1
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Garcha J, Huang J, Martinez Pomier K, Melacini G. Amyloid-Driven Allostery. Biophys Chem 2024; 315:107320. [PMID: 39278064 DOI: 10.1016/j.bpc.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
The fields of allostery and amyloid-related pathologies, such as Parkinson's disease (PD), have been extensively explored individually, but less is known about how amyloids control allostery. Recent advancements have revealed that amyloids can drive allosteric effects in both intrinsically disordered proteins, such as alpha-synuclein (αS), and multi-domain signaling proteins, such as protein kinase A (PKA). Amyloid-driven allostery plays a central role in explaining the mechanisms of gain-of-pathological-function mutations in αS (e.g. E46K, which causes early PD onset) and loss-of-physiological-function mutations in PKA (e.g. A211D, which predisposes to tumors). This review highlights allosteric effects of disease-related mutations and how they can cause exposure of amyloidogenic regions, leading to amyloids that are either toxic or cause aberrant signaling. We also discuss multiple potential modulators of these allosteric effects, such as MgATP and kinase substrates, opening future opportunities to improve current pharmacological interventions against αS and PKA-related pathologies. Overall, we show that amyloid-driven allosteric models are useful to explain the mechanisms underlying disease-related mutations.
Collapse
Affiliation(s)
- Jaskiran Garcha
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
3
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
4
|
Jiang A, Li J, He Z, Liu Y, Qiao K, Fang Y, Qu L, Luo P, Lin A, Wang L. Renal cancer: signaling pathways and advances in targeted therapies. MedComm (Beijing) 2024; 5:e676. [PMID: 39092291 PMCID: PMC11292401 DOI: 10.1002/mco2.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cancer is a highlyheterogeneous malignancy characterized by rising global incidence and mortalityrates. The complex interplay and dysregulation of multiple signaling pathways,including von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), Hippo-yes-associated protein (YAP), Wnt/ß-catenin, cyclic adenosine monophosphate (cAMP), and hepatocyte growth factor (HGF)/c-Met, contribute to theinitiation and progression of renal cancer. Although surgical resection is thestandard treatment for localized renal cancer, recurrence and metastasiscontinue to pose significant challenges. Advanced renal cancer is associatedwith a poor prognosis, and current therapies, such as targeted agents andimmunotherapies, have limitations. This review presents a comprehensiveoverview of the molecular mechanisms underlying aberrant signaling pathways inrenal cancer, emphasizing their intricate crosstalk and synergisticinteractions. We discuss recent advancements in targeted therapies, includingtyrosine kinase inhibitors, and immunotherapies, such as checkpoint inhibitors.Moreover, we underscore the importance of multiomics approaches and networkanalysis in elucidating the complex regulatory networks governing renal cancerpathogenesis. By integrating cutting-edge research and clinical insights, this review contributesto the development of innovative diagnostic and therapeutic strategies, whichhave the potential to improve risk stratification, precision medicine, andultimately, patient outcomes in renal cancer.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jinxin Li
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ziwei He
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ying Liu
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Kun Qiao
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yu Fang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Le Qu
- Department of UrologyJinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Anqi Lin
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Linhui Wang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
5
|
Sun C, Mei J, Yi H, Song M, Ma Y, Huang Y. The Effect of the cAMP Signaling Pathway on HTR8/SV-Neo Cell Line Proliferation, Invasion, and Migration After Treatment with Forskolin. Reprod Sci 2024; 31:1268-1277. [PMID: 38110819 DOI: 10.1007/s43032-023-01396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023]
Abstract
Pre-eclampsia (PE) is thought to be related to placental dysfunction, particularly poor extravillous trophoblast (EVT) invasion and migration abilities. However, the pathogenic mechanism is not fully understood. This article describes the impact of the cyclic adenosine monophosphate(cAMP) signaling pathway on EVT behavior, focusing on EVT proliferation, invasion, and migration. Here, we used the HTR8/SV-neo cell line to study human EVT function in vitro. HTR8/SV-neo cells were treated with different concentrations of forskolin (cAMP pathway-specific agonist) to alter intracellular cAMP levels, and dimethyl sulfoxide (DMSO) was used as the control. First, a cAMP assay was performed to measure the cAMP concentration in HTR8/SV-neo cells treated with different forskolin concentrations, and cell proliferation was assessed by constructing cell growth curves and assessing colony formation. Cell invasion and migration were observed by Transwell experiments, and intracellular epithelial-mesenchymal transition (EMT) marker expression was evaluated by quantitative real-time polymerase chain reaction (qPCR) and Western blotting (WB). According to our research, the intracellular cAMP levels in HTR8/SV-neo cells were increased in a dose-dependent manner, and HTR8/SV-neo cell proliferation, invasion and migration were significantly enhanced. The expression of EMT and angiogenesis markers was upregulated. Additionally, with the increase in intracellular cAMP levels, the phosphorylation of intracellular mitogen-activated protein kinase (MAPK) signaling pathway components was significantly increased. These results suggested that the cAMP signaling pathway promoted the phosphorylation of MAPK signaling components, thus enhancing EVT functions, including proliferation, invasion, and migration, and to a certain extent, providing a novel direction for the treatment of PE patients.
Collapse
Affiliation(s)
- Chao Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Jiaoqi Mei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Mengyi Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China.
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 3 Longhua Road, Haikou, Hainan, 570102, China.
- Department of Reproductive Medicine, Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" by the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
6
|
Murali R, Gopalakrishnan AV. Molecular insight into renal cancer and latest therapeutic approaches to tackle it: an updated review. Med Oncol 2023; 40:355. [PMID: 37955787 DOI: 10.1007/s12032-023-02225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most lethal genitourinary cancers, with the highest mortality rate, and may remain undetected throughout its development. RCC can be sporadic or hereditary. Exploring the underlying genetic abnormalities in RCC will have important implications for understanding the origins of nonhereditary renal cancers. The treatment of RCC has evolved over centuries from the era of cytokines to targeted therapy to immunotherapy. A surgical cure is the primary treatment modality, especially for organ-confined diseases. Furthermore, the urologic oncology community focuses on nephron-sparing surgical approaches and ablative procedures when small renal masses are detected incidentally in conjunction with interventional radiologists. In addition to new combination therapies approved for RCC treatment, several trials have been conducted to investigate the potential benefits of certain drugs. This may lead to durable responses and more extended survival benefits for patients with metastatic RCC (mRCC). Several approved drugs have reduced the mortality rate of patients with RCC by targeting VEGF signaling and mTOR. This review better explains the signaling pathways involved in the RCC progression, oncometabolites, and essential biomarkers in RCC that can be used for its diagnosis. Further, it provides an overview of the characteristics of RCC carcinogenesis to assist in combating treatment resistance, as well as details about the current management and future therapeutic options. In the future, multimodal and integrated care will be available, with new treatment options emerging as we learn more about the disease.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology VIT, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology VIT, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
7
|
Du L, Wilson BAP, Li N, Shah R, Dalilian M, Wang D, Smith EA, Wamiru A, Goncharova EI, Zhang P, O’Keefe BR. Discovery and Synthesis of a Naturally Derived Protein Kinase Inhibitor that Selectively Inhibits Distinct Classes of Serine/Threonine Kinases. JOURNAL OF NATURAL PRODUCTS 2023; 86:2283-2293. [PMID: 37843072 PMCID: PMC10616853 DOI: 10.1021/acs.jnatprod.3c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 10/17/2023]
Abstract
The DNAJB1-PRKACA oncogenic gene fusion results in an active kinase enzyme, J-PKAcα, that has been identified as an attractive antitumor target for fibrolamellar hepatocellular carcinoma (FLHCC). A high-throughput assay was used to identify inhibitors of J-PKAcα catalytic activity by screening the NCI Program for Natural Product Discovery (NPNPD) prefractionated natural product library. Purification of the active agent from a single fraction of an Aplidium sp. marine tunicate led to the discovery of two unprecedented alkaloids, aplithianines A (1) and B (2). Aplithianine A (1) showed potent inhibition against J-PKAcα with an IC50 of ∼1 μM in the primary screening assay. In kinome screening, 1 inhibited wild-type PKA with an IC50 of 84 nM. Further mechanistic studies including cocrystallization and X-ray diffraction experiments revealed that 1 inhibited PKAcα catalytic activity by competitively binding to the ATP pocket. Human kinome profiling of 1 against a panel of 370 kinases revealed potent inhibition of select serine/threonine kinases in the CLK and PKG families with IC50 values in the range ∼11-90 nM. An efficient, four-step total synthesis of 1 has been accomplished, enabling further evaluation of aplithianines as biologically relevant kinase inhibitors.
