1
|
Fan L, Wang S. Biased GPCR Signaling: Possible Mechanisms and Therapeutic Applications. Biochemistry 2025; 64:1180-1192. [PMID: 40016120 DOI: 10.1021/acs.biochem.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Biased signaling refers to the phenomenon where a ligand selectively activates specific downstream pathways of G protein-coupled receptors (GPCRs), such as the G protein-mediated pathway or the β-arrestin-mediated pathway. This mechanism can be influenced by receptor bias, ligand bias, system bias and spatial bias, all of which are shaped by the receptor's conformational distinctions and kinetics. Since GPCRs are the largest class of drug targets, signaling bias garnered significant attention for its potential to enhance therapeutic efficacy while minimizing side effects. Despite intensive investigation, a major challenge lies in translating in vitro ligand efficacy into in vivo biological responses due to the dynamic and multifaceted nature of the in vivo environment. This review delves into the current understanding of GPCR-biased signaling, examining the role of structural bias at the molecular level, the impact of kinetic context on system and observational bias, and the challenges of applying these insights in drug development. It further explores future directions for advancing biased signaling applications, offering valuable perspectives on how to bridge the gap between in vitro studies and in vivo therapeutic design, ultimately accelerating the development of viable, biased therapeutics.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Junkert AM, Mieres NG, Domingues KZA, Ferreira LM, Pontarolo R. Development and Validation of a Stability-Indicating High-Performance Liquid Chromatography Method Coupled With a Diode Array Detector for Quantifying Haloperidol in Oral Solution Using the Analytical Quality-by-Design Approach. J Sep Sci 2025; 48:e70067. [PMID: 39740124 DOI: 10.1002/jssc.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
This study developed a stability-indicating HPLC-DAD method for quantifying haloperidol in oral solution using analytical quality-by-design principles. Haloperidol stability was tested under acidic, alkaline, oxidative, and photolytic stress conditions. The analytical quality-by-design approach began by defining the analytical target profile and identifying critical material attributes and critical method parameters via risk analysis. Factorial and Box-Behnken designs, conducted in Design Expert 13, were used to select critical method parameters and determine the method operable design region. The oral solution degraded significantly under acidic and alkaline conditions. Continuous critical method parameters such as mobile phase flow rate, gradient slope, column temperature, and pH were optimized. A quadratic Box-Behnken design with critical method attributes was applied and validated, resulting in robust regression models with significant p-values (> 0.05), absence of lack-of-fit (p-values < 0.05), and R2-adjusted > 0.85. The method proved selective, accurate, and precise within the method operable design range. Normal operating conditions (NOCs) were established using a Waters Symmetry C18 column with a 100-mM formate buffer (pH 3.8) and acetonitrile, with a gradient profile and detection at 246 nm. The operational region included flow rates between 1.2 and 1.35 mL/min (NOC = 1.3 mL/min), temperatures of 8°C-20°C (NOC = 15°C), and mobile phase pH variations from 3.3 to 4.3 (NOC = 3.8). The analytical quality-by-design-based method was robust and effective for stability monitoring, reducing subjectivity while maximizing reliability.
Collapse
Affiliation(s)
- Allan Michael Junkert
- Pharmaceutical Sciences Postgraduate Research Program, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Naomi Gerzvolf Mieres
- Pharmaceutical Sciences Postgraduate Research Program, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Luana Mota Ferreira
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Roberto Pontarolo
- Department of Pharmacy, Pharmaceutical Sciences Postgraduate Research Program, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
3
|
Zhu K, Meng L, Luo J, Wen T, Dan L, Wang Z, Cao X, Zhang Z, Chen G. Taltirelin induces TH expression by regulating TRHR and RARα in medium spiny neurons. J Transl Med 2024; 22:1158. [PMID: 39736794 DOI: 10.1186/s12967-024-06020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
Taltirelin, an orally effective thyrotropin-releasing hormone analog, significantly improves motor impairments in rat models of Parkinson's disease (PD) and enhances dopamine release within the striatum. However, the underlying mechanism remains unclear. In this study, a variety of in vivo and in vitro methods, including transcriptomic analysis, were employed to elucidate the effects of Taltirelin on cellular composition and signaling pathways in the striatum of hemi-PD rats. We demonstrated that Taltirelin upregulates the expression of TRHR on striatal GABAergic neurons, which is accompanied by activation of the TRHR-MAPK-RARα-DRD2 pathway. Consequently, Taltirelin induces medium spiny neurons in the striatum to express TH. This discovery provides valuable insights into the potential application of Taltirelin in neurological disorders and offers new directions for drug development.
