1
|
Rahman MM, Islam MR, Rahman F, Rahaman MS, Khan MS, Abrar S, Ray TK, Uddin MB, Kali MSK, Dua K, Kamal MA, Chellappan DK. Emerging Promise of Computational Techniques in Anti-Cancer Research: At a Glance. Bioengineering (Basel) 2022; 9:bioengineering9080335. [PMID: 35892749 PMCID: PMC9332125 DOI: 10.3390/bioengineering9080335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Research on the immune system and cancer has led to the development of new medicines that enable the former to attack cancer cells. Drugs that specifically target and destroy cancer cells are on the horizon; there are also drugs that use specific signals to stop cancer cells multiplying. Machine learning algorithms can significantly support and increase the rate of research on complicated diseases to help find new remedies. One area of medical study that could greatly benefit from machine learning algorithms is the exploration of cancer genomes and the discovery of the best treatment protocols for different subtypes of the disease. However, developing a new drug is time-consuming, complicated, dangerous, and costly. Traditional drug production can take up to 15 years, costing over USD 1 billion. Therefore, computer-aided drug design (CADD) has emerged as a powerful and promising technology to develop quicker, cheaper, and more efficient designs. Many new technologies and methods have been introduced to enhance drug development productivity and analytical methodologies, and they have become a crucial part of many drug discovery programs; many scanning programs, for example, use ligand screening and structural virtual screening techniques from hit detection to optimization. In this review, we examined various types of computational methods focusing on anticancer drugs. Machine-based learning in basic and translational cancer research that could reach new levels of personalized medicine marked by speedy and advanced data analysis is still beyond reach. Ending cancer as we know it means ensuring that every patient has access to safe and effective therapies. Recent developments in computational drug discovery technologies have had a large and remarkable impact on the design of anticancer drugs and have also yielded useful insights into the field of cancer therapy. With an emphasis on anticancer medications, we covered the various components of computer-aided drug development in this paper. Transcriptomics, toxicogenomics, functional genomics, and biological networks are only a few examples of the bioinformatics techniques used to forecast anticancer medications and treatment combinations based on multi-omics data. We believe that a general review of the databases that are now available and the computational techniques used today will be beneficial for the creation of new cancer treatment approaches.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Md. Shajib Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Sayedul Abrar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Tanmay Kumar Ray
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Most. Sumaiya Khatun Kali
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (F.R.); (M.S.R.); (M.S.K.); (S.A.); (T.K.R.); (M.B.U.); (M.S.K.K.); (M.A.K.)
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence:
| |
Collapse
|
2
|
Caufriez A, Tabernilla A, Van Campenhout R, Cooreman A, Leroy K, Sanz Serrano J, Kadam P, dos Santos Rodrigues B, Lamouroux A, Ballet S, Vinken M. Effects of Drugs Formerly Suggested for COVID-19 Repurposing on Pannexin1 Channels. Int J Mol Sci 2022; 23:ijms23105664. [PMID: 35628472 PMCID: PMC9146942 DOI: 10.3390/ijms23105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Although many efforts have been made to elucidate the pathogenesis of COVID-19, the underlying mechanisms are yet to be fully uncovered. However, it is known that a dysfunctional immune response and the accompanying uncontrollable inflammation lead to troublesome outcomes in COVID-19 patients. Pannexin1 channels are put forward as interesting drug targets for the treatment of COVID-19 due to their key role in inflammation and their link to other viral infections. In the present study, we selected a panel of drugs previously tested in clinical trials as potential candidates for the treatment of COVID-19 early on in the pandemic, including hydroxychloroquine, chloroquine, azithromycin, dexamethasone, ribavirin, remdesivir, favipiravir, lopinavir, and ritonavir. The effect of the drugs on pannexin1 channels was assessed at a functional level by means of measurement of extracellular ATP release. Immunoblot analysis and real-time quantitative reversetranscription polymerase chain reaction analysis were used to study the potential of the drugs to alter pannexin1 protein and mRNA expression levels, respectively. Favipiravir, hydroxychloroquine, lopinavir, and the combination of lopinavir with ritonavir were found to inhibit pannexin1 channel activity without affecting pannexin1 protein or mRNA levels. Thusthree new inhibitors of pannexin1 channels were identified that, though currently not being used anymore for the treatment of COVID-19 patients, could be potential drug candidates for other pannexin1-related diseases.
