1
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
2
|
Del Bino L, Calloni I, Oldrini D, Raso MM, Cuffaro R, Ardá A, Codée JDC, Jiménez‐Barbero J, Adamo R. Regioselective Glycosylation Strategies for the Synthesis of Group Ia and Ib Streptococcus Related Glycans Enable Elucidating Unique Conformations of the Capsular Polysaccharides. Chemistry 2019; 25:16277-16287. [PMID: 31506992 PMCID: PMC6972993 DOI: 10.1002/chem.201903527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/07/2019] [Indexed: 12/29/2022]
Abstract
Group B Streptococcus serotypes Ia and Ib capsular polysaccharides are key targets for vaccine development. In spite of their immunospecifity these polysaccharides share high structural similarity. Both are composed of the same monosaccharide residues and differ only in the connection of the Neu5Acα2-3Gal side chain to the GlcNAc unit, which is a β1-4 linkage in serotype Ia and a β1-3 linkage in serotype Ib. The development of efficient regioselective routes for GlcNAcβ1-3[Glcβ1-4]Gal synthons is described, which give access to different group B Streptococcus (GBS) Ia and Ib repeating unit frameshifts. These glycans were used to probe the conformation and molecular dynamics of the two polysaccharides, highlighting the different presentation of the protruding Neu5Acα2-3Gal moieties on the polysaccharide backbones and a higher flexibility of Ib polymer relative to Ia, which can impact epitope exposure.
Collapse
Affiliation(s)
| | - Ilaria Calloni
- CIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
| | | | | | | | - Ana Ardá
- CIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
| | - Jeroen D. C. Codée
- Department of Bioorganic SynthesisLeiden University2333LeidenThe Netherlands
| | - Jesús Jiménez‐Barbero
- CIC bioGUNEBizkaia Technology Park, Building 80048160DerioSpain
- Basque Foundation for Science IKERBASQUE8009BilbaoSpain
- Department of Organic Chemistry IIFaculty of Science and TechnologyUniversity of the Basque Country48940LeioaSpain
| | | |
Collapse
|
3
|
Shabayek S, Spellerberg B. Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology. Front Microbiol 2018; 9:437. [PMID: 29593684 PMCID: PMC5861770 DOI: 10.3389/fmicb.2018.00437] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of serious neonatal infections. GBS is an opportunistic commensal constituting a part of the intestinal and vaginal physiologic flora and maternal colonization is the principal route of GBS transmission. GBS is a pathobiont that converts from the asymptomatic mucosal carriage state to a major bacterial pathogen causing severe invasive infections. At present, as many as 10 serotypes (Ia, Ib, and II–IX) are recognized. The aim of the current review is to shed new light on the latest epidemiological data and clonal distribution of GBS in addition to discussing the most important colonization determinants at a molecular level. The distribution and predominance of certain serotypes is susceptible to variations and can change over time. With the availability of multilocus sequence typing scheme (MLST) data, it became clear that GBS strains of certain clonal complexes possess a higher potential to cause invasive disease, while other harbor mainly colonizing strains. Colonization and persistence in different host niches is dependent on the adherence capacity of GBS to host cells and tissues. Bacterial biofilms represent well-known virulence factors with a vital role in persistence and chronic infections. In addition, GBS colonization, persistence, translocation, and invasion of host barriers are largely dependent on their adherence abilities to host cells and extracellular matrix proteins (ECM). Major adhesins mediating GBS interaction with host cells include the fibrinogen-binding proteins (Fbs), the laminin-binding protein (Lmb), the group B streptococcal C5a peptidase (ScpB), the streptococcal fibronectin binding protein A (SfbA), the GBS immunogenic bacterial adhesin (BibA), and the hypervirulent adhesin (HvgA). These adhesins facilitate persistent and intimate contacts between the bacterial cell and the host, while global virulence regulators play a major role in the transition to invasive infections. This review combines for first time epidemiological data with data on adherence and colonization for GBS. Investigating the epidemiology along with understanding the determinants of mucosal colonization and the development of invasive disease at a molecular level is therefore important for the development of strategies to prevent invasive GBS disease worldwide.
Collapse
Affiliation(s)
- Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
4
|
Lin SM, Zhi Y, Ahn KB, Lim S, Seo HS. Status of group B streptococcal vaccine development. Clin Exp Vaccine Res 2018; 7:76-81. [PMID: 29399583 PMCID: PMC5795048 DOI: 10.7774/cevr.2018.7.1.76] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus, GBS) is a leading causal organism of neonatal invasive diseases and severe infections in the elderly. Despite significant advances in the diagnosis and treatment of GBS infections and improvement in personal hygiene standards, this pathogen is still a global health concern. Thus, an effective vaccine against GBS would augment existing strategies to substantially decrease GBS infection. In 2014, World Health Organization convened the first meeting for consultation on GBS vaccine development, focusing on the GBS maternal immunization program, which was aimed at reducing infections in neonates and young infants worldwide. Here, we review the history of GBS infections, the current vaccine candidates, and the current status of immunogenicity assays used to evaluate the clinical efficacy of GBS vaccines.