Collapse
Affiliation(s)
- Lin Du
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Brice A. P. Wilson
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ning Li
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Rohan Shah
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Masoumeh Dalilian
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dongdong Wang
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily A. Smith
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Antony Wamiru
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ekaterina I. Goncharova
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Leidos
Biomedical Research, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ping Zhang
- Center
for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Barry R. O’Keefe
- Molecular
Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural
Products Branch, Development Therapeutics Program, Division of Cancer
Treatment and Diagnosis, National Cancer
Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
8
|
Pratap Reddy Gajulapalli V. Development of Kinase-Centric Drugs: A Computational Perspective. ChemMedChem 2023; 18:e202200693. [PMID: 37442809 DOI: 10.1002/cmdc.202200693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Kinases are prominent drug targets in the pharmaceutical and research community due to their involvement in signal transduction, physiological responses, and upon dysregulation, in diseases such as cancer, neurological and autoimmune disorders. Several FDA-approved small-molecule drugs have been developed to combat human diseases since Gleevec was approved for the treatment of chronic myelogenous leukemia. Kinases were considered "undruggable" in the beginning. Several FDA-approved small-molecule drugs have become available in recent years. Most of these drugs target ATP-binding sites, but a few target allosteric sites. Among kinases that belong to the same family, the catalytic domain shows high structural and sequence conservation. Inhibitors of ATP-binding sites can cause off-target binding. Because members of the same family have similar sequences and structural patterns, often complex relationships between kinases and inhibitors are observed. To design and develop drugs with desired selectivity, it is essential to understand the target selectivity for kinase inhibitors. To create new inhibitors with the desired selectivity, several experimental methods have been designed to profile the kinase selectivity of small molecules. Experimental approaches are often expensive, laborious, time-consuming, and limited by the available kinases. Researchers have used computational methodologies to address these limitations in the design and development of effective therapeutics. Many computational methods have been developed over the last few decades, either to complement experimental findings or to forecast kinase inhibitor activity and selectivity. The purpose of this review is to provide insight into recent advances in theoretical/computational approaches for the design of new kinase inhibitors with the desired selectivity and optimization of existing inhibitors.
Collapse
|
9
|
Wang F, Song S, Guo B, Li Y, Wang H, Fu S, Wang L, Zhe X, Li H, Li D, Shao R, Pan Z. Increased TCP11 gene expression can inhibit the proliferation, migration and promote apoptosis of cervical cancer cells. BMC Cancer 2023; 23:853. [PMID: 37697257 PMCID: PMC10496356 DOI: 10.1186/s12885-023-11129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/29/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Cervical cancer is a common gynecological malignancy. Gene microarray found that TCP11 gene was highly expressed in cervical cancer. However, the effect of TCP11 gene on the proliferation, apoptosis and migration of cervical cancer cells and its underlying molecular mechanisms are unclear. METHODS GEPIA database, tissue microarray, western blot and qRT-PCR were used to analyze the expression of TCP11 gene in cervical cancer tissues and cells and its relationship with patients' survival rate. The cell cycle and apoptosis were detected by flow cytometry, and the expressions of cell cycle and apoptosis related molecules and EMT-related molecules were detected by Western blot and qRT-PCR. RESULTS The results showed that TCP11 gene was highly expressed in cervical cancer tissues and cells compared with normal cervical tissues and cells, and its expression was positively correlated with patients' survival rate. The results of proliferation and migration assays showed that TCP11 overexpression inhibited the proliferation and migration of HeLa and SiHa cells. The results showed that TCP11 overexpression blocked the cell cycle of HeLa and SiHa cells, decreased the expression of CDK1 and Cyclin B1, and increased the apoptosis and the expression of caspase-3, cleaved-caspase-3 and cleaved-PARP. TCP11 overexpression increased the protein and mRNA expression of EMT-related molecules ZO-1 and E-cadherin. Conversely, TCP11 knockdown promoted the proliferation of HeLa and SiHa cells and the migration of HeLa cells. CONCLUSIONS TCP11 overexpression significantly inhibited the occurrence and development of cervical cancer cells, it may be a potentially beneficial biomarker for cervical cancer.
Collapse
Affiliation(s)
- Fang Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Shuyan Song
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Bingxuan Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yangyang Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Huijuan Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
- Department of Clinical Laboratory, the First Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shaowei Fu
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Luyue Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Xiangyi Zhe
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China.
| | - Hongtao Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Dongmei Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, 4556, Australia
| | - Zemin Pan
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
10
|
Guo Z, Huang T, Liu Y, Liu C. Parathyroid Hormone-Related Protein Promotes the Proliferation of Patient-Derived Glioblastoma Stem Cells via Activating cAMP/PKA Signaling Pathway. Int J Stem Cells 2023; 16:315-325. [PMID: 37385633 PMCID: PMC10465338 DOI: 10.15283/ijsc22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/14/2022] [Accepted: 11/01/2022] [Indexed: 07/01/2023] Open
Abstract
Background and Objectives Glioblastoma (GBM) is an aggressive primary brain tumor characterized by its heterogeneity and high recurrence and lethality rates. Glioblastoma stem cells (GSCs) play a crucial role in therapy resistance and tumor recurrence. Therefore, targeting GSCs is a key objective in developing effective treatments for GBM. The role of Parathyroid hormone-related peptide (PTHrP) in GBM and its impact on GSCs remains unclear. This study aimed to investigate the effect of PTHrP on GSCs and its potential as a therapeutic target for GBM. Methods and Results Using the Cancer Genome Atlas (TCGA) database, we found higher expression of PTHrP in GBM, which correlated inversely with survival. GSCs were established from three human GBM samples obtained after surgical resection. Exposure to recombinant human PTHrP protein (rPTHrP) at different concentrations significantly enhanced GSCs viability. Knockdown of PTHrP using target-specific siRNA (siPTHrP) inhibited tumorsphere formation and reduced the number of BrdU-positive cells. In an orthotopic xenograft mouse model, suppression of PTHrP expression led to significant inhibition of tumor growth. The addition of rPTHrP in the growth medium counteracted the antiproliferative effect of siPTHrP. Further investigation revealed that PTHrP increased cAMP concentration and activated the PKA signaling pathway. Treatment with forskolin, an adenylyl cyclase activator, nullified the antiproliferative effect of siPTHrP. Conclusions Our findings demonstrate that PTHrP promotes the proliferation of patient-derived GSCs by activating the cAMP/PKA signaling pathway. These results uncover a novel role for PTHrP and suggest its potential as a therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Zhenyu Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tingqin Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chongxiao Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
12
|
Wan L, Deng M, Zhang H. SR Splicing Factors Promote Cancer via Multiple Regulatory Mechanisms. Genes (Basel) 2022; 13:1659. [PMID: 36140826 PMCID: PMC9498594 DOI: 10.3390/genes13091659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Substantial emerging evidence supports that dysregulated RNA metabolism is associated with tumor initiation and development. Serine/Arginine-Rich proteins (SR) are a number of ultraconserved and structurally related proteins that contain a characteristic RS domain rich in arginine and serine residues. SR proteins perform a critical role in spliceosome assembling and conformational transformation, contributing to precise alternative RNA splicing. Moreover, SR proteins have been reported to participate in multiple other RNA-processing-related mechanisms than RNA splicing, such as genome stability, RNA export, and translation. The dysregulation of SR proteins has been reported to contribute to tumorigenesis through multiple mechanisms. Here we reviewed the different biological roles of SR proteins and strategies for functional rectification of SR proteins that may serve as potential therapeutic approaches for cancer.
Collapse
Affiliation(s)
- Ledong Wan
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Min Deng
- Department of Pathology, First Peoples Hospital Fuyang, Hangzhou 311400, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
13
|
Del Giudice S, De Luca V, Parizadeh S, Russo D, Luini A, Di Martino R. Endogenous and Exogenous Regulatory Signaling in the Secretory Pathway: Role of Golgi Signaling Molecules in Cancer. Front Cell Dev Biol 2022; 10:833663. [PMID: 35399533 PMCID: PMC8984190 DOI: 10.3389/fcell.2022.833663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
The biosynthetic transport route that constitutes the secretory pathway plays a fundamental role in the cell, providing to the synthesis and transport of around one third of human proteins and most lipids. Signaling molecules within autoregulatory circuits on the intracellular membranes of the secretory pathway regulate these processes, especially at the level of the Golgi complex. Indeed, cancer cells can hijack several of these signaling molecules, and therefore also the underlying regulated processes, to bolster their growth or gain more aggressive phenotypes. Here, we review the most important autoregulatory circuits acting on the Golgi, emphasizing the role of specific signaling molecules in cancer. In fact, we propose to draw awareness to highlight the Golgi-localized regulatory systems as potential targets in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Luini
- *Correspondence: Alberto Luini, ; Rosaria Di Martino,
| | | |
Collapse
|
14
|
Bergantin LB. The Interactions among Hypertension, Cancer, and COVID-19: Perspectives from Ca2+/cAMP Signalling. Curr Cancer Drug Targets 2022; 22:351-360. [PMID: 35168520 DOI: 10.2174/1568009622666220215143805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The hypothesis that hypertension is clinically associated with an enhanced risk for developing cancer has been highlighted. However, the working principles involved in this link are still under intensive discussion. A correlation among inflammation, hypertension, and cancer could accurately describe the clinical link between these diseases. In addition, a dyshomeostasis of Ca2+ has been considered as a topic involved in both cancer and hypertension and inflammation. There is a strong link between Ca2+ signalling, e.g. enhanced Ca2+ signals, and inflammatory outcomes. cAMP also modulates pro- and anti-inflammatory outcomes: pharmaceuticals, which increase intracellular cAMP levels, can decrease the production of proinflammatory mediators and enhance the production of anti-inflammatory outcomes. OBJECTIVE This article has discussed the participation of Ca2+/cAMP signalling in the clinical association among inflammation, hypertension, and an enhanced risk for the development of cancer. In addition, considering coronavirus disease 2019 (COVID-19) is a rapidly evolving field, this article also reviews recent reports about the role of Ca2+ channel blockers for restoring Ca2+ signalling disruption due to COVID-19, including the relationship among COVID-19, cancer, and hypertension. CONCLUSION Understanding the association among these diseases could expand current pharmacotherapy, including that involving Ca2+ channel blockers and pharmaceuticals which rise cAMP levels.
