1
|
Zaib S, Khan I, Ali HS, Younas MT, Ibrar A, Al-Odayni AB, Al-Kahtani AA. Design and discovery of anthranilamide derivatives as a potential treatment for neurodegenerative disorders via targeting cholinesterases and monoamine oxidases. Int J Biol Macromol 2024; 272:132748. [PMID: 38821306 DOI: 10.1016/j.ijbiomac.2024.132748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Neurodegenerative diseases with progressive cellular loss of the central nervous system and elusive disease etiology provide a continuous impetus to explore drug discovery programmes aiming at identifying robust and effective inhibitors of cholinesterase and monoamine oxidase enzymes. We herein present a concise library of anthranilamide derivatives involving a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction to install the diverse structural diversity required for the desired biological action. Using Ellman's method, cholinesterase inhibitory activity was performed against AChE and BuChE enzymes. In vitro assay results demonstrated that anthranilamides are potent inhibitors with remarkable potency. Compound 6k emerged as the lead candidate and dual inhibitor of both enzymes with IC50 values of 0.12 ± 0.01 and 0.49 ± 0.02 μM against AChE and BuChE, respectively. Several other compounds were found as highly potent and selective inhibitors. Anthranilamide derivatives were also tested against monoamine oxidase (A and B) enzymes using fluorometric method. In vitro data revealed compound 6h as the most potent inhibitor against MAO-A, showing an IC50 value of 0.44 ± 0.02 μM, whereas, compound 6k emerged as the top inhibitor of MAO-B with an IC50 value of 0.06 ± 0.01 μM. All the lead inhibitors were analyzed for the identification of their mechanism of action using Michaelis-Menten kinetics experiments. Compound 6k and 6h depicted a competitive mode of action against AChE and MAO-A, whereas, a non-competitive and mixed-type of inhibition was observed against BuChE and MAO-B by compounds 6k. Molecular docking analysis revealed remarkable binding affinities of the potent inhibitors with specific residues inside the active site of receptors. Furthermore, molecular dynamics simulations were performed to explore the ability of potent compounds to form energetically stable complexes with the target protein. Finally, in silico ADME calculations also demonstrated that the potent compounds exhibit promising pharmacokinetic profile, satisfying the essential criteria for drug-likeness. Altogether, the findings reported in the current work clearly suggest that the identified anthranilamide derivatives have the potential to serve as effective drug candidates for future investigations.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester MI 7DN, UK.
| | - Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry, the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur, Haripur, KPK 22620, Pakistan.
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Abdullah A Al-Kahtani
- Chemistry Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Bhawna, Kumar S, Kumar P, Kumar A. Correlation intensity index-index of ideality of correlation: A hyphenated target function for furtherance of MAO-B inhibitory activity assessment. Comput Biol Chem 2024; 108:107975. [PMID: 37950961 DOI: 10.1016/j.compbiolchem.2023.107975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023]
Abstract
Monoamine oxidases are the enzymes involved in the management of brain homeostasis through oxidative deamination of monoamines such as neurotransmitters, tyramine etc. The excessive production of monoamine oxidase-B specifically results in numerous neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Inhibitors of monoamine oxidase-B are applied in the management of these disorders. Here in this article we have developed robust hybrid descriptor based QSAR models related to 123 monoamine oxidase-B inhibitors through CORAL software by means of Monte Carlo optimization method. Three target functions were applied to prepare QSAR models and three splits were made for each target function. The most reliable, robust and better predictive QSAR models were developed with TF3 (correlation intensity index -index of ideality of correlation). Correlation intensity index showed positive effect on QSAR models. The structural features obtained from the QSAR modeling were incorporated in newly designed molecules and exhibited positive effect on their endpoint. Significant binding interactions were represented by these molecules in docking studies. Molecule B5 displayed prominent pIC50 (8.3) and binding affinity (-11.5 kcal mol-1) towards monoamine oxidase-B.
Collapse
Affiliation(s)
- Bhawna
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| |
Collapse
|
3
|
El-Damasy AK, Park JE, Kim HJ, Lee J, Bang EK, Kim H, Keum G. Identification of New N-methyl-piperazine Chalcones as Dual MAO-B/AChE Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16010083. [PMID: 36678580 PMCID: PMC9860728 DOI: 10.3390/ph16010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Monoamine oxidase-B (MAO-B), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) have been considered target enzymes of depression and neurodegenerative diseases, including Alzheimer's disease (AD). In this study, seventeen N-methyl-piperazine chalcones were synthesized, and their inhibitory activities were evaluated against the target enzymes. Compound 2k (3-trifluoromethyl-4-fluorinated derivative) showed the highest selective inhibition against MAO-B with an IC50 of 0.71 μM and selectivity index (SI) of 56.34, followed by 2n (2-fluoro-5-bromophenyl derivative) (IC50 = 1.11 μM, SI = 16.04). Compounds 2k and 2n were reversible competitive MAO-B inhibitors with Ki values of 0.21 and 0.28 μM, respectively. Moreover, 2k and 2n effectively inhibited AChE with IC50 of 8.10 and 4.32 μM, which underscored their multi-target inhibitory modes. Interestingly, compound 2o elicited remarkable inhibitions over MAO-B, AChE, and BChE with IC50 of 1.19-3.87 μM. A cell-based assay of compounds 2k and 2n against Vero normal cells pointed out their low cytotoxicity. In a docking simulation, 2k showed the lowest energy for MAO-B (-11.6 kcal/mol) with four hydrogen bonds and two π-π interactions. Furthermore, in silico studies were conducted, and disclosed that 2k and 2n are expected to possess favorable pharmacokinetic properties, such as the ability to penetrate the blood-brain barrier (BBB). In view of these findings, compounds 2k and 2n could serve as promising potential candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashraf K. El-Damasy
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: (A.K.E.-D.); (H.K.); (G.K.)
| | - Jong Eun Park
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyun Ji Kim
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jinhyuk Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
- Correspondence: (A.K.E.-D.); (H.K.); (G.K.)
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Correspondence: (A.K.E.-D.); (H.K.); (G.K.)
