 4a, which is responsible for 80 % of HCV infections in the Middle East and Africa. Moreover, the direct detection of the ARFP antigen in HCV-infected patients was never studied before for any HCV genotype. In the present study, recombinant ARFP derived from HCV genotype 4a was successfully expressed in E. coli and purified using metal affinity chromatography. The recombinant ARFP protein and anti-ARFP antibodies were used for detection of ARFP antigen in patients' sera, employing competitive enzyme-linked immunosorbent assay (ELISA) procedures. Furthermore, the recombinant antigen was also used to detect and quantify anti-ARFP antibodies in HCV-infected Egyptian patients at different stages of pegylated interferon/ribavirin therapy, using an ELISA assay. The ARFP antigen was detectable in 69.4 % of RNA-positive sera, indicating that ARFP antigen is produced during the natural course of HCV infection. In addition, significant levels of anti-ARFP antibodies were present in 41 % of the serum samples tested. The important diagnostic value of the recombinant ARFP antigen was also demonstrated.
Collapse
Affiliation(s)
- Michael G Shehat
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | |
Collapse
|
21
|
A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice. J Virol 2015; 89:7991-8002. [PMID: 26018154 DOI: 10.1128/jvi.00803-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.
Collapse
|
22
|
Mohammadzadeh S, Roohvand F, Memarnejadian A, Jafari A, Ajdary S, Salmanian AH, Ehsani P. Co-expression of hepatitis C virus polytope-HBsAg and p19-silencing suppressor protein in tobacco leaves. PHARMACEUTICAL BIOLOGY 2015; 54:465-73. [PMID: 25990925 DOI: 10.3109/13880209.2015.1048371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Plants transformed by virus-based vectors have emerged as promising tools to rapidly express large amounts and inexpensive antigens in transient condition. OBJECTIVE We studied the possibility of transient-expression of an HBsAg-fused polytopic construct (HCVpc) [containing H-2d and HLA-A2-restricted CD8+CTL-epitopic peptides of C (Core; aa 132-142), E6 (Envelope2; aa 614-622), N (NS3; aa 1406-1415), and E4 (Envelope2; aa 405-414) in tandem of CE6NE4] in tobacco (Nicotiana tabacum) leaves for the development of a plant-based HCV vaccine. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, hexahistidine (6×His)-tag peptide, and HCVpc in tandem was designed, chemically synthesized, fused to HBsAg gene, and inserted into Potato virus X (PVX-GW) vector under the control of duplicated PVX coat protein promoter (CPP). The resulted recombinant plasmids (after confirmation by restriction and sequencing analyses) were transferred into Agrobacterium tumefaciens strain GV3101 and vacuum infiltrated into tobacco leaves. The effect of gene-silencing suppressor, p19 protein from tomato bushy stunt virus, on the expression yield of HCVpc-HBsAg was also evaluated by co-infiltration of a p19 expression vector. RESULTS Codon-optimized gene increased adaptation index (CAI) value (from 0.61 to 0.92) in tobacco. The expression of the HCVpc-HBsAg was confirmed by western blot and HBsAg-based detection ELISA on total extractable proteins of tobacco leaves. The expression level of the fusion protein was significantly higher in p19 co-agroinfiltrated plants. DISCUSSION AND CONCLUSION The results indicated the possibility of expression of HCVpc-HBsAg constructs with proper protein conformations in tobacco for final application as a plant-derived HCV vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Soheila Ajdary
- d Department of Immunology , Pasteur Institute of Iran , Tehran , Iran , and
| | - Ali-Hatef Salmanian
- e Department of Plant Biotechnology , National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | | |
Collapse
|
23
|
Yazdanian M, Memarnejadian A, Mahdavi M, Motevalli F, Sadat SM, Vahabpour R, Khanahmad H, Soleimanjahi H, Budkowska A, Roohvand F. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice. Adv Biomed Res 2015; 4:13. [PMID: 25625119 PMCID: PMC4300588 DOI: 10.4103/2277-9175.148296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022] Open
Abstract