Collapse
Affiliation(s)
- Leandro Bueno Bergantin
- Department of Pharmacology - Universidade Federal de São Paulo - Escola Paulista de Medicina, Laboratory of Autonomic and Cardiovascular Pharmacology - 55 11 5576-4973, Rua Pedro de Toledo, 669 - Vila Clementino, São Paulo - SP, Brazil
| |
Collapse
|
15
|
Vega Hissi EG, De Costa Guardamagna AB, Garro AD, Falcon CR, Anderluh M, Tomašič T, Kikelj D, Yaneff A, Davio CA, Enriz RD, Zurita AR. A Potent N-(piperidin-4-yl)-1H-pyrrole-2-carboxamide Inhibitor of Adenylyl Cyclase of G. lamblia: Biological Evaluation and Molecular Modelling Studies. ChemMedChem 2021; 16:2094-2105. [PMID: 33783977 DOI: 10.1002/cmdc.202100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Indexed: 11/06/2022]
Abstract
In this work, we report a derivative of N-(piperidin-4-yl)-1H-pyrrole-2-carboxamide as a new inhibitor for adenylyl cyclase of Giardia lamblia which was obtained from a study using structural data of the nucleotidyl cyclase 1 (gNC1) of this parasite. For such a study, we developed a model for this specific enzyme by using homology techniques, which is the first model reported for gNC1 of G. lamblia. Our studies show that the new inhibitor has a competitive mechanism of action against this enzyme. 2-Hydroxyestradiol was used as the reference compound for comparative studies. Results in this work are important from two points of view. on the one hand, an experimentally corroborated model for gNC1 of G. lamblia obtained by molecular modelling is presented; on the other hand, the new inhibitor obtained is an undoubtedly excellent starting structure for the development of new metabolic inhibitors for G. lamblia.
Collapse
Affiliation(s)
- Esteban G Vega Hissi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Antonella B De Costa Guardamagna
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Adriana D Garro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Cristian R Falcon
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Marko Anderluh
- Department of Medicinal Chemistry, University of Ljubljana, Faculty of Pharmacy Askerceva, cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Department of Medicinal Chemistry, University of Ljubljana, Faculty of Pharmacy Askerceva, cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- Department of Medicinal Chemistry, University of Ljubljana, Faculty of Pharmacy Askerceva, cesta 7, 1000, Ljubljana, Slovenia
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, AAD, Buenos Aires, Argentina
| | - Carlos A Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, AAD, Buenos Aires, Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| | - Adolfo R Zurita
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700, San Luis, Argentina
| |
Collapse
|
16
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
17
|
Sargazi S, Shahraki S, Shahraki O, Zargari F, Sheervalilou R, Maghsoudi S, Soltani Rad MN, Saravani R. 8-Alkylmercaptocaffeine derivatives: antioxidant, molecular docking, and in-vitro cytotoxicity studies. Bioorg Chem 2021; 111:104900. [PMID: 33894429 DOI: 10.1016/j.bioorg.2021.104900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Due to their unique pharmacological characteristics, methylxanthines are known as therapeutic agents in a fascinating range of medicinal scopes. In this report, we aimed to examine some biological effects of previously synthesized 8-alkylmercaptocaffeine derivatives. Cytotoxic and antioxidative activity of 8-alkylmercaptocaffeine derivatives were measured in malignant A549, MCF7, and C152 cell lines. Assessment of cGMP levels and caspase-3 activity were carried out using a colorimetric competitive ELISA kit. Computational approaches were employed to discover the inhibitory mechanism of synthesized compounds. Among the twelve synthesized derivatives, three compounds (C1, C5, and C7) bearing propyl, heptyl, and 3-methyl-butyl moieties showed higher and more desirable cytotoxic activity against all the studied cell lines (IC50 < 100 µM). Furthermore, C5 synergistically enhanced cisplatin-induced cytotoxicity in MCF-7 cells (CI < 1). Both C5 and C7 significantly increased caspase-3 activity and intracellular cGMP levels at specific time intervals in all studied cell lines (P < 0.05). However, these derivatives did not elevate LDH leakage (P > 0.05) and exhibited no marked ameliorating effects on oxidative damage (P > 0.05). Computational studies showed that H-bond formation between the nitrogen atom in pyrazolo[4,3-D] pyrimidine moiety with Gln817 and creating a hydrophobic cavity result in the stability of the alkyl group in the PDE5A active site. We found that synthesized 8-alkylmercaptocaffeine derivatives induced cell death in different cancer cells through the cGMP pathway. These findings will help us to get a deeper insight into the role of methylxanthines as useful alternatives to conventional cancer therapeutics.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Farshid Zargari
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Chemistry, Faculty of Science, University of Sistan and balouchestan, Zahedan, Iran
| | | | - Saeid Maghsoudi
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Mohammad Navid Soltani Rad
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
18
|
Selective autophagy of AKAP11 activates cAMP/PKA to fuel mitochondrial metabolism and tumor cell growth. Proc Natl Acad Sci U S A 2021; 118:2020215118. [PMID: 33785595 DOI: 10.1073/pnas.2020215118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a catabolic pathway that provides self-nourishment and maintenance of cellular homeostasis. Autophagy is a fundamental cell protection pathway through metabolic recycling of various intracellular cargos and supplying the breakdown products. Here, we report an autophagy function in governing cell protection during cellular response to energy crisis through cell metabolic rewiring. We observe a role of selective type of autophagy in direct activation of cyclic AMP protein kinase A (PKA) and rejuvenation of mitochondrial function. Mechanistically, autophagy selectively degrades the inhibitory subunit RI of PKA holoenzyme through A-kinase-anchoring protein (AKAP) 11. AKAP11 acts as an autophagy receptor that recruits RI to autophagosomes via LC3. Glucose starvation induces AKAP11-dependent degradation of RI, resulting in PKA activation that potentiates PKA-cAMP response element-binding signaling, mitochondria respiration, and ATP production in accordance with mitochondrial elongation. AKAP11 deficiency inhibits PKA activation and impairs cell survival upon glucose starvation. Our results thus expand the view of autophagy cytoprotection mechanism by demonstrating selective autophagy in RI degradation and PKA activation that fuels the mitochondrial metabolism and confers cell resistance to glucose deprivation implicated in tumor growth.
Collapse
|
19
|
Vogel CFA, Lazennec G, Kado SY, Dahlem C, He Y, Castaneda A, Ishihara Y, Vogeley C, Rossi A, Haarmann-Stemmann T, Jugan J, Mori H, Borowsky AD, La Merrill MA, Sweeney C. Targeting the Aryl Hydrocarbon Receptor Signaling Pathway in Breast Cancer Development. Front Immunol 2021; 12:625346. [PMID: 33763068 PMCID: PMC7982668 DOI: 10.3389/fimmu.2021.625346] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) through environmental exposure to known human carcinogens including dioxins can lead to the promotion of breast cancer. While the repressor protein of the AhR (AhRR) blocks the canonical AhR pathway, the function of AhRR in the development of breast cancer is not well-known. In the current study we examined the impact of suppressing AhR activity using its dedicated repressor protein AhRR. AhRR is a putative tumor suppressor and is silenced in several cancer types, including breast, where its loss correlates with shorter patient survival. Using the AhRR transgenic mouse, we demonstrate that AhRR overexpression opposes AhR-driven and inflammation-induced growth of mammary tumors in two different murine models of breast cancer. These include a syngeneic model using E0771 mammary tumor cells as well as the Polyoma Middle T antigen (PyMT) transgenic model. Further AhRR overexpression or knockout of AhR in human breast cancer cells enhanced apoptosis induced by chemotherapeutics and inhibited the growth of mouse mammary tumor cells. This study provides the first in vivo evidence that AhRR suppresses mammary tumor development and suggests that strategies which lead to its functional restoration and expression may have therapeutic benefit.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Antigens, Polyomavirus Transforming/genetics
- Antineoplastic Agents/pharmacology
- Apoptosis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- MCF-7 Cells
- Mice, Inbred C57BL
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Time Factors
- Tumor Burden
- Tumor Cells, Cultured
- Mice
Collapse
Affiliation(s)
- Christoph F. A. Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | | | - Sarah Y. Kado
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Carla Dahlem
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yi He
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Alejandro Castaneda
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
| | - Yasuhiro Ishihara
- Center for Health and the Environment, University of California, Davis, Davis, CA, United States
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Christian Vogeley
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Juliann Jugan
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
| | - Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Alexander D. Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States
| | - Colleen Sweeney
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Proteome and phosphoproteome reveal mechanisms of action of atorvastatin against esophageal squamous cell carcinoma. Aging (Albany NY) 2019; 11:9530-9543. [PMID: 31697643 PMCID: PMC6874460 DOI: 10.18632/aging.102402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 12/24/2022]
Abstract
Statins comprise a class of prescription drugs used for reducing cholesterol. Evidence has also showed that statins could reduce cancer incidence. However, the anti-tumor mechanism of statins has not been fully defined. Here, we found that atorvastatin inhibited proliferation of esophageal squamous cell carcinoma (ESCC) cells. The underlying mechanisms were explored by mass spectrometry. The proteome data revealed that atorvastatin inhibited the cAMP and Rap1 signal pathways, except for Ras signal pathway. Interestingly, phosphoproteome profiles suggested that ERKT185/Y187, CDK1T14, and BRAC1S1189 phosphorylation–mediated Th17 cell differentiation, Gap junction and the Platinum drug resistance pathway were down-regulated after atorvastatin treatment. The phosphorylation levels of ERKT185/Y187, CDK1T14 and BRAC1S1189 were confirmed by western blotting in KYSE150 cells. More importantly, atorvastatin suppresses ESCC tumor growth in PDX models. The molecular changes in tumor tissues were confirmed by immunohistochemistry. In conclusion, deep-proteome and phosphoproteome analysis reveal a comprehensive mechanism that contributes to atorvastatin’s anti-tumor effect.