| |
Collapse
|
4
|
Guglielmi P, Carradori S, D'Agostino I, Campestre C, Petzer JP. An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opin Ther Pat 2022; 32:849-883. [PMID: 35638744 DOI: 10.1080/13543776.2022.2083501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood and cognitive activity, and monoamine catabolism. AREAS COVERED MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION MAO inhibitors here reported exhibit different potencies (from the micro- to nanomolar range) and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Mathew B, Oh JM, Khames A, Abdelgawad MA, Rangarajan TM, Nath LR, Agoni C, Soliman MES, Mathew GE, Kim H. Replacement of Chalcone-Ethers with Chalcone-Thioethers as Potent and Highly Selective Monoamine Oxidase-B Inhibitors and Their Protein-Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:ph14111148. [PMID: 34832930 PMCID: PMC8623647 DOI: 10.3390/ph14111148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
To develop new potent and highly selective MAO-B inhibitors from chalcone-thioethers, eleven chalcones-thioethers were synthesized and their monoamine oxidase (MAO) inhibition, kinetics, reversibility, and cytotoxicity of lead compounds were analyzed. Molecular dynamics were carried out to investigate the interactions. Compound TM8 showed potent inhibitory activity against MAO-B, with an IC50 value of 0.010 µM, followed by TM1, TM2, TM7, and TM10 (IC50 = 0.017, 0.021, 0.023, and 0.026 µM, respectively). Interestingly, TM8 had an extremely high selectivity index (SI; 4860) for MAO-B. Reversibility and kinetic experiments showed that TM8 and TM1 were reversible and competitive inhibitors of MAO-B with Ki values of 0.0031 ± 0.0013 and 0.011± 0.001 µM, respectively. Both TM1 and TM8 were non-toxic to Vero cells with IC50 values of 241.8 and 116.3 µg/mL (i.e., 947.7 and 402.4 µM), respectively, and at these IC50 values, both significantly reduced reactive oxygen species (ROS) levels. TM1 and TM8 showed high blood-brain barrier permeabilities in the parallel artificial membrane permeability assay. Molecular dynamics studies were conducted to investigate interactions between TM1 and TM8 and the active site of MAO-B. Conclusively, TM8 and TM1 are potent and highly selective MAO-B inhibitors with little toxicity and good ROS scavenging abilities and it is suggested that both are attractive prospective candidates for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
- Correspondence: or (B.M.); (H.K.)
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - T. M. Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi 110021, India;
| | - Lekshmi R. Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India;
| | - Clement Agoni
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (C.A.); (M.E.S.S.)
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa; (C.A.); (M.E.S.S.)
| | | | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
- Correspondence: or (B.M.); (H.K.)
| |
Collapse
|
6
|
Ayoup MS, Abu-Serie MM, Awad LF, Teleb M, Ragab HM, Amer A. Halting colorectal cancer metastasis via novel dual nanomolar MMP-9/MAO-A quinoxaline-based inhibitors; design, synthesis, and evaluation. Eur J Med Chem 2021; 222:113558. [PMID: 34116327 DOI: 10.1016/j.ejmech.2021.113558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) and monoamine oxidase-A (MAO-A) are central signaling nodes in CRC and promotors of distant metastasis associated with high mortality rates. Novel series of quinoxaline-based dual MMP-9/MAO-A inhibitors were synthesized to suppress CRC progression. The design rationale combines the thematic pharmacophoric features of MMP-9 and MAO-A inhibitors in hybrid scaffolds. All derivatives were initially screened via MTT assay for cytotoxic effects on normal colonocytes to assess their safety profiles, then evaluated for their anticancer potential on HCT116 cells overexpressing MMP-9 and MAO-A. The most promising derivatives 8, 16, 17, 19, and 28 exhibited single digit nanomolar IC50 against HCT116 cells within their safe doses (EC100) on normal colonocytes. They suppressed HCT116 cell migration by 73.32, 61.29, 21.27, 28.82, and 27.48%, respectively as detected by wound healing assay. Enzymatic assays revealed that the selected derivatives were superior to the reference MMP-9 and MAO-A inhibitors (quercetin and clorgyline, respectively). The nanomolar dual MMP-9/MAO-A inhibitor 19 was identified as the most potent and balanced dual inhibitor among the evaluated series with considerable selectivity against MAO-A over MAO-B. Besides, qRT-PCR analysis was conducted to explore the hit compounds' potential to downregulate hypoxia-inducing factor (HIF-1α) in HCT116 cells being correlated with MAO-A mediated CRC migration and invasion. The five above-mentioned compounds significantly downregulated HIF-1α by more than 5 folds. Docking simulations predicted their possible binding modes with MMP-9 and MAO-A and highlighted their essential structural features. Finally, they recorded drug-like in silico physicochemical parameters and ADMET profiles.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Laila F Awad
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Adel Amer
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt; Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.
| |
Collapse
|
7
|
Ostadkarampour M, Putnins EE. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Front Pharmacol 2021; 12:676239. [PMID: 33995107 PMCID: PMC8120032 DOI: 10.3389/fphar.2021.676239] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammatory diseases are debilitating, affect patients' quality of life, and are a significant financial burden on health care. Inflammation is regulated by pro-inflammatory cytokines and chemokines that are expressed by immune and non-immune cells, and their expression is highly controlled, both spatially and temporally. Their dysregulation is a hallmark of chronic inflammatory and autoimmune diseases. Significant evidence supports that monoamine oxidase (MAO) inhibitor drugs have anti-inflammatory effects. MAO inhibitors are principally prescribed for the management of a variety of central nervous system (CNS)-associated diseases such as depression, Alzheimer's, and Parkinson's; however, they also have anti-inflammatory effects in the CNS and a variety of non-CNS tissues. To bolster support for their development as anti-inflammatories, it is critical to elucidate their mechanism(s) of action. MAO inhibitors decrease the generation of end products such as hydrogen peroxide, aldehyde, and ammonium. They also inhibit biogenic amine degradation, and this increases cellular and pericellular catecholamines in a variety of immune and some non-immune cells. This decrease in end product metabolites and increase in catecholamines can play a significant role in the anti-inflammatory effects of MAO inhibitors. This review examines MAO inhibitor effects on inflammation in a variety of in vitro and in vivo CNS and non-CNS disease models, as well as their anti-inflammatory mechanism(s) of action.
