1
|
Show S, Dutta D, Nongthomba U, Prasad A J M. Effective paclitaxel: β-Cyclodextrin-based formulation boosts in vitro anti-tumor potential and lowers toxicity in zebrafish. Toxicol Res (Camb) 2024; 13:tfae150. [PMID: 39319343 PMCID: PMC11417963 DOI: 10.1093/toxres/tfae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Paclitaxel (PCTX) is one of the most prevalently used chemotherapeutic agents. However, its use is currently beset with a host of problems: solubility issue, microplastic leaching, and drug resistance. Since drug discovery is challenging, we decided to focus on repurposing the drug itself by remedying its drawbacks and making it more effective. In this study, we have harnessed the aqueous solubility of sugars, and the high affinity of cancer cells for them, to entrap the hydrophobic PCTX within the hydrophilic shell of the carbohydrate β-cyclodextrin. We have characterized this novel drug formulation by testing its various physical and chemical parameters. Importantly, in all our in vitro assays, the conjugate performed better than the drug alone. We find that the conjugate is internalized by the cancer cells (A549) via caveolin 1-mediated endocytosis. Thereafter, it triggers apoptosis by inducing the formation of reactive oxygen species. Based on experiments on zebrafish larvae, the formulation displays lower toxicity compared to PCTX alone. Thus, our "Trojan Horse" approach, relying on minimal components and relatively faster formulation, enhances the anti-tumor potential of PCTX, while simultaneously making it more innocuous toward non-cancerous cells. The findings of this study have implications in the quest for the most cost-effective chemotherapeutic molecule.
Collapse
Affiliation(s)
- Sautan Show
- Department of Biochemistry, Pooja Bhagavat Memorial Mahajana Postgraduate Centre, K.R.S. Road, Metagalli, Mysore 570016, India
- Department of Developmental Biology and Genetics, Indian Institute of Science, CV Raman Rd, Bengaluru 560012, India
| | - Debanjan Dutta
- Department of Developmental Biology and Genetics, Indian Institute of Science, CV Raman Rd, Bengaluru 560012, India
- Life Science Division, AgriVet Life Science, AgriVet Research & Advisory (P) Ltd., Lake Town Rd, Block A, Lake Town, South Dumdum, West Bengal 700089, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, CV Raman Rd, Bengaluru 560012, India
| | - Mahadesh Prasad A J
- Department of Biochemistry, Pooja Bhagavat Memorial Mahajana Postgraduate Centre, K.R.S. Road, Metagalli, Mysore 570016, India
| |
Collapse
|
2
|
Geng D, Chen Z, Li Y, Liu T, Wang L. Design and bio-evaluation of novel millepachine derivatives targeting tubulin colchicine binding site for treatment of osteosarcoma. Bioorg Chem 2024; 151:107624. [PMID: 39002514 DOI: 10.1016/j.bioorg.2024.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Microtubules are recognized as an appealing target for cancer treatment. We designed and synthesized of novel tubulin colchicine binding site inhibitors based on millepachine. Biological evaluation revealed compound 5h exhibited significant antiproliferative activity against osteosarcoma cell U2OS and MG-63. And compound 5h also remarkably inhibited tubulin polymerization. Further investigations indicated compound 5h not only arrest U2OS cells cycle at the G2/M phases, but also induced U2OS cells apoptosis in dose-dependent manners. Moreover, compound 5h was verified to inhibit cell migration and angiogenesis of HUVECs, induce mitochondrial membrane potential decreased and promoted the elevation of ROS levels. Furthermore, compound 5h exhibited remarkable effects on tumor growth in vivo, and the TGI rate was up to 84.94 % at a dose of 20 mg/kg without obvious toxicity. These results indicated that 5h may be an appealing tubulin inhibitor for treatment of osteosarcoma.
Collapse
Affiliation(s)
- Dawei Geng
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Zhong Chen
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yin Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan 250021, China
| | - Tianbao Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Liming Wang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
3
|
Vicari HP, Gomes RDC, Lima K, Rossini NDO, Rodrigues Junior MT, de Miranda LBL, Dias MVB, Costa-Lotufo LV, Coelho F, Machado-Neto JA. Cyclopenta[b]indoles as novel antimicrotubule agents with antileukemia activity. Toxicol In Vitro 2024; 99:105856. [PMID: 38821378 DOI: 10.1016/j.tiv.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Acute leukemias present therapeutic challenges despite advances in treatments. Microtubule inhibitors have played a pivotal role in cancer therapy, inspiring exploration into novel compounds like C2E1 from the cyclopenta[b]indole class. In the present study, we investigated C2E1's potential as a therapeutic agent for acute leukemia at molecular, cellular, and genetic levels. C2E1 demonstrated tubulin depolarization activity, significantly reducing leukemia cell viability. Its impact involved multifaceted mechanisms: inducing apoptosis, arrest of cell cycle progression, and inhibition of clonogenicity and migration in leukemia cells. At a molecular level, C2E1 triggered DNA damage, antiproliferative, and apoptosis markers and altered gene expression related to cytoskeletal regulation, disrupting essential cellular processes crucial for leukemia cell survival and proliferation. These findings highlight C2E1's promise as a potential candidate for novel anti-cancer therapies. Notably, its distinct mode of action from conventional microtubule-targeting drugs suggests the potential to bypass common resistance mechanisms encountered with existing treatments. In summary, C2E1 emerges as a compelling compound with diverse effects on leukemia cells, showcasing promising antineoplastic properties. Its ability to disrupt critical cellular functions selective to leukemia cells positions it as a candidate for future therapeutic development.
Collapse
Affiliation(s)
- Hugo Passos Vicari
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ralph da Costa Gomes
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Coelho
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
4
|
Cai W, Rong D, Ding J, Zhang X, Wang Y, Fang Y, Xiao J, Yang S, Wang H. Activation of the PERK/eIF2α axis is a pivotal prerequisite of taxanes to cancer cell apoptosis and renders synergism to overcome paclitaxel resistance in breast cancer cells. Cancer Cell Int 2024; 24:249. [PMID: 39020371 PMCID: PMC11256575 DOI: 10.1186/s12935-024-03443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Microtubule polymerization is usually considered as the upstream of apoptotic cell death induced by taxanes, but recently published studies provide more insights into the mechanisms responsible for the antineoplastic effect of taxanes. In this study, we figure out the role of the stress-related PERK/eIF2α axis in tumor cell death upon taxane treatment along with paclitaxel resistance. METHODS Utilizing immunoblot assay, the activation status of PERK-eIF2α signaling was detected in a panel of cancer cell lines after the treatment of taxanes. The causal role of PERK-eIF2α signaling in the cancer cell apoptosis induced by taxanes was examined via pharmacological and genetic inhibitions of PERK. The relationship between microtubule polymerization and PERK-eIF2α activation was explored by immunofluorescent and immunoblotting assays. Eventaually, the combined therapeutic effect of paclitaxel (PTX) and CCT020312, a PERK agonist, was investigated in PTX-resistant breast cancer cells in vitro and in vivo. RESULTS PERK-eIF2α axis was dramatically activated by taxanes in several cancer cell types. Pharmacological or genetic inhibition of PERK efficiently impaired taxane-induced apoptotic cell death, independent of the cellular microtubule polymerization status. Moreover, PTX was able to activate the PERK/eIF2α axis in a very low concentration without triggering microtubule polymerization. In PTX-resistant breast cancer cells, the PERK/eIF2α axis was attenuated in comparison with the PTX-sensitive counterparts. Reactivation of the PERK/eIF2α axis in the PTX-resistant breast cancer cells with PERK agonist sensitized them to PTX in vitro. Combination treatment of the xenografted PTX-resistant breast tumors with PERK agonist and PTX validated the synergic effect of PTX and PERK activation in vivo. CONCLUSION Activation of the PERK/eIF2α axis is a pivotal prerequisite of taxanes to initiate cancer cell apoptosis, which is independent of the well-known microtubule polymerization-dependent manner. Simultaneous activation of PERK-eIF2α signaling would be a promising therapeutic strategy to overcome PTX resistance in breast cancer or other cancers.
Collapse
Affiliation(s)
- Wanhua Cai
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Dade Rong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jiayu Ding
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiaomei Zhang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
| | - Yuwei Wang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China
- School of Medicine, Xizang Minzu University, No.6 Wenhui Donglu, Xianyang, 712082, China
| | - Ying Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Jing Xiao
- Department of Clinical Laboratory, Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China.
| | - Shulan Yang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
- School of Medicine, Xizang Minzu University, No.6 Wenhui Donglu, Xianyang, 712082, China.
- Clinical Medical Research Centre for Plateau Gastroenterological Disease of Xizang Autonomous Region, Xizang Minzu University, Xianyang 712082, China.
| |
Collapse
|
5
|
Silva MP, Ferreira LT, Brás NF, Torres L, Brandão A, Pinheiro M, Cardoso M, Resende A, Vieira J, Palmeira C, Martins G, Silva M, Pinto C, Peixoto A, Silva J, Henrique R, Maia S, Maiato H, Teixeira MR, Paulo P. BUB1B monoallelic germline variants contribute to prostate cancer predisposition by triggering chromosomal instability. J Biomed Sci 2024; 31:74. [PMID: 39014450 PMCID: PMC11251299 DOI: 10.1186/s12929-024-01056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Prostate cancer (PrCa) is the most frequently diagnosed cancer in men. Variants in known moderate- to high-penetrance genes explain less than 5% of the cases arising at early-onset (< 56 years) and/or with familial aggregation of the disease. Considering that BubR1 is an essential component of the mitotic spindle assembly checkpoint, we hypothesized that monoallelic BUB1B variants could be sufficient to fuel chromosomal instability (CIN), potentially triggering (prostate) carcinogenesis. METHODS To unveil BUB1B as a new PrCa predisposing gene, we performed targeted next-generation sequencing in germline DNA from 462 early-onset/familial PrCa patients and 1,416 cancer patients fulfilling criteria for genetic testing for other hereditary cancer syndromes. To explore the pan-cancer role of BUB1B, we used in silico BubR1 molecular modeling, in vitro gene-editing, and ex vivo patients' tumors and peripheral blood lymphocytes. RESULTS Rare BUB1B variants were found in ~ 1.9% of the early-onset/familial PrCa cases and in ~ 0.6% of other cancer patients fulfilling criteria for hereditary disease. We further show that BUB1B variants lead to decreased BubR1 expression and/or stability, which promotes increased premature chromatid separation and, consequently, triggers CIN, driving resistance to Taxol-based therapies. CONCLUSIONS Our study shows that different BUB1B variants may uncover a trigger for CIN-driven carcinogenesis, supporting the role of BUB1B as a (pan)-cancer predisposing gene with potential impact on genetic counseling and treatment decision-making.