Collapse
Affiliation(s)
- Shun Mei Lin
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea.,Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, Korea
| | - Yong Zhi
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Korea
| | - Ki Bum Ahn
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
5
|
Khatun F, Stephenson RJ, Toth I. An Overview of Structural Features of Antibacterial Glycoconjugate Vaccines That Influence Their Immunogenicity. Chemistry 2017; 23:4233-4254. [PMID: 28097690 DOI: 10.1002/chem.201603599] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 12/13/2022]
Abstract
Bacterial cell-surface-derived or mimicked carbohydrate moieties that act as protective antigens are used in the development of antibacterial glycoconjugate vaccines. The carbohydrate antigen must have a minimum length or size to maintain the conformational structure of the antigenic epitope(s). The presence or absence of O-acetate, phosphate, glycerol phosphate and pyruvate ketal plays a vital role in defining the immunogenicity of the carbohydrate antigen. The nature of the carrier protein, spacer and conjugation pattern used to develop the glycoconjugate vaccine also defines its overall spatial orientation which in turn affects its avidity and selectivity of interaction with the desired target(s). In addition, the ratio of carbohydrate to protein in glycoconjugate vaccines also makes an important contribution in determining the optimum immunological response. This Review article presents the importance of these variables in the development of antibacterial glycoconjugate vaccines and their effects on immune efficacy.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,School of Pharmacy, Woolloongabba, The University of Queensland, QLD, Australia.,Institute for Molecular Bioscience, St. Lucia, The University of Queensland, QLD, Australia
| |
Collapse
|
6
|
Teatero S, McGeer A, Li A, Gomes J, Seah C, Demczuk W, Martin I, Wasserscheid J, Dewar K, Melano RG, Fittipaldi N. Population structure and antimicrobial resistance of invasive serotype IV group B Streptococcus, Toronto, Ontario, Canada. Emerg Infect Dis 2015; 21:585-91. [PMID: 25811284 PMCID: PMC4378482 DOI: 10.3201/eid2014.140759] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Conjugate vaccines should include polysaccharide or virulence proteins of this serotype to provide complete protection. We recently showed that 37/600 (6.2%) invasive infections with group B Streptococcus (GBS) in Toronto, Ontario, Canada, were caused by serotype IV strains. We report a relatively high level of genetic diversity in 37 invasive strains of this emerging GBS serotype. Multilocus sequence typing identified 6 sequence types (STs) that belonged to 3 clonal complexes. Most isolates were ST-459 (19/37, 51%) and ST-452 (11/37, 30%), but we also identified ST-291, ST-3, ST-196, and a novel ST-682. We detected further diversity by performing whole-genome single-nucleotide polymorphism analysis and found evidence of recombination events contributing to variation in some serotype IV GBS strains. We also evaluated antimicrobial drug resistance and found that ST-459 strains were resistant to clindamycin and erythromycin, whereas strains of other STs were, for the most part, susceptible to these antimicrobial drugs.
Collapse
|
7
|
Rana R, Dalal J, Singh D, Kumar N, Hanif S, Joshi N, Chhikara MK. Development and characterization of Haemophilus influenzae type b conjugate vaccine prepared using different polysaccharide chain lengths. Vaccine 2015; 33:2646-54. [PMID: 25907408 DOI: 10.1016/j.vaccine.2015.04.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/04/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
Abstract
Capsular polysaccharide conjugates of Haemophilus influenzae type b (Hib) are important components of several mono- or multi-valent childhood vaccines. However, their access to the most needy people is limited due to their high cost. As a step towards developing a cost effective and more immunogenic Hib conjugate vaccine, we present a method for the preparation of Hib capsular polysaccharide (PRP)-tetanus toxoid (TT) conjugates using optimized PRP chain length and conjugation conditions. Reactive aldehyde groups were introduced into the polysaccharides by controlled periodate oxidation of the native polysaccharide, which were subsequently covalently linked to hydrazide derivatized tetanus toxoid by means of reductive amination. Native polysaccharides were reduced to average 100 or 50kDa polysaccharide and 10kDa oligosaccharides in a controlled manner. Various conjugates were prepared using Hib polysaccharide and oligosaccharide yielding conjugates with polysaccharide to protein ratios in the range of 0.25-0.5 (w/w) and free saccharide levels of less than 10%. Immunization of Sprague Dawley rats with the conjugates elicited specific antibodies to PRP. The low molecular weight PRP-TT conjugates were found to be more immunogenic as compared to their high molecular weight counterparts and the PRP-TT reference vaccine.
Collapse
Affiliation(s)
- R Rana
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., 2nd Floor, Nanotechnology Building, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - J Dalal
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., 2nd Floor, Nanotechnology Building, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - D Singh
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., 2nd Floor, Nanotechnology Building, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - N Kumar
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., 2nd Floor, Nanotechnology Building, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - S Hanif
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., 2nd Floor, Nanotechnology Building, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - N Joshi
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., 2nd Floor, Nanotechnology Building, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - M K Chhikara
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd., 2nd Floor, Nanotechnology Building, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
8
|
Melin P, Efstratiou A. Group B streptococcal epidemiology and vaccine needs in developed countries. Vaccine 2014; 31 Suppl 4:D31-42. [PMID: 23973345 DOI: 10.1016/j.vaccine.2013.05.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
Development of a group B streptococcal vaccine (GBS) vaccine is the most promising approach for the prevention of GBS infections in babies, given the potential adverse effects of intrapartum antibiotic prophylaxis as well as the need for effective prevention of both adult and late perinatal disease. There are numerous prevention strategies at this time but none are 100% effective in the eradication of neonatal early onset GBS disease and there are no preventative strategies for late onset disease. The need for a GBS vaccine is therefore, of utmost importance. Efforts applying genomics to GBS vaccine development have led to the identification of novel vaccine candidates. The publication of GBS whole genomes coupled with new technologies including multigenome screening and bioinformatics has also allowed researchers to overcome the serotype limitation of earlier vaccine preparations in the search of a universal effective vaccine against GBS. This review brings together the key arguments concerning the potential need of a GBS vaccine in developed countries and describes the current status with GBS epidemiology and microbiology in these countries.