Collapse
Affiliation(s)
- Anne Caufriez
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Andrés Tabernilla
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Axelle Cooreman
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Julen Sanz Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Prashant Kadam
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Bruna dos Santos Rodrigues
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Arthur Lamouroux
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
- Correspondence: ; Tel.: +32-2477-4587
| |
Collapse
|
3
|
Wong CKH, Low MCH, Kwok ACY, Lui AYC, Lau KTK, Au ICH, Xiong X, Chung MSH, Kwan MYW, Lau EHY, Cowling BJ. Slower Recovery with Early Lopinavir/Ritonavir use in Pediatric COVID-19 Patients: A Retrospective Observational Study. Paediatr Drugs 2022; 24:269-280. [PMID: 35428969 PMCID: PMC9012665 DOI: 10.1007/s40272-022-00500-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES There was initially insufficient understanding regarding suitable pharmacological treatment for pediatric Coronavirus Disease 2019 (COVID-19) patients. Lopinavir-ritonavir (LPV/r) was originally used for the treatment of Human Immunodeficiency Virus-1 (HIV-1) infection. It was also used in patients with severe acute respiratory syndrome (SARS) and Middle East Respiratory Syndrome (MERS) with positive results. Nonetheless, results from recent randomized controlled trials and observational studies on COVID-19 patients were unfavorable. We sought to evaluate the clinical outcomes associated with early treatment with LPV/r for pediatric COVID-19 patients. STUDY DESIGN A total of 933 COVID-19 patients aged ≤ 18 years were admitted between 21 January 2020 and 31 January 2021 in Hong Kong. Exposure was receiving LPV/r within the first two days of admission. Time to clinical improvement, hospital discharge, seroconversion and hyperinflammatory syndrome, cumulative costs, and hospital length of stay were assessed. Multivariable Cox proportional hazard and linear models were performed to estimate hazard ratios (HR) and their 95% confidence intervals (CI) of time-to-event and continuous outcomes, respectively. RESULTS LPV/r users were associated with longer time to clinical improvement (HR 0.51, 95% CI 0.38-0.70; p < 0.001), hospital discharge (HR 0.51, 95% CI 0.38-0.70; p < 0.001) and seroconversion (HR 0.59, 95% CI 0.43-0.80; p < 0.001) when compared with controls. LPV/r users were also associated with prolonged hospital length of stay (6.99 days, 95% CI 6.23-7.76; p < 0.001) and higher costs at 30 days (US$11,709 vs US$8270; p < 0.001) as opposed to controls. CONCLUSION Early treatment with LPV/r for pediatric COVID-19 patients was associated with longer time to clinical improvement. Our study advocates the recommendation against LPV/r use for pediatric patients across age groups.
Collapse
Affiliation(s)
- Carlos K H Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Rm 1-01, 1/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China.
- Department of Family Medicine and Primary Care, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, New Territories, Hong Kong SAR, China.
| | - Marshall C H Low
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Rm 1-01, 1/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Ashley C Y Kwok
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Rm 1-01, 1/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Angel Y C Lui
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Rm 1-01, 1/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kristy T K Lau
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Rm 1-01, 1/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Ivan C H Au
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Rm 1-01, 1/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Xi Xiong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Rm 1-01, 1/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Matthew S H Chung
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Rm 1-01, 1/F, Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Mike Y W Kwan
- Paediatric Infectious Disease Unit, Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong SAR, China
| | - Eric H Y Lau
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, New Territories, Hong Kong SAR, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Benjamin J Cowling
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, New Territories, Hong Kong SAR, China
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
The role of pharmacogenetics in Efficacy and safety of protease inhibitor based therapy in human immunodeficiency virus type (HIV) infection. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.6-2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antiretroviral therapy has markedly reduced morbidity and mortality for persons living with human immunodeficiency virus (HIV). HIV can now be classified as a chronic disease; until a cure is found, patients are likely to require life-long therapy. However, despite these undoubted advances, there are many issues that need to be resolved, including the problems associated with long-term efficacy and toxicity. Moreover, pharmacotherapy of patients infected with HIV is challenging because a great number of comorbidities increase polypharmacy and the risk for drug-drug interactions. There is considerable interindividual variability in patient outcomes in terms of drug disposition, drug efficacy and adverse events. The basis of these differences is multifactorial, but host genetics are believed to play a significant part. HIV-infected population consists of ethnically diverse individuals on complex and potentially toxic antiretroviral regimens on a long-term basis. These individuals would benefit greatly from predictive tests that identify the most durable regimens. Pharmacogenetics holds that promise. Thus, detailed understanding of the metabolism and transport of antiretrovirals and the influence of genetics on these pathways is important. To this end, this review provides an up-to-date overview of the metabolism of antiHIV therapeutics of the protease inhibitors Lopinavir and Ritonavir and the impact of genetic variation in drug metabolism and transport on the treatment of HIV.