Background: Fusion of Hepatitis B virus surface antigen (HBsAg) to a DNA construct might be considered as a strategy to enhance cellular and cytotoxic T-lymphocytes (CTL) responses of a Hepatitis C Virus core protein (HCVcp)-based DNA vaccine comparable to that of adjuvanted protein (subunit) immunization. Materials and Methods: pCHCORE vector harboring coding sequence of HBsAg and HCVcp (amino acids 2-120) in tandem within the pCDNA3.1 backbone was constructed. The corresponding recombinant HCVcp was also expressed and purified in Escherichia coli. Mice were immunized either by adjuvanted HCVcp (pluronic acid + protein) or by pCHCORE vector primed/protein boosted immunization regimen. The cellular immune responses (proliferation, In vivo CTL assay and IFN-γ/IL-4 ELISpot) against a strong and dominant H2-d restricted, CD8+-epitopic peptide (C39) (core 39-48; RRGPRLGVRA) of HCVcp were compared in immunized animals. Result: Proper expression of the fused protein by pCHCORE in transiently transfected HEK 293T cells and in the expected size (around 50 kDa) was confirmed by western blotting. The immunization results indicated that the pCHCORE shifted the immune responses pathway to Th1 by enhancing the IFN-γ cytokine level much higher than protein immunization while the proliferative and CTL responses were comparable (or slightly in favor of DNA immunization). Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine) immunization.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehdi Mahdavi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Motevalli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production, Pasteur Institute of Iran, Karaj, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Medical School, Tarbiat Moderes University (TMU), Tehran, Iran
| | - Agata Budkowska
- Department of Virology, Unit of Hepacivirus and Innate Immunity, Pasteur Institute, 25/28 Rue du Dr. Roux, Paris 75724, France
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
Mohammadzadeh S, Khabiri A, Roohvand F, Memarnejadian A, Salmanian AH, Ajdary S, Ehsani P. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum, a Protein With Potential Clinical Applications. HEPATITIS MONTHLY 2014; 14:e20524. [PMID: 25598788 PMCID: PMC4286711 DOI: 10.5812/hepatmon.20524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/29/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is major cause of liver cirrhosis in humans. HCV capsid (core) protein (HCVcp) is a highly demanded antigen for various diagnostic, immunization and pathogenesis studies. Plants are considered as an expression system for producing safe and inexpensive biopharmaceutical proteins. Although invention of transgenic (stable) tobacco plants expressing HCVcp with proper antigenic properties was recently reported, no data for "transient-expression" that is currently the method of choice for rapid, simple and lower-priced protein expression in plants is available for HCVcp. OBJECTIVES The purpose of this study was to design a highly codon-optimized HCVcp gene for construction of an efficient transient-plant expression system for production of HCVcp with proper antigenic properties in a regional tobacco plant (Iranian Jafarabadi-cultivar) by evaluation of different classes of vectors and suppression of gene-silencing in tobacco. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, 6xHis-tag, HCVcp (1-122) and KDEL peptide in tandem (from N- to C-terminal) was designed and inserted into potato virus-X (PVX) and classic pBI121 binary vectors in separate cloning reactions. The resulted recombinant plasmids were transferred into Agrobacterium tumefaciens and vacuum infiltrated into tobacco leaves. The effect of gene silencing suppressor P19 protein derived from tomato bushy stunt virus on the expression yield of HCVcp by each construct was also evaluated by co-infiltration in separate groups. The expressed HCVcp was evaluated by dot and western blotting and ELISA assays. RESULTS The codon-optimized gene had an increased adaptation index value (from 0.65 to 0.85) and reduced GC content (from 62.62 to 51.05) in tobacco and removed the possible deleterious effect of "GGTAAG" splice site in native HCVcp. Blotting assays via specific antibodies confirmed the expression of the 15 kDa HCVcp. The expression level of HCVcp was enhanced by 4-5 times in P19 co-agroinfiltrated plants with better outcomes for PVX, compared to pBI121 vector (0.022% versus 0.019% of the total soluble protein). The plant-derived HCVcp (pHCVcp) could properly identify the HCVcp antibody in HCV-infected human sera compared to Escherichia coli-derived HCVcp (eHCVcp), indicating its potential for diagnostic/immunization applications. CONCLUSIONS By employment of gene optimization strategies, use of viral-based vectors and suppression of plant-derived gene silencing effect, efficient transient expression of HCVcp in tobacco with proper antigenic properties could be possible.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Alireza Khabiri
- Department of Mycology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Parastoo Ehsani, Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax.: +98 21 6411-2167, E-mail: . Farzin Roohvand, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| | - Arash Memarnejadian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