Collapse
Affiliation(s)
- Pierrette Melin
- National Reference Centre for Group B Streptococci, Medical Microbiology Department, University Hospital of Liege, Sart Tilman B-23, 4000 Liege, Belgium.
| | | |
Collapse
|
9
|
The Evolution of a Glycoconjugate Vaccine for Candida albicans. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Gulati S, Zheng B, Reed GW, Su X, Cox AD, St. Michael F, Stupak J, Lewis LA, Ram S, Rice PA. Immunization against a saccharide epitope accelerates clearance of experimental gonococcal infection. PLoS Pathog 2013; 9:e1003559. [PMID: 24009500 PMCID: PMC3757034 DOI: 10.1371/journal.ppat.1003559] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
The emergence of ceftriaxone-resistant strains of Neisseria gonorrhoeae may herald an era of untreatable gonorrhea. Vaccines against this infection are urgently needed. The 2C7 epitope is a conserved oligosaccharide (OS) structure, a part of lipooligosaccharide (LOS) on N gonorrhoeae. The epitope is expressed by 94% of gonococci that reside in the human genital tract (in vivo) and by 95% of first passaged isolates. Absence of the 2C7 epitope shortens the time of gonococcal carriage in a mouse model of genital infection. To circumvent the limitations of saccharide immunogens in producing long lived immune responses, previously we developed a peptide mimic (called PEP1) as an immunologic surrogate of the 2C7-OS epitope and reconfigured it into a multi-antigenic peptide, (MAP1). To test vaccine efficacy of MAP1, female BALB/c mice were passively immunized with a complement-dependent bactericidal monoclonal antibody specific for the 2C7 epitope or were actively immunized with MAP1. Mice immunized with MAP1 developed a TH1-biased anti-LOS IgG antibody response that was also bactericidal. Length of carriage was shortened in immune mice; clearance occurred in 4 days in mice passively administered 2C7 antibody vs. 6 days in mice administered control IgG3λ mAb in one experiment (p = 0.03) and 6 vs. 9 days in a replicate experiment (p = 0.008). Mice vaccinated with MAP1 cleared infection in 5 days vs. 9 days in mice immunized with control peptide (p = 0.0001 and p = 0.0002, respectively in two replicate experiments). Bacterial burden was lower over the course of infection in passively immunized vs. control mice in both experiments (p = 0.008 and p = 0.0005); burdens were also lower in MAP1 immunized mice vs. controls (p<0.0001) and were inversely related to vaccine antibodies induced in the vagina (p = 0.043). The OS epitope defined by mAb 2C7 may represent an effective vaccine target against gonorrhea, which is rapidly becoming incurable with currently available antibiotics.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/pharmacology
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/microbiology
- Disease Models, Animal
- Epitopes/immunology
- Epitopes/pharmacology
- Female
- Gonorrhea/genetics
- Gonorrhea/immunology
- Gonorrhea/prevention & control
- Humans
- Immunization, Passive
- Immunoglobulin G/immunology
- Immunoglobulin G/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Neisseria gonorrhoeae/genetics
- Neisseria gonorrhoeae/immunology
- Peptides/immunology
- Peptides/pharmacology
- Polysaccharides, Bacterial/immunology
- Polysaccharides, Bacterial/pharmacology
- Th1 Cells/immunology
- Th1 Cells/pathology
Collapse
Affiliation(s)
- Sunita Gulati
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Bo Zheng
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - George W. Reed
- Department of Medicine, Division of Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Xiaohong Su
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, People's Republic of China
| | - Andrew D. Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Frank St. Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Jacek Stupak
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada
| | - Lisa A. Lewis
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter A. Rice
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
11
|
Chen VL, Avci FY, Kasper DL. A maternal vaccine against group B Streptococcus: past, present, and future. Vaccine 2013; 31 Suppl 4:D13-9. [PMID: 23973342 PMCID: PMC3757342 DOI: 10.1016/j.vaccine.2012.12.080] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 12/31/2012] [Indexed: 01/22/2023]
Abstract
Group B Streptococcus (GBS) is a major cause of morbidity and mortality among neonates. Though there have been tremendous advances in prevention of invasive neonatal GBS disease through prophylactic antibiotic treatment of pregnant women, the incidence of neonatal disease has not changed significantly over the past several years. Vaccination of pregnant women is an important strategy that has the potential to improve further on existing protocols. In this review, we explore the history of the design of maternal GBS vaccines. We also discuss how recent applications of genomics and immunology to vaccine design promise to further enhance our ability to develop more effective vaccines against this important disease.
