1
|
Li G, Ji H, Jiang Q, Cao H, Wang Z, Liu S. Association between physical activity and depression in adult prescription opioid users: A cross-sectional analysis based on NHANES 2007-2018. Gen Hosp Psychiatry 2024; 89:1-7. [PMID: 38579547 DOI: 10.1016/j.genhosppsych.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE This study was designed to examine the association between physical activity (PA) and depression among adult prescription opioid users. METHOD Data of adults who recently took prescription opioids were collected from NHANES 2007-2018. Participants were divided into two groups according to whether PA in each domain was ≥600 MET-min/week. According to weekly activity frequency, recreational physical activity (RPA) was divided into inactivity, insufficient activity, weekend warrior (WW), and regular activity. PHQ-9 scores ≥10 were identified as depression. RESULTS RPA of ≥600 MET-min/week was associated with a 40% (OR: 0.60, 95%CI: 0.38-0.96, P = 0.032) reduction in the risk of depression. Restricted Cubic Spline plots found a nonlinear dose-response relationship between RPA and depression (P = 0.045), and the turning point of depression risk was around 600 MET-min/week. There was no significant difference in the risk of depression between the WW and inactivity groups (OR: 0.65, 95%CI: 0.25-1.72, P = 0.382). The regular activity group had an 45% (OR: 0.55, 95%CI: 0.31-0.99, P = 0.046)lower risk for depression than the inactivity group. CONCLUSION Only regular RPA is associated with a reduced risk of depression, and RPA showed a nonlinear dose-response relationship. The antidepressant effect of the WW is not significant.
Collapse
Affiliation(s)
- Gang Li
- Department of Anesthesia, The Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, PR China
| | - Hongxiang Ji
- Department of General Surgery, The Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, PR China
| | - Qiuxiang Jiang
- Department of Anesthesia, The Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, PR China
| | - Huijuan Cao
- Department of Anesthesia, The Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, PR China
| | - Zhibin Wang
- Medical Department, The Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, PR China.
| | - Shanshan Liu
- Department of Anesthesia, The Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian, PR China.
| |
Collapse
|
2
|
Okdeh N, Mahfouz G, Harb J, Sabatier JM, Roufayel R, Gazo Hanna E, Kovacic H, Fajloun Z. Protective Role and Functional Engineering of Neuropeptides in Depression and Anxiety: An Overview. Bioengineering (Basel) 2023; 10:258. [PMID: 36829752 PMCID: PMC9952193 DOI: 10.3390/bioengineering10020258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Behavioral disorders, such as anxiety and depression, are prevalent globally and touch children and adults on a regular basis. Therefore, it is critical to comprehend how these disorders are affected. It has been demonstrated that neuropeptides can influence behavior, emotional reactions, and behavioral disorders. This review highlights the majority of the findings demonstrating neuropeptides' behavioral role and functional engineering in depression and anxiety. Gut-brain peptides, hypothalamic releasing hormone peptides, opioid peptides, and pituitary hormone peptides are the four major groups of neuropeptides discussed. Some neuropeptides appear to promote depression and anxiety-like symptoms, whereas others seem to reduce it, all depending on the receptors they are acting on and on the brain region they are localized in. The data supplied here are an excellent starting point for future therapy interventions aimed at treating anxiety and depression.
Collapse
Affiliation(s)
- Nathalie Okdeh
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Georges Mahfouz
- Department of Psychology, Faculty of Arts and Sciences, Beirut Campus, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Julien Harb
- Faculty of Medicine and Medical Sciences, Dekouene Campus, University of Balamand, Sin El Fil 55251, Lebanon
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Eddie Gazo Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Hervé Kovacic
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| |
Collapse
|
3
|
Silveira FD, Gomes FIF, do Val DR, Freitas HC, de Assis EL, de Almeida DKC, Braz HLB, Barbosa FG, Mafezoli J, da Silva MR, Jorge RJB, Clemente-Napimoga JT, Costa DVDS, Brito GADC, Pinto VDPT, Cristino-Filho G, Bezerra MM, Chaves HV. Biological and Molecular Docking Evaluation of a Benzylisothiocyanate Semisynthetic Derivative From Moringa oleifera in a Pre-clinical Study of Temporomandibular Joint Pain. Front Neurosci 2022; 16:742239. [PMID: 35546897 PMCID: PMC9083263 DOI: 10.3389/fnins.2022.742239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Moringa oleifera possesses multiple biological effects and the 4-[(4′-O-acetyl-α-L- rhamnosyloxy) benzyl] isothiocyanate accounts for them. Based on the original isothiocyanate molecule we obtained a semisynthetic derivative, named 4-[(2′,3′,4′-O-triacetyl-α-L-rhamnosyloxy) N-benzyl] hydrazine carbothioamide (MC-H) which was safe and effective in a temporomandibular joint (TMJ) inflammatory hypernociception in rats. Therefore, considering that there is still a gap in the knowledge concerning the mechanisms of action through which the MC-H effects are mediated, this study aimed to investigate the involvement of the adhesion molecules (ICAM-1, CD55), the pathways heme oxygenase-1 (HO-1) and NO/cGMP/PKG/K+ATP, and the central opioid receptors in the efficacy of the MC-H in a pre-clinical study of TMJ pain. Methods Molecular docking studies were performed to test the binding performance of MC-H against the ten targets of interest (ICAM-1, CD55, HO-1, iNOS, soluble cGMP, cGMP-dependent protein kinase (PKG), K+ATP channel, mu (μ), kappa (κ), and delta (δ) opioid receptors). In in vivo studies, male Wistar rats were treated with MC-H 1 μg/kg before TMJ formalin injection and nociception was evaluated. Periarticular tissues were removed to assess ICAM-1 and CD55 protein levels by Western blotting. To investigate the role of HO-1 and NO/cGMP/PKG/K+ATP pathways, the inhibitors ZnPP-IX, aminoguanidine, ODQ, KT5823, or glibenclamide were used. To study the involvement of opioid receptors, rats were pre-treated (15 min) with an intrathecal injection of non-selective inhibitor naloxone or with CTOP, naltrindole, or norbinaltorphimine. Results All interactions presented acceptable binding energy values (below −6.0 kcal/mol) which suggest MC-H might strongly bind to its molecular targets. MC-H reduced the protein levels of ICAM-1 and CD55 in periarticular tissues. ZnPP-IX, naloxone, CTOP, and naltrindole reversed the antinociceptive effect of MC-H. Conclusion MC-H demonstrated antinociceptive and anti-inflammatory effects peripherally by the activation of the HO-1 pathway, as well as through inhibition of the protein levels of adhesion molecules, and centrally by μ and δ opioid receptors.
Collapse
Affiliation(s)
| | | | - Danielle Rocha do Val
- Graduate Programme in Biotechnology, North-Eastern Biotechnology Network, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Helyson Lucas Bezerra Braz
- Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Jair Mafezoli
- Graduate Programme in Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
| | | | - Roberta Jeane Bezerra Jorge
- Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil.,Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Brazil
| | | | - Deiziane Viana da Silva Costa
- Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Gerly Anne de Castro Brito
- Graduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Vicente de Paulo Teixeira Pinto
- Graduate Programme in Health Sciences, Federal University of Ceará, Sobral, Brazil.,Faculty of Medicine, Federal University of Ceará, Sobral, Brazil
| | - Gerardo Cristino-Filho
- Graduate Programme in Health Sciences, Federal University of Ceará, Sobral, Brazil.,Faculty of Medicine, Federal University of Ceará, Sobral, Brazil
| | - Mirna Marques Bezerra
- Graduate Programme in Health Sciences, Federal University of Ceará, Sobral, Brazil.,Faculty of Medicine, Federal University of Ceará, Sobral, Brazil
| | - Hellíada Vasconcelos Chaves
- Graduate Programme in Health Sciences, Federal University of Ceará, Sobral, Brazil.,Faculty of Dentistry, Federal University of Ceará, Sobral, Brazil.,Graduate Program in Dentistry, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
4
|
Petrocelli G, Pampanella L, Abruzzo PM, Ventura C, Canaider S, Facchin F. Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. Int J Mol Sci 2022; 23:3819. [PMID: 35409178 PMCID: PMC8998234 DOI: 10.3390/ijms23073819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids' ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia-reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis.
Collapse
Affiliation(s)
- Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
5
|
Dumitrascuta M, Bermudez M, Trovato O, De Neve J, Ballet S, Wolber G, Spetea M. Antinociceptive Efficacy of the µ-Opioid/Nociceptin Peptide-Based Hybrid KGNOP1 in Inflammatory Pain without Rewarding Effects in Mice: An Experimental Assessment and Molecular Docking. Molecules 2021; 26:3267. [PMID: 34071603 PMCID: PMC8198056 DOI: 10.3390/molecules26113267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023] Open
Abstract
Opioids are the most effective analgesics, with most clinically available opioids being agonists to the µ-opioid receptor (MOR). The MOR is also responsible for their unwanted effects, including reward and opioid misuse leading to the current public health crisis. The imperative need for safer, non-addictive pain therapies drives the search for novel leads and new treatment strategies. In this study, the recently discovered MOR/nociceptin (NOP) receptor peptide hybrid KGNOP1 (H-Dmt-D-Arg-Aba-β-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) was evaluated following subcutaneous administration in mouse models of acute (formalin test) and chronic inflammatory pain (Complete Freund's adjuvant-induced paw hyperalgesia), liabilities of spontaneous locomotion, conditioned place preference, and the withdrawal syndrome. KGNOP1 demonstrated dose-dependent antinociceptive effects in the formalin test, and efficacy in attenuating thermal hyperalgesia with prolonged duration of action. Antinociceptive effects of KGNOP1 were reversed by naltrexone and SB-612111, indicating the involvement of both MOR and NOP receptor agonism. In comparison with morphine, KGNOP1 was more potent and effective in mouse models of inflammatory pain. Unlike morphine, KGNOP1 displayed reduced detrimental liabilities, as no locomotor impairment nor rewarding and withdrawal effects were observed. Docking of KGNOP1 to the MOR and NOP receptors and subsequent 3D interaction pattern analyses provided valuable insights into its binding mode. The mixed MOR/NOP receptor peptide KGNOP1 holds promise in the effort to develop new analgesics for the treatment of various pain states with fewer MOR-mediated side effects, particularly abuse and dependence liabilities.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.D.); (O.T.)