| | - Ali Hatef Salmanian
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Parastoo Ehsani, Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax.: +98 21 6411-2167, E-mail: . Farzin Roohvand, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| |
Collapse
|
25
|
Pishraft-Sabet L, Kosinska AD, Rafati S, Bolhassani A, Taheri T, Memarnejadian A, Alavian SM, Roggendorf M, Samimi-Rad K. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96. Arch Virol 2014; 160:141-52. [PMID: 25348271 DOI: 10.1007/s00705-014-2243-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
Induction of a strong hepatitis C virus (HCV)-specific immune response plays a key role in control and clearance of the virus. A polytope (PT) DNA vaccine containing B- and T-cell epitopes could be a promising vaccination strategy against HCV, but its efficacy needs to be improved. The N-terminal domain of heat shock protein gp96 (NT(gp96)) has been shown to be a potent adjuvant for enhancing immunity. We constructed a PT DNA vaccine encoding four HCV immunodominant cytotoxic T lymphocyte epitopes (two HLA-A2- and two H2-D(d)-specific motifs) from the Core, E2, NS3 and NS5B antigens in addition to a T-helper CD4+ epitope from NS3 and a B-cell epitope from E2. The NT(gp96) was fused to the C- or N-terminal end of the PT DNA (PT-NT(gp96) or NT(gp96)-PT), and their potency was compared. Cellular and humoral immune responses against the expressed peptides were evaluated in CB6F1 mice. Our results showed that immunization of mice with PT DNA vaccine fused to NT(gp96) induced significantly stronger T-cell and antibody responses than PT DNA alone. Furthermore, the adjuvant activity of NT(gp96) was more efficient in the induction of immune responses when fused to the C-terminal end of the HCV DNA polytope. In conclusion, the NT(gp96) improved the efficacy of the DNA vaccine, and this immunomodulatory effect was dependent on the position of the fusion.
Collapse
Affiliation(s)
- Leila Pishraft-Sabet
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, P.O.Box 6446, Tehran, 14155, Islamic Republic of Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pishraft Sabet L, Taheri T, Memarnejadian A, Mokhtari Azad T, Asgari F, Rahimnia R, Alavian SM, Rafati S, Samimi Rad K. Immunogenicity of Multi-Epitope DNA and Peptide Vaccine Candidates Based on Core, E2, NS3 and NS5B HCV Epitopes in BALB/c Mice. HEPATITIS MONTHLY 2014; 14:e22215. [PMID: 25419219 PMCID: PMC4238154 DOI: 10.5812/hepatmon.22215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/10/2014] [Accepted: 09/21/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hypervariability of HCV proteins is an important obstacle to design an efficient vaccine for HCV infection. Multi-epitope vaccines containing conserved epitopes of the virus could be a promising approach for protection against HCV. OBJECTIVES Cellular and humoral immune responses against multi-epitope DNA and peptide vaccines were evaluated in BALB/c mice. MATERIALS AND METHODS In this experimental study, multi-epitope DNA- and peptide-based vaccines for HCV infection harboring immunodominant CD8+ T cell epitopes (HLA-A2 and H2-Dd) from Core (132-142), NS3 (1073-1081) and NS5B (2727-2735), a Th CD4+ epitope from NS3 (1248-1262) and a B-cell epitope from E2 (412-426) were designed. Multi-epitope DNA and peptide vaccines were tested in two regimens as heterologous DNA/peptide (group 1) and homologous peptide/peptide (group 2) prime/boost vaccine in BALB/c mice model. Electroporation was used for delivery of the DNA vaccine. Peptide vaccine was formulated with Montanide ISA 720 (M720) as adjuvant. Cytokine assay and antibody detection were performed to analyze the immune responses. RESULTS Mice immunized with multi-epitope peptide formulated with M720 developed higher HCV-specific levels of total IgG, IgG1 and IgG2a than those immunized with multi-epitope DNA vaccine. IFN-γ levels in group 2 were significantly higher than group 1 (i.e. 3 weeks after the last immunization; 37.61 ± 2.39 vs. 14.43 ± 0.43, P < 0.05). Moreover, group 2 had a higher IFN-γ/IL-4 ratio compared to group 1, suggesting a shift toward Th1 response. In addition, in the present study, induced immune responses were long lasting and stable after 9 weeks of the last immunization. CONCLUSIONS Evaluation of multi-epitope DNA and peptide-vaccines confirmed their specific immunogenicity in BALB/c mice. However, lower Th1 immune responses in mice immunized with DNA vaccine suggests further investigations to improve the immunogenicity of the multi-epitope DNA vaccine through immune enhancers.