Collapse
Affiliation(s)
- Kedong Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Tingting Wen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Liang Dan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhihao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, , Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Guiqin Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
4
|
Takekita Y, Matsumoto Y, Masuda T, Yoshida K, Koshikawa Y, Kato M. Association between treatment response and dose of blonanserin transdermal patch in patients with acute schizophrenia: A post hoc cluster analysis based on baseline psychiatric symptoms. Neuropsychopharmacol Rep 2024; 44:784-791. [PMID: 39428614 PMCID: PMC11609747 DOI: 10.1002/npr2.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
AIM To explore the optimal dose of blonanserin transdermal patch (BNS-P) based on baseline psychiatric symptomatic characteristics during acute schizophrenia. METHODS A post hoc cluster analysis was conducted using data from a 6-week randomized, double-blind, placebo-controlled study of BNS-P (40 or 80 mg/day) in acute schizophrenia. We classified patients into three clusters based on baseline psychiatric symptoms. Efficacy was assessed using the change from baseline to week 6 in the PANSS total score. Safety was assessed by the incidence of adverse events. RESULTS Among 577 patients, three clusters were identified, characterized by severe psychiatric (Cluster-S; n = 122), predominant negative (Cluster-N; n = 191), and predominant positive (Cluster-P; n = 264) symptoms. In Cluster-P, both BNS-P 40 and 80 mg/day reduced PANSS total score significantly more than placebo (p = 0.036, effect size = 0.342; p < 0.001, effect size = 0.687, respectively). In Cluster-S and -N, only BNS-P 80 mg/day reduced PANSS total score significantly more than placebo (p = 0.045, effect size = 0.497; p = 0.034, effect size = 0.393, respectively). The effect size was greater at 80 mg/day than at 40 mg/day across all clusters. The most common treatment-emergent adverse events were akathisia and skin-related adverse events in all clusters. CONCLUSION BNS-P exhibited a dose-dependent antipsychotic effect in all clusters, particularly highlighting its efficacy in patients with predominant positive symptoms, even at lower doses. These findings provide novel and valuable insights for determining BNS-P dose tailoring to individual symptomatic characteristics in real-world practice.
