1
|
Yang D, Xu J, Xu K, Xu P. Skeletal interoception in osteoarthritis. Bone Res 2024; 12:22. [PMID: 38561376 PMCID: PMC10985098 DOI: 10.1038/s41413-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism. Among its various forms, skeletal interoception specifically regulates the metabolic homeostasis of bones. Osteoarthritis (OA) is a complex joint disorder involving cartilage, subchondral bone, and synovium. The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads. Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone, resulting in subchondral bone sclerosis in OA. The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA. In this review, we offer a general overview of interoception, specifically skeletal interoception, subchondral bone microenviroment and the aberrant subchondral remedeling. We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA, as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiawen Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
2
|
Guo X, Yao YD, Kang JL, Luo FK, Mu XJ, Zhang YY, Chen MT, Liu MN, Lao CC, Tan ZH, Huang YF, Xie Y, Xu YH, Wu P, Zhou H. Iristectorigenin C suppresses LPS-induced macrophages activation by regulating mPGES-1 expression and p38/JNK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116706. [PMID: 37301305 DOI: 10.1016/j.jep.2023.116706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.
Collapse
Affiliation(s)
- Xin Guo
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Jun-Li Kang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Fu-Kang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Xi-Jun Mu
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Yan-Yu Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, China
| | - Ming-Tai Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, 518033, PR China
| | - Meng-Nan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Chi-Chou Lao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao
| | - Zi-Hao Tan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Yu-Feng Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China
| | - Ying Xie
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| | - You-Hua Xu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wailong, Taipa, Macao.
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| | - Hua Zhou
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
3
|
In Vitro Cytotoxicity of Methano[1,2,4]Triazolo-[1,5-C][1,3,5]Benzoxadiazocine Derivatives and Their Effects on Nitrite and Prostaglandin E2 (PGE2) Levels. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Santos Nascimento IJD, de Aquino TM, da Silva Júnior EF. Computer-Aided Drug Design of Anti-inflammatory Agents Targeting Microsomal Prostaglandin E2 Synthase-1 (mPGES-1). Curr Med Chem 2022; 29:5397-5419. [PMID: 35301943 DOI: 10.2174/0929867329666220317122948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation is a natural process in response to external stimuli associated with organism protection. However, this reaction could be exaggerated, leading to severe damages related to physiopathological processes, such as rheumatoid arthritis, cancer, diabetes, allergies, infections, among others. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy to develop anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. To decrease production costs and increase the probability of discovering active substances, computer-aided drug design (CADD) approaches have been increasingly used for designing new inhibitors. Thus, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Department of Pharmacy, Estácio of Alagoas College, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
5
|
The influence of overnight orthokeratology on ocular surface and dry eye-related cytokines IL-17A, IL-6, and PGE2 in children. Cont Lens Anterior Eye 2021; 44:81-88. [DOI: 10.1016/j.clae.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
|
6
|
Potential targets for the development of new antifungal drugs. J Antibiot (Tokyo) 2018; 71:978-991. [DOI: 10.1038/s41429-018-0100-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
|
7
|
Uribe G, Villéger R, Bressollier P, Dillard RN, Worthley DL, Wang TC, Powell DW, Urdaci MC, Pinchuk IV. Lactobacillus rhamnosus GG increases cyclooxygenase-2 expression and prostaglandin E2 secretion in colonic myofibroblasts via a MyD88-dependent mechanism during homeostasis. Cell Microbiol 2018; 20:e12871. [PMID: 29920917 DOI: 10.1111/cmi.12871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
Abstract
Prostaglandin E2 (PGE2 ) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase-2 (COX-2)-dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX-2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2 . Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco-2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX-2-dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX-2 and PGE2 in the prostaglandin pathway, but not 5-LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony-Forming Unit (CFU)/dose) increased COX-2 expression in the colonic mucosa. The majority of cells upregulating COX-2 protein expression were located in the colonic lamina propria and colocalised with α-SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor-88-dependent, because silencing of myeloid differentiation factor-88 expression in CMFs abrogated LbGG-induced upregulation of COX-2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX-2-mediated PGE2 , contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.