Collapse
|
5
|
Yu YX, Liu WT, Li HY, Wang W, Sun HB, Zhang LL, Wu SL. Decoding molecular mechanism underlying binding of drugs to HIV-1 protease with molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:889-915. [PMID: 34551634 DOI: 10.1080/1062936x.2021.1979647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
HIV-1 protease (PR) is thought to be efficient targets of anti-AIDS drug design. Molecular dynamics (MD) simulations and multiple post-processing analysis technologies were applied to decipher molecular mechanism underlying binding of three drugs Lopinavir (LPV), Nelfinavir (NFV) and Atazanavir (ATV) to the PR. Binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) suggest that compensation between binding enthalpy and entropy plays a vital role in binding of drugs to PR. Dynamics analyses show that binding of LPV, NFV and ATV highly affects structural flexibility, motion modes and dynamics behaviour of the PR, especially for two flaps. Computational alanine scanning and interaction network analysis verify that although three drugs have structural difference, they share similar binding modes to the PR and common interaction clusters with the PR. The current findings also confirm that residues located interaction clusters, such as Asp25/Asp25', Gly27/Gly27', Ala28/Ala28', Asp29, Ile47/Ile47', Gly49/Gly49', Ile50/Ile50', Val82/Val82' and Ile84/Ile84, can be used as efficient targets of clinically available inhibitors towards the PR.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W T Liu
- Shuifa Qilu Cultural Tourism Development Co., Ltd, Shuifa Ecological Industry Group, Jinan, China
| | - H Y Li
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - S L Wu
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
6
|
Zahraa Talib Khudhair, Shihab MS, Hamah-Ameen B. Drugs that Might Be Possibly Used for Treatment of COVID-19 Patients. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:789-804. [PMID: 34456540 PMCID: PMC8380022 DOI: 10.1134/s1068162021040130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 11/23/2022]
Abstract
The drug development process for Coronavirus disease (COVID-19) is the research process to create a preventive vaccine or therapeutic prescription drug to relieve the severity of 2019-2020 (COVID-19). In different stages of preclinical or clinical research, several hundred special scientific research centers, research organizations, and health agencies have developed and tried enormous numbers of vaccine candidates and new drugs for COVID-19 disease. In order to identify new therapies against COVID-19, several clinical trials have been in progress worldwide.
Collapse
Affiliation(s)
| | - Mehdi Salih Shihab
- Chemistry Department, College of Science, Al-Nahrain University, 10001 Baghdad, Iraq
| | - Baram Hamah-Ameen
- Chemistry Department, College of Science, University of Sulaimani, 46001 Sulaimaneyah, Iraq
| |
Collapse
|
7
|
Singh V, Mishra V. Coronavirus Disease 2019 (COVID-19): Current Situation and Therapeutic Options. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2666796701999201005211854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is defined as an illness caused by SARS-CoV-2 (severe
acute respiratory syndrome coronavirus 2). COVID-19 was first reported in the Wuhan, China, in
late December, 2019. The World Health Organization (WHO) declared COVID-19 a global emergency
on March 11, 2020. COVID-19 was rapidly transmitted and caused infection in 21,294,845 people and
761,779 deaths in more than 213 countries worldwide till August 16, 2020. United States of America
(USA), Brazil, India, Russia Federation, Peru, Mexico, Colombia, Spain, France, Italy, Germany, and
United Kingdom (UK) stand top COVID-19 affected countries in the world. The high transmission rate
of COVID-19 might be due to large viral incubation time (2-14 days) and some modifications in the
spike glycoprotein. Currently, effective drugs or vaccines are not developed for the treatment of novel
coronavirus. However, few antibiotics like hydroxychloroquine and remdesivir have been currently used
for the treatment of COVID-19 infection. Several collaboratives are working together for developing an
effective and safe vaccine against COVID-19 and few vaccines are under clinical trial. Scientists are
also working on plasma therapy and monoclonal antibodies. Nowadays, plasma therapy is considered
the most effective treatment against COVID-19 and some promising results have been achieved. This
review focuses on several therapeutic options for COVID-19, such as anti-viral drugs, vaccines, plasma
therapy, and monoclonal antibodies. This review also covers the current situations of COVID-19 in the
world. This review is about COVID-19, which will be beneficial to researchers for the development of
potential treatment against it.