Collapse
|
21
|
Carozzo A, Yaneff A, Gómez N, Di Siervi N, Sahores A, Diez F, Attorresi AI, Rodríguez-González Á, Monczor F, Fernández N, Abba M, Shayo C, Davio C. Identification of MRP4/ABCC4 as a Target for Reducing the Proliferation of Pancreatic Ductal Adenocarcinoma Cells by Modulating the cAMP Efflux. Mol Pharmacol 2019; 96:13-25. [PMID: 31043460 DOI: 10.1124/mol.118.115444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is one of the most lethal types of tumors with no effective therapy available; is currently the third leading cause of cancer in developed countries; and is predicted to become the second deadliest cancer in the United States by 2030. Due to the marginal benefits of current standard chemotherapy, the identification of new therapeutic targets is greatly required. Considering that cAMP pathway is commonly activated in pancreatic ductal adenocarcinoma (PDAC) and its premalignant lesions, we aim to investigate the multidrug resistance-associated protein 4 (MRP4)-dependent cAMP extrusion process as a cause of increased cell proliferation in human PDAC cell lines. Our results from in silico analysis indicate that MRP4 expression may influence PDAC patient outcome; thus, high MRP4 levels could be indicators of poor survival. In addition, we performed in vitro experiments and identified an association between higher MRP4 expression levels and more undifferentiated and malignant models of PDAC and cAMP extrusion capacity. We studied the antiproliferative effect and the overall cAMP response of three MRP4 inhibitors, probenecid, MK571, and ceefourin-1 in PDAC in vitro models. Moreover, MRP4-specific silencing in PANC-1 cells reduced cell proliferation (P < 0.05), whereas MRP4 overexpression in BxPC-3 cells significantly incremented their growth rate in culture (P < 0.05). MRP4 pharmacological inhibition or silencing abrogated cell proliferation through the activation of the cAMP/Epac/Rap1 signaling pathway. Also, extracellular cAMP reverted the antiproliferative effect of MRP4 blockade. Our data highlight the MRP4-dependent cAMP extrusion process as a key participant in cell proliferation, indicating that MRP4 could be an exploitable therapeutic target for PDAC. SIGNIFICANCE STATEMENT: ABCC4/MRP4 is the main transporter responsible for cAMP efflux. In this work, we show that MRP4 expression may influence PDAC patient outcome and identify an association between higher MRP4 expression levels and more undifferentiated and malignant in vitro models of PDAC. Findings prove the involvement of MRP4 in PDAC cell proliferation through a novel extracellular cAMP mitogenic pathway and further support MRP4 inhibition as a promising therapeutic strategy for PDAC treatment.
Collapse
Affiliation(s)
- Alejandro Carozzo
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Natalia Gómez
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Nicolás Di Siervi
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Ana Sahores
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Federico Diez
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Alejandra I Attorresi
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Ángela Rodríguez-González
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Federico Monczor
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Natalia Fernández
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Martín Abba
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Carina Shayo
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina (A.C., A.Y., N.G., N.D.S., A.S., F.D., F.M., N.F., C.D.); IBioBA MPSP - Instituto de Investigaciones en Biomedicina de Buenos Aires, CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires, Argentina (A.I.A.); Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina (Á.R.-G., C.S.); and Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina (M.A.)
| |
Collapse
|
22
|
Tian T, Yao Y, Yang B, Zhang K, Liu B. Ultrasensitive amplification-free detection of protein kinase based on catalyzed assembly and enumeration of gold nanoparticles. Chem Commun (Camb) 2019; 55:2505-2508. [PMID: 30741307 DOI: 10.1039/c9cc00131j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A single-particle enumeration method based on phosphorylation-directed in situ assembly of gold nanoparticles is developed for the ultrasensitive sensing of cellular protein kinase A activity. In comparison to existing strategies, the proposed new method demonstrates five orders of linear range and improves the detection limit up to 10-to-1000 fold without the involvement of target amplification.
Collapse
Affiliation(s)
- Tongtong Tian
- Department of Chemistry, Shanghai Stomatological Hospital, and State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| | | | | | | | | |
Collapse
|
23
|
Creating a potential diagnostic for prostate cancer risk stratification (InformMDx™) by translating novel scientific discoveries concerning cAMP degrading phosphodiesterase-4D7 (PDE4D7). Clin Sci (Lond) 2019; 133:269-286. [DOI: 10.1042/cs20180519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/19/2018] [Accepted: 01/01/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Increased PSA-based screening for prostate cancer has resulted in a growing number of diagnosed cases. However, around half of these are ‘indolent’, neither metastasizing nor leading to disease specific death. Treating non-progressing tumours with invasive therapies is currently regarded as unnecessary over-treatment with patients being considered for conservative regimens, such as active surveillance (AS). However, this raises both compliance and protocol issues. Great clinical benefit could accrue from a biomarker able to predict long-term patient outcome accurately at the time of biopsy and initial diagnosis. Here we delineate the translation of a laboratory discovery through to the precision development of a clinically validated, novel prognostic biomarker assay (InformMDx™). This centres on determining transcript levels for phosphodiesterase-4D7 (PDE4D7), an enzyme that breaks down cyclic AMP, a signalling molecule intimately connected with proliferation and androgen receptor function. Quantifiable detection of PDE4D7 mRNA transcripts informs on the longitudinal outcome of post-surgical disease progression. The risk of post-surgical progression increases steeply for patients with very low ‘PDE4D7 scores’, while risk decreases markedly for those patients with very high ‘PDE4D7 scores’. Combining clinical risk variables, such as the Gleason or CAPRA (Cancer of the Prostate Risk Assessment) score, with the ‘PDE4D7 score’ further enhances the prognostic power of this personalized, precision assessment. Thus the ‘PDE4D7 score’ has the potential to define, more effectively, appropriate medical intervention/AS strategies for individual prostate cancer patients.
Collapse
|
24
|
Koussémou M, Lorenz K, Klotz KN. The A2B adenosine receptor in MDA-MB-231 breast cancer cells diminishes ERK1/2 phosphorylation by activation of MAPK-phosphatase-1. PLoS One 2018; 13:e0202914. [PMID: 30157211 PMCID: PMC6114864 DOI: 10.1371/journal.pone.0202914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/11/2018] [Indexed: 02/04/2023] Open
Abstract
It was previously shown that the estrogen-receptor negative breast cancer cell line MBA-MD-231 expresses high levels of A2B adenosine receptors as the sole adenosine receptor subtype. These receptors couple to both, stimulation of adenylyl cyclase and a Ca2+ signal. In order to establish a potential role of A2B adenosine receptors in tumor growth and development MAPK signaling was investigated in these breast cancer cells. Although it is known that A2B adenosine receptors may stimulate MAPK it was found that in MBA-MD-231 cells ERK1/2 phosphorylation is reduced upon agonist-stimulation of A2B adenosine receptors. This reduction is also triggered by forskolin, but abolished by the PKA inhibitor H89, suggesting an important role for the cAMP-PKA pathway. Likewise, a role for intracellular Ca2+ was established as the Ca2+ chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N’,N’-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM) abolished the reduction of ERK1/2 phosphorylation triggered by A2B stimulation. It was shown that various pathways downstream from A2B adenosine receptors resulted in a stimulation of MAPK phosphatase-1 (MKP-1) which dephosphorylates phospho ERK1/2, and thus plays a critical role in the regulation of the phosphorylation state of ERK1/2. The reduction of ERK1/2 phosphorylation mediated by A2B adenosine receptors might provide an interesting approach for adjuvant treatment leading to reduced growth of certain tumors expressing the A2B subtype.