Collapse
Affiliation(s)
- Leila Pishraft Sabet
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Razi Vaccine and Serum Research Institute, Karaj, IR Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Talat Mokhtari Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Fatemeh Asgari
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ramin Rahimnia
- Department of Nano Medicine, School of Advanced Technologies in Medicine, Tehran, IR Iran
| | - Seyed Moayed Alavian
- Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Middle East Liver Disease Center (MELD), Tehran, IR Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, IR Iran
| | - Katayoun Samimi Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Katayoun Samimi Rad, Department of Virology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 6446, Tehran, IR Iran. Tel +98-2188950595; Fax: +98-2166462267, E-mail:
| |
Collapse
|
27
|
Ikram A, Anjum S, Tahir M. In Silico Identification and Conservation Analysis of B-cell and T-Cell Epitopes of Hepatitis C Virus 3a Genotype Enveloped Glycoprotein 2 From Pakistan: A Step Towards Heterologous Vaccine Design. HEPATITIS MONTHLY 2014; 14:e9832. [PMID: 24976845 PMCID: PMC4071360 DOI: 10.5812/hepatmon.9832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/22/2013] [Accepted: 10/17/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is known for the eminent global disease burden responsible for encumbering public health. Development of an effective vaccine is the major need of the day; however, several obstacles loom ahead of this objective. One of the major barriers is that as a RNA virus, it mutates rapidly resulting in high sequence divergence and several viral isolates in the world. Theglycoprotein 2 (gpE2) is the primary component of HCV envelope with direct interaction with the host cell surface receptors; it is an indispensable target of neutralizing antibodies and hence, should be a fundamental component of vaccine design. OBJECTIVES This study focused on B-cells and T-cells epitopes prediction in HCV gpE2, particularly in 3a genotype, in Pakistan and identification of the conserved epitopes among various 3a isolates at global level, principally conserved across HCV major genotypes. MATERIALS AND METHODS Epitope finding was done by using online available bioinformatics tools including Immune Epitope Database (IEDB), ProPred-I, and ProPred. Conservation of these epitopes was found by aligning selected gpE2 sequences using MultAlin online software and conservancy analysis tool available at IEDB. RESULTS Many B-cell and T-cell epitopes predicted in gpE2 were found conserved among HCV 3a genotypes whereas few were conserved in other genotypes anticipating these epitopes as potential candidates of producing strong B-cell and T-cell response against HCV 3a and other genotypes. CONCLUSIONS HCV gpE2 is an ideal target for HCV vaccine. Prediction of epitope immunogenicity and characterization on the basis of peptide sequences will be significantly helpful for development of a heterologous vaccine against HCV variants.
Collapse
Affiliation(s)
- Aqsa Ikram
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Anjum
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Corresponding Author: Sadia Anjum, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan. Tel: +92-5190856152 Fax+92-5190856102, E-mail:
| | - Muhammad Tahir
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
28
|
Hartoonian C, Sepehrizadeh Z, Tabatabai Yazdi M, Jang YS, Langroudi L, Amir Kalvanagh P, Negahdari B, Karami A, Ebtekar M, Azadmanesh K. Enhancement of Immune Responses by Co-delivery of CCL19/MIP-3beta Chemokine Plasmid With HCV Core DNA/Protein Immunization. HEPATITIS MONTHLY 2014; 14:e14611. [PMID: 24693317 PMCID: PMC3955266 DOI: 10.5812/hepatmon.14611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/01/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Using molecular adjuvants offers an attractive strategy to augment DNA vaccine-mediated immune responses. Several studies have revealed that an efficient HCV vaccine model should be able to induce both humoral and cell mediated immune responses targeting the conserved regions of the virus to circumvent the immune escape mutants. The beta chemokine Macrophage Inflammatory Protein 3-beta (MIP-3beta) is a key modulator of dendritic cells (DCs) and T-cells interaction, functions during immune response induction and is secreted specifically by cells in the lymphoid tissues. OBJECTIVES In the present study, we questioned whether co-administration of MIP-3beta gene could enhance the immune responses to HCV core in DNA vaccination. MATERIALS AND METHODS Expression and biological activity of MIP-3beta expressing plasmid were evaluated by ELISA and transwell migration assays, respectively. HCV core DNA vaccine ± plasmid expressing MIP-3beta were electroporated subcutaneously to the front foot pads of BALB/c mice on days 0 and 14, and HCV core protein booster was applied to all core-DNA-vaccine received mice on the day 28. Both cell mediated immunity (proliferation, IFN-γ and IL-4 cytokine release, IFN-γ ELISpot and cytotoxic Granzyme B release assays) and humoral immune responses (total IgG and IgG2a/IgG1 subtyping) were evaluated ten days after final immunization. RESULTS Mice covaccinated with MIP-3beta elicited an enhanced Th1 biased systemic immune response as evidenced by higher IFN-γ/IL-4 and anti-core IgG2a/IgG1 ratio, lymphoproliferation, strong cytolytic GrzB release and enhanced population of IFN-γ producing immunocytes. Likewise, the humoral immune response assumed as the total anti-core IgG level was augmented by MIP-3beta co-delivery. CONCLUSIONS These results exhibited the immuno potentiator effects of MIP-3beta plasmid when coadministrated with the HCV core DNA vaccine. Complimentary studies integrating MIP-3beta as a genetic adjuvant in HCV-core-DNA vaccination models are warranted.