Collapse
Affiliation(s)
- Yoshiteru Takekita
- Department of Neuropsychiatry, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | | | | | | | - Yosuke Koshikawa
- Department of Neuropsychiatry, Faculty of MedicineKansai Medical UniversityOsakaJapan
| | - Masaki Kato
- Department of Neuropsychiatry, Faculty of MedicineKansai Medical UniversityOsakaJapan
| |
Collapse
|
5
|
Wu J, Jin X, Xie W, Liu L, Wang F, Zhu L, Shen Y, Qiu L. Global research trends and hotspots in Parkinson's disease psychosis: a 25-year bibliometric and visual analysis. Front Aging Neurosci 2024; 16:1480234. [PMID: 39649718 PMCID: PMC11621064 DOI: 10.3389/fnagi.2024.1480234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
Background Parkinson's disease psychosis (PDP) is one of the most severe and disabling non-motor symptoms in the progression of Parkinson's disease (PD), significantly impacting the prognosis of PD patients. In recent years, there has been an increase in literature on PDP. However, bibliometrics has rarely been applied to PDP research. This study provides an overview of the current state of PDP research and predicts future trends in this field. Methods The literature search was conducted using the Web of Science Core Collection, with the search terms (Parkinson* AND (psychotic* OR hallucination* OR illusion* OR delusion* OR misperception* OR psychosis OR psychoses)). VOSviewer and CiteSpace software were employed to perform bibliometric analysis and visual representation of the search results. Results A total of 603 articles were effectively included. Since 2017, there has been a significant upward trend in publications related to PDP. The United States, the United Kingdom, and Canada were the top three contributing countries in terms of publication volume, with France also having a strong influence in this field. Movement Disorders and King's College London included and published the most articles on PDP. The paper titled "Hallucinations in Parkinson's Disease: Prevalence, Phenomenology, and Risk Factors" received the highest number of citations and average citations. Cluster analysis results identified brain, prevalence, connectivity, and atypical antipsychotics as key hotspots in this field. High-frequency keywords were grouped into three themes: neurobiology, therapeutic strategies, and symptom research. Among them, pimavanserin, risk, and functional connectivity have been the most studied areas in the past 7 years and are likely to remain key topics in future research. Conclusion Research on PDP has garnered increasing attention. This study visualizes PDP research over the past 25 years to analyze global hotspots and trends. It offers researchers a valuable perspective for identifying key topics and understanding research trajectories in this expanding field.
Collapse
Affiliation(s)
- Jianhong Wu
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Xin Jin
- Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Weiming Xie
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Liang Liu
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Wang
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Ling Zhu
- Jiangyin People's Hospital, Wuxi, Jiangsu, China
| | - Yuan Shen
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Linghe Qiu
- Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Dwyer GE, Johnsen E, Hugdahl K. NMDAR dysfunction and the regulation of dopaminergic transmission in schizophrenia. Schizophr Res 2024; 271:19-27. [PMID: 39002526 DOI: 10.1016/j.schres.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
A substantial body of evidence implicates dysfunction in N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia. This article illustrates how NMDAR dysfunction may give rise to many of the neurobiological phenomena frequently associated with schizophrenia with a particular focus on how NMDAR dysfunction affects the thalamic reticular nucleus (nRT) and pedunculopontine tegmental nucleus (PPTg). Furthermore, this article presents a model for schizophrenia illustrating how dysfunction in the nRT may interrupt prefrontal regulation of midbrain dopaminergic neurons, and how dysfunction in the PPTg may drive increased, irregular burst firing.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.
| | - Erik Johnsen
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Cameron D, Vinh NN, Prapaiwongs P, Perry EA, Walters JTR, Li M, O’Donovan MC, Bray NJ. Genetic Implication of Prenatal GABAergic and Cholinergic Neuron Development in Susceptibility to Schizophrenia. Schizophr Bull 2024; 50:1171-1184. [PMID: 38869145 PMCID: PMC11349020 DOI: 10.1093/schbul/sbae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
BACKGROUND The ganglionic eminences (GE) are fetal-specific structures that give rise to gamma-aminobutyric acid (GABA)- and acetylcholine-releasing neurons of the forebrain. Given the evidence for GABAergic, cholinergic, and neurodevelopmental disturbances in schizophrenia, we tested the potential involvement of GE neuron development in mediating genetic risk for the condition. STUDY DESIGN We combined data from a recent large-scale genome-wide association study of schizophrenia with single-cell RNA sequencing data from the human GE to test the enrichment of schizophrenia risk variation in genes with high expression specificity for developing GE cell populations. We additionally performed the single nuclei Assay for Transposase-Accessible Chromatin with Sequencing (snATAC-Seq) to map potential regulatory genomic regions operating in individual cell populations of the human GE, using these to test for enrichment of schizophrenia common genetic variant liability and to functionally annotate non-coding variants-associated with the disorder. STUDY RESULTS Schizophrenia common variant liability was enriched in genes with high expression specificity for developing neuron populations that are predicted to form dopamine D1 and D2 receptor-expressing GABAergic medium spiny neurons of the striatum, cortical somatostatin-positive GABAergic interneurons, calretinin-positive GABAergic neurons, and cholinergic neurons. Consistent with these findings, schizophrenia genetic risk was concentrated in predicted regulatory genomic sequence mapped in developing neuronal populations of the GE. CONCLUSIONS Our study implicates prenatal development of specific populations of GABAergic and cholinergic neurons in later susceptibility to schizophrenia, and provides a map of predicted regulatory genomic elements operating in cells of the GE.