Collapse
Affiliation(s)
- Maria P Silva
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Luísa T Ferreira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Natércia F Brás
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Lurdes Torres
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Andreia Brandão
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Manuela Pinheiro
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Marta Cardoso
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Adriana Resende
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Joana Vieira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carlos Palmeira
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Gabriela Martins
- Department of Immunology, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Miguel Silva
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Pinto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Ana Peixoto
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - João Silva
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Sofia Maia
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, Instituto de Investigação e Inovação em Saúde, University of Porto / Porto Comprehensive Cancer Center, Porto, i3S, Portugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Manuel R Teixeira
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Paula Paulo
- Cancer Genetics Group, IPO Porto Research Center (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center, Porto, Portugal.
| |
Collapse
|
6
|
Saadh MJ, Mustafa MA, Malathi H, Ahluwalia G, Kaur S, Al-Dulaimi MAAH, Alubiady MHS, Zain Al-Abdeen SH, Shakier HG, Ali MS, Ahmad I, Abosaoda MK. Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations. Med Oncol 2024; 41:201. [PMID: 39001987 DOI: 10.1007/s12032-024-02443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Gunveen Ahluwalia
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sumeet Kaur
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | | | | | | | | | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
7
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
8
|
Miller AL, Fehling SC, Vance RB, Chen D, Brown EJ, Hossain MI, Heard EO, Andrabi SA, Wang H, Yang ES, Buchsbaum DJ, van Waardenburg RCAM, Bellis SL, Yoon KJ. BET inhibition decreases HMGCS2 and sensitizes resistant pancreatic tumors to gemcitabine. Cancer Lett 2024; 592:216919. [PMID: 38704133 PMCID: PMC11309032 DOI: 10.1016/j.canlet.2024.216919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Efforts to develop targetable molecular bases for drug resistance for pancreatic ductal adenocarcinoma (PDAC) have been equivocally successful. Using RNA-seq and ingenuity pathway analysis we identified that the superpathway of cholesterol biosynthesis is upregulated in gemcitabine resistant (gemR) tumors using a unique PDAC PDX model with resistance to gemcitabine acquired in vivo. Analysis of additional in vitro and in vivo gemR PDAC models showed that HMG-CoA synthase 2 (HMGCS2), an enzyme involved in cholesterol biosynthesis and rate limiting in ketogenesis, is overexpressed in these models. Mechanistic data demonstrate the novel findings that HMGCS2 contributes to gemR and confers metastatic properties in PDAC models, and that HMGCS2 is BRD4 dependent. Further, BET inhibitor JQ1 decreases levels of HMGCS2, sensitizes PDAC cells to gemcitabine, and a combination of gemcitabine and JQ1 induced regressions of gemR tumors in vivo. Our data suggest that decreasing HMGCS2 may reverse gemR, and that HMGCS2 represents a useful therapeutic target for treating gemcitabine resistant PDAC.
Collapse
Affiliation(s)
- Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samuel C Fehling
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca B Vance
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Department of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric Josh Brown
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Iqbal Hossain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric O Heard
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald J Buchsbaum
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Gynotoxic Effects of Chemotherapy and Potential Protective Mechanisms. Cancers (Basel) 2024; 16:2288. [PMID: 38927992 PMCID: PMC11202309 DOI: 10.3390/cancers16122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy is one of the leading cancer treatments. Unfortunately, its use can contribute to several side effects, including gynotoxic effects in women. Ovarian reserve suppression and estrogen deficiency result in reduced quality of life for cancer patients and are frequently the cause of infertility and early menopause. Classic alkylating cytostatics are among the most toxic chemotherapeutics in this regard. They cause DNA damage in ovarian follicles and the cells they contain, and they can also induce oxidative stress or affect numerous signaling pathways. In vitro tests, animal models, and a few studies among women have investigated the effects of various agents on the protection of the ovarian reserve during classic chemotherapy. In this review article, we focused on the possible beneficial effects of selected hormones (anti-Müllerian hormone, ghrelin, luteinizing hormone, melatonin), agents affecting the activity of apoptotic pathways and modulating gene expression (C1P, S1P, microRNA), and several natural (quercetin, rapamycin, resveratrol) and synthetic compounds (bortezomib, dexrazoxane, goserelin, gonadoliberin analogs, imatinib, metformin, tamoxifen) in preventing gynotoxic effects induced by commonly used cytostatics. The presented line of research appears to provide a promising strategy for protecting and/or improving the ovarian reserve in the studied group of cancer patients. However, well-designed clinical trials are needed to unequivocally assess the effects of these agents on improving hormonal function and fertility in women treated with ovotoxic anticancer drugs.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
10
|
Beheshtizadeh N, Amiri Z, Tabatabaei SZ, Seraji AA, Gharibshahian M, Nadi A, Saeinasab M, Sefat F, Kolahi Azar H. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: from cancer therapy to regenerative medicine approaches. J Transl Med 2024; 22:520. [PMID: 38816723 PMCID: PMC11137998 DOI: 10.1186/s12967-024-05347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024] Open
Abstract
The intersection of nanotechnology and pharmacology has revolutionized the delivery and efficacy of chemotherapeutic agents, notably docetaxel, a key drug in cancer treatment. Traditionally limited by poor solubility and significant side effects, docetaxel's therapeutic potential has been significantly enhanced through its incorporation into nanoplatforms, such as nanofibers and nanoparticles. This advancement offers targeted delivery, controlled release, and improved bioavailability, dramatically reducing systemic toxicity and enhancing patient outcomes. Nanofibers provide a versatile scaffold for the controlled release of docetaxel, utilizing techniques like electrospinning to tailor drug release profiles. Nanoparticles, on the other hand, enable precise drug delivery to tumor cells, minimizing damage to healthy tissues through sophisticated encapsulation methods such as nanoprecipitation and emulsion. These nanotechnologies not only improve the pharmacokinetic properties of docetaxel but also open new avenues in regenerative medicine by facilitating targeted therapy and cellular regeneration. This narrative review highlights the transformative impact of docetaxel-loaded nanoplatforms in oncology and beyond, showcasing the potential of nanotechnology to overcome the limitations of traditional chemotherapy and pave the way for future innovations in drug delivery and regenerative therapies. Through these advancements, nanotechnology promises a new era of precision medicine, enhancing the efficacy of cancer treatments while minimizing adverse effects.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Zahra Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 1458889694, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zoha Tabatabaei
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morvarid Saeinasab
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Hanieh Kolahi Azar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Miura T, Kado J, Ashisuke K, Masuzawa M, Nakayama F. Sustained activation of the FGF1-MEK-ERK pathway inhibits proliferation, invasion and migration and enhances radiosensitivity in mouse angiosarcoma cells. JOURNAL OF RADIATION RESEARCH 2024; 65:303-314. [PMID: 38637316 PMCID: PMC11115473 DOI: 10.1093/jrr/rrae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/15/2023] [Indexed: 04/20/2024]
Abstract
Angiosarcoma is a rare refractory soft-tissue tumor with a poor prognosis and is treated by radiotherapy. The fibroblast growth factor 1 (FGF1) mutant, with enhanced thermostability due to several substituted amino acids, inhibits angiosarcoma cell metastasis, yet the mechanism of action is unclear. This study aims to clarify the FGF1 mutant mechanism of action using ISOS-1 mouse angiosarcoma cells. The wild-type FGF1 or FGF1 mutant was added to ISOS-1 cells and cultured, evaluating cell numbers over time. The invasive and migratory capacity of ISOS-1 cells was assessed by transwell analysis. ISOS-1 cell radiosensitivity was assessed by colony formation assay after X-ray irradiation. To examine whether mitogen-activated protein kinase (MEK) inhibitor counteracts the FGF1 mutant effects, a combination of MEK inhibitor and FGF1 mutant was added to ISOS-1 cells and cultured. The FGF1 mutant was observed to inhibit ISOS-1 cell proliferation, invasion and migration by sustained FGF1 signaling activation. A MEK inhibitor suppressed the FGF1 mutant-induced inhibition of proliferation, invasion and migration of ISOS-1 cells. Furthermore, the FGF1 mutant enhanced radiosensitivity of ISOS-1 cells, but MEK inhibition suppressed the increased radiosensitivity. In addition, we found that the FGF1 mutant strongly inhibits actin polymerization, suggesting that actin cytoskeletal dynamics are closely related to ISOS-1 cell radiosensitivity. Overall, this study demonstrated that in ISOS-1 cells, the FGF1 mutant inhibits proliferation, invasion and migration while enhancing radiosensitivity through sustained activation of the MEK-mediated signaling pathway.