Collapse
Affiliation(s)
- Marthe Koussémou
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Würzburg, Germany
| | - Kristina Lorenz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften–ISAS–e.V., Bunsen-Dortmund, Germany, and West German Heart and Vascular Center Essen, Essen, Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
25
|
Dai C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0525. [PMID: 29203710 DOI: 10.1098/rstb.2016.0525] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
The heat-shock, or HSF1-mediated proteotoxic stress, response (HSR/HPSR) is characterized by induction of heat-shock proteins (HSPs). As molecular chaperones, HSPs facilitate the folding, assembly, transportation and degradation of other proteins. In mammals, heat shock factor 1 (HSF1) is the master regulator of this ancient transcriptional programme. Upon proteotoxic insults, the HSR/HPSR is essential to proteome homeostasis, or proteostasis, thereby resisting stress and antagonizing protein misfolding diseases and ageing. Contrasting with these benefits, an unexpected pro-oncogenic role of the HSR/HPSR is unfolding. Whereas HSF1 remains latent in primary cells without stress, it becomes constitutively activated within malignant cells, rendering them addicted to HSF1 for their growth and survival. Highlighting the HSR/HPSR as an integral component of the oncogenic network, several key pathways governing HSF1 activation by environmental stressors are causally implicated in malignancy. Importantly, HSF1 impacts the cancer proteome systemically. By suppressing tumour-suppressive amyloidogenesis, HSF1 preserves cancer proteostasis to support the malignant state, both providing insight into how HSF1 enables tumorigenesis and suggesting disruption of cancer proteostasis as a therapeutic strategy. This review provides an overview of the role of HSF1 in oncogenesis, mechanisms underlying its constitutive activation within cancer cells and its pro-oncogenic action, as well as potential HSF1-targeting strategies.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Chengkai Dai
- Mouse Cancer Genetics Program, Center for Cancer Research NCI-Frederick, Building 560, Room 32-31b, 1050 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|
26
|
Mentoor I, Engelbrecht AM, van Jaarsveld PJ, Nell T. Chemoresistance: Intricate Interplay Between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Front Endocrinol (Lausanne) 2018; 9:758. [PMID: 30619088 PMCID: PMC6297254 DOI: 10.3389/fendo.2018.00758] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Excess adipose tissue is a hallmark of an overweight and/or obese state as well as a primary risk factor for breast cancer development and progression. In an overweight/obese state adipose tissue becomes dysfunctional due to rapid hypertrophy, hyperplasia, and immune cell infiltration which is associated with sustained low-grade inflammation originating from dysfunctional adipokine synthesis. Evidence also supports the role of excess adipose tissue (overweight/obesity) as a casual factor for the development of chemotherapeutic drug resistance. Obesity-mediated effects/modifications may contribute to chemotherapeutic drug resistance by altering drug pharmacokinetics, inducing chronic inflammation, as well as altering tumor-associated adipocyte adipokine secretion. Adipocytes in the breast tumor microenvironment enhance breast tumor cell survival and decrease the efficacy of chemotherapeutic agents, resulting in chemotherapeutic resistance. A well-know chemotherapeutic agent, doxorubicin, has shown to negatively impact adipose tissue homeostasis, affecting adipose tissue/adipocyte functionality and storage. Here, it is implied that doxorubicin disrupts adipose tissue homeostasis affecting the functionality of adipose tissue/adipocytes. Although evidence on the effects of doxorubicin on adipose tissue/adipocytes under obesogenic conditions are lacking, this narrative review explores the potential role of obesity in breast cancer progression and treatment resistance with inflammation as an underlying mechanism.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J. van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Theo Nell
| |
Collapse
|
27
|
Reggi E, Diviani D. The role of A-kinase anchoring proteins in cancer development. Cell Signal 2017; 40:143-155. [DOI: 10.1016/j.cellsig.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
28
|
Overexpression of G-protein-coupled receptors 65 in glioblastoma predicts poor patient prognosis. Clin Neurol Neurosurg 2017; 164:132-137. [PMID: 29223793 DOI: 10.1016/j.clineuro.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE G-protein-coupled receptors 65 (GPR65), identified as an acid-sensing receptor, is overexpressed in several malignancies and promote tumor development. Our aim was to investigate the expression and prognostic value of GPR65 in glioblastoma. MATERIALS AND METHODS We determined the expression of GPR65 protein using immunohistochemistry in tissue microarrays containing 11 Grade I, 107 Grade II, 47 Grade III, and 102 Grade IV gliomas and 16 normal brains. Then we evaluated its association with pathological grades, prognosis, and recurrence. The Cancer Genome Atlas (TCGA) group (N=528) was further employed to examine transcriptional level of GPR65 in glioblastoma and the correlation between GPR65 expression and clinical outcome. RESULTS In our cohort, GPR65 expression was positively related to glioma pathological grade (p<0.01) and elevated in glioblastoma (p<0.01). High expression of GPR65 was associated with significantly short overall survival (OS) (p=0.013) and progression-free survival (PFS) (p=0.029), and could be identified as an independent risk factor for OS of glioblastoma patients (Hazard Ratio [HR]=1.596, p=0.037). As an aiding evidence, increased GPR65 mRNA expression was also found in TCGA glioblastoma group (p<0.001) and its high level predicted a poor clinical outcome (OS, p=0.003; PFS, p=0.001). CONCLUSION Our findings suggest that GPR65 is overexpressed in glioblastoma and its high expression predicts unfavorable clinical outcome for patients. Targeting GPR65 may serve as a potential therapy for treating glioblastoma.
Collapse
|
29
|
Luo W, Xu C, Ayello J, Dela Cruz F, Rosenblum JM, Lessnick SL, Cairo MS. Protein phosphatase 1 regulatory subunit 1A in ewing sarcoma tumorigenesis and metastasis. Oncogene 2017; 37:798-809. [PMID: 29059150 DOI: 10.1038/onc.2017.378] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023]
Abstract
Protein phosphatase inhibitors are often considered as tumor promoters. Protein phosphatase 1 regulatory subunit 1A (PPP1R1A) is a potent protein phosphatase 1 (PP1) inhibitor; however, its role in tumor development is largely undefined. Here we characterize, for the first time, the functions of PPP1R1A in Ewing sarcoma (ES) pathogenesis. We found that PPP1R1A is one of the top ranked target genes of EWS/FLI, the master regulator of ES, and is upregulated by EWS/FLI via a GGAA microsatellite enhancer element. Depletion of PPP1R1A resulted in a significant decrease in oncogenic transformation and cell migration in vitro as well as xenograft tumor growth and metastasis in an orthotopic mouse model. RNA-sequencing and functional annotation analyses revealed that PPP1R1A regulates genes associated with various cellular functions including cell junction, adhesion and neurogenesis. Interestingly, we found a significant overlap of PPP1R1A-regulated gene set with that of ZEB2 and EWS, which regulates metastasis and neuronal differentiation in ES, respectively. Further studies for characterization of the molecular mechanisms revealed that activation of PPP1R1A by PKA phosphorylation at Thr35, and subsequent PP1 binding and inhibition, was required for PPP1R1A-mediated tumorigenesis and metastasis, likely by increasing the phosphorylation levels of various PP1 substrates. Furthermore, we found that a PKA inhibitor impaired ES cell proliferation, tumor growth and metastasis, which was rescued by the constitutively active PPP1R1A. Together, these results offered new insights into the role and mechanism of PPP1R1A in tumor development and identified an important kinase and phosphatase pathway, PKA/PPP1R1A/PP1, in ES pathogenesis. Our findings strongly suggest a potential therapeutic value of inhibition of the PKA/PPP1R1A/PP1 pathway in the treatment of primary and metastatic ES.
Collapse
Affiliation(s)
- W Luo
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA.,Departments of Pathology, New York Medical College, Valhalla, NY, USA
| | - C Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - J Ayello
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - F Dela Cruz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J M Rosenblum
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - S L Lessnick
- Nationwide Children's Hospital, Columbus, OH, USA
| | - M S Cairo
- Departments of Pediatrics, New York Medical College, Valhalla, NY, USA.,Departments of Pathology, New York Medical College, Valhalla, NY, USA.,Departments of Medicine, New York Medical College, Valhalla, NY, USA.,Departments of Immunology and Microbiology, New York Medical College, Valhalla, NY, USA.,Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
30
|
Grassi ES, Dicitore A, Negri I, Borghi MO, Vitale G, Persani L. 8-Cl-cAMP and PKA I-selective cAMP analogs effectively inhibit undifferentiated thyroid cancer cell growth. Endocrine 2017; 56:388-398. [PMID: 27460006 DOI: 10.1007/s12020-016-1057-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022]
Abstract
The main purpose of our work was to evaluate the effects of different cyclic adenosine monophosphate analogs on thyroid cancer-derived cell lines. In particular we studied 8-chloroadenosine-3',5'-cyclic monophosphate, the most powerful cyclic adenosine monophosphate analog, and the protein kinase A I-selective combination of 8-hexylaminoadenosine-3',5'cyclic monophosphate and 8-piperidinoadenosine-3',5'-cyclic monophosphate. The cyclic adenosine monophosphate/protein kinase A pathway plays a fundamental role in the regulation of thyroid cells growth. Site-selective cyclic adenosine monophosphate analogs are a class of cyclic adenosine monophosphate-derivate molecules that has been synthesized to modulate protein kinase A activity. Although the cyclic adenosine monophosphate/protein kinase A pathway plays a fundamental role in the regulation of thyroid cells proliferation, there are currently no studies exploring the role of cyclic adenosine monophosphate analogs in thyroid cancer. We evaluated the effects on cell proliferation, apoptosis activation and alterations of different intracellular pathways using 3-(4,5-dimetylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytofluorimetry, western blotting, and kinase inhibitors. Our results show that both compounds have antiproliferative potential. Both treatments were able to modify protein kinase A RI/RII ratio, thus negatively influencing cancer cells growth. Moreover, the two treatments differentially modulated various signaling pathways that regulate cell proliferation and apoptosis. Both treatments demonstrated interesting characteristics that prompt further studies aiming to understand the intimate interaction between different intracellular pathways and possibly develop novel anticancer therapies for undifferentiated thyroid cancer.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Irene Negri
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy.
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy.
| |
Collapse
|
31
|
Akakpo W, Musicki B, Burnett AL. cAMP-dependent regulation of RhoA/Rho-kinase attenuates detrusor overactivity in a novel mouse experimental model. BJU Int 2017; 120:143-151. [PMID: 28303627 DOI: 10.1111/bju.13847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate detrusor function and cAMP activation as a possible target for detrusor overactivity in an experimental model lacking a key denitrosylation enzyme, S-nitrosoglutathione reductase (GSNOR). MATERIALS AND METHODS GSNOR-deficient (GSNOR-/- ) (n = 30) and wild-type (WT) mice (n = 26) were treated for 7 days with the cAMP activator, colforsin (1 mg/kg), or vehicle intraperitoneally. Cystometric studies or molecular analyses of bladder specimens were performed. Bladder function indices and expression levels of proteins that regulate detrusor relaxation (nitric oxide synthase pathway) or contraction (RhoA/Rho-kinase pathway) and oxidative stress were assessed. For statistical analysis the Student's t-test and one-way analysis of variance were used. RESULTS GSNOR-/- mice had significantly higher (P < 0.05) voiding and non-voiding contraction frequencies compared to WT mice (Cohen's effect size values d = 1.82 and 2.52, respectively). Colforsin normalised these abnormalities (Cohen's effect size values d = 1.85 and 1.28, respectively). Western blot analyses showed an up-regulation of the RhoA/Rho-kinase pathway reflected by significantly higher (P < 0.05) phosphorylated myosin phosphatase target subunit 1 (P-MYPT-1) expression in GSNOR-/- mouse bladders, which was reversed by colforsin treatment. There was a higher level (P < 0.05) of gp91phox expression in the bladders of GSNOR-/- mice without significant change after colforsin treatment. Neuronal and endothelial nitric oxide synthase phosphorylation on Ser-1412 and Ser-1177, respectively, did not differ between GSNOR-/- and WT mouse bladders irrespective of colforsin treatment. CONCLUSION Impaired denitrosylation is associated with detrusor overactivity, which is linked with upregulated RhoA/Rho-kinase signalling. Colforsin reverses physiological and molecular abnormalities. This study describes a novel model of detrusor overactivity and suggests a possible basis for its treatment.