Collapse
Affiliation(s)
- Darren Cameron
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - Ngoc-Nga Vinh
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - Parinda Prapaiwongs
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Elizabeth A Perry
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - James T R Walters
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - Meng Li
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Michael C O’Donovan
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
| | - Nicholas J Bray
- Division of Psychological Medicine and Clinical Neurosciences, Centre for Neuropsychiatric Genetics & Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Ji J, Chao H, Chen H, Liao J, Shi W, Ye Y, Wang T, You Y, Liu N, Ji J, Petretto E. Decoding frontotemporal and cell-type-specific vulnerabilities to neuropsychiatric disorders and psychoactive drugs. Open Biol 2024; 14:240063. [PMID: 38864245 DOI: 10.1098/rsob.240063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Frontotemporal lobe abnormalities are linked to neuropsychiatric disorders and cognition, but the role of cellular heterogeneity between temporal lobe (TL) and frontal lobe (FL) in the vulnerability to genetic risk factors remains to be elucidated. We integrated single-nucleus transcriptome analysis in 'fresh' human FL and TL with genetic susceptibility, gene dysregulation in neuropsychiatric disease and psychoactive drug response data. We show how intrinsic differences between TL and FL contribute to the vulnerability of specific cell types to both genetic risk factors and psychoactive drugs. Neuronal populations, specifically PVALB neurons, were most highly vulnerable to genetic risk factors for psychiatric disease. These psychiatric disease-associated genes were mostly upregulated in the TL, and dysregulated in the brain of patients with obsessive-compulsive disorder, bipolar disorder and schizophrenia. Among these genes, GRIN2A and SLC12A5, implicated in schizophrenia and bipolar disorder, were significantly upregulated in TL PVALB neurons and in psychiatric disease patients' brain. PVALB neurons from the TL were twofold more vulnerable to psychoactive drugs than to genetic risk factors, showing the influence and specificity of frontotemporal lobe differences on cell vulnerabilities. These studies provide a cell type resolved map of the impact of brain regional differences on cell type vulnerabilities in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiatong Ji
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Huimei Chen
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jun Liao
- High Performance Computing Center, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
| | - Wenqian Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yangfan Ye
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Tian Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
- Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Xinjiang, Artux 845350, People's Republic of China
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Enrico Petretto
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
- Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
9
|
Sahay S, Devine EA, McCullumsmith RE, O’Donovan SM. Adenosine Receptor mRNA Expression in Frontal Cortical Neurons in Schizophrenia. Cells 2023; 13:32. [PMID: 38201235 PMCID: PMC10778287 DOI: 10.3390/cells13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a devastating neuropsychiatric disorder associated with the dysregulation of glutamate and dopamine neurotransmitter systems. The adenosine system is an important neuroregulatory system in the brain that modulates glutamate and dopamine signaling via the ubiquitously expressed adenosine receptors; however, adenosine A1 and A2A receptor (A1R and A2AR) mRNA expression is poorly understood in specific cell subtypes in the frontal cortical brain regions implicated in this disorder. In this study, we assayed A1R and A2AR mRNA expression via qPCR in enriched populations of pyramidal neurons, which were isolated from postmortem anterior cingulate cortex (ACC) tissue from schizophrenia (n = 20) and control (n = 20) subjects using laser microdissection (LMD). A1R expression was significantly increased in female schizophrenia subjects compared to female control subjects (t(13) = -4.008, p = 0.001). A1R expression was also significantly decreased in female control subjects compared to male control subjects, suggesting sex differences in basal A1R expression (t(17) = 2.137, p = 0.047). A significant, positive association was found between dementia severity (clinical dementia rating (CDR) scores) and A2AR mRNA expression (Spearman's r = 0.424, p = 0.009). A2AR mRNA expression was significantly increased in unmedicated schizophrenia subjects, suggesting that A2AR expression may be normalized by chronic antipsychotic treatment (F(1,14) = 9.259, p = 0.009). Together, these results provide novel insights into the neuronal expression of adenosine receptors in the ACC in schizophrenia and suggest that receptor expression changes may be sex-dependent and associated with cognitive decline in these subjects.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
| | - Emily A. Devine
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
- Neuroscience Institute Promedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (R.E.M.)