Collapse
Affiliation(s)
- Gabriela Uribe
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Romain Villéger
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Philippe Bressollier
- Laboratoire de Microbiologie, Bordeaux Sciences Agro, University of Bordeaux, Gradignan, France
| | - Rachel N Dillard
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel L Worthley
- Cancer Theme, University of Adelaide and SAHMRI, Adelaide, Australia
| | - Timothy C Wang
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Don W Powell
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Maria C Urdaci
- Laboratoire de Microbiologie, Bordeaux Sciences Agro, University of Bordeaux, Gradignan, France
| | - Irina V Pinchuk
- Departments of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA.,Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
8
|
Liu R, Rong B, Tu P, Tang Y, Song W, Toyos R, Toyos M, Yan X. Analysis of Cytokine Levels in Tears and Clinical Correlations After Intense Pulsed Light Treating Meibomian Gland Dysfunction. Am J Ophthalmol 2017; 183:81-90. [PMID: 28887117 DOI: 10.1016/j.ajo.2017.08.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 01/20/2023]
Abstract
PURPOSE To investigate the change from baseline of inflammatory markers in tears of dry eye disease (DED) subjects owing to meibomian gland dysfunction (MGD) after intense pulsed light (IPL) treatment and meibomian gland expression (MGE) compared to sham treatment, and the correlations with ocular surface parameters. DESIGN Randomized, double-masked, controlled study. METHODS Those randomized into the active treatment arm received 3 consecutive treatments (14∼16 J/cm2) approximately 4 weeks apart in the periocular region. Control eyes received 3 treatments in the same intervals of 0 J/cm2. Tear samples in all eyes were collected and analyzed at baseline, week 12, and/or week 4 for interleukin (IL)-17A, IL-6, and prostaglandin E2 (PGE2). The correlations between cytokines and ocular surface parameters were analyzed before and after IPL treatment. RESULTS All of the inflammatory markers declined in value compared to baselines. IL-17A and IL-6 showed statistically significant decreases compared to sham treatment at each measured time point. PGE2 showed statistically significant decreases compared to sham at week 12. Results showed that the expressions of IL-17A and IL-6 correlated well with ocular surface parameters of the lower eyelid before IPL. The changed values of IL-6 and PGE2 in tears correlated with the changed values of partial ocular surface parameters after IPL treatment in study eyes, respectively. CONCLUSIONS The study results suggest that IPL can significantly reduce inflammatory markers in tears of patients suffering with DED owing to MGD after IPL treatment. These findings indicate that IL-17A and IL-6 play roles in the pathogenesis of DED owing to MGD, and the reduction of the inflammatory factors is consistent with the improvement of partial clinical symptoms and signs.
Collapse
Affiliation(s)
- Ruixing Liu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Bei Rong
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Ping Tu
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Yun Tang
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Wenjing Song
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | | | | | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Beijing, China.