Collapse
Affiliation(s)
- Taichi Miura
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Junko Kado
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuma Ashisuke
- Radiation Effect Research Group, Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mikio Masuzawa
- Department of Dermatology, Iwase General Hospital, 20 Kitamachi, Sukagawa-shi, Fukushima 962-8503, Japan
| | - Fumiaki Nakayama
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
12
|
Raghuwanshi S, Zhang X, Arbieva Z, Khan I, Mohammed H, Wang Z, Domling A, Camacho CJ, Gartel AL. Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies. Cell Death Discov 2024; 10:211. [PMID: 38697979 PMCID: PMC11066125 DOI: 10.1038/s41420-024-01929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Forkhead box protein M1 (FOXM1) is often overexpressed in human cancers and strongly associated with therapy resistance and less good patient survival. The chemotherapy options for patients with the most aggressive types of solid cancers remain very limited because of the acquired drug resistance, making the therapy less effective. NPM1 mutation through the inactivation of FOXM1 via FOXM1 relocalization to the cytoplasm confers more favorable treatment outcomes for AML patients, confirming FOXM1 as a crucial target to overcome drug resistance. Pharmacological inhibition of FOXM1 could be a promising approach to sensitize therapy-resistant cancers. Here, we explore a novel FOXM1 inhibitor STL001, a first-generation modification drug of our previously reported FOXM1 inhibitor STL427944. STL001 preserves the mode of action of the STL427944; however, STL001 is up to 50 times more efficient in reducing FOXM1 activity in a variety of solid cancers. The most conventional cancer therapies studied here induce FOXM1 overexpression in solid cancers. The therapy-induced FOXM1 overexpression may explain the failure or reduced efficacy of these drugs in cancer patients. Interestingly, STL001 increased the sensitivity of cancer cells to conventional cancer therapies by suppressing both the high-endogenous and drug-induced FOXM1. Notably, STL001 does not provide further sensitization to FOXM1-KD cancer cells, suggesting that the sensitization effect is conveyed specifically through FOXM1 suppression. RNA-seq and gene set enrichment studies revealed prominent suppression of FOXM1-dependent pathways and gene ontologies. Also, gene regulation by STL001 showed extensive overlap with FOXM1-KD, suggesting a high selectivity of STL001 toward the FOXM1 regulatory network. A completely new activity of FOXM1, mediated through steroid/cholesterol biosynthetic process and protein secretion in cancer cells was also detected. Collectively, STL001 offers intriguing translational opportunities as combination therapies targeting FOXM1 activity in a variety of human cancers driven by FOXM1.
Collapse
Affiliation(s)
| | - Xu Zhang
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Zarema Arbieva
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA
| | - Irum Khan
- Northwestern University, Chicago, IL, USA
| | - Hisham Mohammed
- Oregon Health & Science University, Knight Cancer Institute, School of Medicine, Chicago, IL, USA
| | - Z Wang
- The Czech Advanced Technology and Research Institute (CATRIN) of Palacký University, Chicago, IL, USA
| | - Alexander Domling
- The Czech Advanced Technology and Research Institute (CATRIN) of Palacký University, Chicago, IL, USA.
| | - Carlos Jaime Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Chicago, IL, USA.
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL, USA.
| |
Collapse
|
13
|
Karuppaiya V, Annamalai A, Krishnamurthy S, Soundarapandian K. Dieckol prevents prostate cancer cell proliferation by transcriptionally attenuating JAK/STAT3 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1187-1196. [PMID: 37886886 DOI: 10.1002/tox.24006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
This study delved at how the natural substance dieckol (DCL) prevents prostate cancerous cells from proliferating and migrating by blocking the JAK/STAT3 signaling pathway in PC-3 cells. For numerous tests, the cells were treated to DCL at a range of concentrations (0-20 μM) for 24 h. DCL mediated cytotoxicity was analyzed by MTT assay. To evaluate ROS, DCFH-DA staining was employed. Dual (AO/EtBr) staining was utilized to examine apoptotic changes, and MMP levels in PC-3 cells were examined using the appropriate fluorescent staining assays. By using flow cytometry and western blotting, the protein expressions of cell survival, cell cycle, proliferation, and apoptosis were assessed. The results showed that DCL significantly cytotoxically affects PC-3, and the IC50 was discovered to be 12 μM for 24 h exposure. Furthermore, after DCL treatment in PC-3, considerable ROS generation and increased apoptotic signals were detected. STAT3, JAK1, PCNA, and cyclins D1 and E1 are all suppressed by DCL in PC-3. In addition, DCL therapy in PC-3 dramatically increased pro-apoptotic proteins such Bax, caspase-3, and cytochrome C. Therefore, DCL has been regarded as a chemotherapeutic agent because to its ability to decrease the expression of proteins that control cell proliferation, including STAT3, JAK1, PCNA, and cyclins D1 and E1.
Collapse
Affiliation(s)
- Vimala Karuppaiya
- Division of Cancer Nanomedicine, Department of Zoology, Periyar University, Salem, India
| | - Asaikkutti Annamalai
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Puducherry, India
| | - Shanthi Krishnamurthy
- Department of Biochemistry, Prof. Dhanapalan College of Science and Management, Chennai, India
| | - Kannan Soundarapandian
- Division of Cancer Nanomedicine, Department of Zoology, Periyar University, Salem, India
| |
Collapse
|
14
|
Sonowal S, Gogoi U, Buragohain K, Nath R. Endophytic fungi as a potential source of anti-cancer drug. Arch Microbiol 2024; 206:122. [PMID: 38407579 DOI: 10.1007/s00203-024-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/27/2024]
Abstract
Endophytes are considered one of the major sources of bioactive compounds used in different aspects of health care including cancer treatment. When colonized, they either synthesize these bioactive compounds as a part of their secondary metabolite production or augment the host plant machinery in synthesising such bioactive compounds. Hence, the study of endophytes has drawn the attention of the scientific community in the last few decades. Among the endophytes, endophytic fungi constitute a major portion of endophytic microbiota. This review deals with a plethora of anti-cancer compounds derived from endophytic fungi, highlighting alkaloids, lignans, terpenes, polyketides, polyphenols, quinones, xanthenes, tetralones, peptides, and spirobisnaphthalenes. Further, this review emphasizes modern methodologies, particularly omics-based techniques, asymmetric dihydroxylation, and biotic elicitors, showcasing the dynamic and evolving landscape of research in this field and describing the potential of endophytic fungi as a source of anticancer drugs in the future.
Collapse
Affiliation(s)
- Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Urvashee Gogoi
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
15
|
Sati P, Sharma E, Dhyani P, Attri DC, Rana R, Kiyekbayeva L, Büsselberg D, Samuel SM, Sharifi-Rad J. Paclitaxel and its semi-synthetic derivatives: comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. Eur J Med Res 2024; 29:90. [PMID: 38291541 PMCID: PMC10826257 DOI: 10.1186/s40001-024-01657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Cancer is a disease that can cause abnormal cell growth and can spread throughout the body. It is among the most significant causes of death worldwide, resulting in approx. 10 million deaths annually. Many synthetic anticancer drugs are available, but they often come with side effects and can interact negatively with other medications. Additionally, many chemotherapy drugs used for cancer treatment can develop resistance and harm normal cells, leading to dose-limiting side effects. As a result, finding effective cancer treatments and developing new drugs remains a significant challenge. However, plants are a potent source of natural products with the potential for cancer treatment. These biologically active compounds may be the basis for enhanced or less toxic derivatives. Herbal medicines/phytomedicines, or plant-based drugs, are becoming more popular in treating complicated diseases like cancer due to their effectiveness and are a particularly attractive option due to their affordability, availability, and lack of serious side effects. They have broad applicability and therapeutic efficacy, which has spurred scientific research into their potential as anticancer agents. This review focuses on Paclitaxel (PTX), a plant-based drug derived from Taxus sp., and its ability to treat specific tumors. PTX and its derivatives are effective against various cancer cell lines. Researchers can use this detailed information to develop effective and affordable treatments for cancer.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Rohit Rana
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | | |
Collapse
|
16
|
Gartel A, Raghuwanshi S, Zhang X, Arbieva Z, Khan I, Wang Z, Domling A, Camacho C. [WITHDRAWN] Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies. RESEARCH SQUARE 2024:rs.3.rs-3711759. [PMID: 38234752 PMCID: PMC10793495 DOI: 10.21203/rs.3.rs-3711759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The full text of this preprint has been withdrawn by the authors while they make corrections to the work. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
17
|
[WITHDRAWN] Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies. RESEARCH SQUARE 2024:rs.3.rs-3711759. [PMID: 38234752 PMCID: PMC10793495 DOI: 10.21203/rs.3.rs-3711759/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The full text of this preprint has been withdrawn by the authors while they make corrections to the work. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
18
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
19
|
Zhang S, Ye T, Liu Y, Hou G, Wang Q, Zhao F, Li F, Meng Q. Research Advances in Clinical Applications, Anticancer Mechanism, Total Chemical Synthesis, Semi-Synthesis and Biosynthesis of Paclitaxel. Molecules 2023; 28:7517. [PMID: 38005238 PMCID: PMC10673093 DOI: 10.3390/molecules28227517] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Paclitaxel, a natural secondary metabolite isolated and purified from the bark of the Taxus tree, is considered one of the most successful natural anticancer drugs due to its low toxicity, high potency and broad-spectrum anticancer activity. Taxus trees are scarce and slow-growing, and with extremely low paclitaxel content, the contradiction between supply and demand in the market is becoming more and more intense. Therefore, researchers have tried to obtain paclitaxel by various methods such as chemical synthesis, artificial culture, microbial fermentation and tissue cell culture to meet the clinical demand for this drug. This paper provides a comprehensive overview of paclitaxel extraction, combination therapy, total synthesis, semi-synthesis and biosynthesis in recent years and provides an outlook, aiming to provide a theoretical basis and reference for further research on the production and application of paclitaxel in the future.