Collapse
Affiliation(s)
- Mahyar Ostadkarampour
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Edward E Putnins
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Elkamhawy A, Paik S, Kim HJ, Park JH, Londhe AM, Lee K, Pae AN, Park KD, Roh EJ. Discovery of N-(1-(3-fluorobenzoyl)-1 H-indol-5-yl)pyrazine-2-carboxamide: a novel, selective, and competitive indole-based lead inhibitor for human monoamine oxidase B. J Enzyme Inhib Med Chem 2021; 35:1568-1580. [PMID: 32752896 PMCID: PMC7470070 DOI: 10.1080/14756366.2020.1800666] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herein, two new series of N-substituted indole-based analogues were rationally designed, synthesized via microwave heating technology, and evaluated as noteworthy MAO-B potential inhibitors. Compared to the reported indazole-based hits VI and VII, compounds 4b and 4e exhibited higher inhibitory activities over MAO-B with IC50 values of 1.65 and 0.78 µM, respectively. When compared to the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), both 4b and 4e also showed better selectivity indices (SI > 60 and 120, respectively). A further kinetic evaluation of the most potent derivative (4e) displayed a competitive mode of inhibition (inhibition constant (Ki)/MAO-B = 94.52 nM). Reasonable explanations of the elicited biological activities were presented via SAR study and molecular docking simulation. Accordingly, the remarkable MAO-B inhibitory activity of 4e (N-(1-(3-fluorobenzoyl)-1H-indol-5-yl)pyrazine-2-carboxamide), with its selectivity and competitive inhibition, advocates its potential role as a promising lead worthy of further optimization.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ashwini M Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
9
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
10
|
Maliyakkal N, Eom BH, Heo JH, Abdullah Almoyad MA, Thomas Parambi DG, Gambacorta N, Nicolotti O, Beeran AA, Kim H, Mathew B. A New Potent and Selective Monoamine Oxidase-B Inhibitor with Extended Conjugation in a Chalcone Framework: 1-[4-(Morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one. ChemMedChem 2020; 15:1629-1633. [PMID: 32583952 DOI: 10.1002/cmdc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 01/18/2023]
Abstract
The general blueprint for the design of monoamine oxidase-B (MAO-B) inhibitors has been based on two phenyl or heteronuclei linked via a spacer of appropriate length. In this study, 1-[4-(morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one (MO10) was prepared by the condensation of 4'-morpholinoacetophenone and cinnamaldehyde in basic alcoholic medium. MO10 was assessed for inhibitory activity against two human MAO isoforms, MAO-A and MAO-B. Interestingly, MO10 showed a remarkable inhibition against MAO-B with an IC50 value of 0.044 μM along with a selectivity index of 366.13. The IC50 value was better than that of lazabemide (IC50 value of 0.063 μM), which was used as a reference. Kinetics studies revealed that MO10 acted as a competitive inhibitor of MAO-B, with a Ki value of 0.0080 μM. The observation of recovery of MAO-B inhibition, compared to reference levels showed MO10 to be a reversible inhibitor. MTT assays showed that MO10 was nontoxic to normal VERO cells with an IC50 value of 195.44 μg/mL. SwissADME predicted that MO10 provided advantageous pharmacokinetics profiles for developing agents acting on the central nervous system, that is, high passive human gastrointestinal absorption and blood-brain barrier permeability. Molecular docking simulations showed that MO10 properly entered the aromatic cage formed by Y435, Y398, and FAD of the active site of MAO-B. On the basis of these results, MO10 can be considered a promising starting compound in development of agents for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Mushait, PO Box. 4536, ZIP., 61412, Saudi Arabia
| | - Bo Hyun Eom
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Jeong Hyun Heo
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Mushait, PO Box. 4536, ZIP., 61412, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Nicola Gambacorta
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India
| |
Collapse
|
11
|
Kasabova-Angelova A, Tzankova D, Mitkov J, Georgieva M, Tzankova V, Zlatkov A, Kondeva-Burdina M. Xanthine Derivatives as Agents Affecting Non-dopaminergic Neuroprotection in Parkinson`s Disease. Curr Med Chem 2020; 27:2021-2036. [PMID: 30129404 DOI: 10.2174/0929867325666180821153316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Parkinson's Disease (PD) is a neurodegenerative and debilitating disease that affects 1% of the elderly population. Patient's motor disability results in extreme difficulty to deal with daily activities. Conventional treatment is limited to dopamine replacement therapy, which fails to delay disease's progression and is often associated with a number of adverse reactions. Recent progress in understanding the mechanisms involved in PD has revealed new molecular targets for therapeutic approaches. Among them, caffeine and xanthine derivatives are promising drug candidates, because of the possible symptomatic benefits in PD. In fact, consumption of coffee correlates with a reduced risk of PD. Over the last decades, a lot of efforts have been made to uncover the therapeutic potential of xanthine structures. The substituted xanthine molecule is used as a scaffold for the synthesis of new compounds with protective effects in neurodegenerative diseases, including PD, asthma, cancer and others. The administration of the xanthines has been proposed as a non-dopaminergic strategy for neuroprotection in PD and the mechanisms of protection have been associated with antagonism of adenosine A2A receptors and Monoamine Oxidase type B (MAO-B) inhibition. The current review summarizes frequently suspected non-dopaminergic neuroprotective mechanisms and the possible beneficial effects of the xanthine derivatives in PD, along with some synthetic approaches to produce perspective xanthine derivatives as non-dopaminergic agents in PD treatment.
Collapse
Affiliation(s)
- Alexandra Kasabova-Angelova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Virginia Tzankova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
12
|
Guglielmi P, Secci D, Petzer A, Bagetta D, Chimenti P, Rotondi G, Ferrante C, Recinella L, Leone S, Alcaro S, Zengin G, Petzer JP, Ortuso F, Carradori S. Benzo[ b]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: design, synthesis, and biological activity. J Enzyme Inhib Med Chem 2019; 34:1511-1525. [PMID: 31422706 PMCID: PMC6713090 DOI: 10.1080/14756366.2019.1653864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A series of benzo[b]thiophen-3-ols were synthesised and investigated as potential human monoamine oxidase (hMAO) inhibitors in vitro as well as ex vivo in rat cortex synaptosomes by means of evaluation of 3,4-dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratio and lactate dehydrogenase (LDH) activity. Most of these compounds possessed high selectivity for the MAO-B isoform and a discrete antioxidant and chelating potential. Molecular docking studies of all the compounds underscored potential binding site interactions suitable for MAO inhibition activity, and suggested structural requirements to further improve the activity of this scaffold by chemical modification of the aryl substituents. Starting from this heterocyclic nucleus, novel lead compounds for the treatment of neurodegenerative disease could be developed.