| |
Collapse
|
9
|
Alexanian A, Sorokin A. Cyclooxygenase 2: protein-protein interactions and posttranslational modifications. Physiol Genomics 2017; 49:667-681. [PMID: 28939645 DOI: 10.1152/physiolgenomics.00086.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies implicate the cyclooxygenase 2 (COX2) enzyme and COX2-derived prostanoids in various human diseases, and thus, much effort has been made to uncover the regulatory mechanisms of this enzyme. COX2 has been shown to be regulated at both the transcriptional and posttranscriptional levels, leading to the development of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX2 inhibitors (COXIBs), which inhibit the COX2 enzyme through direct targeting. Recently, evidence of posttranslational regulation of COX2 enzymatic activity by s-nitrosylation, glycosylation, and phosphorylation has also been presented. Additionally, posttranslational regulators that actively downregulate COX2 expression by facilitating increased proteasome degradation of this enzyme have also been reported. Moreover, recent data identified proteins, located in close proximity to COX2 enzyme, that serve as posttranslational modulators of COX2 function, upregulating its enzymatic activity. While the precise mechanisms of the protein-protein interaction between COX2 and these regulatory proteins still need to be addressed, it is likely these interactions could regulate COX2 activity either as a result of conformational changes of the enzyme or by impacting subcellular localization of COX2 and thus affecting its interactions with regulatory proteins, which further modulate its activity. It is possible that posttranslational regulation of COX2 enzyme by such proteins could contribute to manifestation of different diseases. The uncovering of posttranslational regulation of COX2 enzyme will promote the development of more efficient therapeutic strategies of indirectly targeting the COX2 enzyme, as well as provide the basis for the generation of novel diagnostic tools as biomarkers of disease.
Collapse
Affiliation(s)
- Anna Alexanian
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrey Sorokin
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Liu X, Wang D, Yu C, Li T, Liu J, Sun S. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade-A Review. Front Microbiol 2016; 7:1925. [PMID: 27999568 PMCID: PMC5138225 DOI: 10.3389/fmicb.2016.01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022] Open
Abstract
Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Decai Wang
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University Jinan, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| | - Jianqiao Liu
- General Practice, Shandong Provincial Hospital Jinnan, China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| |
Collapse
|
11
|
Noma T, Takahashi-Yanaga F, Arioka M, Mori Y, Sasaguri T. Inhibition of GSK-3 reduces prostaglandin E2 production by decreasing the expression levels of COX-2 and mPGES-1 in monocyte/macrophage lineage cells. Biochem Pharmacol 2016; 116:120-9. [DOI: 10.1016/j.bcp.2016.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
12
|
Kim SH, Hashimoto Y, Cho SN, Roszik J, Milton DR, Dal F, Kim SF, Menter DG, Yang P, Ekmekcioglu S, Grimm EA. Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression. Pigment Cell Melanoma Res 2016; 29:297-308. [PMID: 26801201 DOI: 10.1111/pcmr.12455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 01/07/2016] [Indexed: 12/23/2022]
Abstract
COX-2 and its product PGE2 enhance carcinogenesis and tumor progression, which has been previously reported in melanoma. As most COX inhibitors cause much toxicity, the downstream microsomal PGE2 synthase-1 (mPGES1) is a consideration for targeting. Human melanoma TMAs were employed for testing mPGES1 protein staining intensity and percentage levels, and both increased with clinical stage; employing a different Stage III TMA, mPGES1 intensity (not percentage) associated with reduced patient survival. Our results further show that iNOS was also highly expressed in melanoma tissues with high mPGES1 levels, and iNOS-mediated NO promoted mPGES1 expression and PGE2 production. An mPGES1-specific inhibitor (CAY10526) as well as siRNA attenuated cell survival and increased apoptosis. CAY10526 significantly suppressed tumor growth and increased apoptosis in melanoma xenografts. Our findings support the value of a prognostic and predictive role for mPGES1, and suggest targeting this molecule in the PGE2 pathway as another avenue toward improving melanoma therapy.