Collapse
Affiliation(s)
- Shengnan Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Taiqiang Ye
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Yibin Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Qibao Wang
- School of Biological Science, Jining Medical University, Rizhao 276800, China;
| | - Fenglan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Feng Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| | - Qingguo Meng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China; (S.Z.); (T.Y.); (Y.L.); (F.Z.)
| |
Collapse
|
20
|
Echavidre W, Fagret D, Faraggi M, Picco V, Montemagno C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers (Basel) 2023; 15:4839. [PMID: 37835533 PMCID: PMC10572076 DOI: 10.3390/cancers15194839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The theranostic approach in oncology holds significant importance in personalized medicine and stands as an exciting field of molecular medicine. Significant achievements have been made in this field in recent decades, particularly in treating neuroendocrine tumors using 177-Lu-radiolabeled somatostatin analogs and, more recently, in addressing prostate cancer through prostate-specific-membrane-antigen targeted radionuclide therapy. The promising clinical results obtained in these indications paved the way for the further development of this approach. With the continuous discovery of new molecular players in tumorigenesis, the development of novel radiopharmaceuticals, and the potential combination of theranostics agents with immunotherapy, nuclear medicine is poised for significant advancements. The strategy of theranostics in oncology can be categorized into (1) repurposing nuclear medicine agents for other indications, (2) improving existing radiopharmaceuticals, and (3) developing new theranostics agents for tumor-specific antigens. In this review, we provide an overview of theranostic development and shed light on its potential integration into combined treatment strategies.
Collapse
Affiliation(s)
- William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, CHU Grenoble Alpes, Inserm, 38000 Grenoble, France;
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| |
Collapse
|
21
|
Valiyaveettil D, Joseph D, Malik M. Cardiotoxicity in breast cancer treatment: Causes and mitigation. Cancer Treat Res Commun 2023; 37:100760. [PMID: 37714054 DOI: 10.1016/j.ctarc.2023.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Survivorship issues and treatment related toxicities have considerably increased in breast cancer patients following improved therapeutic options. Cardiotoxicity has been a major treatment related side effects in these patients. Despite this being a well-known entity, the real magnitude of the problem remains an enigma. The amount of research in mitigation of cardiotoxicity or its management in breast cancer survivors is limited and there is an urgent need for finding solutions for the problem. In this article, we are reviewing the agents that cause cardiotoxicity and suggesting a proposal for follow up of breast cancer survivors in an attempt to reduce the magnitude of impact on their quality of life.
Collapse
Affiliation(s)
| | - Deepa Joseph
- Department of Radiation Oncology, All India Institute of Medical sciences, Rishikesh, India.
| | - Monica Malik
- Nizam's Institute of Medical sciences, Hyderabad, India
| |
Collapse
|
22
|
Tian Z, Yao W. Chemotherapeutic drugs for soft tissue sarcomas: a review. Front Pharmacol 2023; 14:1199292. [PMID: 37637411 PMCID: PMC10450752 DOI: 10.3389/fphar.2023.1199292] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Despite the low incidence of soft tissue sarcomas (STSs), hundreds of thousands of new STS cases are diagnosed annually worldwide, and approximately half of them eventually progress to advanced stages. Currently, chemotherapy is the first-line treatment for advanced STSs. There are difficulties in selecting appropriate drugs for multiline chemotherapy, or for combination treatment of different STS histological subtypes. In this study, we first comprehensively reviewed the efficacy of various chemotherapeutic drugs in the treatment of STSs, and then described the current status of sensitive drugs for different STS subtypes. anthracyclines are the most important systemic treatment for advanced STSs. Ifosfamide, trabectedin, gemcitabine, taxanes, dacarbazine, and eribulin exhibit certain activities in STSs. Vinca alkaloid agents (vindesine, vinblastine, vinorelbine, vincristine) have important therapeutic effects in specific STS subtypes, such as rhabdomyosarcoma and Ewing sarcoma family tumors, whereas their activity in other subtypes is weak. Other chemotherapeutic drugs (methotrexate, cisplatin, etoposide, pemetrexed) have weak efficacy in STSs and are rarely used. It is necessary to select specific second- or above-line chemotherapeutic drugs depending on the histological subtype. This review aims to provide a reference for the selection of chemotherapeutic drugs for multi-line therapy for patients with advanced STSs who have an increasingly long survival.
Collapse
Affiliation(s)
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Gallego-Yerga L, Chiliquinga AJ, Peláez R. Novel Tetrazole Derivatives Targeting Tubulin Endowed with Antiproliferative Activity against Glioblastoma Cells. Int J Mol Sci 2023; 24:11093. [PMID: 37446273 DOI: 10.3390/ijms241311093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing awareness of the structure of microtubules has made tubulin a relevant target for the research of novel chemotherapies. Furthermore, the particularly high sensitivity of glioblastoma multiforme (GBM) cells to microtubule disruption could open new doors in the search for new anti-GBM treatments. However, the difficulties in developing potent anti-tubulin drugs endowed with improved pharmacokinetic properties necessitates the expansion of medicinal chemistry campaigns. The application of an ensemble pharmacophore screening methodology helped to optimize this process, leading to the development of a new tetrazole-based tubulin inhibitor. Considering this scaffold, we have synthesized a new family of tetrazole derivatives that achieved remarkable antimitotic effects against a broad panel of cancer cells, especially against GBM cells, showing high selectivity in comparison with non-tumor cells. The compounds also exerted high aqueous solubility and were demonstrated to not be substrates of efflux pumps, thus overcoming the main limitations that are usually associated with tubulin binding agents. Tubulin polymerization assays, immunofluorescence experiments, and flow cytometry studies demonstrated that the compounds target tubulin and arrest cells at the G2/M phase followed by induction of apoptosis. The docking experiments agreed with the proposed interactions at the colchicine site and explained the structure-activity relationships.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
24
|
Ying N, Liu S, Zhang M, Cheng J, Luo L, Jiang J, Shi G, Wu S, Ji J, Su H, Pan H, Zeng D. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloids Surf B Biointerfaces 2023; 228:113419. [PMID: 37393700 DOI: 10.1016/j.colsurfb.2023.113419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs which processes the obvious curative effect for a broad range of cancers including breast, ovarian, lung, and head & neck cancers. Though some novel paclitaxel-loaded formulations have been developed, the clinical application of the paclitaxel is still limited due to its toxicity and solubility issues. Over the past decades, we have seen rapid advances in applying nanocarriers in paclitaxel delivery systems. The nano-drug delivery systems offer unique advantages in enhancing the aqueous solubility, reducing side effects, increasing permeability, prolonging circulation half-life of paclitaxel. In this review, we summarize recent advances in developing novel paclitaxel-loaded nano delivery systems based on nanocarriers. These nanocarriers show great potentials in overcoming the disadvantages of pure paclitaxel and as a result improving the efficacy.
Collapse
Affiliation(s)
- Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sisi Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Cheng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Linghuan Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shu Wu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Ji
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
25
|
Saito A, Kitayama J, Nagai R, Aizawa K. Anatomical Targeting of Anticancer Drugs to Solid Tumors Using Specific Administration Routes: Review. Pharmaceutics 2023; 15:1664. [PMID: 37376112 DOI: 10.3390/pharmaceutics15061664] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Despite remarkable recent progress in developing anti-cancer agents, outcomes of patients with solid tumors remain unsatisfactory. In general, anti-cancer drugs are systemically administered through peripheral veins and delivered throughout the body. The major problem with systemic chemotherapy is insufficient uptake of intravenous (IV) drugs by targeted tumor tissue. Although dose escalation and treatment intensification have been attempted in order to increase regional concentrations of anti-tumor drugs, these approaches have produced only marginal benefits in terms of patient outcomes, while often damaging healthy organs. To overcome this problem, local administration of anti-cancer agents can yield markedly higher drug concentrations in tumor tissue with less systemic toxicity. This strategy is most commonly used for liver and brain tumors, as well as pleural or peritoneal malignancies. Although the concept is theoretically reasonable, survival benefits are still limited. This review summarizes clinical results and problems and discusses future directions of regional cancer therapy with local administration of chemotherapeutants.
Collapse
Affiliation(s)
- Akira Saito
- Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0431, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0431, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Tochigi, Tochigi 329-0498, Japan
| | - Ryozo Nagai
- Department of Medicine, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kenichi Aizawa
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Tochigi, Tochigi 329-0498, Japan
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
26
|
Yao K, Wang H, Xie X, Li J, You R, Li Y, Zhang H. HPLC separation, synthesis, isolation and characterization of process related and degradation impurities in larotaxel including method development and validation. J Pharm Biomed Anal 2023; 233:115435. [PMID: 37196590 DOI: 10.1016/j.jpba.2023.115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023]
Abstract
In the synthesis of larotaxel, a new-generation toxoid, eleven related impurities were detected. In this study, Impurity-I, II, III, IV, VII, IX, X and XI were synthesized, and Impurity-VI, VIII were isolated with the help of preparative high-performance liquid chromatography (HPLC). The structures of all impurities were characterized using high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) spectral data, and the possible origins of them were explained. Furthermore, a sensitive and accurate HPLC method was developed for the determination of larotaxel and its eleven impurities. The method was validated to fulfill the requirements of the International Conference on Harmonisation (ICH) guidelines, including specificity, sensitivity, precision, accuracy, linearity, and robustness. The validated method can be applied for routine quality control analysis of larotaxel.