Collapse
Affiliation(s)
- Paolo Guglielmi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Daniela Secci
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Anél Petzer
- b Pharmaceutical Chemistry, School of Pharmacy, Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom , South Africa
| | - Donatella Bagetta
- c Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto , Catanzaro , Italy.,d Net4Science Academic Spin-Off, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Paola Chimenti
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Giulia Rotondi
- a Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome , Italy
| | - Claudio Ferrante
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Lucia Recinella
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Sheila Leone
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Stefano Alcaro
- c Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto , Catanzaro , Italy.,d Net4Science Academic Spin-Off, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Gokhan Zengin
- f Department of Biology, Science Faculty, Selcuk University , Konya , Turkey
| | - Jacobus P Petzer
- b Pharmaceutical Chemistry, School of Pharmacy, Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom , South Africa
| | - Francesco Ortuso
- c Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto , Catanzaro , Italy.,d Net4Science Academic Spin-Off, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Simone Carradori
- e Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara , Chieti , Italy
| |
Collapse
|
13
|
Zhou ZD, Xie SP, Saw WT, Ho PGH, Wang H, Lei Z, Yi Z, Tan EK. The Therapeutic Implications of Tea Polyphenols Against Dopamine (DA) Neuron Degeneration in Parkinson's Disease (PD). Cells 2019; 8:cells8080911. [PMID: 31426448 PMCID: PMC6721683 DOI: 10.3390/cells8080911] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
: Accumulative evidence indicated that the pathologically accumulated metal ions (iron species and Mn3+) and abnormally up-regulated monoamine oxidase B (MAOB) activity induced oxidation of endogenous dopamine (DA) can lead to mitochondria impairment, lysosome dysfunction, proteasome inhibition, and selective DA neuron vulnerability, which is implicated in the pathogenesis of Parkinson's disease (PD). The DA oxidation can generate deleterious reactive oxygen species (ROS) and highly reactive DA quinones (DAQ) to induce DA-related toxicity, which can be alleviated by DA oxidation suppressors, ROS scavengers, DAQ quenchers, and MAOB inhibitors. On the other hand, the nuclear factor erythroid 2-related factor 2 (Nrf2)-Keap1 and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) anti-oxidative and proliferative signaling pathways play roles in anti-oxidative cell defense and mitochondria biogenesis, which is implicated in DA neuron protections. Therefore, agents with capabilities to suppress DA-related toxicity including inhibition of DA oxidation, scavenge of ROS, detoxification of DAQ, inhibition of MAOB, and modulations of anti-oxidative signaling pathways can be protective to DA neurons. Accumulative evidence shows that tea or coffee consumptions and smoking are related to deceased PD prevalence with unknown mechanisms. In this study, we investigate the protective capabilities of tea polyphenols and other PD relevant agents to inhibit DA-related toxicity and protect against environmental or genetic factors induced DA neuron degeneration in vitro and in vivo. We find that tea polyphenols can significantly suppress DA-related toxicity to protect DA neurons. The tea polyphenols can protect DA neurons via inhibition of DA oxidation, conjugation with DAQ, scavenge of ROS, inhibition of MAOB, and modulations of Nrf2-Keap1 and PGC-1α anti-oxidative signaling pathways. The tea polyphenols with more phenolic hydroxyl groups and ring structures have stronger protective functions. The protective capabilities of tea polyphenols is further strengthened by evidence that phenolic hydroxyl groups can directly conjugate with DAQ. However, GSH and other sulfhydyl groups containing agents have weaker capabilities to abrogate DA oxidation, detoxify ROS and DAQ and inhibit MAOB; whereas nicotine (NICO) and caffeine (CAF) can only modulate Nrf2-Keap1 and PGC-1α pathways to protect DA neurons weakly. The tea polyphenols are identified to protect against overexpression of mutant A30P α-synuclein (α-syn) induced DA neuron degeneration and PD-like symptoms in transgenic Drosophila. Based on achievements from current studies, the excellent and versatile protective capabilities of tea polyphenols are highlighted, which will contribute and benefit to future anti-PD therapy.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Shao Ping Xie
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Wuan Ting Saw
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Patrick Ghim Hoe Ho
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Hongyan Wang
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhou Lei
- Ocular Proteomics Laboratory, Singapore Eye Research Institute, Singapore 169856, Singapore
- Singapore Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhao Yi
- Department of Neurology, Singapore General Hospital, Singapore 169608, Singapore
| | - Eng King Tan
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857, Singapore.
- Department of Neurology, Singapore General Hospital, Singapore 169608, Singapore.
| |
Collapse
|
14
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
15
|
Secci D, Carradori S, Petzer A, Guglielmi P, D'Ascenzio M, Chimenti P, Bagetta D, Alcaro S, Zengin G, Petzer JP, Ortuso F. 4-(3-Nitrophenyl)thiazol-2-ylhydrazone derivatives as antioxidants and selective hMAO-B inhibitors: synthesis, biological activity and computational analysis. J Enzyme Inhib Med Chem 2019; 34:597-612. [PMID: 30727777 PMCID: PMC6366404 DOI: 10.1080/14756366.2019.1571272] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A new series of 4-(3-nitrophenyl)thiazol-2-ylhydrazone derivatives were designed, synthesised, and evaluated to assess their inhibitory effect on the human monoamine oxidase (hMAO) A and B isoforms. Different (un)substituted (hetero)aromatic substituents were linked to N1 of the hydrazone in order to establish robust structure–activity relationships. The results of the biological testing demonstrated that the presence of the hydrazothiazole nucleus bearing at C4 a phenyl ring functionalised at the meta position with a nitro group represents an important pharmacophoric feature to obtain selective and reversible human MAO-B inhibition for the treatment of neurodegenerative disorders. In addition, the most potent and selective MAO-B inhibitors were evaluated in silico as potential cholinesterase (AChE/BuChE) inhibitors and in vitro for antioxidant activities. The results obtained from molecular modelling studies provided insight into the multiple interactions and structural requirements for the reported MAO inhibitory properties.
Collapse
Affiliation(s)
- Daniela Secci
- a Dipartimento di Chimica e Tecnologie del Farmaco , Sapienza University of Rome , Rome , Italy
| | - Simone Carradori
- b Department of Pharmacy , "G. D'Annunzio" University of Chieti-Pescara , Chieti , Italy
| | - Anél Petzer
- c Pharmaceutical Chemistry, School of Pharmacy, and Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Paolo Guglielmi
- a Dipartimento di Chimica e Tecnologie del Farmaco , Sapienza University of Rome , Rome , Italy
| | - Melissa D'Ascenzio
- a Dipartimento di Chimica e Tecnologie del Farmaco , Sapienza University of Rome , Rome , Italy
| | - Paola Chimenti
- a Dipartimento di Chimica e Tecnologie del Farmaco , Sapienza University of Rome , Rome , Italy
| | - Donatella Bagetta
- d Dipartimento di Scienze della Salute , "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Stefano Alcaro
- d Dipartimento di Scienze della Salute , "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Gokhan Zengin
- e Department of Biology, Science Faculty , Selcuk University , Konya , Turkey
| | - Jacobus P Petzer
- c Pharmaceutical Chemistry, School of Pharmacy, and Centre of Excellence for Pharmaceutical Sciences , North-West University , Potchefstroom , South Africa
| | - Francesco Ortuso
- d Dipartimento di Scienze della Salute , "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| |
Collapse
|
16
|
Guglielmi P, Carradori S, Poli G, Secci D, Cirilli R, Rotondi G, Chimenti P, Petzer A, Petzer JP. Design, Synthesis, Docking Studies and Monoamine Oxidase Inhibition of a Small Library of 1-acetyl- and 1-thiocarbamoyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazoles. Molecules 2019; 24:molecules24030484. [PMID: 30700029 PMCID: PMC6384781 DOI: 10.3390/molecules24030484] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 01/30/2023] Open
Abstract
New N-acetyl/N-thiocarbamoylpyrazoline derivatives were designed and synthesized in high yields to assess their inhibitory activity and selectivity against human monoamine oxidase A and B. The most important chiral compounds were separated into their single enantiomers and tested. The impact of the substituents at N1, C3 and C5 positions as well the influence of the configuration of the C5 on the biological activity were analyzed. Bulky aromatic groups at C5 were not tolerated. p-Prenyloxyaryl moiety at C3 oriented the selectivity toward the B isoform. The results were also corroborated by molecular modelling studies providing new suggestions for the synthesis of privileged structures to serve as lead compounds for the treatment of mood disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
| | - Giulio Poli
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Roberto Cirilli
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Giulia Rotondi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Paola Chimenti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| | - Jacobus P Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
17
|
Fernandes C, Martins C, Fonseca A, Nunes R, Matos MJ, Silva R, Garrido J, Sarmento B, Remião F, Otero-Espinar FJ, Uriarte E, Borges F. PEGylated PLGA Nanoparticles As a Smart Carrier to Increase the Cellular Uptake of a Coumarin-Based Monoamine Oxidase B Inhibitor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39557-39569. [PMID: 30352150 DOI: 10.1021/acsami.8b17224] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite research efforts to discover new drugs for Parkinson treatment, the majority of candidates fail in preclinical and clinical trials due to inadequate pharmacokinetic properties, namely blood-brain barrier permeability. Within the high demand to introduce new drugs to market, nanotechnology can be used as a solution. Accordingly, PEGylated PLGA nanoparticles (NPs) were used as a smart delivery carrier to solve the suboptimal aqueous solubility, which precludes its use in in vivo assays, of a potent, reversible, and selective monoamine oxidase B inhibitor (IMAO-B) (coumarin C75, IC50 = 28.89 ± 1.18 nM). Long-term stable PLGA@C75 NPs were obtained by nanoprecipitation method, with sizes around 105 nm and a zeta potential of -10.1 mV. The encapsulation efficacy was around 50%, achieving the final C75 concentration of 807 ± 30 μM in the nanoformulation, which corresponds to a therapeutic concentration 27828-fold higher than its IC50 value. Coumarin C75 showed cytotoxic effects at 50 μM after 48 and 72 h of exposure in SH-SY5Y, Caco-2, and hCMEC/D3 cell lines. Remarkably, no cytotoxic effects were observed after nanoencapsulation. Furthermore, the data obtained from the P-gp-Glo assay and the cellular uptake studies showed that C75 is a P-glycoprotein (P-gp) substrate having a lower uptake profile in intestinal and brain endothelial cells. Moreover, it was shown that this membrane transporter influences C75 permeability profile in Caco-2 and hCMEC/D3 cells. Interestingly, PLGA NPs inhibited P-gp and were able to cross intestinal and brain membranes allowing the successful transport of C75 through this type of biological barriers. Overall, this work showed that nanotechnology can be used to solve drug discovery related drawbacks.