Collapse
Affiliation(s)
- Sun-Hee Kim
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuuri Hashimoto
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sung-Nam Cho
- Department of Thoracic Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Roszik
- Department of Melanoma Medical Oncology and Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denái R Milton
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fulya Dal
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, Perlman School of Medicine at University of Pennsylvania at University of Pennsylvania, Philadelphia, PA, USA
| | - David G Menter
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peiying Yang
- Department of General Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth A Grimm
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Chen Y, Liu H, Xu S, Wang T, Li W. Targeting microsomal prostaglandin E2synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00278h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AA cascade and several key residues in the 3D structure of mPGES-1.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | | | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Tianlin Wang
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
14
|
Liu C, Chen S, Wang X, Chen Y, Tang N. 15d-PGJ2 decreases PGE2 synthesis in HBx-positive liver cells by interfering EGR1 binding to mPGES-1 promoter. Biochem Pharmacol 2014; 91:337-47. [DOI: 10.1016/j.bcp.2014.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 01/05/2023]
|
15
|
Abstract
Cycoloxygenase-2 (COX-2) induction is prevalent in a variety of (brain and peripheral) injury models where COX-2 levels correlate with disease progression. Thus, COX-2 has been widely explored for anti-inflammatory therapy with COX-2 inhibitors, which proved to be effective in reducing the pain and inflammation in patients with arthritis and menstrual cramps, but they have not provided any benefit to patients with chronic inflammatory neurodegenerative disease. Recently, two COX-2 drugs, rofecoxib and valdecoxib, were withdrawn from the United States market due to cardiovascular side effects. Thus, future anti-inflammatory therapy could be targeted through a specific prostanoid receptor downstream of COX-2. The PGE2 receptor EP2 is emerging as a pro-inflammatory target in a variety of CNS and peripheral diseases. Here we highlight the latest developments on the role of EP2 in diseases, mechanism of activation, and small molecule discovery targeted either to enhance or to block the function of this receptor.
Collapse
Affiliation(s)
- Thota Ganesh
- Department of Pharmacology, Emory University School of Medicine , 1510 Clifton Road, Atlanta, Georgia, 30322, United States
| |
Collapse
|
16
|
Yang EJ, Ham YM, Lee WJ, Lee NH, Hyun CG. Anti-inflammatory effects of apo-9'-fucoxanthinone from the brown alga, Sargassum muticum. ACTA ACUST UNITED AC 2013; 21:62. [PMID: 23889890 PMCID: PMC3733608 DOI: 10.1186/2008-2231-21-62] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/12/2013] [Indexed: 12/16/2022]
Abstract
Background The marine environment is a unique source of bioactive natural products, of which Sargassum muticum (Yendo) Fensholt is an important brown algae distributed in Jeju Island, Korea. S. muticum is a traditional Korean food stuff and has pharmacological functions including anti-inflammatory effects. However, the active ingredients from S. muticum have not been characterized. Methods Bioguided fractionation of the ethanolic extract of S. muticum, collected from Jeju island, led to the isolation of a norisoprenoid. Its structure was determined by analysis of the spectroscopic data. In vitro anti-inflammatory activity and mechanisms of action of this compound were examined using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells through ELISA assays and Western blot analysis. Results Apo-9′-fucoxanthinone, belonging to the norisoprenoid family were identified. Apo-9′-fucoxanthinone effectively suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. This compound also exerted their anti-inflammatory actions by down-regulating of NF-κB activation via suppression of IκB-α in macrophages. Conclusions This is the first report describing effective anti-inflammatory activity for apo-9’-fucoxanthinone′-fucoxanthnone isolated from S. muticum. Apo-9′-fucoxanthinone may be a good candidate for delaying the progression of human inflammatory diseases and warrants further studies.
Collapse
Affiliation(s)
- Eun-Jin Yang
- Department of Chemistry, Cosmetic Science Center, Jeju National University, Jeju 690-756, Korea.