Collapse
Affiliation(s)
- Kai Yao
- Science and Technology Centre, Shanxi Zhendong Pharmaceutical Co., Ltd., Changzhi 047100, China
| | - Hongfang Wang
- Science and Technology Centre, Shanxi Zhendong Pharmaceutical Co., Ltd., Changzhi 047100, China
| | - Xiaodong Xie
- Science and Technology Centre, Shanxi Zhendong Pharmaceutical Co., Ltd., Changzhi 047100, China
| | - Jianwei Li
- Science and Technology Centre, Shanxi Zhendong Pharmaceutical Co., Ltd., Changzhi 047100, China; Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China
| | - Rongli You
- Science and Technology Centre, Shanxi Zhendong Pharmaceutical Co., Ltd., Changzhi 047100, China
| | - Ying Li
- Science and Technology Centre, Shanxi Zhendong Pharmaceutical Co., Ltd., Changzhi 047100, China
| | - Hui Zhang
- Science and Technology Centre, Shanxi Zhendong Pharmaceutical Co., Ltd., Changzhi 047100, China; Department of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
| |
Collapse
|
27
|
Trujillo M, Odle AK, Aykin-Burns N, Allen AR. Chemotherapy induced oxidative stress in the ovary: drug-dependent mechanisms and potential interventions†. Biol Reprod 2023; 108:522-537. [PMID: 36539327 PMCID: PMC10106837 DOI: 10.1093/biolre/ioac222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Cancer incidence and relative survival are expected to increase over the next few decades. With the majority of patients receiving combinatorial chemotherapy, an increasing proportion of patients experience long-term side effects from treatment-including reproductive disorders and infertility. A limited number of studies have examined mechanisms of single-agent chemotherapy-induced gonadotoxicity, with chemotherapy-induced oxidative stress being implicated in the loss of reproductive functions. Current methods of female fertility preservation are costly, invasive, only moderately successful, and seldom presented to cancer patients. The potential of antioxidants to alleviate chemotherapy has been overlooked at a time when it is becoming increasingly important to develop strategies to protect reproductive functions during chemotherapy. This review will summarize the importance of reactive oxygen species homeostasis in reproduction, chemotherapy-induced mitochondrial dysfunction in oocytes, chemotherapy-induced oxidative stress, and several promising natural adjuvants.
Collapse
Affiliation(s)
- Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela K Odle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nukhet Aykin-Burns
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
28
|
Jayanetti K, Takemura K, Bendale H, Garg A, Ojima I. Recent advances in the strategic incorporation of fluorine into new-generation taxoid anticancer agents. J Fluor Chem 2023; 267:110106. [PMID: 39449768 PMCID: PMC11500632 DOI: 10.1016/j.jfluchem.2023.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
This account describes our recent progress on the strategic incorporation of fluorine and organofluorine moieties into new-generation taxoid anticancer agents for medicinal chemistry and chemical biology studies. In the case study 1, novel 3rd-generation fluorotaxoids bearing 3-OCF3 or 3-OCF2H group in the C2-benzoate moiety were designed, synthesized and examined for their anticancer activities. The potency of novel taxoids against drug-resistant cancer cell lines was 2-3 orders of magnitude higher than that of paclitaxel (PTX). Molecular modeling analysis indicated the favorable van der Waals interactions of OCF3 and OCHF2 groups in the binding site. Overall, taxoids bearing a OCHF2 group at the C2 benzoate position exhibited the highest potencies against multidrug-resistant (MDR) cancer cell lines and cancer stem cell (CSC)-enriched cell lines, indicating that the new 3rd-generation fluorotaxoids are promising candidates as chemotherapeutic agents. In the case study 2, novel 3rd-generation 3'-difluorovinyl (DFV)-taxoids, bearing 3-CF3O or 3-CHF2O group in the C2-benzoyl moiety, were designed, synthesized, and evaluated for their potencies and pharmacological properties. These new DFV-taxoids exhibited remarkable cytotoxicity against extremely drug-resistant cancer cell lines with subnanomolar IC50 values, indicating that these new DFV-taxoids can overcome MDR caused by the overexpression of Pgp and other ABC cassette transporters. The molecular docking analysis of new DFV-taxoids revealed that the 3'-DFV moiety and the 3-CF3O/3-CHF2O group of the C2-benzoate moiety are nicely accommodated to the deep hydrophobic pocket of the PTX/taxoid binding site in the β-tubulin, enabling an enhanced binding through unique attractive interactions between F/OCF3/OCHF2 and the protein. This enhancement in binding is reflected in the remarkable high potency of new 3rd-generation DFV-taxoids. In the case study 3.1, the therapeutic potential of new 3rd-generation DFV-taxoids in anaplastic thyroid cancer (ATC) cells was evaluated in vitro and in vivo. This study demonstrated that these new DFV-taxoids were more efficacious than PTX against ATC cell lines and tumor xenografts, as demonstrated by the efficient inhibition of cell proliferation and colony formation, induction of apoptosis via the mitotic arrest at the G2/M phase, as well as the suppression of tumorigenic potential in nude mice. Furthermore, tubulin polymerization assay and molecular docking analysis confirmed that these new DFV-taxoids promoted far more rapid polymerization of β-tubulin than PTX through stronger binding to tubulin/microtubules. Taken together, this study has indicated a promising therapeutic potential of these new DFV-taxoids against ATC. In the case study 3.2, DFV-OTX displayed potent cytotoxicity and effective induction of β-tubulin polymerization, as well as the G2/M phase arrest, leading to apoptosis in PTX-sensitive and PTX-resistant breast cancer cells. Furthermore, DFV-OTX clearly exhibited efficacy against MCF-7R and MDA-MB-231R tumor xenografts in mouse models. Thus, DFV-OTX effectively overcame PTX-resistance in MDA-MB-231R cells and tumor xenografts, wherein the drug resistance was attributed to ABCB1/ABCG2 upregulation. DFV-OTX was also effective against MCF-7R cells and tumor xenografts, which are PTX-resistant due to different MOA. Accordingly, DFV-OTX is a promising chemotherapeutic agent for the treatment of PTX-resistant cancers. Overall, these next-generation fluorotaxoids are promising candidates for highly potent chemotherapeutic agents, as well as payloads for tumor-targeting drug conjugates such as antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Kathryn Takemura
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Hersh Bendale
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ashna Garg
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
29
|
Chen W, Wang Z, Tian M, Hong G, Wu Y, Sui M, Chen M, An J, Song F, Peng X. Integration of TADF Photosensitizer as “Electron Pump” and BSA as “Electron Reservoir” for Boosting Type I Photodynamic Therapy. J Am Chem Soc 2023; 145:8130-8140. [PMID: 37001012 DOI: 10.1021/jacs.3c01042] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Type I photosensitization provides an effective solution to the problem of unsatisfactory photodynamic therapeutic (PDT) effects caused by the tumor hypoxia. The challenge in the development of Type I mode is to boost the photosensitizer's own electron transfer capacity. Herein, we found that the use of bovine serum albumin (BSA) to encapsulate a thermally activated delayed fluorescence (TADF) photosensitizer PS can significantly promote the Type I PDT process to generate a mass of superoxide anions (O2•-). This Type I photosensitization opened a new strategy by employing BSA as "electron reservoir" and TADF photosensitizer as "electron pump". We integrated these roles of BSA and PS in one system by preparing nanophotosensitizer PS@BSA. The Type I PDT performance was demonstrated with tumor cells under hypoxic conditions. Furthermore, PS@BSA took full advantage of the tumor-targeting role of BSA and achieved efficient PDT for tumor-bearing mice in the in vivo experiments. This work provides an effective route to improve the PDT efficiency of hypoxic tumors.
Collapse
|
30
|
Min L, Han JC, Zhang W, Gu CC, Zou YP, Li CC. Strategies and Lessons Learned from Total Synthesis of Taxol. Chem Rev 2023; 123:4934-4971. [PMID: 36917457 DOI: 10.1021/acs.chemrev.2c00763] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Taxol (paclitaxel), the most well-known taxane diterpenoid, is the best-selling natural-source anticancer drug ever produced and one of the most common prescriptions in the treatment of breast, lung, and ovarian cancers, saving countless lives around the world. Structurally, Taxol possesses a highly oxygenated [6-8-6-4] core bearing 11 stereocenters, seven of which are contiguous chiral centers. Moreover, the extremely strained bicyclo[5.3.1] undecane ring system with a bridgehead double bond is a unique structural feature. All these features make Taxol a highly challenging synthetic target. Tremendous synthetic efforts from more than 60 research groups around the world have already culminated in ten total syntheses and three formal syntheses, as well as more than 60 synthetic model studies of Taxol. This review is intended to provide a long-overdue appraisal of the great achievements in the total syntheses of Taxol reported in the last few decades. In doing so, we summarize the development of synthesis toward Taxol from 1994 to 2022, including the evolution of synthetic strategy for accessing this complex molecular scaffold and key lessons learned from such endeavors. Finally, we briefly discuss the future of the research in this area.
Collapse
Affiliation(s)
- Long Min
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Wen Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chen-Chen Gu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yun-Peng Zou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
31
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
32
|
Kim CH, Lee S, Choi JY, Lyu MJ, Jung HM, Goo YT, Kang MJ, Choi YW. Functionalized Lipid Nanocarriers for Simultaneous Delivery of Docetaxel and Tariquidar to Chemoresistant Cancer Cells. Pharmaceuticals (Basel) 2023; 16:ph16030349. [PMID: 36986449 PMCID: PMC10058271 DOI: 10.3390/ph16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The simultaneous drug delivery efficiency of a co-loaded single-carrier system of docetaxel (DTX)- and tariquidar (TRQ)-loaded nanostructured lipid carrier (NLC) functionalized with PEG and RIPL peptide (PRN) (D^T-PRN) was compared with that of a physically mixed dual-carrier system of DTX-loaded PRN (D-PRN) and TRQ-loaded PRN (T-PRN) to overcome DTX mono-administration-induced multidrug resistance. NLC samples were prepared using the solvent emulsification evaporation technique and showed homogeneous spherical morphology, with nano-sized dispersion (<220 nm) and zeta potential values of −15 to −7 mV. DTX and/or TRQ was successfully encapsulated in NLC samples (>95% encapsulation efficiency and 73–78 µg/mg drug loading). In vitro cytotoxicity was concentration-dependent; D^T-PRN exhibited the highest MDR reversal efficiency, with the lowest combination index value, and increased the cytotoxicity and apoptosis in MCF7/ADR cells by inducing cell-cycle arrest in the G2/M phase. A competitive cellular uptake assay using fluorescent probes showed that, compared to the dual nanocarrier system, the single nanocarrier system exhibited better intracellular delivery efficiency of multiple probes to target cells. In the MCF7/ADR-xenografted mouse models, simultaneous DTX and TRQ delivery using D^T-PRN significantly suppressed tumor growth as compared to other treatments. A single co-loaded system for PRN-based co-delivery of DTX/TRQ (1:1, w/w) constitutes a promising therapeutic strategy for drug-resistant breast cancer cells.