Collapse
MESH Headings
- Antibodies, Bacterial/immunology
- Female
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/immunology
- Infant, Newborn, Diseases/microbiology
- Infant, Newborn, Diseases/prevention & control
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/immunology
- Pregnancy
- Reproductive Tract Infections/microbiology
- Reproductive Tract Infections/transmission
- Streptococcal Infections/immunology
- Streptococcal Infections/microbiology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcus agalactiae/immunology
- Vaccination
Collapse
Affiliation(s)
- Vincent L. Chen
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Fikri Y. Avci
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Dennis L. Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Usein CR, Grigore L, Georgescu R, Cristea V, Bãltoiu M, Strãuţ M. Molecular characterization of adult-colonizing Streptococcus agalactiae from an area-based surveillance study in Romania. Eur J Clin Microbiol Infect Dis 2012; 31:2301-10. [DOI: 10.1007/s10096-012-1569-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/26/2012] [Indexed: 11/30/2022]
|
13
|
Abstract
Sialic acids, also known as neuraminic acids, are a family of negatively charged α-keto acids with a nine-carbon backbone. These unique sugars have been found at the termini of many glycan chains of vertebrate cell surface, which play pivotal roles in mediating or modulating a variety of physiological and pathological processes. This brief review covers general approaches for synthesizing sialic acid containing structures. Recently developed synthetic methods along with structural diversities and biological functions of sialic acid are discussed.
Collapse
Affiliation(s)
- Hongzhi Cao
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, CA 95616, USA
| |
Collapse
|
14
|
Costantino P, Rappuoli R, Berti F. The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov 2011; 6:1045-66. [PMID: 22646863 DOI: 10.1517/17460441.2011.609554] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Glycoconjugate vaccines are among the safest and most efficacious vaccines developed during the last 30 years. They are a potent tool for prevention of life-threatening bacterial infectious diseases like meningitis and pneumonia. The concept of hapten-carrier conjugation is now being extended to other disease areas. AREAS COVERED This is an overview of the history and current status of glycoconjugate vaccines. The authors discuss the approaches for their preparation and quality control as well as those variables which might affect their product profile. The authors also look at the potential to develop fully synthetic conjugate vaccines based on the progress of organic chemistry. Additionally, new applications of conjugate vaccines technology in the field of non-infectious diseases are discussed. Through this review, the reader will have an insight regarding the issues and complexities involved in the preparation and characterization of conjugate vaccines, the variables that might affect their immunogenicity and the potential for future applications. EXPERT OPINION The immunogenicity of weak T-independent antigens can be increased in quantity and quality by conjugation to protein carriers, which provide T-cell help. Glycoconjugate vaccines are among the safest and most efficacious vaccines developed so far. Various conjugation procedures and carrier proteins can be used. Many variables impact on the immunogenicity of conjugate vaccines and a tight control through physicochemical tests is important to ensure manufacturing and clinical consistency. New and challenging targets for conjugate vaccines are represented by cancer and other non-infectious diseases.
Collapse
|
15
|
Meinke AL, Senn BM, Visram Z, Henics TZ, Minh DB, Schüler W, Neubauer C, Gelbmann D, Noiges B, Sinzinger J, Hanner M, Dewasthaly S, Lundberg U, Hordnes K, Masoud H, Sevelda P, von Gabain A, Nagy E. Immunological fingerprinting of group B streptococci: From circulating human antibodies to protective antigens. Vaccine 2010; 28:6997-7008. [DOI: 10.1016/j.vaccine.2010.08.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 11/25/2022]
|
16
|
Progress in the development of effective vaccines to prevent selected gram-positive bacterial infections. Am J Med Sci 2010; 340:218-25. [PMID: 20697258 DOI: 10.1097/maj.0b013e3181e939ab] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infections caused by virulent Gram-positive bacteria, such as Staphylococcus aureus, group B streptococci and group A streptococci, remain significant causes of morbidity and mortality despite progress in antimicrobial therapy. Despite significant advances in the understanding of the pathogenesis of infection caused by these organisms, there are only limited strategies to prevent infection. In this article, we review efforts to develop safe and effective vaccines that would prevent infections caused by these 3 pathogens.
Collapse
|
17
|
Abstract
Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design. This is enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. Here, we review the progress being made in addressing challenges posed by targeting the surface carbohydrates of bacteria, protozoa, helminths, viruses, fungi and cancer cells for vaccine purposes.
Collapse
|
18
|
Toll-like receptor 2 dependent immunogenicity of glycoconjugate vaccines containing chemically derived zwitterionic polysaccharides. Proc Natl Acad Sci U S A 2009; 106:17481-6. [PMID: 19805031 DOI: 10.1073/pnas.0903313106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Group B Streptococcus (GBS) causes serious infection in neonates and is an important target of vaccine development. Zwitterionic polysaccharides (ZPS), obtained through chemical introduction of positive charges into anionic polysaccharides (PS) from GBS, have the ability to activate human and mouse antigen presenting cells (APCs) through toll-like receptor 2 (TLR2). To generate a polysaccharide vaccine with antigen (Ag) and adjuvant properties in one molecule, we have conjugated ZPS with a carrier protein. ZPS-glycoconjugates induce higher T-cell and Ab responses to carrier and PS, respectively, compared to control PS-glycoconjugates made with the native polysaccharide form. The increased immunogenicity of ZPS-conjugates correlates with their ability to activate dendritic cells (DCs). Moreover, protection of mothers or neonate offspring from lethal GBS challenge is better when mothers are immunized with ZPS-conjugates compared to immunization with PS-conjugates. In TLR2 knockout mice, ZPS-conjugates lose both their increased immunogenicity and protective effect after vaccination. When ZPS are coadministered as adjuvants with unconjugated tetanus toxoid (TT), they have the ability to increase the TT-specific antibody titer. In conclusion, glycoconjugates containing ZPS are potent vaccines. They target Ag to TLR2-expressing APCs and activate these APCs, leading to better T-cell priming and ultimately to higher protective Ab titers. Thus, rational chemical design can generate potent PS-adjuvants with wide application, including glycoconjugates and coadministration with unrelated protein Ags.