Collapse
Affiliation(s)
- Christine Hartoonian
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding Authors: Zargham Sepehrizadeh, Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2164122301, Fax: + 98-2166461178, E-mail: ; Kayhan Azadmanesh, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| | - Mojtaba Tabatabai Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Yong Suk Jang
- Departments of Molecular Biology and Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | - Lida Langroudi
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Parisa Amir Kalvanagh
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modaress University, Tehran, IR Iran
| | - Babak Negahdari
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modaress University, Tehran, IR Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ali Karami
- Department of Research Center of Molecular Biology, Baqyiatallah University of Medical Sciences, Tehran, IR Iran
| | - Massoumeh Ebtekar
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modaress University, Tehran, IR Iran
| | - Kayhan Azadmanesh
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding Authors: Zargham Sepehrizadeh, Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2164122301, Fax: + 98-2166461178, E-mail: ; Kayhan Azadmanesh, Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail:
| |
Collapse
|
29
|
Martinez-Donato G, Amador-Cañizares Y, Alvarez-Lajonchere L, Guerra I, Pérez A, Dubuisson J, Wychowsk C, Musacchio A, Aguilar D, Dueñas-Carrera S. Neutralizing antibodies and broad, functional T cell immune response following immunization with hepatitis C virus proteins-based vaccine formulation. Vaccine 2014; 32:1720-6. [PMID: 24486345 DOI: 10.1016/j.vaccine.2014.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 01/01/2023]
Abstract
HCV is a worldwide health problem despite the recent advances in the development of more effective therapies. No preventive vaccine is available against this pathogen. However, non-sterilizing immunity has been demonstrated and supports the potential success of HCV vaccines. Induction of cross-neutralizing antibodies and T cell responses targeting several conserved epitopes, have been related to hepatitis C virus (HCV) clearance. Therefore, in this work, the immunogenicity of a preparation (MixprotHC) based on protein variants of HCV Core, E1, E2 and NS3 was evaluated in mice and monkeys. IgG from MixprotHC immunized mice and monkeys neutralized the infectivity of heterologous HCVcc. Moreover, strong CD4+ and CD8+ T cells proliferative and IFN-γ secretion responses were elicited against HCV proteins. Remarkably, immunization with MixprotHC induced control of viremia in a surrogate challenge model in mice. These results suggest that MixprotHC might constitute an effective immunogen against HCV in humans with potential for reducing the likelihood of immune escape and viral persistence.
Collapse
Affiliation(s)
- Gillian Martinez-Donato
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba.