Collapse
Affiliation(s)
- Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, 4700 Kneele St., Toronto, ON M3J 1P3, Canada
| | - Min Jeong Lyu
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyun Min Jung
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- Correspondence:
| |
Collapse
|
33
|
E3 Ubiquitin Ligase TRIP12 Controls Exit from Mitosis via Positive Regulation of MCL-1 in Response to Taxol. Cancers (Basel) 2023; 15:cancers15020505. [PMID: 36672454 PMCID: PMC9856375 DOI: 10.3390/cancers15020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023] Open
Abstract
Chemotherapy resistance is a major hurdle in cancer treatment. Taxol-based chemotherapy is widely used in the treatment of cancers including breast, ovarian, and pancreatic cancer. Loss of function of the tumor suppressor F-box WD-40 domain containing 7 (FBW7) mutations leads to the accumulation of its substrate MCL-1 which is associated with Taxol resistance in human cancers. We recently showed that E3 ubiquitin ligase TRIP12 is a negative regulator of FBW7 protein. In this study, we find that Taxol-induced mitotic block in cancer cells is partly controlled by TRIP12 via its positive regulation of MCL-1 protein. Genetic inhibition of TRIP12 accelerates MCL-1 protein degradation in mitosis. Notably, introducing double-point mutations in lysines 404/412 of FBW7 to arginine which makes it resistant to proteasomal degradation, leads to the sharp reduction of MCL-1 protein levels and sensitizes cancer cells to Taxol-induced cell death. Finally, TRIP12 deletion leads to enhanced mitotic arrest and cell death in an FBW7 and MCL-1 dependent manner in multiple cell lines including colorectal and ovarian cancer but not in breast cancer. Thus, the TRIP12/FBW7/MCL-1 axis may provide a therapeutic target to overcome Taxol-associated chemotherapy resistance in cancer.
Collapse
|
34
|
Liu X, Tang M, He TY, Zhao S, Li HZ, Li Z, Guo YX, Wang XL. Resveratrol Improves Paclitaxel-Induced Cognitive Impairment in Mice by Activating SIRT1/PGC-1α Pathway to Regulate Neuronal State and Microglia Cell Polarization. Drug Des Devel Ther 2023; 17:1125-1138. [PMID: 37077409 PMCID: PMC10106825 DOI: 10.2147/dddt.s400936] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
Objective This study aimed to investigate the effect of resveratrol (Res) on paclitaxel (PTX)-induced cognitive impairment and elucidate the underlying molecular mechanisms. Methods Morris Water Maze (MWM) test was used to evaluate the mice's spatial learning and memory abilities. Western blotting was applied to detect protein expression of receptor-interacting protein (RIP3), mixed lineage kinase domain-like protein (MLKL), silencing information regulator 2 related enzyme 1 (SIRT1), peroxisome proliferator activated receptor coactivator-1 (PGC-1α), NADPH oxidase 2 (NOX2), NOX4, postsynaptic density zone 95 (PSD95), arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS). Immunofluorescence of RIP3, MLKL, Arg-1, Iba-1 and iNOS was conducted to observe the apoptosis of hippocampal cells and the polarization of microglia. qRT-PCR was performed to detect BDNF mRNA expressions. DHE staining was used to assess the level of oxidative stress response. Golgi-Cox staining and dendritic spine counting were applied to visualize synaptic structural plasticity. Postsynaptic density was performed by transmission electron microscope. ELISA was used to detect the contents of tumour necrosis factor alpha (TNF-α), IL-1β, IL-4, and IL-10. Results PTX-induced cognitive impairment model was constructed after the application of PTX, represented as longer latency to platform and less platform crossing times over the whole period in PTX group. After Res treatment, the above indicators were reversed, indicating that cognitive function was improved. Moreover, Res reduced neuronal apoptosis and oxidative stress through SIRT1/PGC-1α pathway in mice, manifesting as down-regulated expression of RIP3, MLKL, NOX2 and NOX4. Meanwhile, Res increased the density of dendritic spines and the expression of PSD95 and BDNF, thereby ameliorating the PTX induced synaptic damage. Besides, M2 microglia was in the majority, eliciting the expression of anti-inflammatory cytokines IL-4 and IL-10 after Res treatment in PTX+Res group, while immunofluorescence images results demonstrated an decrease in the proportion of M2 microglia a following SIRT1 inhibitor EX-527. Conclusion Res improves PTX-induced cognitive impairment in mice by activating SIRT1/PGC-1α pathways to regulate neuronal state and microglia cell polarization.
Collapse
Affiliation(s)
- Xin Liu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Miao Tang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Tian-Yi He
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Shuang Zhao
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Hui-Zhou Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Zhao Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Yue-Xian Guo
- Department of Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, People’s Republic of China
| | - Xiu-Li Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People’s Republic of China
- Correspondence: Xiu-Li Wang, Department of Anesthesiology, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, People’s Republic of China, Tel +86-13313019968, Email
| |
Collapse
|
35
|
Kamitani N, Nakamae I, Yoneda-Kato N, Kato JY, Sho M. Preclinical evaluation of pentagamavunone-1 as monotherapy and combination therapy for pancreatic cancer in multiple xenograft models. Sci Rep 2022; 12:22419. [PMID: 36575213 PMCID: PMC9794715 DOI: 10.1038/s41598-022-26863-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
We previously reported that pentagamavunone-1 (PGV-1) effectively inhibited cell proliferation in many types of human tumors, including pancreatic cancer, by inducing M phase (prometaphase) arrest, senescence, and apoptosis with few side effects. However, a detailed evaluation of the effects of PGV-1 on pancreatic cancer cells in an in vivo setting has not yet been conducted. The present study investigated the potential efficacy of PGV-1 as both monotherapy and combination therapy for pancreatic cancer using multiple xenograft mouse assays. A cell-line derived xenograft model (CDX-M) with pancreatic cancer cell line and a patient-derived xenograft mouse model (PDX-M) using resected pancreatic cancer samples without neoadjuvant chemotherapy were established in both heterotopic and orthotopic manners. PGV-1 effectively suppressed tumor formation at the heterotopic and orthotopic sites in CDX-M than in untreated mice. Combination therapy with PGV-1 and gemcitabine more effectively suppressed tumor formation than monotherapy with PGV-1 or gemcitabine when administered after tumor formation. Monotherapy with PGV-1 or gemcitabine less effectively suppressed tumor formation in PDX-M than in CDX-M, whereas combination therapy with PGV-1 and gemcitabine more effectively suppressed tumor formation. PGV-1 as monotherapy and combination therapy with gemcitabine effectively inhibited tumor formation and has potential as an anticancer candidate for pancreatic cancer.
Collapse
Affiliation(s)
- Naoki Kamitani
- grid.410814.80000 0004 0372 782XDepartment of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8522 Japan
| | - Ikuko Nakamae
- grid.260493.a0000 0000 9227 2257Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101 Japan
| | - Noriko Yoneda-Kato
- grid.260493.a0000 0000 9227 2257Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101 Japan
| | - Jun-ya Kato
- grid.260493.a0000 0000 9227 2257Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101 Japan
| | - Masayuki Sho
- grid.410814.80000 0004 0372 782XDepartment of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8522 Japan
| |
Collapse
|
36
|
Apollonova VS, Sidina EI, Tkachenko EV, Malek AV. MicroRNA-dependent mechanisms of taxane resistance in breast cancer. TUMORS OF FEMALE REPRODUCTIVE SYSTEM 2022. [DOI: 10.17650/1994-4098-2022-18-3-52-63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Breast cancer (BC) has a leading position in the statistics of oncological morbidity and mortality among women. Taxan-based polychemotherapy regimens are an essential component of the complex therapy of the BC. However, currently used algorithms of taxan-based regimens application do not always provide with desire effect. It indicates the need to identify new prognostic markers and to develop new approaches to modify response of BC cells to standard therapeutic regimens. MicroRNAs, small RNA molecules regulating protein synthesis, are considered as promising markers and potential modulators of the BC cells sensitivity to taxanes.The review includes a brief summary of the molecular mechanisms of action of the taxanes and the mechanism BC resistance to the process of microtubules depolymerization, provides with analysis of recent experimental and observational studies of the role of microRNAs in control of these mechanisms, and evaluates prospects for the development of new approaches to predict and to improve the cytostatic effects of taxanes through the analysis and modification of cellular microRNAs.