| | | | | | | | | |
Collapse
|
17
|
Shiro T, Kakiguchi K, Takahashi H, Nagata H, Tobe M. 7-Phenyl-imidazoquinolin-4(5H)-one derivatives as selective and orally available mPGES-1 inhibitors. Bioorg Med Chem 2013; 21:2868-78. [DOI: 10.1016/j.bmc.2013.03.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/28/2022]
|
18
|
Shiro T, Kakiguchi K, Takahashi H, Nagata H, Tobe M. Synthesis and biological evaluation of substituted imidazoquinoline derivatives as mPGES-1 inhibitors. Bioorg Med Chem 2013; 21:2068-78. [DOI: 10.1016/j.bmc.2013.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 12/28/2012] [Accepted: 01/06/2013] [Indexed: 11/29/2022]
|
19
|
Bylund J, Annas A, Hellgren D, Bjurström S, Andersson H, Svanhagen A. Amide Hydrolysis of a Novel Chemical Series of Microsomal Prostaglandin E Synthase-1 Inhibitors Induces Kidney Toxicity in the Rat. Drug Metab Dispos 2013; 41:634-41. [DOI: 10.1124/dmd.112.048983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
20
|
Medda F, Sells E, Chang HH, Dietrich J, Chappeta S, Smith B, Gokhale V, Meuillet EJ, Hulme C. Synthesis and biological activity of aminophthalazines and aminopyridazines as novel inhibitors of PGE2 production in cells. Bioorg Med Chem Lett 2012; 23:528-31. [PMID: 23237838 DOI: 10.1016/j.bmcl.2012.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 01/14/2023]
Abstract
This Letter reports the synthesis and biological evaluation of a collection of aminophthalazines as a novel class of compounds capable of reducing production of PGE(2) in HCA-7 human adenocarcinoma cells. A total of 28 analogs were synthesized, assayed for PGE(2) reduction, and selected active compounds were evaluated for inhibitory activity against COX-2 in a cell free assay. Compound 2xxiv (R(1)=H, R(2)=p-CH(3)O) exhibited the most potent activity in cells (EC(50)=0.02 μM) and minimal inhibition of COX-2 activity (3% at 5 μM). Furthermore, the anti-tumor activity of analog 2vii was analyzed in xenograft mouse models exhibiting good anti-cancer activity.
Collapse
Affiliation(s)
- Federico Medda
- BIO5 Oro Valley, The University of Arizona, 1580 E. Hanley Blvd., Oro Valley, AZ 85737, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhou J, Joplin DG, Cross JV, Templeton DJ. Sulforaphane inhibits prostaglandin E2 synthesis by suppressing microsomal prostaglandin E synthase 1. PLoS One 2012; 7:e49744. [PMID: 23166763 PMCID: PMC3500324 DOI: 10.1371/journal.pone.0049744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
Sulforaphane (SFN) is a dietary cancer preventive with incompletely characterized mechanism(s) of cancer prevention. Since prostaglandin E2 (PGE2) promotes cancer progression, we hypothesized that SFN may block PGE2 synthesis in cancer cells. We found that SFN indeed blocked PGE2 production in human A549 cancer cells not by inhibiting COX-2, but rather by suppressing the expression of microsomal prostaglandin E synthase (mPGES-1), the enzyme that directly synthesizes PGE2. We identified the Hypoxia Inducible Factor 1 alpha (HIF-1α) as the target of SFN-mediated mPGES-1 suppression. SFN suppressed HIF-1α protein expression and the presence of HIF-1α at the mPGES-1 promoter, resulting in reduced transcription of mPGES-1. Finally, SFN also reduced expression of mPGES-1 and PGE2 production in A549 xenograft tumors in mice. Together, these results point to the HIF-1α, mPGES-1 and PGE2 axis as a potential mediator of the anti-cancer effects of SFN, and illustrate the potential of SFN for therapeutic control of cancer and inflammation. Harmful side effects in patients taking agents that target the more upstream COX-2 enzyme render the downstream target mPGES-1 a significant target for anti-inflammatory therapy. Thus, SFN could prove to be an important therapeutic approach to both cancer and inflammation.