| | - Yalena Amador-Cañizares
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Liz Alvarez-Lajonchere
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Ivis Guerra
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Angel Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Jean Dubuisson
- Institut de Biologie de Lille (UMR8161), CNRS, Universite de Lille I & II and Institut Pasteur de Lille, Lille, France
| | - Czeslaw Wychowsk
- Institut de Biologie de Lille (UMR8161), CNRS, Universite de Lille I & II and Institut Pasteur de Lille, Lille, France
| | - Alexis Musacchio
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Daylen Aguilar
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| | - Santiago Dueñas-Carrera
- Center for Genetic Engineering and Biotechnology (CIGB), Ave 31, P.O. Box 6162, Havana, 10 600, Cuba
| |
Collapse
|
30
|
Jacob D, Ruffie C, Dubois M, Combredet C, Amino R, Formaglio P, Gorgette O, Pehau-Arnaudet G, Guery C, Puijalon O, Barale JC, Ménard R, Tangy F, Sala M. Whole Pichia pastoris yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens. PLoS One 2014; 9:e86658. [PMID: 24475165 PMCID: PMC3903550 DOI: 10.1371/journal.pone.0086658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/11/2013] [Indexed: 12/13/2022] Open
Abstract
Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS) of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb) was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV) nucleoprotein (N) known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs). Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen combination screening and possibly for large-scale production, distribution and delivery of a malaria vaccine in developing countries.
Collapse
Affiliation(s)
- Daria Jacob
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Claude Ruffie
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Myriam Dubois
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Chantal Combredet
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Rogerio Amino
- Institut Pasteur, Malaria Biology and Genetics Unit, Paris, France
| | | | - Olivier Gorgette
- Institut Pasteur, Molecular Immunology of Parasites Unit, Paris, France
- CNRS, URA2581, Paris, France
- Institut Pasteur, Malaria Biology and Genetics Unit, Team Malaria Targets and Drug Development, Paris, France
| | | | - Charline Guery
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Odile Puijalon
- Institut Pasteur, Molecular Immunology of Parasites Unit, Paris, France
- CNRS, URA2581, Paris, France
| | - Jean-Christophe Barale
- Institut Pasteur, Molecular Immunology of Parasites Unit, Paris, France
- CNRS, URA2581, Paris, France
- Institut Pasteur, Malaria Biology and Genetics Unit, Team Malaria Targets and Drug Development, Paris, France
| | - Robert Ménard
- Institut Pasteur, Malaria Biology and Genetics Unit, Paris, France
| | - Frédéric Tangy
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
| | - Monica Sala
- Institut Pasteur, Viral Genomics and Vaccination Unit, Paris, France
- CNRS, URA3015, Paris, France
- * E-mail:
| |
Collapse
|
31
|
Bellier B, Klatzmann D. Virus-like particle-based vaccines against hepatitis C virus infection. Expert Rev Vaccines 2014; 12:143-54. [DOI: 10.1586/erv.13.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Bevers TB, Brown PH, Maresso KC, Hawk ET. Cancer Prevention, Screening, and Early Detection. ABELOFF'S CLINICAL ONCOLOGY 2014:322-359.e12. [DOI: 10.1016/b978-1-4557-2865-7.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Hagan LM, Wolpe PR, Schinazi RF. Treatment as prevention and cure towards global eradication of hepatitis C virus. Trends Microbiol 2013; 21:625-33. [PMID: 24238778 DOI: 10.1016/j.tim.2013.09.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023]
Abstract
The availability of curative, direct-acting antiviral drugs against hepatitis C virus (HCV) sparks an ethical call for HCV eradication and provides essential tools to spearhead the effort. Challenges include increasing awareness of the chronic hepatitis C epidemic, garnering sufficient public, private, and governmental financial will to invest in the necessary resources, developing pangenotypic drug regimens for global application, and mitigating ethical concerns. To achieve these goals, stakeholders including clinicians, public health professionals, legislators, advocates, and industry can employ a variety of strategies such as increasing HCV screening, implementing treatment as prevention, and improving linkage to care, as well as developing innovative pricing and payment solutions, stimulating innovation through local drug development in high-prevalence regions, continuing vaccine development, and creating efficiencies in the marketing and distribution of educational materials and drug treatments.