Collapse
Affiliation(s)
- V. S. Apollonova
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
| | - E. I. Sidina
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
| | - E. V. Tkachenko
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. V. Malek
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
37
|
Shaik BB, Katari NK, Jonnalagadda SB. Role of Natural Products in Developing Novel Anticancer Agents: A Perspective. Chem Biodivers 2022; 19:e202200535. [DOI: 10.1002/cbdv.202200535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Baji Baba Shaik
- Department of Chemistry School of Science GITAM Deemed to be University Hyderabad Telangana 502329 India
- School of Chemistry & Physics Westville Campus University of KwaZulu-Natal Chiltern Hills Durban 4000 South Africa
| | - Naresh Kumar Katari
- Department of Chemistry School of Science GITAM Deemed to be University Hyderabad Telangana 502329 India
- School of Chemistry & Physics Westville Campus University of KwaZulu-Natal Chiltern Hills Durban 4000 South Africa
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics Westville Campus University of KwaZulu-Natal Chiltern Hills Durban 4000 South Africa
| |
Collapse
|
38
|
Wang C, Aguilar A, Ojima I. Strategies for the drug discovery and development of taxane anticancer therapeutics. Expert Opin Drug Discov 2022; 17:1193-1207. [PMID: 36200759 PMCID: PMC11483169 DOI: 10.1080/17460441.2022.2131766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Paclitaxel and docetaxel have been extensively used in the clinic over the past three decades. Although the patents of these first-generation taxanes have expired, their clinical applications, particularly new formulations and combination therapies, are under active investigations. Inspired by the notable success of Abraxane and Lipusu, new formulations have been extensively developed. In parallel, to overcome multidrug resistance (MDR) and to eradicate cancer stem cells, immense efforts have been made on the discovery and development of new-generation taxanes with improved potency and superior pharmacological properties. AREAS COVERED This review covers (a) natural sources of advanced intermediates used for semi-synthesis of taxane API, (b) new formulations, (c) the major issues of FDA approved taxanes, (d) the design and development of next-generation taxanes, (e) new mechanisms of action, and (f) a variety of taxane-based drug delivery systems. EXPERT OPINION As the highly potent next-generation taxanes can eradicate cancer stem cells and overcome MDR, the priority is to develop these compounds as an integral part of cancer therapy, especially for pancreatic, colon and prostate cancers which hardly respond to checkpoint inhibitors. In order to mitigate undesirable side effects, the exploration of effective nanoformulations and tumor-targeted drug delivery systems are essential.
Collapse
Affiliation(s)
- Changwei Wang
- Rogel Cancer Center and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, U.S.A
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A
- Drug Discovery Pipeline, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| | - Angelo Aguilar
- Rogel Cancer Center and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, U.S.A
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, U.S.A
| |
Collapse
|
39
|
Smith ER, Wang JQ, Yang DH, Xu XX. Paclitaxel Resistance Related to Nuclear Envelope Structural SturdinessRunning Title: Lamin A/C Expression and Paclitaxel Resistance. Drug Resist Updat 2022; 65:100881. [DOI: 10.1016/j.drup.2022.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
|
40
|
Garcia J, Rodrigues F, Saavedra MJ, Nunes FM, Marques G. Bioactive polysaccharides from medicinal mushrooms: A review on their isolation, structural characteristics and antitumor activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Macrophage Infiltration Initiates RIP3/MLKL-Dependent Necroptosis in Paclitaxel-Induced Neuropathic Pain. Mediators Inflamm 2022; 2022:1567210. [PMID: 36164389 PMCID: PMC9508459 DOI: 10.1155/2022/1567210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Paclitaxel (PTX) is a commonly used antitumor drug. Approximately 80% of all patients receiving PTX chemotherapy develop chemotherapy-induced peripheral neuropathy (CIPN), limiting the use of PTX. Moreover, CIPN responds poorly to conventional analgesics. Experimental evidence suggests that the neuroinflammatory response plays an essential role in paclitaxel-induced peripheral neuropathy (PIPN). Previous studies have confirmed that dorsal root ganglion (DRG) neuron necroptosis and accompanying inflammation are linked with PIPN; however, the potential upstream regulatory mechanisms remain unclear. Preclinical studies have also established that macrophage infiltration in the DRG is associated with PIPN. TNF-α released by activated macrophages is the primary regulatory signal of necroptosis. In this study, we established a rat model of PIPN via quartic PTX administration (accumulated dose: 8 mg/kg, i.p.). The regulatory effect of macrophage infiltration on necroptosis in PIPN was observed using a macrophage scavenging agent (clodronate disodium). The results showed that PTX increased macrophage infiltration and the levels of TNF-α and IL-1β in the DRG. PTX also upregulated the levels of necroptosis-related proteins, including receptor-interacting protein kinase (RIP3) and mixed-lineage kinase domain-like protein (MLKL) in DRG neurons and promoted MLKL phosphorylation, resulting in neuronal necrosis and hyperalgesia. In contrast, clodronate disodium effectively removed macrophages, reduced the levels of RIP3, MLKL, and pMLKL, and decreased the number of necrotic cells in the DRG of PIPN rats, alleviating the behavioral pain abnormalities. These results suggest that PTX promotes macrophage infiltration, which results in the release of TNF-α and IL-1β in the DRG and the initiation of neuronal necroptosis via the RIP3/MLKL pathway, ultimately leading to neuropathic pain.
Collapse
|
42
|
Smith ER, Huang M, Schlumbrecht MP, George SH, Xu XX. Rationale for combination of paclitaxel and CDK4/6 inhibitor in ovarian cancer therapy - non-mitotic mechanisms of paclitaxel. Front Oncol 2022; 12:907520. [PMID: 36185294 PMCID: PMC9520484 DOI: 10.3389/fonc.2022.907520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Taxanes and CDK4/6 inhibitors (CDK4/6i) are two families of successful anti-mitotic drugs used in the treatment of solid tumors. Paclitaxel, representing taxane compounds, has been used either alone or in combination with other agents (commonly carboplatin/cisplatin) in the treatment of many solid tumors including ovarian, breast, lung, prostate cancers, and Kaposi's sarcoma. Paclitaxel has been routinely prescribed in cancer treatment since the 1990s, and its prominent role is unlikely to be replaced in the foreseeable future. Paclitaxel and other taxanes work by binding to and stabilizing microtubules, causing mitotic arrest, aberrant mitosis, and cell death. CDK4/6i (palbociclib, ribociclib, abemaciclib) are relatively new cell cycle inhibitors that have been found to be effective in breast cancer treatment, and are currently being developed in other solid tumors. CDK4/6i blocks cell cycle progression at the G1 phase, resulting in cell death by mechanisms not yet fully elucidated. At first glance, paclitaxel and CDK4/6i are unlikely synergistic agents as both are cell cycle inhibitors that work at different phases of the cell cycle, and few clinical trials have yet considered adding CDK4/6i to existing paclitaxel chemotherapy. However, recent findings suggest the importance of a non-mitotic mechanism of paclitaxel in cancer cell death and pre-clinical data support rationale for a strategic paclitaxel and CDK4/6i combination. In mouse tumor model studies, drug sequencing resulted in differential efficacy, indicating complex biological interactions of the two drugs. This article reviews the rationales of combining paclitaxel with CDK4/6i as a potential therapeutic option in recurrent ovarian cancer.
Collapse
Affiliation(s)
- Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marilyn Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Matthew P. Schlumbrecht
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sophia H.L. George
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
43
|
Chitosan-alginate nanoparticles of cabazitaxel: Design, dual-receptor targeting and efficacy in lung cancer model. Int J Biol Macromol 2022; 221:874-890. [PMID: 36089091 DOI: 10.1016/j.ijbiomac.2022.09.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Cabazitaxel (CZT) loaded chitosan-alginate based (CSA) nanoparticles were developed with dual targeting functions of both folate receptor and epidermal growth factor receptor (EGFR) using ionic gelation technique. The chitosan-folate conjugate was synthesized, and characterized by using FTIR, NMR and Mass spectroscopy. The physicochemical parameters and morphology of all CSA nanoparticles were examined. The degree of conjugation of folic acid and cetuximab (CTXmab) was determined by UV-Visible spectroscopy and Bradford assay, respectively. Moreover, XPS analysis also supported the presence of the ligands on nanoparticles. The cellular-uptake study performed on A-549 cells demonstrated a significant enhancement in the uptake of dual-receptor targeted CSA nanoparticles than non-targeted and single-receptor targeted CSA nanoparticles. Further, CZT-loaded dual receptors targeted CSA nanoparticles also showed significantly lower IC50 values (~38 folds) than the CZT control against A-549 cells. Further, in-vivo histopathological evaluations of dual receptor-targeted CSA nanoparticles have demonstrated better safety in Wistar rats. Moreover, its treatment on the Benzo(a)pyrene (B(a)P) induced lung cancer mice model has showed the enhanced anticancer efficacy of CZT with a prolonged survival rate.
Collapse
|
44
|
Drugs That Changed Society: Microtubule-Targeting Agents Belonging to Taxanoids, Macrolides and Non-Ribosomal Peptides. Molecules 2022; 27:molecules27175648. [PMID: 36080414 PMCID: PMC9457747 DOI: 10.3390/molecules27175648] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
During a screening performed by the National Cancer Institute in the 1960s, the terpenoid paclitaxel was discovered. Paclitaxel expanded the treatment options for breast, lung, prostate and ovarian cancer. Paclitaxel is only present in minute amounts in the bark of Taxia brevifolia. A sustainable supply was ensured with a culture developed from Taxus chinensis, or with semi-synthesis from other taxanes. Paclitaxel is marketed under the name Taxol. An intermediate from the semi-synthesis docetaxel is also used as a drug and marketed as Taxotere. O-Methylated docetaxel is used for treatment of some paclitaxel-resistant cancer forms as cabazitaxel. The solubility problems of paclitaxel have been overcome by formulation of a nanoparticle albumin-bound paclitaxel (NAB-paclitaxel, Abraxane). The mechanism of action is affinity towards microtubules, which prevents proliferation and consequently the drug would be expected primarily to be active towards cancer cells proliferating faster than benign cells. The activity against slowly growing tumors such as solid tumors suggests that other effects such as oncogenic signaling or cellular trafficking are involved. In addition to terpenoids, recently discovered microtubule-targeting polyketide macrolides and non-ribosomal peptides have been discovered and marketed as drugs. The revolutionary improvements for treatment of cancer diseases targeting microtubules have led to an intensive search for other compounds with the same target. Several polyketide macrolides, terpenoids and non-ribosomal peptides have been investigated and a few marketed.