Collapse
Affiliation(s)
- Jiping Zhou
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Denise G. Joplin
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Janet V. Cross
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Dennis J. Templeton
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail: .
| |
Collapse
|
22
|
Chini MG, De Simone R, Bruno I, Riccio R, Dehm F, Weinigel C, Barz D, Werz O, Bifulco G. Design and synthesis of a second series of triazole-based compounds as potent dual mPGES-1 and 5-lipoxygenase inhibitors. Eur J Med Chem 2012; 54:311-23. [DOI: 10.1016/j.ejmech.2012.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/09/2012] [Accepted: 05/09/2012] [Indexed: 01/09/2023]
|
23
|
Change in prostaglandin expression levels and synthesizing activities in dry eye disease. Ophthalmology 2012; 119:2211-9. [PMID: 22858125 DOI: 10.1016/j.ophtha.2012.05.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 05/23/2012] [Accepted: 05/23/2012] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the expression level of prostaglandins (PGs) and their de novo synthesis in dry eye (DE) disease. DESIGN Cross-sectional case-control study and in vivo mouse experimental study. PARTICIPANTS Forty-six eyes from 23 DE patients and 33 eyes from 17 age- and sex-matched controls were studied. Also, DE-induced murine eyes were compared with control eyes. METHODS Patients completed a symptom questionnaire using a 100-mm visual analog scale (VAS). Nano-liquid chromatography tandem mass spectrometry was used for the quantification of PGE2 and PGD2. A DE disease environmental chamber was used to induce DE in mice. One week after induction, enzyme expressions of cyclooxygenase-1, cyclooxygenase-2 (COX-2), PG E synthase (PGES), and PG D synthase (PGDS) in the lacrimal glands, meibomian glands, and corneas were examined using immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). MAIN OUTCOME MEASURES The mean PGE2 and PGD2 levels in the tears of DE patients were measured and compared with symptom severity scores. Immunohistochemistry staining patterns and qRT-PCR data of DE mice were quantified. RESULTS The mean PGE2 level in the tears of DE patients (2.72 ±3 .42 ng/ml) was significantly higher than that in the control group (0.88 ± 0.83 ng/ml; P = 0.003). However, the mean PGD2 level in the tears of DE patients (0.11 ± 0.22 ng/ml) was significantly lower (0.91 ± 3.28 ng/ml; P = 0.028). The mean PGE2-to-PGD2 ratio correlated strongly with VAS scoring (P = 0.008). In DE mice, COX-2 mRNA was significantly higher in ocular surface tissue and lacrimal glands. Furthermore, PGES mRNA was significantly higher in ocular surface tissue, whereas PGDS mRNA was decreased. Immunohistochemistry staining showed elevated COX-2 expression in the lacrimal glands, meibomian glands, corneas, and conjunctivas. Furthermore, PGES expression was found in periductal infiltrated cells of the lacrimal glands and conjunctival epithelium. Also, PGDS expression was decreased in meibomian glands and increased focally in the conjunctival epithelium. CONCLUSIONS A reciprocal change in PGE2 and PGD2 levels was found in the tears of DE patients, which correlated with patients' symptom scores. These clinical results were supported by increased COX-2 and PGES expression levels found in tear-producing tissues of DE mice.
Collapse
|
24
|
Synthesis and biological activity of 2-aminothiazoles as novel inhibitors of PGE2 production in cells. Bioorg Med Chem Lett 2012; 22:3567-70. [PMID: 22516282 DOI: 10.1016/j.bmcl.2012.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 02/08/2023]
Abstract
This Letter presents the synthesis and biological evaluation of a collection of 2-aminothiazoles as a novel class of compounds with the capability to reduce the production of PGE(2) in HCA-7 human adenocarcinoma cells. A total of 36 analogs were synthesized and assayed for PGE(2) reduction, and those with potent cellular activity were counter screened for inhibitory activity against COX-2 in a cell free assay. In general, analogs bearing a 4-phenoxyphenyl substituent in the R(2) position were highly active in cells while maintaining negligible COX-2 inhibition. Specifically, compound 5l (R(1)=Me, R(2)=4-OPh-Ph, R(3)=CH(OH)Me) exhibited the most potent cellular PGE(2) reducing activity of the entire series (EC(50)=90 nM) with an IC(50) value for COX-2 inhibition of >5 μM in vitro. Furthermore, the anti-tumor activity of analog 1a was analyzed in xenograft mouse models exhibiting promising anti-cancer activity.