Collapse
Affiliation(s)
- Liesl M Hagan
- Center for AIDS Research, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
34
|
Yazdanian M, Memarnejadian A, Mahdavi M, Sadat SM, Motevali F, Vahabpour R, Khanahmad H, Siadat SD, Aghasadeghi MR, Roohvand F. Immunization of Mice by BCG Formulated HCV Core Protein Elicited Higher Th1-Oriented Responses Compared to Pluronic-F127 Copolymer. HEPATITIS MONTHLY 2013; 13:e14178. [PMID: 24348641 PMCID: PMC3842517 DOI: 10.5812/hepatmon.14178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/14/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND A supreme vaccine for Hepatitis C virus (HCV) infection should elicit strong Th1-oriented cellular responses. In the absence of a Th1-specific adjuvant, immunizations by protein antigens generally induce Th2-type and weak cellular responses. OBJECTIVES To evaluate the adjuvant effect of BCG in comparison with nonionic copolymer-Pluronic F127 (F127) as a classic adjuvant in the formulation of HCV core protein (HCVcp) as a candidate vaccine for induction of Th1 immune responses. MATERIALS AND METHODS Expression of N-terminally His-Tagged HCVcp (1-122) by pIVEX2.4a-core vector harboring the corresponding gene under the control of arabinose-inducible (araBAD) promoter was achieved in BL21-AI strain of E.coli and purified through application of nitrilotriacetic acid (Ni-NTA) chromatography. Mice were immunized subcutaneously (s.c.) in base of the tail with 100 μl of immunogen (F127+HCVcp or BCG+HCVcp; 5 μgHCVcp/mouse/dose) or control formulations (PBS, BCG, F127) at weeks 0, 3, 6. Total and subtypes of IgG, as well as cellular immune responses (Proliferation, In vivo CTL and IFN-γ/IL-4 ELISpot assays against a strong and dominant H2-d restricted, CD8+-epitopic peptide, core 39-48; RRGPRLGVRA of HCVcp) were compared in each group of immunized animals. RESULTS Expression and purification of core protein around the expected size (21 kDa) was confirmed by Western blotting. The HCVcp + BCG vaccinated mice showed significantly higher lymphocyte proliferation and IFN-γ production but lower levels of cell lysis (45% versus 62% in CTL assay) than the HCVcp+F127 immunized animals. "Besides, total anti-core IgG and IgG1 levels were significantly higher in HCVcp + F127 immunized mice as compared to HCVcp + BCG vaccinated animals, indicating relatively higher efficacy of F127 for the stimulation of humoral and Th2-oriented immune responses". CONCLUSIONS Results showed that HCVcp + BCG induced a moderate CTL and mixed Th1/Th2 immune responses with higher levels of cell proliferation and IFN-γ secretion, indicating that BCG may have a better outcome when formulated in HCVcp-based subunit vaccines.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Arash Memarnejadian
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding authors: Arash Memarnejadian, Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166969291, E-mail: ; Farzin Roohvand, Virology Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail: ,
| | - Mehdi Mahdavi
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Seyed Mehdi Sadat
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Fatemeh Motevali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production Complex, Pasteur Institute of Iran, Karaj, IR Iran
| | | | | | - Farzin Roohvand
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding authors: Arash Memarnejadian, Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166969291, E-mail: ; Farzin Roohvand, Virology Department, Pasteur Institute of Iran, Tehran, IR Iran. Tel/Fax: +98-2166496682, E-mail: ,
| |
Collapse
|
35
|
Abstract
Synthesis and large-scale manufacturing technologies are now available for the commercial production of even the most complex peptide anti-infectives. Married with the potential of this class of molecule as the next generation of effective, resistance-free and safe antimicrobials, and a much better understanding of their biology, pharmacology and pharmacodynamics, the first regulatory approvals and introduction into clinical practice of these promising drug candidates will likely be soon. This is a key juncture in the history/life cycle of peptide anti-infectives and, perhaps, their commercial and therapeutic potential is about to be realized. This review highlights the promise of these agents as the next generation of therapeutics and summarizes the challenges faced in, and lessons learned from, the past.
Collapse
|
36
|
Beaumont E, Roingeard P. Prospects for prophylactic hepatitis C vaccines based on virus-like particles. Hum Vaccin Immunother 2013; 9:1112-8. [PMID: 23406827 DOI: 10.4161/hv.23900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Given the global prevalence and long-term complications of chronic hepatitis C virus (HCV) infection, HCV constitutes one of the greatest challenges to human health of this decade. Considerable efforts have focused on the development of new effective treatments, but about three to four million individuals become infected each year, adding to the world reservoir of HCV infection. The development of a prophylactic vaccine against hepatitis C virus has thus become an important medical priority. Only a few vaccine candidates have progressed to the clinical phase, and published data on both the efficacy and safety of these vaccines are limited, due to many scientific, logistic and bioethic challenges. Fortunately, new innovative vaccine formulations, modes of vaccination and delivery technologies have been developed in recent years. Several preclinical trials of virus-like particle (VLP)-based vaccination strategies are currently underway and have already generated very promising results. In this commentary, we consider the current state of prophylactic HCV vaccines, the hurdles to be overcome in the future and the various VLP-based vaccination approaches currently being developed.