| |
Collapse
|
10
|
Cameron D, Vinh NN, Prapaiwongs P, Perry EA, Walters JTR, Li M, O’Donovan MC, Bray NJ. Genetic implication of prenatal GABAergic and cholinergic neuron development in susceptibility to schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.14.23299948. [PMID: 38168283 PMCID: PMC10760267 DOI: 10.1101/2023.12.14.23299948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background The ganglionic eminences are fetal-specific structures that give rise to gamma-aminobutyric acid (GABA)- and acetylcholine- releasing neurons of the forebrain. Given evidence for GABAergic and cholinergic disturbances in schizophrenia, as well as an early neurodevelopmental component to the disorder, we tested the potential involvement of developing cells of the ganglionic eminences in mediating genetic risk for the condition. Study Design We combined data from a recent large-scale genome-wide association study of schizophrenia with single cell RNA sequencing data from the human ganglionic eminences to test enrichment of schizophrenia risk variation in genes with high expression specificity for particular developing cell populations within these structures. We additionally performed the single nuclei Assay for Transposase-Accessible Chromatin with Sequencing (snATAC-Seq) to map potential regulatory genomic regions operating in individual cell populations of the human ganglionic eminences, using these to additionally test for enrichment of schizophrenia common genetic variant liability and to functionally annotate non-coding variants associated with the disorder. Study Results Schizophrenia common variant liability was enriched in genes with high expression specificity for developing neuron populations that are predicted to form dopamine D1 and D2 receptor expressing GABAergic medium spiny neurons of the striatum, cortical somatostatin-positive GABAergic interneurons, calretinin-positive GABAergic neurons and cholinergic neurons. Consistent with these findings, schizophrenia genetic risk was also concentrated in predicted regulatory genomic sequence mapped in developing neuronal populations of the ganglionic eminences. Conclusions Our study provides evidence for a role of prenatal GABAergic and cholinergic neuron development in later susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Darren Cameron
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Ngoc-Nga Vinh
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Parinda Prapaiwongs
- Neuroscience & Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | - Elizabeth A. Perry
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - James T. R. Walters
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Meng Li
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- Neuroscience & Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | - Michael C. O’Donovan
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Bray
- Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- Neuroscience & Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, De Caro R, Maura G, Agnati LF. Modulation of Neuron and Astrocyte Dopamine Receptors via Receptor-Receptor Interactions. Pharmaceuticals (Basel) 2023; 16:1427. [PMID: 37895898 PMCID: PMC10610355 DOI: 10.3390/ph16101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Dopamine neurotransmission plays critical roles in regulating complex cognitive and behavioral processes including reward, motivation, reinforcement learning, and movement. Dopamine receptors are classified into five subtypes, widely distributed across the brain, including regions responsible for motor functions and specific areas related to cognitive and emotional functions. Dopamine also acts on astrocytes, which express dopamine receptors as well. The discovery of direct receptor-receptor interactions, leading to the formation of multimeric receptor complexes at the cell membrane and providing the cell decoding apparatus with flexible dynamics in terms of recognition and signal transduction, has expanded the knowledge of the G-protein-coupled receptor-mediated signaling processes. The purpose of this review article is to provide an overview of currently identified receptor complexes containing dopamine receptors and of their modulatory action on dopamine-mediated signaling between neurons and between neurons and astrocytes. Pharmacological possibilities offered by targeting receptor complexes in terms of addressing neuropsychiatric disorders associated with altered dopamine signaling will also be briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Cinzia Tortorella