Collapse
Affiliation(s)
- Carlos Fernandes
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Cláudia Martins
- i3S, Instituto de Investigação e Inovação em Saúde , Universidade do Porto , 4200-393 Porto , Portugal
- INEB, Instituto de Engenharia Biomédica, Nanomedicines & Translational Drug Delivery Group , Universidade do Porto , 4200-393 Porto , Portugal
| | - André Fonseca
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Rute Nunes
- i3S, Instituto de Investigação e Inovação em Saúde , Universidade do Porto , 4200-393 Porto , Portugal
- INEB, Instituto de Engenharia Biomédica, Nanomedicines & Translational Drug Delivery Group , Universidade do Porto , 4200-393 Porto , Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar , Universidade do Porto , 4050-313 Porto , Portugal
| | - Maria João Matos
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia , Universidade do Porto , 4050-313 Porto , Portugal
| | - Jorge Garrido
- Departamento de Engenharia Química, Instituto Superior de Engenharia do Porto (ISEP) , Instituto Politécnico do Porto , 4200-072 Porto , Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde , Universidade do Porto , 4200-393 Porto , Portugal
- INEB, Instituto de Engenharia Biomédica, Nanomedicines & Translational Drug Delivery Group , Universidade do Porto , 4200-393 Porto , Portugal
- CESPU , Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , 4585-116 Gandra , Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia , Universidade do Porto , 4050-313 Porto , Portugal
| | - Francisco J Otero-Espinar
- Departamento de Farmacologia, Farmacia y Tecnologia Farmaceutica , Universidad of Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica , Facultad de Farmacia , 15782 Santiago de Compostela , España
- Instituto de Ciencias Químicas Aplicadas , Universidad Autónoma de Chile , 7500912 Santiago , Chile
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
| |
Collapse
|
18
|
Mathew B, Baek SC, Grace Thomas Parambi D, Pil Lee J, Joy M, Annie Rilda PR, Randev RV, Nithyamol P, Vijayan V, Inasu ST, Mathew GE, Lohidakshan KK, Kumar Krishnan G, Kim H. Selected aryl thiosemicarbazones as a new class of multi-targeted monoamine oxidase inhibitors. MEDCHEMCOMM 2018; 9:1871-1881. [PMID: 30568755 PMCID: PMC6254048 DOI: 10.1039/c8md00399h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022]
Abstract
A series of 13 phenyl substituted thiosemicarbazones (SB1-SB13) were synthesized and evaluated for their inhibitory potential towards human recombinant monoamine oxidase A and B (MAO-A and MAO-B, respectively) and acetylcholinesterase. The solid state structure of SB4 was ascertained by the single X-ray diffraction technique. Compounds SB5 and SB11 were potent for MAO-A (IC50 1.82 ± 0.14) and MAO-B (IC50 0.27 ± 0.015 μM), respectively. Furthermore, SB11 showed a high selectivity index (SI > 37.0) for MAO-B. The effects of fluorine orientation revealed that SB11 (m-fluorine) showed 28.2 times higher inhibitory activity than SB12 (o-fluorine) against MAO-B. Furthermore, inhibitions by SB5 and SB11 against MAO-A and MAO-B, respectively, were recovered to near reference levels in reversibility experiments. Both SB5 and SB11 showed competitive inhibition modes, with K i values of 0.97 ± 0.042 and 0.12 ± 0.006 μM, respectively. These results indicate that SB5 and SB11 are selective, reversible and competitive inhibitors of MAO-A and MAO-B, respectively. Compounds SB5, SB7 and SB11 showed moderate inhibition against acetylcholinesterase with IC50 values of 35.35 ± 0.47, 15.61 ± 0.057 and 26.61 ± 0.338 μM, respectively. Blood-brain barrier (BBB) permeation was studied using the parallel artificial membrane permeation assay (PAMPA) method. Molecular docking studies were carried out using AutoDock 4.2.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Seung Cheol Baek
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences , Sunchon National University , Suncheon-57922 , Republic of Korea .
| | | | - Jae Pil Lee
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences , Sunchon National University , Suncheon-57922 , Republic of Korea .
| | - Monu Joy
- School of Pure & Applied Physics , M.G. University , Kottayam , Kerala , India
| | - P R Annie Rilda
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Rugma V Randev
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - P Nithyamol
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Vijitha Vijayan
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Sini T Inasu
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | | | | | - Girish Kumar Krishnan
- Department of Pharmaceutical Chemistry , College of Pharmaceutical Sciences , Government Medical College Trivandrum , India
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences , Sunchon National University , Suncheon-57922 , Republic of Korea .
| |
Collapse
|
19
|
Gealageas R, Devineau A, So PPL, Kim CMJ, Surendradoss J, Buchwalder C, Heller M, Goebeler V, Dullaghan EM, Grierson DS, Putnins EE. Development of Novel Monoamine Oxidase-B (MAO-B) Inhibitors with Reduced Blood-Brain Barrier Permeability for the Potential Management of Noncentral Nervous System (CNS) Diseases. J Med Chem 2018; 61:7043-7064. [PMID: 30016860 DOI: 10.1021/acs.jmedchem.7b01588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Studies indicate that MAO-B is induced in peripheral inflammatory diseases. To target peripheral tissues using MAO-B inhibitors that do not permeate the blood-brain barrier (BBB) the MAO-B-selective inhibitor deprenyl was remodeled by replacing the terminal acetylene with a CO2H function, and incorporating a para-OCH2Ar motif (compounds 10a-s). Further, in compound 32 the C-2 side chain corresponded to CH2CN. In vitro, 10c, 10j, 10k, and 32 were identified as potent reversible MAO-B inhibitors, and all four compounds were more stable than deprenyl in plasma, liver microsomal, and hepatocyte stability assays. In vivo, they demonstrated greater plasma bioavailability. Assessment of in vitro BBB permeability showed that compound 10k is a P-glycoprotein (P-gp) substrate and 10j displayed mild interaction. Importantly, compounds 10c, 10j, 10k, and 32 displayed significantly reduced BBB permeability after intravenous, subcutaneous, and oral administration. These polar MAO-B inhibitors are pertinent leads for evaluation of efficacy in noncentral nervous system (CNS) inflammatory disease models.