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (M.B.); (G.W.)
| | - Olga Trovato
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.D.); (O.T.)
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (J.D.N.); (S.B.)
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; (J.D.N.); (S.B.)
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany; (M.B.); (G.W.)
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.D.); (O.T.)
| |
Collapse
|
6
|
He C, Wang X, Zhang J, Wang H, Zhao Y, Shah JN, Ma C, Li H, Su W, Zhang Z, Chen S, Zhou L, Dong S. MCRT, a multifunctional ligand of opioid and neuropeptide FF receptors, attenuates neuropathic pain in spared nerve injury model. Basic Clin Pharmacol Toxicol 2021; 128:731-740. [PMID: 33533572 DOI: 10.1111/bcpt.13566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
Chimeric peptide MCRT (YPFPFRTic-NH2 ) was a multifunctional ligand of opioid and neuropeptide FF (NPFF) receptors and reported to be potentially antalgic in acute tail-flick test. Here, we developed spared nerve injury (SNI) model to explore its efficacy in chronic neuropathic pain. Analgesic tolerance, opioid-induced hyperalgesia and gastrointestinal transit were measured for safety evaluation. Intracerebroventricular (i.c.v.) and intraplantar (i.pl.) injections were conducted as central and peripheral routes, respectively. Results demonstrated that MCRT alleviated neuropathic pain effectively and efficiently, with the ED50 values of 4.93 nmol/kg at the central level and 3.11 nmol/kg at the peripheral level. The antagonist blocking study verified the involvement of mu-, delta-opioid and NPFF receptors in MCRT produced anti-allodynia. Moreover, the separation of analgesia from unwanted effects was preliminarily achieved and that MCRT caused neither analgesic tolerance nor hyperalgesia after chronic i.c.v. administration, nor constipation after i.pl. administration. Notably, the local efficacy of MCRT in SNI mice was about one thousandfold higher than morphine and ten thousandfold higher than pregabalin, indicating a great promise in the future treatment of neuropathic pain.
Collapse
Affiliation(s)
- Chunbo He
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaoli Wang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hao Wang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jagat Narayan Shah
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chan Ma
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hailan Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenting Su
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhe Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shasha Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lanxia Zhou
- The Central Laboratory, The First Hospital, Lanzhou University, Lanzhou, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Dumitrascuta M, Bermudez M, Ballet S, Wolber G, Spetea M. Mechanistic Understanding of Peptide Analogues, DALDA, [Dmt 1]DALDA, and KGOP01, Binding to the mu Opioid Receptor. Molecules 2020; 25:E2087. [PMID: 32365707 PMCID: PMC7248707 DOI: 10.3390/molecules25092087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
The mu opioid receptor (MOR) is the primary target for analgesia of endogenous opioid peptides, alkaloids, synthetic small molecules with diverse scaffolds, and peptidomimetics. Peptide-based opioids are viewed as potential analgesics with reduced side effects and have received constant scientific interest over the years. This study focuses on three potent peptide and peptidomimetic MOR agonists, DALDA, [Dmt1]DALDA, and KGOP01, and the prototypical peptide MOR agonist DAMGO. We present the first molecular modeling study and structure-activity relationships aided by in vitro assays and molecular docking of the opioid peptide analogues, in order to gain insight into their mode of binding to the MOR. In vitro binding and functional assays revealed the same rank order with KGOP01 > [Dmt1]DALDA > DAMGO > DALDA for both binding and MOR activation. Using molecular docking at the MOR and three-dimensional interaction pattern analysis, we have rationalized the experimental outcomes and highlighted key amino acid residues responsible for agonist binding to the MOR. The Dmt (2',6'-dimethyl-L-Tyr) moiety of [Dmt1]DALDA and KGOP01 was found to represent the driving force for their high potency and agonist activity at the MOR. These findings contribute to a deeper understanding of MOR function and flexible peptide ligand-MOR interactions, that are of significant relevance for the future design of opioid peptide-based analgesics.