Collapse
Affiliation(s)
- William Akakpo
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Wang W, Li Y, Zhu JY, Fang D, Ding HF, Dong Z, Jing Q, Su SB, Huang S. Triple negative breast cancer development can be selectively suppressed by sustaining an elevated level of cellular cyclic AMP through simultaneously blocking its efflux and decomposition. Oncotarget 2016; 7:87232-87245. [PMID: 27901486 PMCID: PMC5349984 DOI: 10.18632/oncotarget.13601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/07/2016] [Indexed: 01/13/2023] Open
Abstract
Triple negative breast cancer (TNBC) has the highest mortality among all breast cancer types and lack of targeted therapy is a key factor contributing to its high mortality rate. In this study, we show that 8-bromo-cAMP, a cyclic adenosine monophosphate (cAMP) analog at high concentration (> 1 mM) selectively suppresses TNBC cell growth. However, commonly-used cAMP-elevating agents such as adenylyl cyclase activator forskolin and pan phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) are ineffective. Inability of cAMP elevating agents to inhibit TNBC cell growth is due to rapid diminution of cellular cAMP through efflux and decomposition. By performing bioinformatics analyses with publically available gene expression datasets from breast cancer patients/established breast cancer cell lines and further validating using specific inhibitors/siRNAs, we reveal that multidrug resistance-associated protein 1/4 (MRP1/4) mediate rapid cAMP efflux while members PDE4 subfamily facilitate cAMP decomposition. When cAMP clearance is prevented by specific inhibitors, forskolin blocks TNBC's in vitro cell growth by arresting cell cycle at G1/S phase. Importantly, cocktail of forskolin, MRP inhibitor probenecid and PDE4 inhibitor rolipram suppresses TNBC in vivo tumor development. This study suggests that a TNBC-targeted therapeutic strategy can be developed by sustaining an elevated level of cAMP through simultaneously blocking its efflux and decomposition.
Collapse
Affiliation(s)
- Wei Wang
- 1 Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- 2 Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jessica Y. Zhu
- 2 Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Dongdong Fang
- 1 Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han-Fei Ding
- 3 Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Zheng Dong
- 4 Department of Anatomy and Cell Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Qing Jing
- 5 Changhai Hospital, Shanghai, China
| | - Shi-Bing Su
- 1 Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- 6 E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Huang
- 1 Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- 2 Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- 6 E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Zhou Y, Yin H, Li X, Li Z, Ai S, Lin H. Electrochemical biosensor for protein kinase A activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and β-galactosidase. Biosens Bioelectron 2016; 86:508-515. [DOI: 10.1016/j.bios.2016.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 12/19/2022]
|
34
|
A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron 2016; 85:220-225. [DOI: 10.1016/j.bios.2016.05.025] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
|
35
|
An expression based REST signature predicts patient survival and therapeutic response for glioblastoma multiforme. Sci Rep 2016; 6:34556. [PMID: 27698411 PMCID: PMC5048293 DOI: 10.1038/srep34556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Proper regulation of neuronal gene expression is crucial for the development and differentiation of the central nervous system. The transcriptional repressor REST (repressor element-1 silencing transcription factor) is a key regulator in differentiation of pluripotent stem cells to neuronal progenitors and mature neurons. Dysregulated REST activity has been implicated in various diseases, among which the most deadly is glioblastoma multiforme (GBM). Here we have developed an expression-based REST signature (EXPREST), a device providing quantitative measurements of REST activity for GBM tumors. EXPREST robustly quantifies REST activity (REST score) using gene expression profiles in absence of clinic-pathologic assessments of REST. Molecular characterization of REST activity identified global alterations at the DNA, RNA, protein and microRNA levels, suggesting a widespread role of REST in GBM tumorigenesis. Although originally aimed to capture REST activity, REST score was found to be a prognostic factor for overall survival. Further, cell lines with enhanced REST activity was found to be more sensitive to IGF1R, VEGFR and ABL inhibitors. In contrast, cell lines with low REST score were more sensitive to cytotoxic drugs including Mitomycin, Camptothecin and Cisplatin. Together, our work suggests that therapeutic targeting of REST provides a promising opportunity for GBM treatment.
Collapse
|
36
|
Ihara T, Hosokawa Y, Kumazawa K, Ishikawa K, Fujimoto J, Yamamoto M, Muramkami T, Goshima N, Ito E, Watanabe S, Semba K. An in vivo screening system to identify tumorigenic genes. Oncogene 2016; 36:2023-2029. [PMID: 27694896 DOI: 10.1038/onc.2016.351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 12/26/2022]
Abstract
Screening for oncogenes has mostly been performed by in vitro transformation assays. However, some oncogenes might not exhibit their transforming activities in vitro unless putative essential factors from in vivo microenvironments are adequately supplied. Here, we have developed an in vivo screening system that evaluates the tumorigenicity of target genes. This system uses a retroviral high-efficiency gene transfer technique, a large collection of human cDNA clones corresponding to ~70% of human genes and a luciferase-expressing immortalized mouse mammary epithelial cell line (NMuMG-luc). From 845 genes that were highly expressed in human breast cancer cell lines, we focused on 205 genes encoding membrane proteins and/or kinases as that had the greater possibility of being oncogenes or drug targets. The 205 genes were divided into five subgroups, each containing 34-43 genes, and then introduced them into NMuMG-luc cells. These cells were subcutaneously injected into nude mice and monitored for tumor development by in vivo imaging. Tumors were observed in three subgroups. Using DNA microarray analyses and individual tumorigenic assays, we found that three genes, ADORA2B, PRKACB and LPAR3, were tumorigenic. ADORA2B and LPAR3 encode G-protein-coupled receptors and PRKACB encodes a protein kinase A catalytic subunit. Cells overexpressing ADORA2B, LPAR3 or PRKACB did not show transforming phenotypes in vitro, suggesting that transformation by these genes requires in vivo microenvironments. In addition, several clinical data sets, including one for breast cancer, showed that the expression of these genes correlated with lower overall survival rate.
Collapse
Affiliation(s)
- T Ihara
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Y Hosokawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - K Kumazawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - K Ishikawa
- Japan Biological Informatics Consortium (JBiC), Tokyo, Japan
| | - J Fujimoto
- Japan Biological Informatics Consortium (JBiC), Tokyo, Japan
| | - M Yamamoto
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - T Muramkami
- Laboratory of Tumor Biology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - N Goshima
- Quantitative Proteomics Team, Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan.,Division of Transcriptome Analysis, Fukushima, Japan
| | - E Ito
- Division of Gene Expression Analysis, Fukushima, Japan
| | - S Watanabe
- Division of Gene Expression Analysis, Fukushima, Japan
| | - K Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Division of gene function analysis, Translational Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
37
|
Barquilla A, Lamberto I, Noberini R, Heynen-Genel S, Brill LM, Pasquale EB. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol Biol Cell 2016; 27:2757-70. [PMID: 27385333 PMCID: PMC5007095 DOI: 10.1091/mbc.e16-01-0048] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
The EphA2 receptor plays multiple roles in cancer through two distinct signaling mechanisms. In a novel cross-talk, the β2-adrenoceptor/cAMP/PKA axis can promote EphA2 pro-oncogenic, ligand-independent signaling, blocking cell repulsion induced by ligand-dependent signaling. PKA emerges as a third kinase, besides AKT and RSK, that can regulate EphA2. The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 “canonical” signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 “noncanonical” signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1–induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein–coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Ilaria Lamberto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Roberta Noberini
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Susanne Heynen-Genel
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Laurence M Brill
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 Pathology Department, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
38
|
Perez DR, Smagley Y, Garcia M, Carter MB, Evangelisti A, Matlawska-Wasowska K, Winter SS, Sklar LA, Chigaev A. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia. Oncotarget 2016; 7:33960-82. [PMID: 27129155 PMCID: PMC5085131 DOI: 10.18632/oncotarget.8986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 12/24/2022] Open
Abstract
Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.
Collapse
Affiliation(s)
- Dominique R. Perez
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yelena Smagley
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Matthew Garcia
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Mark B. Carter
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
| | - Annette Evangelisti
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ksenia Matlawska-Wasowska
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Stuart S. Winter
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Larry A. Sklar
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Alexandre Chigaev
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM, USA
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
39
|
Beekmann K, de Haan LHJ, Actis-Goretta L, van Bladeren PJ, Rietjens IMCM. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1256-1263. [PMID: 26808477 DOI: 10.1021/acs.jafc.5b05456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the phosphorylation activity of recombinant protein kinase A (PKA) and of cell lysate from the hepatocellular carcinoma cell line HepG2 on 141 putative serine/threonine phosphorylation sites derived from human proteins was assessed. Glucuronidation reduced the inhibitory potency of kaempferol on the phosphorylation activity of PKA and HepG2 lysate on average about 16 and 3.5 times, respectively, but did not appear to affect the target selectivity for kinases present in the lysate. The data demonstrate that, upon glucuronidation, kaempferol retains part of its intrinsic kinase inhibition potential, which implies that K3G does not necessarily need to be deconjugated to the aglycone for a potential inhibitory effect on protein kinases.