Collapse
Affiliation(s)
- Ronan Gealageas
- Faculty of Pharmaceutical Sciences , The University of British Columbia , 2405 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Alice Devineau
- Faculty of Pharmaceutical Sciences , The University of British Columbia , 2405 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Pauline P L So
- Centre for Drug Research and Development , 2405 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Catrina M J Kim
- Centre for Drug Research and Development , 2405 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Jayakumar Surendradoss
- Centre for Drug Research and Development , 2405 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Christian Buchwalder
- Faculty of Pharmaceutical Sciences , The University of British Columbia , 2405 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Markus Heller
- Centre for Drug Research and Development , 2405 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Verena Goebeler
- Faculty of Dentistry , The University of British Columbia , 2199 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Edith M Dullaghan
- Centre for Drug Research and Development , 2405 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - David S Grierson
- Faculty of Pharmaceutical Sciences , The University of British Columbia , 2405 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Edward E Putnins
- Faculty of Dentistry , The University of British Columbia , 2199 Wesbrook Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| |
Collapse
|
20
|
Chirkova ZV, Kabanova MV, Filimonov SI, Abramov IG, Petzer A, Engelbrecht I, Petzer JP, Yu Suponitsky K, Veselovsky AV. An investigation of the monoamine oxidase inhibition properties of pyrrolo[3,4-f]indole-5,7-dione and indole-5,6-dicarbonitrile derivatives. Drug Dev Res 2018; 79:81-93. [DOI: 10.1002/ddr.21425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/24/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Zhanna V. Chirkova
- Yaroslavl State Technical University; Yaroslavl 150023 Russian Federation
| | - Mariya V. Kabanova
- Yaroslavl State Technical University; Yaroslavl 150023 Russian Federation
| | | | - Igor G. Abramov
- Yaroslavl State Technical University; Yaroslavl 150023 Russian Federation
| | - Anél Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences; North-West University; Potchefstroom 2520 South Africa
| | - Idalet Engelbrecht
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences; North-West University; Potchefstroom 2520 South Africa
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences; North-West University; Potchefstroom 2520 South Africa
| | - Kyrill Yu Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Moscow 119991 Russian Federation
| | | |
Collapse
|
21
|
Nwanna EE, Adebayo AA, Oboh G, Ogunsuyi OB, Ademosun AO. Modulatory Effects of Alkaloid Extract from Gongronema latifolium (Utazi) and Lasianthera africana (Editan) on Activities of Enzymes Relevant to Neurodegeneration. J Diet Suppl 2018; 16:27-39. [PMID: 29451813 DOI: 10.1080/19390211.2018.1426075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most alkaloids are produced by plants as a defense mechanism against herbivores. Since alkaloids are known to possess pharmacological effects, this study sought to investigate the in vitro modulatory effect of alkaloid obtained from two commonly consumed vegetables in southern Nigeria, Lasianthera africana (editan) and Gongronema latifolium (utazi), on some enzyme activities relevant to neurodegeneration. Effects of the alkaloids on cholinesterases (acetylcholinesterase [AChE] and butyrylcholinesterase [BChE]) and monoamine oxidase (MAO) activities were determined in vitro. In addition, Fe2+ chelating ability as well as radical-scavenging abilities were determined. Alkaloid profile was also determined using gas chromatography coupled with flame ionization detector (GC-FID). The results revealed that the alkaloids inhibited AChE, BChE, and MAO activities in a concentration-dependent manner, such that the alkaloid from G. latifolium showed higher enzyme inhibition (AChE [IC50 = 87.39 µg/ml], BChE [IC50 = 118.65 µg/ml], and MAO [IC50 = 61.37 µg/ml]) than L. africana (AChE = 115.60 µg/ml; BChE = 169.48 µg/ml; MAO = 73.72 µg/ml). In addition, GC-FID analysis revealed abundance of choline in both extracts. Gongronema latifolium and Lasianthera africana alkaloid extracts inhibit enzymes (acetylcholinesterase, butyrylcholinesterase, and monoamine oxidase) implicated in neurodegenerative diseases. Hence, these vegetables could offer dietary supplement in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Esther E Nwanna
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| | - Adeniyi A Adebayo
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| | - Ganiyu Oboh
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| | - Opeyemi B Ogunsuyi
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| | - Ayokunle O Ademosun
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| |
Collapse
|
22
|
Kawaai K, Yamaguchi T, Yamaguchi E, Endo S, Tada N, Ikari A, Itoh A. Photoinduced Generation of Acyl Radicals from Simple Aldehydes, Access to 3-Acyl-4-arylcoumarin Derivatives, and Evaluation of Their Antiandrogenic Activities. J Org Chem 2018; 83:1988-1996. [DOI: 10.1021/acs.joc.7b02933] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Kazuki Kawaai
- Laboratory
of Pharmaceutical Synthetic Chemistry and ‡Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Tomoaki Yamaguchi
- Laboratory
of Pharmaceutical Synthetic Chemistry and ‡Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory
of Pharmaceutical Synthetic Chemistry and ‡Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory
of Pharmaceutical Synthetic Chemistry and ‡Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Norihiro Tada
- Laboratory
of Pharmaceutical Synthetic Chemistry and ‡Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory
of Pharmaceutical Synthetic Chemistry and ‡Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory
of Pharmaceutical Synthetic Chemistry and ‡Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
23
|
Carradori S, Secci D, Petzer JP. MAO inhibitors and their wider applications: a patent review. Expert Opin Ther Pat 2018; 28:211-226. [DOI: 10.1080/13543776.2018.1427735] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara , Chieti, Italy
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome , Rome, Italy
| | - Jacques P. Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University , Potchefstroom, South Africa
| |
Collapse
|
24
|