Collapse
|
45
|
Kailass K, Sadovski O, Zipfel WR, Beharry AA. Two-Photon Photodynamic Therapy Targeting Cancers with Low Carboxylesterase 2 Activity Guided by Ratiometric Fluorescence. J Med Chem 2022; 65:8855-8868. [PMID: 35700557 DOI: 10.1021/acs.jmedchem.1c01965] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human carboxylesterase 2 (hCES2) converts anticancer prodrugs, such as irinotecan, into their active metabolites via phase I drug metabolism. Owing to interindividual variability, hCES2 serves as a predictive marker of patient response to hCES2-activated prodrug-based therapy, whereby a low intratumoral hCES2 activity leads to therapeutic resistance. Despite the ability to identify nonresponders, effective treatments for resistant patients are needed. Clinically approved photodynamic therapy is an attractive alternative for irinotecan-resistant patients. Here, we describe the application of our hCES2-selective small-molecule ratiometric fluorescent chemosensor, Benz-AP, as a single theranostic agent given its discovered functionality as a photosensitizer. Benz-AP produces singlet oxygen and induces photocytotoxicity in cancer cells in a strong negative correlation with hCES2 activity. Two-photon excitation of Benz-AP produces fluorescence, singlet oxygen, and photocytotoxicity in tumor spheroids. Overall, Benz-AP serves as a novel theranostic agent with selective photocytotoxicity in hCES2-prodrug resistant cancer cells, making Benz-AP a promising agent for in vivo applications.
Collapse
Affiliation(s)
- Karishma Kailass
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Oleg Sadovski
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
46
|
Kim CH, Kim BD, Lee TH, Kim HK, Lyu MJ, Yoon YI, Goo YT, Kang MJ, Lee S, Choi YW. Synergistic co-administration of docetaxel and curcumin to chemoresistant cancer cells using PEGylated and RIPL peptide-conjugated nanostructured lipid carriers. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A targeted co-administration system of docetaxel (DTX) and curcumin (CUR) using a PEG-modified RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated nanostructured lipid carrier (P/R-NLC) was constructed to exert synergistic anticancer effects against chemoresistant breast cancer.
Results
DTX- or CUR-loaded NLCs and P/R-NLCs were prepared using the solvent emulsification–evaporation method. NLCs showed homogeneous spherical morphology with nano-sized dispersion (< 210 nm) with zeta potential varying from − 16.4 to − 19.9 mV. DTX or CUR was successfully encapsulated in the NLCs: encapsulation efficiency (> 95%); drug loading (8 − 18%). All NLC formulations were stable for 4 weeks under the storage conditions at 4 °C. Drug release was diffusion-controlled, revealing the best fit to the Higuchi equation. DTX- or CUR-loaded formulations showed dose-dependent cytotoxicity. The DTX/CUR combination (1:3 w/w) in P/R-NLC formulations exhibited the strongest synergism in both MCF7 and MCF7/ADR cells with combination index values of 0.286 and 0.130, respectively. Co-treatment with DTX- or CUR-P/R-NLCs increased apoptosis in both cell lines exhibited the superior synergistic inhibitory effect on MCF7/ADR three-dimensional spheroids. Finally, in OVCAR3-xenografted mouse models, co-treatment with DTX- or CUR-loaded P/R-NLCs significantly suppressed tumor growth compared to the other treatment groups.
Conclusions
Co-administration of DTX/CUR (1:3 w/w) using P/R-NLCs induced a synergistic effect against chemoresistant cancer cells.
Graphical Abstract
Collapse
|
47
|
Nyamwihura RJ, Ogungbe IV. The pinene scaffold: its occurrence, chemistry, synthetic utility, and pharmacological importance. RSC Adv 2022; 12:11346-11375. [PMID: 35425061 PMCID: PMC9003397 DOI: 10.1039/d2ra00423b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Plant-based secondary metabolites have been a major source of drug discovery and inspiration for new generations of drugs. Plants offer a wide variety of compound classes, including alkaloids, terpenes, flavonoids, and glycosides, with different molecular architectures (fused bridgehead, bi- and polycyclic, spirocyclic, polycyclic, and acyclic). The diversity, abundance, and accessibility of plant metabolites make plants an attractive source of human and animal medicine. Even though the pinene scaffold is abundant in nature and has historical use in traditional medicine, pinene and pinene-derived compounds have not been comprehensively studied for medicinal applications. This review provides insight into the utility of the pinene scaffold as a crucial building block of important natural and synthetic products and as a chiral reagent in the asymmetric synthesis of important compounds.
Collapse
Affiliation(s)
- Rogers J Nyamwihura
- Department of Chemistry, Jackson State University 1400 John R. Lynch Street Jackson MS 39217 USA +1-601-979-3719
| | - Ifedayo Victor Ogungbe
- Department of Chemistry, Jackson State University 1400 John R. Lynch Street Jackson MS 39217 USA +1-601-979-3719
| |
Collapse
|
48
|
Eli S, Castagna R, Mapelli M, Parisini E. Recent Approaches to the Identification of Novel Microtubule-Targeting Agents. Front Mol Biosci 2022; 9:841777. [PMID: 35425809 PMCID: PMC9002125 DOI: 10.3389/fmolb.2022.841777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/05/2022] Open
Abstract
Microtubules are key components of the eukaryotic cytoskeleton with essential roles in cell division, intercellular transport, cell morphology, motility, and signal transduction. They are composed of protofilaments of heterodimers of α-tubulin and β-tubulin organized as rigid hollow cylinders that can assemble into large and dynamic intracellular structures. Consistent with their involvement in core cellular processes, affecting microtubule assembly results in cytotoxicity and cell death. For these reasons, microtubules are among the most important targets for the therapeutic treatment of several diseases, including cancer. The vast literature related to microtubule stabilizers and destabilizers has been reviewed extensively in recent years. Here we summarize recent experimental and computational approaches for the identification of novel tubulin modulators and delivery strategies. These include orphan small molecules, PROTACs as well as light-sensitive compounds that can be activated with high spatio-temporal accuracy and that represent promising tools for precision-targeted chemotherapy.
Collapse
Affiliation(s)
- Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Rossella Castagna
- Latvian Institute of Organic Synthesis, Aizkraukles Iela 21, Riga, Latvia
| | - Marina Mapelli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- *Correspondence: Marina Mapelli, ; Emilio Parisini,
| | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles Iela 21, Riga, Latvia
- *Correspondence: Marina Mapelli, ; Emilio Parisini,
| |
Collapse
|
49
|
Pal S, Rahman J, Mu S, Rusch NJ, Stolarz AJ. Drug-Related Lymphedema: Mysteries, Mechanisms, and Potential Therapies. Front Pharmacol 2022; 13:850586. [PMID: 35308247 PMCID: PMC8930849 DOI: 10.3389/fphar.2022.850586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The lymphatic circulation is an important component of the circulatory system in humans, playing a critical role in the transport of lymph fluid containing proteins, white blood cells, and lipids from the interstitial space to the central venous circulation. The efficient transport of lymph fluid critically relies on the rhythmic contractions of collecting lymph vessels, which function to "pump" fluid in the distal to proximal direction through the lymphatic circulation with backflow prevented by the presence of valves. When rhythmic contractions are disrupted or valves are incompetent, the loss of lymph flow results in fluid accumulation in the interstitial space and the development of lymphedema. There is growing recognition that many pharmacological agents modify the activity of ion channels and other protein structures in lymph muscle cells to disrupt the cyclic contraction and relaxation of lymph vessels, thereby compromising lymph flow and predisposing to the development of lymphedema. The effects of different medications on lymph flow can be understood by appreciating the intricate intracellular calcium signaling that underlies the contraction and relaxation cycle of collecting lymph vessels. For example, voltage-sensitive calcium influx through long-lasting ("L-type") calcium channels mediates the rise in cytosolic calcium concentration that triggers lymph vessel contraction. Accordingly, calcium channel antagonists that are mainstay cardiovascular medications, attenuate the cyclic influx of calcium through L-type calcium channels in lymph muscle cells, thereby disrupting rhythmic contractions and compromising lymph flow. Many other classes of medications also may contribute to the formation of lymphedema by impairing lymph flow as an off-target effect. The purpose of this review is to evaluate the evidence regarding potential mechanisms of drug-related lymphedema with an emphasis on common medications administered to treat cardiovascular diseases, metabolic disorders, and cancer. Additionally, although current pharmacological approaches used to alleviate lymphedema are largely ineffective, efforts are mounting to arrive at a deeper understanding of mechanisms that regulate lymph flow as a strategy to identify novel anti-lymphedema medications. Accordingly, this review also will provide information on studies that have explored possible anti-lymphedema therapeutics.
Collapse
Affiliation(s)
- Soumiya Pal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jenat Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Amanda J Stolarz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
50
|
Tian Z, Yao W. Albumin-Bound Paclitaxel: Worthy of Further Study in Sarcomas. Front Oncol 2022; 12:815900. [PMID: 35223497 PMCID: PMC8866444 DOI: 10.3389/fonc.2022.815900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
Taxanes (paclitaxel and docetaxel) play an important role in the treatment of advanced sarcomas. Albumin-bound paclitaxel (nab-paclitaxel) is a new kind of taxane and has many advantages compared with paclitaxel and docetaxel. Nab-paclitaxel is currently approved for the treatment of advanced breast, non-small cell lung, and pancreatic cancers. However, the efficacy of nab-paclitaxel in sarcomas has not been reviewed. In this review, we first compare the similarities and differences among nab-paclitaxel, paclitaxel, and docetaxel and then summarize the efficacy of nab-paclitaxel against various non-sarcoma malignancies based on clinical trials with reported results. The efficacy and clinical research progress on nab-paclitaxel in sarcomas are also summarized. This review will serve as a good reference for the application of nab-paclitaxel in clinical sarcoma treatment studies and the design of clinical trials.
Collapse
Affiliation(s)
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|