Collapse
Affiliation(s)
- Maria Dumitrascuta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| |
Collapse
|
8
|
Wtorek K, Adamska-Bartłomiejczyk A, Piekielna-Ciesielska J, Ferrari F, Ruzza C, Kluczyk A, Piasecka-Zelga J, Calo’ G, Janecka A. Synthesis and Pharmacological Evaluation of Hybrids Targeting Opioid and Neurokinin Receptors. Molecules 2019; 24:molecules24244460. [PMID: 31817441 PMCID: PMC6943619 DOI: 10.3390/molecules24244460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022] Open
Abstract
Morphine, which acts through opioid receptors, is one of the most efficient analgesics for the alleviation of severe pain. However, its usefulness is limited by serious side effects, including analgesic tolerance, constipation, and dependence liability. The growing awareness that multifunctional ligands which simultaneously activate two or more targets may produce a more desirable drug profile than selectively targeted compounds has created an opportunity for a new approach to developing more effective medications. Here, in order to better understand the role of the neurokinin system in opioid-induced antinociception, we report the synthesis, structure–activity relationship, and pharmacological characterization of a series of hybrids combining opioid pharmacophores with either substance P (SP) fragments or neurokinin receptor (NK1) antagonist fragments. On the bases of the in vitro biological activities of the hybrids, two analogs, opioid agonist/NK1 antagonist Tyr-[d-Lys-Phe-Phe-Asp]-Asn-d-Trp-Phe-d-Trp-Leu-Nle-NH2 (2) and opioid agonist/NK1 agonist Tyr-[d-Lys-Phe-Phe-Asp]-Gln-Phe-Phe-Gly-Leu-Met-NH2 (4), were selected for in vivo tests. In the writhing test, both hybrids showed significant an antinociceptive effect in mice, while neither of them triggered the development of tolerance, nor did they produce constipation. No statistically significant differences in in vivo activity profiles were observed between opioid/NK1 agonist and opioid/NK1 antagonist hybrids.
Collapse
Affiliation(s)
- Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
| | - Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
| | - Justyna Piekielna-Ciesielska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
| | - Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (C.R.); (G.C.)
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (C.R.); (G.C.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Joanna Piasecka-Zelga
- Institute of Occupational Medicine, Research Laboratory for Medicine and Veterinary Products in the GMP Head of Research Laboratory for Medicine and Veterinary Products, 91-348 Lodz, Poland;
| | - Girolamo Calo’
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44121 Ferrara, Italy; (F.F.); (C.R.); (G.C.)
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.W.); (A.A.-B.); (J.P.-C.)
- Correspondence:
| |
Collapse
|
9
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
10
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
11
|
Gadais C, Ballet S. The Neurokinins: Peptidomimetic Ligand Design and Therapeutic Applications. Curr Med Chem 2018; 27:1515-1561. [PMID: 30209994 DOI: 10.2174/0929867325666180913095918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
The neurokinins are indisputably essential neurotransmitters in numerous pathoand physiological events. Being widely distributed in the Central Nervous System (CNS) and peripheral tissues, their discovery rapidly promoted them to drugs targets. As a necessity for molecular tools to understand the biological role of this class, endogenous peptides and their receptors prompted the scientific community to design ligands displaying either agonist and antagonist activity at the three main neurokinin receptors, called NK1, NK2 and NK3. Several strategies were implemented for this purpose. With a preference to small non-peptidic ligands, many research groups invested efforts in synthesizing and evaluating a wide range of scaffolds, but only the NK1 antagonist Aprepitant (EMENDT) and its prodrug Fosaprepitant (IVEMENDT) have been approved by the Food Drug Administration (FDA) for the treatment of Chemotherapy-Induced and Post-Operative Nausea and Vomiting (CINV and PONV, respectively). While non-peptidic drugs showed limitations, especially in side effect control, peptidic and pseudopeptidic compounds progressively regained attention. Various strategies were implemented to modulate affinity, selectivity and activity of the newly designed ligands. Replacement of canonical amino acids, incorporation of conformational constraints, and fusion with non-peptidic moieties gave rise to families of ligands displaying individual or dual NK1, NK2 and NK3 antagonism, that ultimately were combined with non-neurokinin ligands (such as opioids) to target enhanced biological impact.