Collapse
Affiliation(s)
- Karsten Beekmann
- Division of Toxicology, Wageningen University , Postbus 8000, 6700EA, Wageningen, The Netherlands
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University , Postbus 8000, 6700EA, Wageningen, The Netherlands
| | - Lucas Actis-Goretta
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Case Postale 44, 1000 Lausanne 26, Switzerland
| | - Peter J van Bladeren
- Division of Toxicology, Wageningen University , Postbus 8000, 6700EA, Wageningen, The Netherlands
- Nestlé Research Center, Nestec Ltd., Vers-chez-les-Blanc, Case Postale 44, 1000 Lausanne 26, Switzerland
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University , Postbus 8000, 6700EA, Wageningen, The Netherlands
| |
Collapse
|
40
|
Dicitore A, Grassi ES, Caraglia M, Borghi MO, Gaudenzi G, Hofland LJ, Persani L, Vitale G. The cAMP analogs have potent anti-proliferative effects on medullary thyroid cancer cell lines. Endocrine 2016; 51:101-12. [PMID: 25863490 DOI: 10.1007/s12020-015-0597-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/01/2015] [Indexed: 11/24/2022]
Abstract
The oncogenic activation of the rearranged during transfection (RET) proto-oncogene has a main role in the pathogenesis of medullary thyroid cancer (MTC). Several lines of evidence suggest that RET function could be influenced by cyclic AMP (cAMP)-dependent protein kinase A (PKA) activity. We evaluated the in vitro anti-tumor activity of 8-chloroadenosine-3',5'-cyclic monophosphate (8-Cl-cAMP) and PKA type I-selective cAMP analogs [equimolar combination of the 8-piperidinoadenosine-3',5'-cyclic monophosphate (8-PIP-cAMP) and 8-hexylaminoadenosine-3',5'-cyclic monophosphate (8-HA-cAMP) in MTC cell lines (TT and MZ-CRC-1)]. 8-Cl-cAMP and the PKA I-selective cAMP analogs showed a potent anti-proliferative effect in both cell lines. In detail, 8-Cl-cAMP blocked significantly the transition of TT cell population from G2/M to G0/G1 phase and from G0/G1 to S phase and of MZ-CRC-1 cells from G0/G1 to S phase. Moreover, 8-Cl-cAMP induced apoptosis in both cell lines, as demonstrated by FACS analysis for annexin V-FITC/propidium iodide, the activation of caspase-3 and PARP cleavage. On the other hand, the only effect induced by PKA I-selective cAMP analogs was a delay in G0/G1-S and S-G2/M progression in TT and MZ-CRC-1 cells, respectively. In conclusion, these data demonstrate that cAMP analogs, particularly 8-Cl-cAMP, significantly suppress in vitro MTC proliferation and provide rationale for a potential clinical use of cAMP analogs in the treatment of advanced MTC.
Collapse
Affiliation(s)
- Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy.
| | - Elisa Stellaria Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Maria Orietta Borghi
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Leo J Hofland
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Luca Persani
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Giovanni Vitale
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy.
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
| |
Collapse
|
41
|
Hussain M, Tang F, Liu J, Zhang J, Javeed A. Dichotomous role of protein kinase A type I (PKAI) in the tumor microenvironment: a potential target for 'two-in-one' cancer chemoimmunotherapeutics. Cancer Lett 2015; 369:9-19. [PMID: 26276720 DOI: 10.1016/j.canlet.2015.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
An emerging trend in cancer chemoimmunotherapeutics is to develop 'two-in-one' therapies, which directly inhibit tumor growth and progression, as well as enhance anti-tumor immune surveillance. Protein kinase A (PKA) is a cAMP-dependent protein kinase that mediates signal transduction of G-protein coupled receptors (GPCRs). The regulatory subunit of PKA exists in two isoforms, RI and RII, which distinguish the PKA isozymes, PKA type I (PKAI) and PKA type II (PKAII). The differential expression of both PKA isozymes has long been linked to growth regulation and differentiation. RI/PKAI is particularly implicated in cellular proliferation and neoplastic transformation. Emerging experimental and pre-clinical data also indicate that RI/PKAI plays a key role in tumor-induced immune suppression. More briefly, RI/PKAI possesses a dichotomous role in the tumor microenvironment: not only contributes to tumor growth and progression, but also takes part in tumor-induced suppression of the innate and adaptive arms of anti-tumor immunosurveillance. This review specifically discusses this dichotomous role of RI/PKAI with respect to 'two-in-one' chemoimmunotherapeutic manipulation. The reviewed experimental and pre-clinical data provide the proof of concept validation that RI/PKAI may be regarded as an attractive target for a new, single-targeted, 'two hit' chemoimmunotherapeutic approach against cancer.
Collapse
Affiliation(s)
- Muzammal Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | - Fei Tang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | - Jiancun Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| | - Aqeel Javeed
- Immunopharmacology Laboratory, Department of Pharmacology & Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
42
|
Cai Y, Wei YH. Distinct regulation of Maf1 for lifespan extension by Protein kinase A and Sch9. Aging (Albany NY) 2015; 7:133-43. [PMID: 25720796 PMCID: PMC4359695 DOI: 10.18632/aging.100727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Protein kinase A (PKA) and Sch9 regulates cell growth as well as lifespan in Saccharomyces cerevisiae. Maf1 is a RNA polymerase III (PolIII) inhibitor that tailors 5S rRNA and tRNA production in response to various environmental cues. Both PKA and Sch9 have been shown to phosphorylate Maf1 in vitro at similar amino acids, suggesting a redundancy in Maf1 regulation. However, here we find that activating PKA by bcy1 deletion cannot replace Sch9 for Maf1 phosphorylation and cytoplasmic retention; instead, such modulation lowers Maf1 protein levels. Consistently, loss of MAF1 or constitutive PKA activity reverses the stress resistance and the extended lifespan of sch9Δ cells. Overexpression of MAF1 partially rescues the extended lifespan of sch9Δ in bcy1Δsch9Δ mutant, suggesting that PKA suppresses sch9Δ longevity at least partly through Maf1 abundance. Constitutive PKA activity also reverses the reduced tRNA synthesis and slow growth of sch9Δ, which, however, is not attributed to Maf1 protein abundance. Therefore, regulation of lifespan and growth can be decoupled. Together, we reveal that lifespan regulation by PKA and Sch9 are mediated by Maf1 through distinct mechanisms.
Collapse
Affiliation(s)
- Ying Cai
- No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 201900, China
| | - Yue-Hua Wei
- No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 201900, China
| |
Collapse
|
43
|
Wang LJ, Yang Y, Zhang CY. Phosphorylation-Directed Assembly of a Single Quantum Dot Based Nanosensor for Protein Kinase Assay. Anal Chem 2015; 87:4696-703. [DOI: 10.1021/ac504358q] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Li-juan Wang
- Single-Molecule
Detection and Imaging
Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Yong Yang
- Single-Molecule
Detection and Imaging
Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| | - Chun-yang Zhang
- Single-Molecule
Detection and Imaging
Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China
| |
Collapse
|
44
|
Seifert R, Schneider EH, Bähre H. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther 2014; 148:154-84. [PMID: 25527911 DOI: 10.1016/j.pharmthera.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
This review summarizes our knowledge on the non-canonical cyclic nucleotides cCMP, cUMP, cIMP, cXMP and cTMP. We place the field into a historic context and discuss unresolved questions and future directions of research. We discuss the implications of non-canonical cyclic nucleotides for experimental and clinical pharmacology, focusing on bacterial infections, cardiovascular and neuropsychiatric disorders and reproduction medicine. The canonical cyclic purine nucleotides cAMP and cGMP fulfill the criteria of second messengers. (i) cAMP and cGMP are synthesized by specific generators, i.e. adenylyl and guanylyl cyclases, respectively. (ii) cAMP and cGMP activate specific effector proteins, e.g. protein kinases. (iii) cAMP and cGMP exert specific biological effects. (iv) The biological effects of cAMP and cGMP are terminated by phosphodiesterases and export. The effects of cAMP and cGMP are mimicked by (v) membrane-permeable cyclic nucleotide analogs and (vi) bacterial toxins. For decades, the existence and relevance of cCMP and cUMP have been controversial. Modern mass-spectrometric methods have unequivocally demonstrated the existence of cCMP and cUMP in mammalian cells. For both, cCMP and cUMP, the criteria for second messenger molecules are now fulfilled as well. There are specific patterns by which nucleotidyl cyclases generate cNMPs and how they are degraded and exported, resulting in unique cNMP signatures in biological systems. cNMP signaling systems, specifically at the level of soluble guanylyl cyclase, soluble adenylyl cyclase and ExoY from Pseudomonas aeruginosa are more promiscuous than previously appreciated. cUMP and cCMP are evolutionary new molecules, probably reflecting an adaption to signaling requirements in higher organisms.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| | - Heike Bähre
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
45
|
Formosa R, Vassallo J. cAMP signalling in the normal and tumorigenic pituitary gland. Mol Cell Endocrinol 2014; 392:37-50. [PMID: 24845420 DOI: 10.1016/j.mce.2014.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 01/06/2023]
Abstract
cAMP signalling plays a key role in the normal physiology of the pituitary gland, regulating cellular growth and proliferation, hormone production and release. Deregulation of the cAMP signalling pathway has been reported to be a common occurrence in pituitary tumorigenesis. Several mechanisms have been implicated including somatic mutations, gene-gene interactions and gene-environmental interactions. Somatic mutations in G-proteins and protein kinases directly alter cAMP signalling, while malfunctioning of other signalling pathways such as the Raf/MAPK/ERK, PI3K/Akt/mTOR and Wnt pathways which normally interact with the cAMP pathway may mediate indirect effects on cAMP and varying downstream effectors. The aryl hydrocarbon receptor signalling pathway has been implicated in pituitary tumorigenesis and we review its role in general and specifically in relation to cAMP de-regulation.