Collapse
Affiliation(s)
- Veer Singh
- School of Biochemical Engineering, IIT (BHU), Varanasi 221005, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT (BHU), Varanasi 221005, India
| |
Collapse
|
8
|
Velozo CT, Cabral LM, Pinto EC, de Sousa VP. Lopinavir/Ritonavir: A Review of Analytical Methodologies for the Drug Substances, Pharmaceutical Formulations and Biological Matrices. Crit Rev Anal Chem 2021; 52:1846-1862. [PMID: 34024199 DOI: 10.1080/10408347.2021.1920364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lopinavir/ritonavir is a potent coformulation of protease inhibitors used against HIV infection. Lopinavir is the main responsible for viral load suppression, whereas ritonavir is a pharmacokinetic enhancer. Both of them have recently gained relevance as candidate drugs against severe coronavirus disease (COVID-19). However, significant beneficial effects were not observed in randomized clinical trials. This review summarizes the main physical-chemical, pharmacodynamic, and pharmacokinetic properties of ritonavir and lopinavir, along with the analytical methodologies applied for biological matrices, pharmaceutical formulations, and stability studies. The work also aimed to provide a comprehensive impurity profile for the combined formulation. Several analytical methods in four different pharmacopeias and 37 articles in literature were evaluated and summarized. Chromatographic methods for these drugs frequently use C8 or C18 stationary phases with acetonitrile and phosphate buffer (with ultraviolet detection) or acetate buffer (with tandem mass spectrometry detection) as the mobile phase. Official compendia methods show disadvantages as extended total run time and complex mobile phases. HPLC tandem-mass spectrometry provided high sensitivity in methodologies applied for human plasma and serum samples, supporting the therapeutic drug monitoring in HIV patients. Ritonavir and lopinavir major degradation products arise in alkaline and acidic environments, respectively. Other non-chromatographic methods were also summarized. Establishing the impurity profile for the combined formulation is challenging due to a large number of impurities reported. Easier and faster analytical methods for impurity assessment are still needed.
Collapse
Affiliation(s)
- Carolina Trajano Velozo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Costa Pinto
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Milic J, Novella A, Meschiari M, Menozzi M, Santoro A, Bedini A, Cuomo G, Franceschini E, Digaetano M, Carli F, Ciusa G, Volpi S, Bacca E, Franceschi G, Yaacoub D, Rogati C, Tutone M, Burastero G, Faltoni M, Iadisernia V, Dolci G, Cossarizza A, Mussini C, Pasina L, Guaraldi G. Darunavir/Cobicistat Is Associated with Negative Outcomes in HIV-Negative Patients with Severe COVID-19 Pneumonia. AIDS Res Hum Retroviruses 2021; 37:283-291. [PMID: 33619997 DOI: 10.1089/aid.2020.0305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate both positive outcomes, including reduction of respiratory support aid and duration of hospital stay, and negative ones, including mortality and a composite of invasive mechanical ventilation or death, in patients with coronavirus disease 2019 (COVID-19) pneumonia treated with or without oral darunavir/cobicistat (DRV/c, 800/150 mg/day) used in different treatment durations. The secondary objective was to evaluate the percentage of patients treated with DRV/c who were exposed to potentially severe drug-drug interactions (DDIs) and died during hospitalization. This observational retrospective study was conducted in consecutive patients with COVID-19 pneumonia admitted to a tertiary care hospital in Modena, Italy. Kaplan-Meier survival curves and Cox proportional hazards regression were used to compare patients receiving standard of care with or without DRV/c. Adjustment for key confounders was applied. Two hundred seventy-three patients (115 on DRV/c) were included, 75.8% males, mean age was 64.6 (±13.2) years. Clinical improvement was similar between the groups, depicted by respiratory aid switch (p > .05). The same was observed for duration of hospital stay [13.2 (±8.9) for DRV/c vs. 13.4 (±7.2) days for no-DRV/c, p = .9]. Patients on DRV/c had higher rates of mortality (25.2% vs. 10.1%, p < .0001. The rate of composite outcome of mechanical ventilation and death was higher in the DRV/c group (37.4% vs. 25.3%, p = .03). Multiple serious DDI associated with DRV/c were observed in the 19 patients who died. DRV/c should not be recommended as a treatment option for COVID-19 pneumonia outside clinical trials.