Collapse
Affiliation(s)
- Charlène Gadais
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
12
|
Nami M, Salehi P, Dabiri M, Bararjanian M, Gharaghani S, Khoramjouy M, Al-Harrasi A, Faizi M. Synthesis of novel norsufentanil analogs via a four-component Ugi reaction and in vivo, docking, and QSAR studies of their analgesic activity. Chem Biol Drug Des 2018; 91:902-914. [PMID: 29222847 DOI: 10.1111/cbdd.13157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/21/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022]
Abstract
Novel substituted amino acid tethered norsufentanil derivatives were synthesized by the four-component Ugi reaction. Norsufentanil was reacted with succinic anhydride to produce the corresponding carboxylic acid. The resulting carboxylic acid has undergone a multicomponent reaction with different aldehydes, amines, and isocyanides to produce a library of the desired compounds. In all cases, amide bond rotation was observed in the NMR spectra. In vivo analgesic activity of the synthesized compounds was evaluated by a tail flick test. Very encouraging results were obtained for a number of the synthesized products. Some of the synthesized compounds such as 5a, 5b, 5h, 5j, and 5r were found to be more potent than sufentanil, sufentanil citrate, and norsufentanil. Binding modes between the compounds and mu and delta-opioid receptors were studied by molecular docking method. The relationship between the molecular structural features and the analgesic activity was investigated by a quantitative structure-activity relationship model. The results of the molecular modeling studies and the in vivo analgesic activity suggested that the majority of the synthesized compounds were more potent than sufentanil and norsufentanil.
Collapse
Affiliation(s)
- Majid Nami
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Minoo Dabiri
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Morteza Bararjanian
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mona Khoramjouy
- Department of Pharmacology and Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmed Al-Harrasi
- UoN Chair of Oman`S Medicinal Plants and Marine Natural, University of Nizwa, Nizwa, Oman
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Erdei AI, Borbély A, Magyar A, Taricska N, Perczel A, Zsíros O, Garab G, Szűcs E, Ötvös F, Zádor F, Balogh M, Al-Khrasani M, Benyhe S. Biochemical and pharmacological characterization of three opioid-nociceptin hybrid peptide ligands reveals substantially differing modes of their actions. Peptides 2018; 99:205-216. [PMID: 29038035 DOI: 10.1016/j.peptides.2017.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
In an attempt to design opioid-nociceptin hybrid peptides, three novel bivalent ligands, H-YGGFGGGRYYRIK-NH2, H-YGGFRYYRIK-NH2 and Ac-RYYRIKGGGYGGFL-OH were synthesized and studied by biochemical, pharmacological, biophysical and molecular modelling tools. These chimeric molecules consist of YGGF sequence, a crucial motif in the N-terminus of natural opioid peptides, and Ac-RYYRIK-NH2, which was isolated from a combinatorial peptide library as an antagonist or partial agonist that inhibits the biological activity of the endogenously occurring heptadecapeptide nociceptin. Solution structures for the peptides were studied by analysing their circular dichroism spectra. Receptor binding affinities were measured by equilibrium competition experiments using four highly selective radioligands. G-protein activating properties of the multitarget peptides were estimated in [35S]GTPγS binding tests. The three compounds were also measured in electrically stimulated mouse vas deferens (MVD) bioassay. H-YGGFGGGRYYRIK-NH2 (BA55), carrying N-terminal opioid and C-terminal nociceptin-like sequences interconnected with GGG tripeptide spacer displayed a tendency of having either unordered or β-sheet structures, was moderately potent in MVD and possessed a NOP/KOP receptor preference. A similar peptide without spacer H-YGGFRYYRIK-NH2 (BA62) exhibited the weakest effect in MVD, more α-helical periodicity was present in its structure and it exhibited the most efficacious agonist actions in the G-protein stimulation assays. The third hybrid peptide Ac-RYYRIKGGGYGGFL-OH (BA61) unexpectedly displayed opioid receptor affinities, because the opioid message motif is hidden within the C-terminus. The designed chimeric peptide ligands presented in this study accommodate well into a group of multitarget opioid compounds that include opioid-non-opioid peptide dimer analogues, dual non-peptide dimers and mixed peptide- non-peptide bifunctional ligands.
Collapse
Affiliation(s)
- Anna I Erdei
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Adina Borbély
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Anna Magyar
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, Budapest, H-1117, Hungary; MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, H-1117, Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Ottó Zsíros
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Győző Garab
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445, Budapest, Nagyvárad tér 4., Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, H-6726, Szeged, Temesvári krt. 62., Hungary.
| |
Collapse
|
14
|
Development of novel LP1-based analogues with enhanced delta opioid receptor profile. Bioorg Med Chem 2017; 25:4745-4752. [PMID: 28734666 DOI: 10.1016/j.bmc.2017.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022]
Abstract
Pain relief achieved by co-administration of drugs acting at different targets is more effective than that obtained with conventional MOR selective agonists usually associated to relevant side effects. It has been demonstrated that simultaneously targeting different opioid receptors is a more effective therapeutic strategy. Giving the promising role for DOR in pain management, novel LP1-based analogues with different N-substituents were designed and synthesized with the aim to improve DOR profile. For this purpose, we maintained the phenyl ring in the N-substituent of 6,7-benzomorphan scaffold linked to an ethyl spacer bearing a hydroxyl/methyl or methoxyl group at carbon 2 or including it in a 1,4-benzodioxane ring. LP1 analogues were tested by competition binding assays. Compounds 6 (KiMOR=2.47nM, KiDOR=9.6nM), 7 (KiMOR=0.5nM and KiDOR=0.8nM) and 9 (KiMOR=1.08nM, KiDOR=6.6nM) retained MOR affinity but displayed an improved DOR binding capacity as compared to LP1 (KiMOR=0.83nM, KiDOR=29.1nM). Moreover, GPI and MVD functional assays indicated that compounds 6 (IC50=49.2 and IC50=10.8nM), 7 (IC50=9.9 and IC50=11.8nM) and 9 (IC50=21.5 and IC50=4.4nM) showed a MOR/DOR agonist profile, unlike LP1 that was a MOR agonist/DOR antagonist (IC50=1.9 and IC50=1240nM). Measurements of their antinociceptive effect was evaluated by mice radiant tail flick test displaying for compounds 6, 7 and 9 ED50 values of 1.3, 1.0 and 0.9mg/kg, i.p., respectively. Moreover, the antinociceptive effect of compound 9 was longer lasting with respect to LP1. In conclusion the N-substituent nature of compounds 6, 7 and 9 shifts the DOR profile of LP1 from antagonism to agonism.