Chen R, Xiao J, Ni Y, Xu HF, Zheng M, Tong X, Zhang TT, Liao C, Tang WJ. Novel tricyclic pyrazolo[1,5-d][1,4]benzoxazepin-5(6H)-one: Design, synthesis, model and use as hMAO-B inhibitors. Bioorg Med Chem 2016; 24:1741-8. [DOI: 10.1016/j.bmc.2016.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/24/2023]
|
25
|
Tripathi RKP, Krishnamurthy S, Ayyannan SR. Discovery of 3-Hydroxy-3-phenacyloxindole Analogues of Isatin as Potential Monoamine Oxidase Inhibitors. ChemMedChem 2015; 11:119-32. [DOI: 10.1002/cmdc.201500443] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/01/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Rati K. P. Tripathi
- Pharmaceutical Chemistry Research Laboratory; Department of Pharmaceutics; Indian Institute of Technology; Banaras Hindu University; Varanasi 221005 Uttar Pradesh India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory; Department of Pharmaceutics; Indian Institute of Technology; Banaras Hindu University; Varanasi 221005 Uttar Pradesh India
| | - Senthil R. Ayyannan
- Pharmaceutical Chemistry Research Laboratory; Department of Pharmaceutics; Indian Institute of Technology; Banaras Hindu University; Varanasi 221005 Uttar Pradesh India
| |
Collapse
|
26
|
Novel 2H-chromen-2-one derivatives of resveratrol: Design, synthesis, modeling and use as human monoamine oxidase inhibitors. Eur J Med Chem 2015; 103:185-90. [DOI: 10.1016/j.ejmech.2015.08.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/01/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
|
27
|
Abstract
Accumulating evidence shows a relationship between the human MAO-B (hMAO-B) enzyme and neuropsychiatric/degenerative disorder, personality traits, type II alcoholism, borderline personality disorders, aggressiveness and violence in crime, obsessive-compulsive disorder, depression, suicide, schizophrenia, anorexia nervosa, migraine, dementia, and PD. Thus, MAO-B represents an attractive target for the treatment of a number of human diseases. The discovery, development, and therapeutic use of drugs that inhibit MAO-B are major challenges for future therapy. Various compounds and drugs that selectively target this isoform have been discovered recently. These agents are synthetic compounds or natural products and their analogues, including chalcones, pyrazoles, chromones, coumarins, xanthines, isatin derivatives, thiazolidindiones, (thiazol-2-yl)hydrazones, and analogues of marketed drugs. Despite considerable efforts in understanding the binding interaction with specific substrates or inhibitors, structural information available for the rational design of new hMAO-B inhibitors remains unsatisfactory. Therefore, the quest for novel, potent, and selective hMAO-B inhibitors remains of high interest.
Collapse
Affiliation(s)
- Simone Carradori
- Dipartimento Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Romano Silvestri
- Dipartimento Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
28
|
D’Ascenzio M, Chimenti P, Gidaro MC, De Monte C, De Vita D, Granese A, Scipione L, Di Santo R, Costa G, Alcaro S, Yáñez M, Carradori S. (Thiazol-2-yl)hydrazone derivatives from acetylpyridines as dual inhibitors of MAO and AChE: synthesis, biological evaluation and molecular modeling studies. J Enzyme Inhib Med Chem 2015; 30:908-19. [DOI: 10.3109/14756366.2014.987138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Melissa D’Ascenzio
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy,
| | - Paola Chimenti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy,
| | | | - Celeste De Monte
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy,
| | - Daniela De Vita
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy,
| | - Arianna Granese
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy,
| | - Luigi Scipione
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy,
| | - Roberto Di Santo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy,
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy,
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università di Catanzaro, Catanzaro, Italy,
| | - Matilde Yáñez
- University of Santiago de Compostela, Santiago de Compostela, Spain, and
| | - Simone Carradori
- Department of Pharmacy, “G. D'Annunzio“ University of Chieti-Pescara, Chieti Scalo (CH), Italy
| |
Collapse
|
29
|
Chirkova ZV, Kabanova MV, Filimonov SI, Abramov IG, Petzer A, Petzer JP, Firgang SI, Suponitsky KY. Inhibition of monoamine oxidase by indole-5,6-dicarbonitrile derivatives. Bioorg Med Chem Lett 2015; 25:1206-11. [DOI: 10.1016/j.bmcl.2015.01.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/30/2022]
|
30
|
Kojima M, Oisaki K, Kanai M. Metal-free C(3)–H arylation of coumarins promoted by catalytic amounts of 5,10,15,20-tetrakis(4-diethylaminophenyl)porphyrin. Chem Commun (Camb) 2015; 51:9718-21. [DOI: 10.1039/c5cc02349a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-free, Meerwein-type C(3)–H arylation of coumarins was achieved in the presence of catalytic amounts of 5,10,15,20-tetrakis(4-diethylaminophenyl)porphyrin.
Collapse
Affiliation(s)
- Masahiro Kojima
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
- JST-ERATO Kanai Life Science Catalysis Project
| |
Collapse
|
31
|
Carradori S, Petzer JP. Novel monoamine oxidase inhibitors: a patent review (2012 - 2014). Expert Opin Ther Pat 2014; 25:91-110. [PMID: 25399762 DOI: 10.1517/13543776.2014.982535] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Monoamine oxidase (MAO) inhibitors, despite the initial pharmacological interest, are used in clinic for their antidepressant effect and in the management of Parkinson symptoms, due to the established neuroprotective action. Efficacy and tolerability emerged from large-scale and randomized clinical trials. AREAS COVERED Thirty-six patents range from April 2012 to September 2014. The number of chemotypes with inhibitory effects on MAO is truly high (40 synthetic compounds, 22 natural products and 6 plant extracts reported and licensed), and the present review is comprehensive of all compounds, which have been patented for their relevance to clinical medicine in this period range (27 patents). Moreover, some of the collected patents deal with new formulations of compounds endowed with MAO inhibitory properties (two patents) and new therapeutic options/drug associations for already known MAO inhibitors (seven patents). EXPERT OPINION The patents reported in this review showed that the interest in this field is constant and mainly devoted to the study of selective MAO-B inhibitors, used as drugs for the treatment of neurological disorders. The development of novel human MAO inhibitors took advantage of the discovery of new therapeutic targets (cancer, hair loss, muscle dystrophies, cocaine addiction and inflammation), the recognized role of MAOs as molecular biomarkers and their activity in other tissues.