Collapse
Affiliation(s)
- Jovana Milic
- Department of Surgical, Medical, Dental, and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessio Novella
- Pharmacotherapy and Appropriateness of Drug Prescription Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Meschiari
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Marianna Menozzi
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Antonella Santoro
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Andrea Bedini
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Gianluca Cuomo
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Erica Franceschini
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Margherita Digaetano
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Federica Carli
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giacomo Ciusa
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Sara Volpi
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Erica Bacca
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giacomo Franceschi
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Dina Yaacoub
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Carlotta Rogati
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Marco Tutone
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giulia Burastero
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Matteo Faltoni
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Vittorio Iadisernia
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giovanni Dolci
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Department of Surgical, Medical, Dental, and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Luca Pasina
- Pharmacotherapy and Appropriateness of Drug Prescription Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanni Guaraldi
- Department of Surgical, Medical, Dental, and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| |
Collapse
|
10
|
Jmel MA, Aounallah H, Bensaoud C, Mekki I, Chmelař J, Faria F, M’ghirbi Y, Kotsyfakis M. Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int J Mol Sci 2021; 22:E892. [PMID: 33477394 PMCID: PMC7831016 DOI: 10.3390/ijms22020892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Hajer Aounallah
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Chaima Bensaoud
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Youmna M’ghirbi
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
| | - Michalis Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| |
Collapse
|
11
|
Sarkar C, Mondal M, Torequl Islam M, Martorell M, Docea AO, Maroyi A, Sharifi-Rad J, Calina D. Potential Therapeutic Options for COVID-19: Current Status, Challenges, and Future Perspectives. Front Pharmacol 2020; 11:572870. [PMID: 33041814 PMCID: PMC7522523 DOI: 10.3389/fphar.2020.572870] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic represents an unprecedented challenge for the researchers to offer safe, tolerable, and effective treatment strategies for its causative agent known as SARS-CoV-2. With the rapid evolution of the pandemic, even the off-label use of existing drugs has been restricted by limited availability. Several old antivirals, antimalarial, and biological drugs are being reconsidered as possible therapies. The effectiveness of the controversial treatment options for COVID-19 such as nonsteroidal antiinflammatory drugs, angiotensin 2 conversion enzyme inhibitors and selective angiotensin receptor blockers was also discussed. A systemic search in the PubMed, Science Direct, LitCovid, Chinese Clinical Trial Registry, and ClinicalTrials.gov data bases was conducted using the keywords "coronavirus drug therapy," passive immunotherapy for COVID-19', "convalescent plasma therapy," (CPT) "drugs for COVID-19 treatment," "SARS-CoV-2," "COVID-19," "2019-nCoV," "coronavirus immunology," "microbiology," "virology," and individual drug names. Systematic reviews, case presentations and very recent clinical guidelines were included. This narrative review summarizes the available information on possible therapies for COVID-19, providing recent data to health professionals.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Life Science School, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), Bangladesh
| | - Milon Mondal
- Department of Pharmacy, Life Science School, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka), Bangladesh
| | - Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
12
|
Marima R, Hull R, Dlamini Z, Penny C. Efavirenz and Lopinavir/Ritonavir Alter Cell Cycle Regulation in Lung Cancer. Front Oncol 2020; 10:1693. [PMID: 32984047 PMCID: PMC7484481 DOI: 10.3389/fonc.2020.01693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Highly active anti-retroviral treatment (HAART) is currently the most effective treatment for HIV/AIDS. Additionally, HIV positive patients receiving HAART have a better health-related quality of life (HRQoL). Cancers previously associated with HIV/AIDS also known as the AIDS defining cancers (ADCs), such as Kaposi's sarcoma and non-Hodgkin's lymphoma have been on the decline since the introduction of HAART. However, non-AIDS defining cancers (NADCs), in particular, lung cancers have been documented to be on the rise. The association between the use of HAART components and lung carcinogenesis is poorly understood. This study aimed at elucidating the effects of two HAART components [efavirenz (EFV), and lopinavir/ritonavir (LPV/r)] on lung cancer. This was achieved through the use of in vitro cell biological approaches to assess cell health, including cell viability, Real Time Cell Analysis (RTCA) growth monitoring, evaluation of the cell cycle, and progression to apoptosis, following on drug treatments. At plasma level concentrations, both EFV and LPV/r induced S-phase arrest, while at lower concentrations both drugs promoted the progression of cells into G2/M phase following cell cycle FACS analysis. At higher concentrations although cell viability assays reflected anti-proliferative effects of the drugs, this was not statistically significant. RTCA showed a significant decline in cell viability in response to the highest dose of LPV/r. Dual staining by Annexin V-FITC and PI confirmed significant pro-apoptotic effects were promoted by LPV/r. Both EFV and LPV/r exert double-edged oncogenic effects on MRC-5 and A549 lung cells, acting to either promote cell proliferation or to enhance apoptosis. This is affected by EFV and LPV/r altering cell cycle progression, with a significant S-phase arrest, this being an indication of cellular stress, cytotoxicity, and DNA damage within the cell.
Collapse
Affiliation(s)
- Rahaba Marima
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Parktown, South Africa
| | - Rodney Hull
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Faculty of Health Sciences, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Parktown, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
13
|
Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun 2020; 87:59-73. [PMID: 32334062 PMCID: PMC7175848 DOI: 10.1016/j.bbi.2020.04.046] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 02/08/2023] Open
Abstract
As of April 15, 2020, the ongoing coronavirus disease 2019 (COVID-2019) pandemic has swept through 213 countries and infected more than 1,870,000 individuals, posing an unprecedented threat to international health and the economy. There is currently no specific treatment available for patients with COVID-19 infection. The lessons learned from past management of respiratory viral infections have provided insights into treating COVID-19. Numerous potential therapies, including supportive intervention, immunomodulatory agents, antiviral therapy, and convalescent plasma transfusion, have been tentatively applied in clinical settings. A number of these therapies have provided substantially curative benefits in treating patients with COVID-19 infection. Furthermore, intensive research and clinical trials are underway to assess the efficacy of existing drugs and identify potential therapeutic targets to develop new drugs for treating COVID-19. Herein, we summarize the current potential therapeutic approaches for diseases related to COVID-19 infection and introduce their mechanisms of action, safety, and effectiveness.