Collapse
|
15
|
Tao W, Zhou W, Wang Y, Sun T, Wang H, Zhang Z, Jin Y. Histone deacetylase inhibitor-induced emergence of synaptic δ-opioid receptors and behavioral antinociception in persistent neuropathic pain. Neuroscience 2016; 339:54-63. [PMID: 27646288 DOI: 10.1016/j.neuroscience.2016.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/31/2016] [Accepted: 09/09/2016] [Indexed: 11/16/2022]
Abstract
The efficacy of opioids in patients with chronic neuropathic pain remains controversial. Although activation of δ-opioid receptors (DORs) in the brainstem reduces inflammation-induced persistent hyperalgesia, it is not effective under persistent neuropathic pain conditions and these clinical problems remain largely unknown. In this study, by using a chronic constriction injury (CCI) of the sciatic nerve in rats, we found that in the brainstem nucleus raphe magnus (NRM), DORs emerged on the surface membrane of central synaptic terminals on day 3 after CCI surgery and disappeared on day 14. Histone deacetylase (HDAC) inhibitors microinjected into the NRM in vivo increased the level of synaptosomal DOR protein and NRM infusion of DOR agonists producing an antinociceptive effect in a nerve growth factor (NGF) signaling-dependent manner. In vitro, in CCI rat slices incubated with HDAC inhibitors, DOR agonists significantly inhibited EPSCs. This effect was blocked by tyrosine receptor kinase A antagonists. Chromatin immunoprecipitation analysis revealed that NRM infusion of HDAC inhibitors in CCI rats increased the level of histone H4 acetylation at Ngf gene promoter regions. NGF was infused into the NRM or incubated CCI rat slices drove DORs to the surface membrane of synaptic terminals. Taken together, epigenetic upregulation of NGF activity by HDAC inhibitors in the NRM promotes the trafficking of DORs to pain-modulating neuronal synapses under neuropathic pain conditions, leading to δ-opioid analgesia. These findings indicate that therapeutic use of DOR agonists combined with HDAC inhibitors might be effective in chronic neuropathic pain managements.
Collapse
Affiliation(s)
- Wenjuan Tao
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Wenjie Zhou
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuping Wang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Tingting Sun
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haitao Wang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhi Zhang
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yan Jin
- Key Laboratory of Brain Function and Disease of Chinese Academy of Science and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
16
|
Deekonda S, Cole J, Sunna S, Rankin D, Largent-Milnes TM, Davis P, BassiriRad NM, Lai J, Vanderah TW, Porecca F, Hruby VJ. Enkephalin analogues with N-phenyl-N-(piperidin-2-ylmethyl)propionamide derivatives: Synthesis and biological evaluations. Bioorg Med Chem Lett 2016; 26:222-7. [PMID: 26611918 PMCID: PMC4873255 DOI: 10.1016/j.bmcl.2015.10.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
N-Phenyl-N-(piperidin-2-ylmethyl)propionamide based bivalent ligands are unexplored for the design of opioid based ligands. Two series of hybrid molecules bearing N-phenyl-N-(piperidin-2-ylmethyl)propionamide derived small molecules conjugated with an enkephalin analogues with and without a linker (β-alanine) were designed and synthesized. Both bivalent ligand series exhibited remarkable binding affinities from nanomolar to subnanomolar range at both μ and δ opioid receptors and displayed potent agonist activities as well. The replacement of Tyr with Dmt and introduction of a linker between the small molecule and enkephalin analogue resulted in highly potent ligands. Both series of ligands showed excellent binding affinities at both μ (0.6-0.9nM) and δ (0.2-1.2nM) opioid receptors respectively. Similarly, these bivalent ligands exhibited potent agonist activities in both MVD and GPI assays. Ligand 17 was evaluated for in vivo antinociceptive activity in non-injured rats following spinal administration. Ligand 17 was not significantly effective in alleviating acute pain. The most likely explanations for this low intrinsic efficacy in vivo despite high in vitro binding affinity, moderate in vitro activity are (i) low potency suggesting that higher doses are needed; (ii) differences in experimental design (i.e. non-neuronal, high receptor density for in vitro preparations versus CNS site of action in vitro); (iii) pharmacodynamics (i.e. engaging signalling pathways); (iv) pharmacokinetics (i.e. metabolic stability). In summary, our data suggest that further optimisation of this compound 17 is required to enhance intrinsic antinociceptive efficacy.