Collapse
|
25
|
Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2. Trends Mol Med 2012; 18:233-43. [PMID: 22425675 DOI: 10.1016/j.molmed.2012.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 02/06/2023]
Abstract
Prostanoids regulate angiogenesis in carcinoma and chronic inflammatory disease progression. Although prostanoid biosynthetic enzymes and signaling have been extensively analyzed in inflammation, little is known about how prostanoids mediate tumor-induced angiogenesis. Targeted cyclooxygenase (COX)-2 inhibition in tumor, stromal and endothelial cells is an attractive antiangiogenic strategy; however, the associated cardiovascular side effects have led to the development of a new generation of nonsteroidal anti-inflammatory drugs (NSAIDs) acting downstream of COX. These agents target terminal prostanoid synthases and prostanoid receptors, which may also include several peroxisome proliferator-activated receptors (PPARs). Here, we discuss the role of prostanoids as modulators of tumor angiogenesis and how prostanoid metabolism reflects complex cell-cell crosstalk that determines tumor growth. Finally, we discuss the potential of new NSAIDs for the treatment of angiogenesis-dependent tumor development.
Collapse
|
26
|
Wu Y, He C, Gao Y, He S, Liu Y, Lai L. Dynamic Modeling of Human 5-Lipoxygenase–Inhibitor Interactions Helps To Discover Novel Inhibitors. J Med Chem 2012; 55:2597-605. [DOI: 10.1021/jm201497k] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yiran Wu
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, College of Chemistry and Molecular Engineering, ‡Center for Theoretical
Biology, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chong He
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, College of Chemistry and Molecular Engineering, ‡Center for Theoretical
Biology, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yang Gao
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, College of Chemistry and Molecular Engineering, ‡Center for Theoretical
Biology, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shan He
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, College of Chemistry and Molecular Engineering, ‡Center for Theoretical
Biology, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ying Liu
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, College of Chemistry and Molecular Engineering, ‡Center for Theoretical
Biology, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Luhua Lai
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, College of Chemistry and Molecular Engineering, ‡Center for Theoretical
Biology, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol 2012; 2012:723419. [PMID: 22505934 PMCID: PMC3299390 DOI: 10.1155/2012/723419] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.
Collapse
|
28
|
Jones CL, Li T, Cowley EA. The prostaglandin E₂ type 4 receptor participates in the response to acute oxidant stress in airway epithelial cells. J Pharmacol Exp Ther 2012; 341:552-63. [PMID: 22362924 DOI: 10.1124/jpet.111.187138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress is implicated in the pathogenesis of many inflammatory pulmonary diseases, including cystic fibrosis (CF). Delineating how oxidative stress stimulates CF transmembrane conductance regulator (CFTR) in airway epithelial cells is useful, both to increase the understanding of airways host defense and suggest therapeutic approaches to reduce the oxidant stress burden in the CF lung. Using the airway epithelial cell line Calu-3, we investigated the hypothesis that hydrogen peroxide (H₂O₂), which stimulates anion efflux through CFTR, does so via the production of prostaglandin E₂ (PGE₂). Using iodide efflux as a biochemical marker of CFTR activity and short circuit current (I(sc)) recordings, we found that the H₂O₂-stimulated efflux was abolished by cyclooxygenase-1 inhibition and potentially also involves microsomal prostaglandin E synthase-1 activity, implicating a role for PGE₂ production. Furthermore, H₂O₂ application resulted in a rapid release of PGE₂ from Calu-3 cells. We additionally hypothesized that the PGE₂ subtype 4 (EP(4)) receptor was involved in mediating this response. In the presence of (4Z)-7-[(rel-1S,2S,5R)-5-((1,1'-biphenyl-4-yl)methoxy)-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid (AH23848) (which blocks the EP₄ receptor), the H₂O₂-stimulated response was abolished. To investigate this finding in a polarized system, we measured the increase in I(sc) induced by H₂O₂ addition in the presence and absence of AH23848. H₂O₂ induced a robust increase in I(sc), which was significantly attenuated in the presence of AH23848, suggesting some role for the EP₄ receptor. In conclusion, with H₂O₂ as a model oxidant stress, stimulation of CFTR seems to involve PGE₂ production and likely EP₄ receptor activation in Calu-3 airway epithelial cells. This mechanism would be compromised in the CF airways.