Collapse
Affiliation(s)
- Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan.
| |
Collapse
|
14
|
Abstract
Coronavirus is a large family of viruses that infect mammals and birds. Coronaviruses are known to cross barrier species and infect new ones. In the past twenty years, we witnessed the emergence of three different coronaviruses, the latest one being the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) responsible for the COVID-19 (covid disease 19) pandemic. Coronaviruses are enveloped virus with a long positive sense RNA genome. Like all viruses, they hijack the cellular machinery to replicate and produce new virions. There is no approved vaccine or specific antiviral molecule against coronaviruses but with the urgency to treat COVID-19, several candidate therapies are currently investigated.
Collapse
Affiliation(s)
- Dylan Juckel
- Virologie moléculaire et cellulaire des coronavirus, Centre d'infection et d'immunité de Lille, Institut Pasteur de Lille, Université de Lille, CNRS, Inserm, CHRU, 59000 Lille, France
| | - Jean Dubuisson
- Virologie moléculaire et cellulaire des coronavirus, Centre d'infection et d'immunité de Lille, Institut Pasteur de Lille, Université de Lille, CNRS, Inserm, CHRU, 59000 Lille, France
| | - Sandrine Belouzard
- Virologie moléculaire et cellulaire des coronavirus, Centre d'infection et d'immunité de Lille, Institut Pasteur de Lille, Université de Lille, CNRS, Inserm, CHRU, 59000 Lille, France
| |
Collapse
|
15
|
Microbial serine protease inhibitors and their therapeutic applications. Int J Biol Macromol 2017; 107:1373-1387. [PMID: 28970170 DOI: 10.1016/j.ijbiomac.2017.09.115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022]
Abstract
Serine protease inhibitors, inhibit serine proteases either partially or completely after forming complexes with their respective proteases. Protease actions are significant for many physiological pathways found in living forms and any anomalies may lead to numerous physiological complications. Each cell or organism has its own mechanism for controlling these protease actions. It is often regulated by the action of inhibitors or activators. Among the proteases, serine proteases are the most common that are involved in many life and death processes. Selective inhibitors of physiologically relevant proteases can be used as a lead compound for the drug development. Therefore, it is imperative to identify small peptides and proteins that selectively inhibit serine proteases from various sources. Microbes can be considered as a major source of diverse serine protease inhibitors since they have the prominent and diverse domain in nature. Most of the microbial serine protease inhibitors are intracellular and few are extracellular. Microbes produce protease inhibitors for protection against its own proteases or against other environmental factors. The status and future prospects of microbial serine protease inhibitors and their therapeutic benefits in treating cancer, blood coagulation disorders and viral infections, are reviewed here.
Collapse
|
16
|
Alderson JM, Schomaker JM. Tandem Oxidative Derivatization of Nitrene Insertion Products for the Highly Diastereoselective Synthesis of 1,3-aminoalcohols. Chemistry 2017; 23:8571-8576. [PMID: 28486762 DOI: 10.1002/chem.201702038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 11/06/2022]
Abstract
Transition-metal-catalyzed nitrene insertion into tertiary C-H bonds located at stereogenic carbons often results in mixtures of diastereomeric products, especially if the reaction proceeds through a concerted pathway. In this communication, we report a solution to this problem that invokes a one-pot, silver-catalyzed C-H nitrene transfer reaction. Nitrene insertion is followed by facile oxidation of the amine to an imine and nucleophilic addition to furnish α-tertiary amine 1,3-aminoalcohol products in high diastereoselectivities. The silver catalyst, PhIO oxidant, and TEMPO additive are crucial to success in this unusual oxidation, which is proposed to occur via hydrogen-atom abstraction from pre-activation of the initial nitrene insertion product by additional oxidant.