Collapse
|
19
|
Carlin AF, Chang YC, Areschoug T, Lindahl G, Hurtado-Ziola N, King CC, Varki A, Nizet V. Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. ACTA ACUST UNITED AC 2009; 206:1691-9. [PMID: 19596804 PMCID: PMC2722167 DOI: 10.1084/jem.20090691] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns. A key GBS virulence factor is its capsular polysaccharide (CPS), displaying terminal sialic acid (Sia) residues which block deposition and activation of complement on the bacterial surface. We recently demonstrated that GBS Sia can bind human CD33-related Sia-recognizing immunoglobulin (Ig) superfamily lectins (hCD33rSiglecs), a family of inhibitory receptors expressed on the surface of leukocytes. We report the unexpected discovery that certain GBS strains may bind one such receptor, hSiglec-5, in a Sia-independent manner, via the cell wall-anchored beta protein, resulting in recruitment of SHP protein tyrosine phosphatases. Using a panel of WT and mutant GBS strains together with Siglec-expressing cells and soluble Siglec-Fc chimeras, we show that GBS beta protein binding to Siglec-5 functions to impair human leukocyte phagocytosis, oxidative burst, and extracellular trap production, promoting bacterial survival. We conclude that protein-mediated functional engagement of an inhibitory host lectin receptor promotes bacterial innate immune evasion.
Collapse
Affiliation(s)
- Aaron F Carlin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Guttormsen HK, Mascuch SJ, West JC, Paoletti LC. A fluorescence-based opsonophagocytosis assay to measure the functional activity of antibody to group B Streptococcus. HUMAN VACCINES 2009; 5:461-6. [PMID: 19377284 DOI: 10.4161/hv.8376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An in vitro assay designed to measure the functional activity of vaccine-induced antibody is a necessary component of any vaccine development program. Because traditional efficacy studies of vaccines to prevent neonatal diseases caused by group B Streptococcus (GBS) are unlikely given the effectiveness of current antibiotics and screen-based surveillance practices, the ability to efficiently and effectively measure functional antibody responses may be of particular importance. GBS, like other encapsulated bacterial pathogens, are susceptible to opsonization by specific antibody and complement and subsequent killing by the host's effector cells. The in vitro opsonophagocytosis and killing assay (OPA) mimics this in vivo defense strategy and has been used for decades to measure the functionality of natural and/or vaccine-induced GBS-specific antibody. Here we describe a fluorescence-based OPA (flOPA) that measures the ability of specific antibody to opsonize fixed, fluorescently labeled GBS or antigen-coated fluorescent microspheres for uptake by differentiated HL-60 cells in the presence of complement. Compared to the classical OPA, the flOPA is standardized with respect to effector cells, complement and antigenic targets. The GBS flOPA is also less time-intensive and has the potential to measure antibody to multiple antigens simultaneously. Quantitative functional antibody determinations using the flOPA may serve as a surrogate measure of GBS vaccine effectiveness in lieu of traditional phase 3 efficacy trials.
Collapse
Affiliation(s)
- Hilde-Kari Guttormsen
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
21
|
Rajagopal L. Understanding the regulation of Group B Streptococcal virulence factors. Future Microbiol 2009; 4:201-21. [PMID: 19257847 DOI: 10.2217/17460913.4.2.201] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacterial infections remain a significant threat to the health of newborns and adults. Group B Streptococci (GBS) are Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, this opportunistic organism can also subvert suboptimal host defenses to cause severe invasive disease and tissue damage. The increasing emergence of antibiotic-resistant GBS raises more concerns for sustained measures in treatment of the disease. A number of factors that are important for virulence of GBS have been identified. This review summarizes the functions of some well-characterized virulence factors, with an emphasis on how GBS regulates their expression. Regulatory and signaling molecules are attractive drug targets in the treatment of bacterial infections. Consequently, understanding signaling responses of GBS is essential for elucidation of pathogenesis of GBS infection and for the identification of novel therapeutic agents.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington & Seattle Children's Hospital Research Institute, 1900 Ninth Avenue, Seattle, WA 98101-91304, USA.
| |
Collapse
|
22
|
Recent advances in understanding the molecular basis of group B Streptococcus virulence. Expert Rev Mol Med 2008; 10:e27. [PMID: 18803886 DOI: 10.1017/s1462399408000811] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Group B Streptococcus commonly colonises healthy adults without symptoms, yet under certain circumstances displays the ability to invade host tissues, evade immune detection and cause serious invasive disease. Consequently, Group B Streptococcus remains a leading cause of neonatal pneumonia, sepsis and meningitis. Here we review recent information on the bacterial factors and mechanisms that direct host-pathogen interactions involved in the pathogenesis of Group B Streptococcus infection. New research on host signalling and inflammatory responses to Group B Streptococcus infection is summarised. An understanding of the complex interplay between Group B Streptococcus and host provides valuable insight into pathogen evolution and highlights molecular targets for therapeutic intervention.