Collapse
Affiliation(s)
- R Formosa
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Level 0, Block A, Mater Dei Hospital, Msida MSD2080, Malta.
| | - J Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Level 0, Block A, Mater Dei Hospital, Msida MSD2080, Malta.
| |
Collapse
|
46
|
Kidani T, Nakamura A, Kamei S, Norimatsu Y, Miura H, Masuno H. Overexpression of cytoplasmic β-catenin inhibits the metastasis of the murine osteosarcoma cell line LM8. Cancer Cell Int 2014; 14:31. [PMID: 24690154 PMCID: PMC3977682 DOI: 10.1186/1475-2867-14-31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/26/2014] [Indexed: 02/07/2023] Open
Abstract
Background Previously, we found that treatment of LM8 murine osteosarcoma cells with genistein, an isoflavone found in soy, increased the cellular level of β-catenin and decreased its invasive and motile potential. The purpose of this study is to investigate whether the expression of β-catenin in LM8 cells is associated with metastatic potential in nude mice. To this end, we used untreated and genistein-treated LM8 cells. Methods LM8 cells were treated for 3 days with or without 50 μM genistein and harvested by trypsinization. Untreated (the control group) and genistein-treated (the genistein group) cells were subcutaneously inoculated into the backs of male nude mice. After 25 days of inoculation, the tumors, lungs, and livers were excised, fixed in 10% formalin, and embedded in paraffin. The sections of formalin-fixed, paraffin-embedded lungs and livers were stained with hematoxylin-eosin (H&E) to confirm the absence or presence of metastatic tumors. The expression of β-catenin within the primary tumor was immunohistochemically examined. Results All mice in the control group (n = 8) exhibited large primary tumors, while in the genistein group (n = 8), one mouse showed no tumor formation and the remaining seven mice exhibited smaller primary tumors compared with the control group. The tumor mass of the genistein group was 23% of that of the control group. In the control group, multiple metastatic tumors were found in the lung and/or liver and the metastatic incidence was 100% in the lung and 87.5% in the liver. Six of seven tumor-bearing mice in the genistein group developed no metastatic tumors in the lung or liver, and this group was termed the genistein/metastasis(-) subgroup. Positive β-catenin immunostaining was observed in the cytoplasm of tumor cells, and the β-catenin-labeling index was higher in the genistein/metastasis(-) subgroup than in the control group. The intensity of cytoplasmic β-catenin immunostaining was stronger in the genistein/metastasis(-) subgroup compared with the control group, and the β-catenin-labeling score was 1.9-times higher in the former subgroup than in the latter group. Conclusions Overexpression of cytoplasmic β-catenin in LM8 cells causes inhibition of the growth of primary tumors and loss of the metastatic potential to the lung and liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Hiroshi Masuno
- Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences, Takooda, Tobe-cho, Iyo-gun, Ehime 791-2101, Japan.
| |
Collapse
|
47
|
Al-Alem LF, McCord LA, Southard RC, Kilgore MW, Curry TE. Activation of the PKC pathway stimulates ovarian cancer cell proliferation, migration, and expression of MMP7 and MMP10. Biol Reprod 2013; 89:73. [PMID: 23843242 DOI: 10.1095/biolreprod.112.102327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Postmenopausal women are at a higher risk of ovarian cancer due, in part, to increased levels of gonadotropins such as luteinizing hormone (LH). Gonadotropins and other stimuli are capable of activating two pathways, PKA and PKC, that are altered in ovarian cancer. To determine the role of LH on ovarian cancer, we explored the effects of human chorionic gonadotropin (hCG), an LH mimic, and an activator of the PKC pathway, phorbol-12-myristate 13-acetate (PMA), on ovarian cancer cell-cycle kinetics and apoptosis in Ovcar3 cells. PMA treatment increased cells in the S phase of the cell cycle and initially increased apoptosis after 4 h before diminishing apoptosis after 8 h. Treatment of ovarian cancer cells with hCG had no effect on these parameters. The PKC pathway is known to differentially regulate matrix metalloproteinase (MMP) expression. Results showed that ovarian cancer cells treated with PMA increased MMP7 and MMP10 mRNA levels after 8 h of treatment, and expression remained high after 12 h before decreasing at 24 h. The mRNA expression of extracellular matrix metalloproteinase inducer (BSG), an activator of MMPs, was unaffected by PMA. Due to the role that MMPs play in migration, we investigated the effect of PMA activation of MMPs on ovarian cancer cell migration. The use of the MMP inhibitor GM6001 blocked the increased migratory effects of PMA on ovarian cancer cells. Together, these studies show that activating the PKC pathway causes significant changes in cell cycle kinetics and selective expression of MMPs that are involved in enhancing ovarian cancer cell proliferation and migration.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky
| | | | | | | | | |
Collapse
|
48
|
Chang C, Liu SP, Fang CH, He RS, Wang Z, Zhu YQ, Jiang SW. Effects of matrine on the proliferation of HT29 human colon cancer cells and its antitumor mechanism. Oncol Lett 2013; 6:699-704. [PMID: 24137393 PMCID: PMC3789009 DOI: 10.3892/ol.2013.1449] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/21/2013] [Indexed: 12/14/2022] Open
Abstract
Matrine is one of the main active components that is extracted from the dry roots of Sophora flavescens. The compound has potent antitumor activity in various cancer cell lines. However, the anticancer activity of matrine in colon cancer cells remains unclear. The purpose of the present study was to investigate the effects of matrine on the growth of human colon cancer cells and the expression of the associated proteins. Cancer cell proliferation was measured by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The cell cycle distribution and apoptosis were analyzed by flow cytometry (FCM). The activation of the caspases and the expression of pro-apoptotic and anti-apoptotic factors were examined using western blot analysis. Matrine was shown to significantly inhibit the proliferation of HT29 cells in a dose- and time-dependent manner, and also to reduce the percentage of cells in the G2/M phase, which was most frequently associated with an increase of cells arrested in the G0/G1 phase of the cell cycle. Western blot analysis revealed that matrine induced the activation of caspase-3 and -9 and the release of cytochrome C (Cyto C) from the mitochondria to the cytosol. Furthermore, the pro-apoptotic factor, Bax, was upregulated and the anti-apoptotic factor, Bcl-2, was downregulated, eventually leading to a reduction in the ratio of Bcl-2/Bax proteins. The results demonstrated that matrine inhibits proliferation and induces apoptosis of HT29 human cells in vitro. The induction of apoptosis appears to occur through the upregulation of Bax, the downregulation of Bcl-2, the release of Cyto C from the mitochondria to the cytosol and the activation of caspase-3 and caspase-9, which subsequently trigger major apoptotic cascades. Matrine has potent antitumor activity in HT29 cells and may be used as a novel effective reagent in the treatment of colon cancer.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Gastroenterology, Huangshi Central Hospital of Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| | | | | | | | | | | | | |
Collapse
|
49
|
Lallet-Daher H, Wiel C, Gitenay D, Navaratnam N, Augert A, Le Calvé B, Verbeke S, Carling D, Aubert S, Vindrieux D, Bernard D. Potassium Channel KCNA1 Modulates Oncogene-Induced Senescence and Transformation. Cancer Res 2013; 73:5253-65. [DOI: 10.1158/0008-5472.can-12-3690] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Gausdal G, Wergeland A, Skavland J, Nguyen E, Pendino F, Rouhee N, McCormack E, Herfindal L, Kleppe R, Havemann U, Schwede F, Bruserud O, Gjertsen BT, Lanotte M, Ségal-Bendirdjian E, Døskeland SO. Cyclic AMP can promote APL progression and protect myeloid leukemia cells against anthracycline-induced apoptosis. Cell Death Dis 2013; 4:e516. [PMID: 23449452 PMCID: PMC3734820 DOI: 10.1038/cddis.2013.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We show that cyclic AMP (cAMP) elevating agents protect blasts from patients with acute promyelocytic leukemia (APL) against death induced by first-line anti-leukemic anthracyclines like daunorubicin (DNR). The cAMP effect was reproduced in NB4 APL cells, and shown to depend on activation of the generally cytoplasmic cAMP-kinase type I (PKA-I) rather than the perinuclear PKA-II. The protection of both NB4 cells and APL blasts was associated with (inactivating) phosphorylation of PKA site Ser118 of pro-apoptotic Bad and (activating) phosphorylation of PKA site Ser133 of the AML oncogene CREB. Either event would be expected to protect broadly against cell death, and we found cAMP elevation to protect also against 2-deoxyglucose, rotenone, proteasome inhibitor and a BH3-only mimetic. The in vitro findings were mirrored by the findings in NSG mice with orthotopic NB4 cell leukemia. The mice showed more rapid disease progression when given cAMP-increasing agents (prostaglandin E2 analog and theophylline), both with and without DNR chemotherapy. The all-trans retinoic acid (ATRA)-induced terminal APL cell differentiation is a cornerstone in current APL treatment and is enhanced by cAMP. We show also that ATRA-resistant APL cells, believed to be responsible for treatment failure with current ATRA-based treatment protocols, were protected by cAMP against death. This suggests that the beneficial pro-differentiating and non-beneficial pro-survival APL cell effects of cAMP should be weighed against each other. The results suggest also general awareness toward drugs that can affect bone marrow cAMP levels in leukemia patients.
Collapse
Affiliation(s)
- G Gausdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|