Collapse
Affiliation(s)
- Juliet M Alderson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
17
|
Spreider PA, Haydl AM, Heinrich M, Breit B. Rhodium-Catalyzed Diastereoselective Cyclization of Allenyl-Sulfonylcarbamates: A Stereodivergent Approach to 1,3-Aminoalcohol Derivatives. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pierre A. Spreider
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg im Breisgau Germany
| | - Alexander M. Haydl
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg im Breisgau Germany
| | - Marc Heinrich
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg im Breisgau Germany
| | - Bernhard Breit
- Institut für Organische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstrasse 21 79104 Freiburg im Breisgau Germany
| |
Collapse
|
18
|
Spreider PA, Haydl AM, Heinrich M, Breit B. Rhodium-Catalyzed Diastereoselective Cyclization of Allenyl-Sulfonylcarbamates: A Stereodivergent Approach to 1,3-Aminoalcohol Derivatives. Angew Chem Int Ed Engl 2016; 55:15569-15573. [PMID: 27862829 DOI: 10.1002/anie.201609366] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 11/06/2022]
Abstract
A diastereoselective and stereodivergent rhodium-catalyzed intramolecular coupling of sulfonylcarbamates with terminal allenes is described and it provides selective access to 1,3-aminoalcohol derivatives, scaffolds found in bioactive compounds. The reaction is compatible with a large range of different functional groups, thus furnishing products with high diastereoselectivities and yields. Moreover, multigram scale reactions, as well as the application of suitable product transformations were demonstrated.
Collapse
Affiliation(s)
- Pierre A Spreider
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany
| | - Alexander M Haydl
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany
| | - Marc Heinrich
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Arab-Alameddine M, Décosterd LA, Buclin T, Telenti A, Csajka C. Antiretroviral drug toxicity in relation to pharmacokinetics, metabolic profile and pharmacogenetics. Expert Opin Drug Metab Toxicol 2016; 7:609-22. [PMID: 21500966 DOI: 10.1517/17425255.2011.562891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Besides therapeutic effectiveness, drug tolerability is a key issue for treatments that must be taken indefinitely. Given the high prevalence of toxicity in HIV therapy, the factors implicated in drug-induced morbidities should be identified in order to improve the safety, tolerability and adherence to the treatments. Current approaches have focused almost exclusively on parent drug concentrations; whereas recent evidence suggests that drug metabolites resulting from complex genetic and environmental influences can also contribute to treatment outcome. Pharmacogenetic variations have shown to play a relevant role in the variability observed in antiretroviral drug exposure, clinical response and sometimes toxicity. The integration of pharmacokinetic, pharmacogenetic and metabolic determinants will more probably address current therapeutic needs in patients. AREAS COVERED This review offers a concise description of three classes of antiretroviral drugs. The review looks at the metabolic profile of these drugs and gives a comprehensive summary of the existing literature on the influence of pharmacogenetics on their pharmacokinetics and metabolic pathways, and the associated drug or metabolite toxicity. EXPERT OPINION Due to the high prevalence of toxicity and the related risk of low adherence to the treatments, association of kinetic, genetic and metabolic markers predictive of therapeutic or toxicity outcomes could represent a more complete approach for optimizing antiretroviral therapy.
Collapse
Affiliation(s)
- Mona Arab-Alameddine
- Department of Clinical Pharmacology and Toxicology, University Hospital and University of Lausanne, Beaumont, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Hiremath SN, Bhirud CH. Development and validation of a stability indicating HPLC method for the simultaneous analysis of lopinavir and ritonavir in fixed-dose combination tablets. J Taibah Univ Med Sci 2015. [DOI: 10.1016/j.jtumed.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Katusiime C, Ocama P, Kambugu A. Basis of selection of first and second line highly active antiretroviral therapy for HIV/AIDS on genetic barrier to resistance: a literature review. Afr Health Sci 2014; 14:679-81. [PMID: 25352888 DOI: 10.4314/ahs.v14i3.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The effectiveness of combination antiretroviral therapy (cART) continues to improve as treatment choices expand with the development of new antiretroviral agents and regimens. However, the successful long-term treatment of HIV/AIDS is under threat from the emergence of drug-resistant strains to multiple agents and entire drug classes.