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Jacob Cole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - Sydney Sunna
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | | | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Neemah M BassiriRad
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Frank Porecca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, United States
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
17
|
Deekonda S, Rankin D, Davis P, Lai J, Vanderah TW, Porecca F, Hruby VJ. Design synthesis and structure-activity relationship of 5-substituted (tetrahydronaphthalen-2yl)methyl with N-phenyl-N-(piperidin-2-yl)propionamide derivatives as opioid ligands. Bioorg Med Chem 2015; 24:85-91. [PMID: 26712115 DOI: 10.1016/j.bmc.2015.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/11/2015] [Accepted: 11/21/2015] [Indexed: 11/19/2022]
Abstract
Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850-4 nM) and were selective towards the μ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the μ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75±21 nM, and 190±42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170±42 nM, in contrast to its binding affinity results.
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porecca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Boulevard, Tucson, AZ 85721, USA.
| |
Collapse
|
18
|
Liu X, Zhao L, Wang Y, Mou L, Yang J, Zhang Y, Wang D, Wang R. Design, synthesis, and evaluation of new endomorphin analogs with enhanced central antinociception after peripheral administration. Bioorg Med Chem Lett 2015; 25:5393-7. [DOI: 10.1016/j.bmcl.2015.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023]
|
19
|
Giri AK, Apostol CR, Wang Y, Forte BL, Largent-Milnes TM, Davis P, Rankin D, Molnar G, Olson KM, Porreca F, Vanderah TW, Hruby VJ. Discovery of Novel Multifunctional Ligands with μ/δ Opioid Agonist/Neurokinin-1 (NK1) Antagonist Activities for the Treatment of Pain. J Med Chem 2015; 58:8573-83. [PMID: 26465170 DOI: 10.1021/acs.jmedchem.5b01170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multifunctional ligands with agonist bioactivities at μ/δ opioid receptors (MOR/DOR) and antagonist bioactivity at the neurokinin-1 receptor (NK1R) have been designed and synthesized. These peptide-based ligands are anticipated to produce better biological profiles (e.g., higher analgesic effect with significantly less adverse side effects) compared to those of existing drugs and to deliver better synergistic effects than coadministration of a mixture of multiple drugs. A systematic structure-activity relationship (SAR) study has been conducted to find multifunctional ligands with desired activities at three receptors. It has been found that introduction of Dmt (2,6-dimethyl-tyrosine) at the first position and NMePhe at the fourth position (ligand 3: H-Dmt-d-Ala-Gly-NMePhe-Pro-Leu-Trp-NH-Bn(3',5'-(CF3)2)) displays binding as well as functional selectivity for MOR over DOR while maintaining efficacy, potency, and antagonist activity at the NK1R. Dmt at the first position with Phe(4-F) at the fourth position (ligand 5: H-Dmt-d-Ala-Gly-Phe(4-F)-Pro-Leu-Trp-NH-Bn(3',5'-(CF3)2)) exhibits balanced binding affinities at MOR and DOR though it has higher agonist activity at DOR over MOR. This study has led to the discovery of several novel ligands including 3 and 5 with excellent in vitro biological activity profiles. Metabolic stability studies in rat plasma with ligands 3, 5, and 7 (H-Tyr-d-Ala-Gly-Phe(4-F)-Pro-Leu-Trp-NH-Bn(3',5'-(CF3)2)) showed that their stability depends on modifications at the first and fourth positions (3: T1/2 > 24 h; 5: T1/2 ≈ 6 h; 7: T1/2 > 2 h). Preliminary in vivo studies with these two ligands have shown promising antinociceptive activity.