Collapse
|
23
|
Recombinant group B Streptococcus alpha-like protein 3 is an effective immunogen and carrier protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1035-41. [PMID: 18463225 DOI: 10.1128/cvi.00030-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Conjugate vaccines against pathogens of multiple serotypes are optimized when all components induce functional antibody, resulting in broadened coverage. While most clinical studies of vaccines against group B Streptococcus (GBS) have evaluated conjugates composed of capsular polysaccharide (CPS) coupled to tetanus toxoid, conjugates prepared with GBS proteins as carriers have also been efficacious in animals. Here, we report that recombinant GBS alpha-like protein 3 (rAlp3) is both a strong immunogen and a viable carrier protein for type III CPS. The type III CPS-specific immunoglobulin G (IgG) titer rose from <100 to 64,000 among mice that received type III CPS coupled to rAlp3 (III-rAlp3) compared with an absence of a specific response among mice that received an uncoupled mixture. Most (94%) newborn pups born to III-rAlp-vaccinated dams survived challenge with viable type III GBS, compared with 43% survival among those born to dams that received the uncoupled mixture (P < 0.0001). A tricomponent conjugate of type III CPS, rAlp3, and a GBS recombinant beta C protein lacking its IgA binding site (III-rAlp3-rBCP(DeltaIgA)) provided protection against a serotype III strain and a serotype Ia strain bearing beta C protein. High-titered anti-rAlp3 rabbit serum opsonized Alp3-containing strains of two GBS serotypes (types V and VIII) and invasive type III strains bearing the cross-reactive Rib protein for in vitro killing by human peripheral blood leukocytes. Thus, the potential exists for the inclusion of rAlp3 in a GBS vaccine formulated to provide multiserotype coverage.
Collapse
|
24
|
Rational chemical design of the carbohydrate in a glycoconjugate vaccine enhances IgM-to-IgG switching. Proc Natl Acad Sci U S A 2008; 105:5903-8. [PMID: 18378894 DOI: 10.1073/pnas.0710799105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many pathogens are sheltered from host immunity by surface polysaccharides that would be ideal as vaccines except that they are too similar to host antigens to be immunogenic. The production of functional IgG is a desirable response to vaccines; because IgG is the only isotype that crosses the placenta, it is of particular importance in maternal vaccines against neonatal disease due to group B Streptococcus (GBS). Clinical studies found a substantially lower proportion of IgG-relative to IgM-among antibodies elicited by conjugates prepared with purified GBS type V capsular polysaccharide (CPS) than among those evoked by CPSs of other GBS serotypes. The epitope specificity of IgG elicited in humans by a conjugate prepared with type V CPS is for chemically desialylated type V CPS (dV CPS). We studied desialylation as a mechanism for enhancing the ability of type V CPS to induce IgM-to-IgG switching. Desialylation did not affect the structural conformation of type V CPS. Rhesus macaques, whose isotype responses to GBS conjugates match those of humans, produced functionally active IgG in response to a dV CPS-tetanus toxoid conjugate (dV-TT), and 98% of neonatal mice born to dams vaccinated with dV-TT survived lethal challenge with viable GBS. Targeted chemical engineering of a carbohydrate to create a molecule less like host self may be a rational approach for improving other glycoconjugates.
Collapse
|
25
|
Lewis AL, Cao H, Patel SK, Diaz S, Ryan W, Carlin AF, Thon V, Lewis WG, Varki A, Chen X, Nizet V. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus. J Biol Chem 2007; 282:27562-71. [PMID: 17646166 PMCID: PMC2588433 DOI: 10.1074/jbc.m700340200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.