Collapse
Affiliation(s)
- Christina L Jones
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
29
|
Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G. Mitochondrial liaisons of p53. Antioxid Redox Signal 2011; 15:1691-714. [PMID: 20712408 DOI: 10.1089/ars.2010.3504] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondria play a central role in cell survival and cell death. While producing the bulk of intracellular ATP, mitochondrial respiration represents the most prominent source of harmful reactive oxygen species. Mitochondria participate in many anabolic pathways, including cholesterol and nucleotide biosynthesis, yet also control multiple biochemical cascades that contribute to the programmed demise of cells. The tumor suppressor protein p53 is best known for its ability to orchestrate a transcriptional response to stress that can have multiple outcomes, including cell cycle arrest and cell death. p53-mediated tumor suppression, however, also involves transcription-independent mechanisms. Cytoplasmic p53 can physically interact with members of the BCL-2 protein family, thereby promoting mitochondrial membrane permeabilization. Moreover, extranuclear p53 can suppress autophagy, a major prosurvival mechanism that is activated in response to multiple stress conditions. Thirty years have passed since its discovery, and p53 has been ascribed with an ever-increasing number of functions. For instance, p53 has turned out to influence the cell's redox status, by transactivating either anti- or pro-oxidant factors, and to regulate the metabolic switch between glycolysis and aerobic respiration. In this review, we will analyze the mechanisms by which p53 affects the balance between the vital and lethal functions of mitochondria.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM U848, Institut Gustave Roussy, Pavillon de Recherche 1, Villejuif (Paris), France
| | | | | | | | | | | |
Collapse
|
30
|
Yang EJ, Moon JY, Kim MJ, Kim DS, Kim CS, Lee WJ, Lee NH, Hyun CG. Inhibitory effect of Jeju endemic seaweeds on the production of pro-inflammatory mediators in mouse macrophage cell line RAW 264.7. J Zhejiang Univ Sci B 2010; 11:315-22. [PMID: 20443209 DOI: 10.1631/jzus.b0900364] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Seaweed has been used in traditional cosmetics and as a herbal medicine in treatments for cough, boils, goiters, stomach ailments, and urinary diseases, and for reducing the incidence of tumors, ulcers, and headaches. Despite the fact that seaweeds are frequently used in the practice of human health, little is known about the role of seaweed in the context of inflammation. This study aimed to investigate the influence of Jeju endemic seaweed on a mouse macrophage cell line (RAW 264.7) under the stimulation of lipopolysaccharide (LPS). Ethyl acetate extracts obtained from 14 different kinds of Jeju seaweeds were screened for inhibitory effects on pro-inflammatory mediators. Our results revealed that extracts from five seaweeds, Laurencia okamurae, Grateloupia elliptica, Sargassum thunbergii, Gloiopeltis furcata, and Hizikia fusiformis, were potent inhibitors of the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). Based on these results, the anti-inflammatory effects and low cell toxicity of these seaweed extracts suggest potential therapeutic applications in the regulation of the inflammatory response.
Collapse
Affiliation(s)
- Eun-Jin Yang
- Jeju Biodiversity Research Institute, Jeju High-Tech Development Institute, Jeju 699-943, Korea
| | | | | | | | | | | | | | | |
Collapse
|