Collapse
Affiliation(s)
- Aswini Kumar Giri
- Departments of Chemistry and Biochemistry, University of Arizona , 1306 E. University Boulevard, Tucson, Arizona 85721, United States
| | - Christopher R Apostol
- Departments of Chemistry and Biochemistry, University of Arizona , 1306 E. University Boulevard, Tucson, Arizona 85721, United States
| | - Yue Wang
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Brittany L Forte
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Tally M Largent-Milnes
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Peg Davis
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - David Rankin
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Gabriella Molnar
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | | | - Frank Porreca
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona , 1501 N. Campbell Avenue, Tucson, Arizona 85724, United States
| | - Victor J Hruby
- Departments of Chemistry and Biochemistry, University of Arizona , 1306 E. University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
Deekonda S, Rankin D, Davis P, Lai J, Porreca F, Hruby VJ. Design, synthesis and biological evaluation of multifunctional ligands targeting opioid and bradykinin 2 receptors. Bioorg Med Chem Lett 2015; 25:4148-52. [PMID: 26316468 PMCID: PMC4642888 DOI: 10.1016/j.bmcl.2015.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 11/24/2022]
Abstract
We report here the design and synthesis of novel multifunctional ligands that act as (μ/δ) opioid agonists and bradykinin 2 receptor antagonists. These multifunctional ligands were designed to interact with the multiple receptors to show an enhanced analgesic effect, with no opioid-induced tolerance. We designed our multifunctional ligands based on the well-known second generation bradykinin 2 receptor antagonist Hoe 140 (DArg-Arg-Pro-Hyp-Gly-Thi-Ser-DTic-Oic-Arg-OH) and the opioid enkephalin analogues Tyr-DAla-Phe, Tyr-DAla-Gly-Phe and Tyr-Pro-Phe. We explored the conjugation of opioid pharmacophore to the Hoe 140 (DArg-Arg-Pro-Hyp-Gly-Thi-Ser-DTic-Oic-Arg-OH) in various positions with and without a linker. These bifunctional ligands showed very good binding affinity towards the both μ and δ opioid receptors. Among these bifunctional ligands 8, 11 and 12 showed excellent and balanced binding affinity at both μ and δ opioid receptors (0.5 nM, 2.0 nM; 0.3 nM, 2 nM; 2 nM and 3 nM), respectively. On the other hand these bifunctional ligands showed very weak and no binding affinity for rat brain bradykinin 2 receptors. Similarly, the Hoe 140 showed very low affinity (>10,000 nM and 9,000 nM) against [(3)H] BK binding in rat brain membranes and in HEK293 cells, respectively. In contrast, the Hoe 140 showed very good binding affinity in guinea pig ileum (0.43 nM) similar to that of previously reported. The bradykinin 2 receptors are known to be present in rat brain membrane, guinea pig ileum (GPI) and rabbit jugular vein. Previously the binding affinity of Hoe 140 for bradykinin 2 receptor was reported using guinea pig ileum. The above results suggest that the bradykinin 2 receptors present in rat brain membrane are a different sub type than the bradykinin 2 receptor present in guinea pig ileum (GPI).
Collapse
Affiliation(s)
- Srinivas Deekonda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - David Rankin
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Peg Davis
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Josephine Lai
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ 85721, USA
| | - Victor J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
21
|
Eans SO, Ganno ML, Mizrachi E, Houghten RA, Dooley CT, McLaughlin JP, Nefzi A. Parallel Synthesis of Hexahydrodiimidazodiazepines Heterocyclic Peptidomimetics and Their in Vitro and in Vivo Activities at μ (MOR), δ (DOR), and κ (KOR) Opioid Receptors. J Med Chem 2015; 58:4905-17. [PMID: 25996309 DOI: 10.1021/jm501637c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the development of analgesics with mixed-opioid agonist activity, peripherally selective activity is expected to decrease side effects, minimizing respiratory depression and reinforcing properties generating significantly safer analgesic therapeutics. We synthesized diazaheterocyclics from reduced tripeptides. In vitro screening with radioligand competition binding assays demonstrated variable affinity for μ (MOR), δ (DOR), and κ (KOR) opioid receptors across the series, with the diimidazodiazepine 14 (2065-14) displaying good affinity for DOR and KOR. Central (icv), intraperitoneal (ip), or oral (po) administration of 14 produced dose-dependent, opioid-receptor mediated antinociception in the mouse, as determined from a 55 °C warm-water tail-withdrawal assay. Only trace amounts of compound 14 was found in brain up to 90 min later, suggesting poor BBB penetration and possible peripherally restricted activity. Central administration of 14 did not produce locomotor effects, acute antinociceptive tolerance, or conditioned-place preference or aversion. The data suggest these diazaheterocyclic mixed activity opioid receptor agonists may hold potential as new analgesics with fewer liabilities of use.
Collapse
Affiliation(s)
- Shainnel O Eans
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Michelle L Ganno
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Elisa Mizrachi
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Richard A Houghten
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Colette T Dooley
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Jay P McLaughlin
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Adel Nefzi
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| |
Collapse
|
22
|
Rational Approach to the Design of Bioactive Peptidomimetics: Recent Developments in Opioid Agonist Peptides. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2015. [DOI: 10.1016/b978-0-444-63462-7.00002-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Synthesis and analgesic activity of alkylated, reduced and constrained oligoheterocyclic peptidomimetic analogs of Leu-enkephalin. Bioorg Med Chem Lett 2014; 24:4482-4485. [DOI: 10.1016/j.bmcl.2014.07.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/21/2022]
|