Collapse
Affiliation(s)
- Amanda L. Lewis
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Hongzhi Cao
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Silpa K. Patel
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Sandra Diaz
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Wesley Ryan
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Aaron F. Carlin
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Vireak Thon
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Warren G. Lewis
- The Scripps Research Institute, Biochemistry Department, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Institute of the Novartis Research Foundation, University of California, Davis, CA 95616, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Address Correspondence to: Ajit Varki, UCSD School of Medicine, La Jolla, CA 92093-0687 Phone: (858) 534-2214; Fax: (858) 534-5611;
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Victor Nizet
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- School of Medicine, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
26
|
Yang HH, Madoff LC, Guttormsen HK, Liu YD, Paoletti LC. Recombinant group B streptococcus Beta C protein and a variant with the deletion of its immunoglobulin A-binding site are protective mouse maternal vaccines and effective carriers in conjugate vaccines. Infect Immun 2007; 75:3455-61. [PMID: 17470542 PMCID: PMC1932936 DOI: 10.1128/iai.00332-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/16/2007] [Accepted: 04/22/2007] [Indexed: 11/20/2022] Open
Abstract
Immunogenic vaccines against group B Streptococcus (GBS) have been created by coupling the GBS capsular polysaccharides (CPS) to carrier proteins. The GBS beta C protein (BCP) serves as an effective carrier while inducing protective immunity against BCP-expressing strains. BCP also binds human immunoglobulin A (IgA), a characteristic that may be undesirable for use in humans. Here, we examined the immunogenicity and protective efficacy of a recombinant GBS BCP (rBCP), an rBCP modified to eliminate its IgA-binding site (rBCP(DeltaIgA)), and their corresponding GBS serotype III CPS conjugates (III-rBCP and III-rBCP(DeltaIgA)). Deletion of the IgA-binding site or conjugation to CPS did not alter antigenic BCP epitopes. Recombinant proteins and conjugates elicited specific, high-titered IgG in mice. Antisera to rBCP, rBCP(DeltaIgA), III-rBCP, and III-rBCP(DeltaIgA) opsonized GBS strains A909 (Ia/BCP(+)) and H36B (Ib/BCP(+)) for killing by HL-60 cells; antiserum to III-rBCP and III-rBCP(DeltaIgA) also opsonized strain M781 (III/BCP(-)). Vaccination of female mice with either rBCP or rBCP(DeltaIgA) protected approximately 40% of their pups challenged with GBS strain A909. Pups born to III-rBCP- or III-rBCP(DeltaIgA)-vaccinated dams survived at rates of 56% and 66%, respectively. Over 90% of pups born to dams that received the type III CPS conjugates survived challenge with GBS strain M781. In summary, rBCP and rBCP(DeltaIgA) proteins and the conjugates containing them were immunogenic in mice, inducing both CPS- and protein-specific functional IgG. These results suggest that the rBCP(DeltaIgA) could be used as a carrier to augment the immunogenicity of the CPS while expanding coverage to GBS strains bearing BCP.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Animals, Outbred Strains
- Antibodies, Bacterial/blood
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Capsules/immunology
- Binding Sites/genetics
- Female
- Gene Deletion
- Genetic Variation
- HL-60 Cells
- Humans
- Immunity, Maternally-Acquired
- Immunoglobulin A/metabolism
- Immunoglobulin G/blood
- Mice
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Streptococcal Infections/immunology
- Streptococcal Infections/microbiology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcus agalactiae/immunology
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/immunology
Collapse
Affiliation(s)
- Hsiao-Hui Yang
- Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
27
|
Weisser NE, Almquist KC, Hall JC. A rAb screening method for improving the probability of identifying peptide mimotopes of carbohydrate antigens. Vaccine 2007; 25:4611-22. [PMID: 17481782 DOI: 10.1016/j.vaccine.2007.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 03/09/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Peptide mimotopes have been investigated as surrogate antigens of carbohydrate (CHO) targets on pathogen and tumor cells in vaccine and therapeutic discovery. One of the main bottlenecks in peptide mimotope discovery is the inability of initial screening regimes to differentiate between true mimotopes and non-mimotopes. As a result, subsequent in vivo analysis of putative peptide mimotopes is often inefficient requiring the use of experimental animals during a lengthy in vivo immunization process. Here, we demonstrate a rapid preliminary screening method to identify putative mimotopes using a recombinant antibody (rAb) library, which may increase the probability of identifying peptides that will elicit a CHO-cross-reactive response in vivo. A human naïve rAb library was screened against both an established peptide mimotope and a non-mimotope of the Group B Streptococcus (GBS) type III polysaccharide to determine if selected antibodies cross-reacted with the original GBS polysaccharide. We were able to differentiate between these two peptides because peptide-binding Abs that cross-reacted to GBS was isolated only with the peptide mimotope. We discuss the feasibility of using this method to significantly increase the breadth of screening and reduce the discovery time for peptide mimotopes.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | |
Collapse
|
28
|
Puopolo KM, Madoff LC. Type IV neonatal early-onset group B streptococcal disease in a United States hospital. J Clin Microbiol 2007; 45:1360-2. [PMID: 17267636 PMCID: PMC1865845 DOI: 10.1128/jcm.02487-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B streptococcus (GBS) serotypes causing neonatal disease vary by geographic region. Surveillance at the Brigham and Women's Hospital in Boston, Massachusetts, revealed a case of neonatal early-onset sepsis caused by type IV GBS. Neonatal type IV disease occurs in the Middle East but has not recently been described in U.S. infants.
Collapse
Affiliation(s)
- Karen M Puopolo
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
Ramaswamy SV, Ferrieri P, Madoff LC, Flores AE, Kumar N, Tettelin H, Paoletti LC. Identification of novel cps locus polymorphisms in nontypable group B Streptococcus. J Med Microbiol 2006; 55:775-783. [PMID: 16687599 DOI: 10.1099/jmm.0.46253-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group B Streptococcus (GBS) is an important pathogen responsible for a variety of diseases in newborns and the elderly. A clinical GBS isolate is considered nontypable (NT) when serological methods fail to identify it as one of nine known GBS serotypes. Eight clinical isolates (designated A1-A4, B1-B4) showed PFGE profiles similar to that of a GBS serotype V strain expressing R1, R4 surface proteins. These unique isolates were further characterized by immunologic and genetic methods. Rabbit sera to isolates A1 and A2 reacted weakly with concentrated HCl extracts of A1-A4 isolates, but not with those of B1-B4 isolates. In addition, a type V capsular polysaccharide (CPS) inhibition ELISA revealed that cell wall extracts from isolates A1-A4, but not from B1-B4, expressed low but measurable amounts of type V CPS. Molecular serotyping with PCR analysis showed that all eight isolates contained a type V-specific CPS gene (cpsO) and harboured the gene encoding the surface protein Alp3. Multilocus sequence typing identified isolate A1 as belonging to a new sequence type (ST) designated ST-173, whereas the other seven isolates keyed to ST-1. Sequencing of the 18 genes (17 736 bp) in the cps locus showed that each NT isolate harboured one to three unique polymorphisms, and also identified an IS1381 element in cpsE of the B4 isolate. Collectively, genetic and immunologic analyses revealed that these NT isolates expressing R1, R4 proteins have a genetic profile consistent with that of type V, an emergent, antigenically diverse and increasingly prevalent GBS serotype.