Collapse
Affiliation(s)
- Elodie Beaumont
- 1 INSERM U966; Université François Rabelais and CHRU de Tours; Tours, France
| | | |
Collapse
|
37
|
Abstract
Worldwide eradication of hepatitis C virus (HCV) is possible through a combination of prevention education, universal clinical and targeted community screening, effective linkage to care and treatment with promising new direct-acting antiviral drug regimens. Universal screening should be offered in all healthcare visits, and parallel community screening efforts should prioritize high-prevalence, high-transmission populations including injection drug users, prison inmates and those with HIV/HCV co-infection. Increasing awareness of HCV infection through screening, improving treatment uptake and cure rates by providing linkage to care and more effective treatment, and ultimately combining education efforts with vaccination campaigns to prevent transmission and reinfection can slow and eventually stop the 'silent epidemic'.
Collapse
Affiliation(s)
- Liesl M. Hagan
- Center for AIDS Research; Emory University School of Medicine and Veterans Affairs Medical Center; Decatur GA USA
| | - Raymond F. Schinazi
- Center for AIDS Research; Emory University School of Medicine and Veterans Affairs Medical Center; Decatur GA USA
| |
Collapse
|
38
|
|
39
|
Hosseini SY, Sabahi F, Moazzeni SM, Modarressi MH, Saberi Firoozi M, Ravanshad M. Construction and preparation of three recombinant adenoviruses expressing truncated NS3 and core genes of hepatitis C virus for vaccine purposes. HEPATITIS MONTHLY 2012; 12:e6130. [PMID: 23087750 PMCID: PMC3475015 DOI: 10.5812/hepatmon.6130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/06/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND In spite of dozens of clinical trials to establish effective therapeutic and/or preventive vaccine to resolve HCV infection, no real vaccine has been proved to date. Genetic vaccines based on replication-defective adenoviruses have proved to elicit strong and long lasting T-cell responses against a number of viral antigens and are even currently being used for vaccine trials in humans. According to the controversy in the immune modulatory effects of both core and NS3 full length genes, it seemed more practical to employ some parts of these HCV proteins for vaccine design. OBJECTIVES To generate recombinant Adenoviral vectors containing new overlapping-truncated region of NS3 gene or both the N- and C-terminal deleted parts of core gene, as well as a fusion fragment derived from both of them. MATERIALS AND METHODS The corresponding transfer vectors expressing truncated fragments of core, NS3 or a fusion fragment of both genes were prepared. The integrity and sequence of the transfer vectors were confirmed, and followed by experiments involving homologous recombination between them and the adenovirus backbone plasmid in the bacterial host. Recombinant Ad-pNS3, Ad-pCore and Ad-pNS3pCore viruses were prepared by transfection of these new recombined constructs into 293 packaging cell lines. The virus titer was then calculated by an immunohistochemistry based method. The RT-PCR, Real-Time PCR and western blotting were used to evaluate gene expression by all recombinant constructs. The production of complete virion particles was evaluated by detailed electron microscopy in addition to the appearance of typical cytopathic effects (CPE) and GFP expression patterns in 293 cells. The RT-PCR and GFP detection were employed to monitor the integrity as well as infectivity potency of the viral particles in Hep-G2 cells. RESULTS RT-PCR, Real-Time PCR or western blotting confirmed expression of truncated fragment of NS3, core or a fusion fragment of theirs by newly constructed Ad-pNS3, Ad-pCore, Ad- pNS3pCore particles. Electron microscopy, which revealed many adenovirus-like particles and characteristics of CPE in infected cells in addition to GFP detection, confirmed the infectivity, potency and integrity of recombinant adenoviral particles. CONCLUSIONS These adenoviruses expressing novel fragments of NS3 and core genes may be suitable tools to overcome shortcomings associated with full gene expression in the setting of HCV vaccine therapy.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- Department of Virology, Tarbiat Modares University, Tehran, IR Iran
- Gastroentero -Hepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Farzaneh Sabahi
- Department of Virology, Tarbiat Modares University, Tehran, IR Iran
- Corresponding author: Farzaneh Sabahi, Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box: 14115-331, Tehran, IR Iran. Tel.: +98-2182883880, Fax: +98-2182884555, E-mail:
| | | | | | - Mehdi Saberi Firoozi
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | | |
Collapse
|