Collapse
|
22
|
Huang F, Scholl P, Huang DB, MacGregor TR, Vinisko R, Castles MA, Berger F, Robinson P. Coadministration With Lopinavir and Ritonavir Decreases Exposure to BILR 355, a Nonnucleoside Reverse Transcriptase Inhibitor, in Healthy Volunteers. J Clin Pharmacol 2013; 51:1061-70. [DOI: 10.1177/0091270010376971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Kou H, Ye M, Fu Q, Han Y, Du X, Xie J, Zhu Z, Li T. Simultaneous quantification of lopinavir and ritonavir in human plasma by high performance liquid chromatography coupled with UV detection. SCIENCE CHINA-LIFE SCIENCES 2012; 55:321-7. [PMID: 22566088 DOI: 10.1007/s11427-012-4303-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/09/2012] [Indexed: 11/30/2022]
Abstract
High performance liquid chromatography was coupled with UV detection for simultaneous quantification of lopinavir (LPV) and ritonavir (RTV) in human plasma. This assay was sensitive, accurate and simple, and only used 200 μL of plasma sample. Samples were liquid-liquid extracted, and diazepam was used as an internal standard. The chromatographic separation was achieved on a C18 reversed-phase analytic column with a mobile phase of acetonitrile-sodium dihydrogen phosphate buffer (10 mmol L(-1), pH 4.80) (60:40, v/v). UV detection was conducted at 205 nm and the column oven was set at 40°C. Calibration curves were constructed between 0.5-20 μg mL(-1) for LPV and 0.05-5 μg mL(-1) for RTV. The relative standard deviations were 2.16%-3.20% for LPV and 2.12%-2.60% for RTV for intra-day analysis, and 2.34%-4.04% for LPV and 0.31%-4.94% for RTV for inter-day analysis. The accuracy was within 100%±10%. The mean extraction recoveries were 79.17%, 52.26% and 91.35% for RTV, LPV and diazepam, respectively. This method was successfully applied to human plasma samples from patients orally administered a salvage regimen of lopinavir-ritonavir tablets.
Collapse
Affiliation(s)
- Huijuan Kou
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lam SK, Ng TB. A dimeric high-molecular-weight chymotrypsin inhibitor with antitumor and HIV-1 reverse transcriptase inhibitory activities from seeds of Acacia confusa. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:621-625. [PMID: 19962287 DOI: 10.1016/j.phymed.2009.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/01/2009] [Accepted: 10/12/2009] [Indexed: 05/28/2023]
Abstract
A dimeric 70-kDa chymotrypsin inhibitor with substantial N-terminal sequence homology to serine protease inhibitors was isolated from Acacia confusa seeds. The chymotrypsin inhibitor was purified using a protocol that entailed ion exchange chromatography on Q-Sepharose, SP-Sepharose and fast protein liquid chromatography-gel filtration on Superdex 75. The chymotrypsin inhibitor was unadsorbed on both Q-Sepharose and SP-Sepharose. Its chymotrypsin inhibitory activity was stable from pH 3 to 10 and from 0 to 50 degrees C. It exerted antiproliferative activity toward breast cancer MCF-7 cells with an IC(50) of 10.7+/-4.2 microM. It inhibited HIV-1 reverse transcriptase with an IC(50) of 8+/-1.5 microM. It was devoid of antifungal activity toward a variety of fungal species. The distinctive features of the chymotrypsin inhibitor included dimeric nature, a high molecular mass, lack of trypsin inhibitory activity, highly potent HIV-1 reverse transcriptase inhibitory activity, specific antitumor activity and relatively high pH-stability.
Collapse
Affiliation(s)
- S K Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
25
|
Generation of infectious feline immunodeficiency virus (FIV) encoding FIV/human immunodeficiency virus chimeric protease. J Virol 2010; 84:6799-809. [PMID: 20410281 DOI: 10.1128/jvi.00294-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) and human immunodeficiency virus type 1 (HIV-1) proteases (PRs) share only 23% amino acid identity and exhibit distinct specificities yet have very similar 3-dimensional structures. Chimeric PRs in which HIV residues were substituted in structurally equivalent positions in FIV PR were prepared in order to study the molecular basis of PR specificity. Previous in vitro analyses showed that such substitutions dramatically altered the inhibitor specificity of mutant PRs but changed the rate and specificity of Gag cleavage so that chimeric FIVs were not infectious. Chimeric PRs encoding combinations of the I37V, N55M, M56I, V59I, L97T, I98P, Q99V, and P100N mutations were cloned into FIV Gag-Pol, and those constructs that best approximated the temporal cleavage pattern generated by wild-type FIV PR, while maintaining HIV-like inhibitor specificity, were selected. Two mutations, M56I and L97T, were intolerant to change and caused inefficient cleavage at NC-p2. However, a mutant PR with six substitutions (I37V, N55M, V59I, I98P, Q99V, and P100N) was selected and placed in the context of full-length FIV-34TF10. This virus, termed YCL6, had low-level infectivity ex vivo, and after passage, progeny that exhibited a higher growth rate emerged. The residue at the position of one of the six mutations, I98P, further mutated on passage to either P98H or P98S. Both PRs were sensitive to the HIV-1 PR inhibitors lopinavir (LPV) and darunavir (DRV), as well as to the broad-based inhibitor TL-3, with 50% inhibitory concentrations (IC(50)) of 30 to 40 nM, consistent with ex vivo results obtained using mutant FIVs. The chimeras offer an infectivity system with which to screen compounds for potential as broad-based PR inhibitors, define structural parameters that dictate specificity, and investigate pathways for drug resistance development.
Collapse
|