Collapse
Affiliation(s)
- Simone Carradori
- Sapienza University of Rome, Department of Drug Chemistry and Technologies , P.le A. Moro 5, 00185, Rome , Italy +39 06 49913149 ; +39 06 49913923 ;
| | | |
Collapse
|
32
|
Pretorius E, Swanepoel AC, Buys AV, Vermeulen N, Duim W, Kell DB. Eryptosis as a marker of Parkinson's disease. Aging (Albany NY) 2014; 6:788-819. [PMID: 25411230 PMCID: PMC4247384 DOI: 10.18632/aging.100695] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/24/2014] [Indexed: 12/20/2022]
Abstract
A major trend in recent Parkinson's disease (PD) research is the investigation of biological markers that could help in identifying at-risk individuals or to track disease progression and response to therapies. Central to this is the knowledge that inflammation is a known hallmark of PD and of many other degenerative diseases. In the current work, we focus on inflammatory signalling in PD, using a systems approach that allows us to look at the disease in a more holistic way. We discuss cyclooxygenases, prostaglandins, thromboxanes and also iron in PD. These particular signalling molecules are involved in PD pathophysiology, but are also very important in an aberrant coagulation/hematology system. We present and discuss a hypothesis regarding the possible interaction of these aberrant signalling molecules implicated in PD, and suggest that these molecules may affect the erythrocytes of PD patients. This would be observable as changes in the morphology of the RBCs and of PD patients relative to healthy controls. We then show that the RBCs of PD patients are indeed rather dramatically deranged in their morphology, exhibiting eryptosis (a kind of programmed cell death). This morphological indicator may have useful diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Albe C Swanepoel
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Antoinette V Buys
- Microscopy and Microanalysis Unit, University of Pretoria, Arcadia 0007, South Africa
| | - Natasha Vermeulen
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Wiebren Duim
- Department of Neurology Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, Lancs, UK
| |
Collapse
|
33
|
Legoabe LJ, Petzer A, Petzer JP. α-Tetralone derivatives as inhibitors of monoamine oxidase. Bioorg Med Chem Lett 2014; 24:2758-63. [DOI: 10.1016/j.bmcl.2014.04.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/30/2022]
|
34
|
De Monte C, Carradori S, Chimenti P, Secci D, Mannina L, Alcaro F, Petzer A, N'Da CI, Gidaro MC, Costa G, Alcaro S, Petzer JP. New insights into the biological properties of Crocus sativus L.: chemical modifications, human monoamine oxidases inhibition and molecular modeling studies. Eur J Med Chem 2014; 82:164-71. [PMID: 24904963 DOI: 10.1016/j.ejmech.2014.05.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 12/17/2022]
Abstract
Although there are clinical trials and in vivo studies in literature regarding the anxiolytic and antidepressant activities of the components of Crocus sativus L., their effects on the human monoamine oxidases (hMAO-A and hMAO-B), enzymes which are involved in mental disorders and neurodegenerative diseases, have not yet been investigated. We have thus examined the hMAO inhibitory activities of crocin and safranal (the most important active principles in saffron) and, subsequently, designed a series of safranal derivatives to evaluate which chemical modifications confer enhanced inhibition of the hMAO isoforms. Docking simulations were performed in order to identify key molecular recognitions of these inhibitors with both isoforms of hMAO. In this regard, different mechanisms of action were revealed. This study concludes that safranal and crocin represent useful leads for the discovery of novel hMAO inhibitors for the clinical management of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Celeste De Monte
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Simone Carradori
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Paola Chimenti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Istituto di Metodologie Chimiche, Laboratorio di Risonanza Magnetica "Annalaura Segre", CNR, via Salaria km 29.300, 00015 Monterotondo, Rome, Italy
| | - Francesca Alcaro
- Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, 88100 Catanzaro, Italy
| | - Anél Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Clarina I N'Da
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Maria Concetta Gidaro
- Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, "Magna Graecia" University of Catanzaro, Campus Universitario "S. Venuta", Viale Europa Loc. Germaneto, 88100 Catanzaro, Italy
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
35
|
D’Ascenzio M, Carradori S, Secci D, Mannina L, Sobolev AP, De Monte C, Cirilli R, Yáñez M, Alcaro S, Ortuso F. Identification of the stereochemical requirements in the 4-aryl-2-cycloalkylidenhydrazinylthiazole scaffold for the design of selective human monoamine oxidase B inhibitors. Bioorg Med Chem 2014; 22:2887-95. [DOI: 10.1016/j.bmc.2014.03.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 12/26/2022]
|
36
|
Monoamine oxidase A and B substrates: probing the pathway for drug development. Future Med Chem 2014; 6:697-717. [DOI: 10.4155/fmc.14.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-discovery and -development efforts focused on the MAOs have increased at an accelerated rate over the past decade. Since the first crystal structure of human MAO-B was solved in 2002, over 40 additional structures have been reported and have helped define new, or confirm speculative, binding modes of inhibitors. The detailed mechanism of the MAO-catalyzed oxidation of amine substrates has not been fully elucidated, but its significance is central in the development of new mechanism-based inactivators. Novel fungal MAO-N variants derived from directed evolution strategies are enabling the production of new chiral amine products. Robust assays have been established for measuring MAO status in tissue and cells, while improved MAO radioligands are being deployed for PET imaging studies. This review will attempt to highlight the more recent and salient aspects of MAO research in drug discovery and development, with emphasis on substrates 'probing the pathway'.
Collapse
|
37
|
Passos CDS, Simoes-Pires C, Henriques A, Cuendet M, Carrupt PA, Christen P. Alkaloids as Inhibitors of Monoamine Oxidases and Their Role in the Central Nervous System. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63430-6.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
38
|
Bonaiuto E, Milelli A, Cozza G, Tumiatti V, Marchetti C, Agostinelli E, Fimognari C, Hrelia P, Minarini A, Di Paolo ML. Novel polyamine analogues: From substrates towards potential inhibitors of monoamine oxidases. Eur J Med Chem 2013; 70:88-101. [DOI: 10.1016/j.ejmech.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 01/12/2023]
|
39
|
Carradori S, D'Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: a lesson from natural products. Mol Divers 2013; 18:219-43. [PMID: 24218136 DOI: 10.1007/s11030-013-9490-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/21/2013] [Indexed: 12/30/2022]
Abstract
Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer's and Parkinson's. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.
Collapse
Affiliation(s)
- Simone Carradori
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 , Rome, Italy
| | | | | | | | | |
Collapse
|
40
|
Chimenti P, Petzer A, Carradori S, D’Ascenzio M, Silvestri R, Alcaro S, Ortuso F, Petzer JP, Secci D. Exploring 4-substituted-2-thiazolylhydrazones from 2-, 3-, and 4-acetylpyridine as selective and reversible hMAO-B inhibitors. Eur J Med Chem 2013; 66:221-7. [DOI: 10.1016/j.ejmech.2013.05.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 12/24/2022]
|
41
|
Propargylamine-derived multitarget-directed ligands: fighting Alzheimer’s disease with monoamine oxidase inhibitors. J Neural Transm (Vienna) 2012; 120:893-902. [DOI: 10.1007/s00702-012-0948-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 12/02/2012] [Indexed: 01/16/2023]
|
42
|
Secci D, Bolasco A, Carradori S, D'Ascenzio M, Nescatelli R, Yáñez M. Recent advances in the development of selective human MAO-B inhibitors: (Hetero)arylidene-(4-substituted-thiazol-2-yl)hydrazines. Eur J Med Chem 2012; 58:405-17. [DOI: 10.1016/j.ejmech.2012.10.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/29/2022]
|
43
|
Carradori S, D'Ascenzio M, De Monte C, Secci D, Yáñez M. Synthesis and Selective Human Monoamine Oxidase B Inhibition of Heterocyclic Hybrids Based on Hydrazine and Thiazole Scaffolds. Arch Pharm (Weinheim) 2012; 346:17-22. [DOI: 10.1002/ardp.201200318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/12/2012] [Accepted: 09/19/2012] [Indexed: 01/06/2023]
|