Collapse
Affiliation(s)
- Srinivas V Ramaswamy
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Ferrieri
- Departments of Laboratory Medicine and Pathology and Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Lawrence C Madoff
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aurea E Flores
- Departments of Laboratory Medicine and Pathology and Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Nikhil Kumar
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Hervé Tettelin
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Lawrence C Paoletti
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Ramaswamy SV, Ferrieri P, Flores AE, Paoletti LC. Molecular characterization of nontypeable group B streptococcus. J Clin Microbiol 2006; 44:2398-403. [PMID: 16825355 PMCID: PMC1489475 DOI: 10.1128/jcm.02236-05] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/14/2005] [Accepted: 03/29/2006] [Indexed: 11/20/2022] Open
Abstract
Traditionally, the capsular polysaccharide (CPS) antigen has been used to distinguish between the nine known serotypes of group B streptococcus (GBS) by classical antibody-antigen reactions. In this study, we used PCR for all CPSs and selected protein antigens, multilocus sequencing typing (MLST), and pulsed-field gel electrophoresis (PFGE) to molecularly characterize 92 clinical isolates identified as nontypeable (NT) by CPS-specific antibody-antigen reactivity. The PCR and MLST were performed on blinded, randomly numbered isolates. All isolates contained the cfb gene coding for CAMP factor. While most (56.5%) contained a single CPS-specific gene, 40 isolates contained either two or three CPS-specific genes. Type V CPS-specific gene was present in 66% of the isolates, and all serotypes except types IV, VII, and VIII were represented. Most (44.5%) of the isolates contained a single protein antigen gene (bca, bac, rib, alp1, or alp3), and the remaining isolates had multiple protein antigen genes. Of the 61 isolates that had the V CPS-specific gene, 48 (78.6%) had the alp3 gene. PFGE analysis classified the isolates into 21 profile groups, while MLST analysis divided the isolates into 16 sequence types. Forty-two (69%) of 61 isolates with the V CPS-specific gene were in PFGE profile group 4; 41 of these 42 were sequence type 1 by MLST. These data shed new light on the antigenic complexity of NT GBS isolates, information that can be valuable in the formulation of an effective GBS vaccine.
Collapse
Affiliation(s)
- Srinivas V Ramaswamy
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D’Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Dei VN, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 2005; 309:148-50. [PMID: 15994562 PMCID: PMC1351092 DOI: 10.1126/science.1109869] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Group B Streptococcus (GBS) is a multiserotype bacterial pathogen representing a major cause of life-threatening infections in newborns. To develop a broadly protective vaccine, we analyzed the genome sequences of eight GBS isolates and cloned and tested 312 surface proteins as vaccines. Four proteins elicited protection in mice, and their combination proved highly protective against a large panel of strains, including all circulating serotypes. Protection also correlated with antigen accessibility on the bacterial surface and with the induction of opsonophagocytic antibodies. Multigenome analysis and screening described here represent a powerful strategy for identifying potential vaccine candidates against highly variable pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hervé Tettelin
- Institute for Genome Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | - Lisa Miorin
- Chiron srl, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | - Filipo Vegni
- Chiron srl, Via Fiorentina 1, 53100 Siena, Italy
| | - Claire Fraser
- Institute for Genome Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Giuseppe Mancuso
- Department of Pathology and Experimental Microbiology, University of Messina Medical School, 98125 Messina, Italy
| | - Giuseppe Teti
- Department of Pathology and Experimental Microbiology, University of Messina Medical School, 98125 Messina, Italy
| | - Lawrence C. Madoff
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02125, USA
| | - Lawrence C. Paoletti
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02125, USA
| | | | - Dennis L. Kasper
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02125, USA
| | | | - Guido Grandi
- Chiron srl, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
32
|
Creti R, Fabretti F, Orefici G, von Hunolstein C. Multiplex PCR assay for direct identification of group B streptococcal alpha-protein-like protein genes. J Clin Microbiol 2004; 42:1326-9. [PMID: 15004110 PMCID: PMC356896 DOI: 10.1128/jcm.42.3.1326-1329.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a group B streptococcus multiplex PCR assay which allows, by direct analysis of the amplicon size, determination of the surface protein antigen genes of alpha-C protein, epsilon protein, Rib, Alp2, Alp3, and Alp4. The multiplex PCR assay offers a rapid and simple method of subtyping Streptococcus agalactiae based on surface protein genes.
Collapse
Affiliation(s)
- Roberta Creti
- Laboratorio di Batteriologia, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | | | | | |
Collapse
|