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Chiara Cervetto
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Raffaele De Caro
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Guido Maura
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| |
Collapse
|
12
|
Illes P, Ulrich H, Chen JF, Tang Y. Purinergic receptors in cognitive disturbances. Neurobiol Dis 2023; 185:106229. [PMID: 37453562 DOI: 10.1016/j.nbd.2023.106229] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Purinergic receptors (Rs) of the ATP/ADP, UTP/UDP (P2X, P2Y) and adenosine (A1, A2A)-sensitive classes broadly interfere with cognitive processes both under quasi normal and disease conditions. During neurodegenerative illnesses, high concentrations of ATP are released from the damaged neuronal and non-neuronal cells of the brain; then, this ATP is enzymatically degraded to adenosine. Thus, the primary injury in neurodegenerative diseases appears to be caused by various protein aggregates on which a superimposed damage mediated by especially P2X7 and A2AR activation develops; this can be efficiently prevented by small molecular antagonists in animal models of the above diseases, or are mitigated in the respective knockout mice. Dementia is a leading symptom in Alzheimer's disease (AD), and accompanies Parkinson's disease (PD) and Huntington's disease (HD), especially in the advanced states of these illnesses. Animal experimentation suggests that P2X7 and A2ARs are also involved in a number of psychiatric diseases, such as major depressive disorder (MDD), obsessive compulsive behavior, and attention deficit hyperactivity disorder. In conclusion, small molecular antagonists of purinergic receptors are expected to supply us in the future with pharmaceuticals which are able to combat in a range of neurological/psychiatric diseases the accompanying cognitive deterioration.
Collapse
Affiliation(s)
- Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Henning Ulrich
- International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Department of Biochemistry and Molecular Biology, Chemistry Institute, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Whenzhou 325000, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditonal Chinese Medicine, Chengdu 610075, China; International Joint Research Center for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Acupuncture and Chronobiology Key Laboratory of Sichuan Province, School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
13
|
Rocchetti J, Fasano C, Dal-Bo G, Guma E, El Mestikawy S, Wong TP, Fakhfouri G, Giros B. Persistent extrasynaptic hyperdopaminergia in the mouse hippocampus induces plasticity and recognition memory deficits reversed by the atypical antipsychotic sulpiride. PLoS One 2023; 18:e0289770. [PMID: 37624765 PMCID: PMC10456148 DOI: 10.1371/journal.pone.0289770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Evidence suggests that subcortical hyperdopaminergia alters cognitive function in schizophrenia and antipsychotic drugs (APD) fail at rescuing cognitive deficits in patients. In a previous study, we showed that blocking D2 dopamine receptors (D2R), a core action of APD, led to profound reshaping of mesohippocampal fibers, deficits in synaptic transmission and impairments in learning and memory in the mouse hippocampus (HP). However, it is currently unknown how excessive dopamine affects HP-related cognitive functions, and how APD would impact HP functions in such a state. After verifying the presence of DAT-positive neuronal projections in the ventral (temporal), but not in the dorsal (septal), part of the HP, GBR12935, a blocker of dopamine transporter (DAT), was infused in the CA1 of adult C57Bl/6 mice to produce local hyperdopaminergia. Chronic GBR12935 infusion in temporal CA1 induced a mild learning impairment in the Morris Water Maze and abolished long-term recognition memory in novel-object (NORT) and object-place recognition tasks (OPRT). Deficits were accompanied by a significant decrease in DAT+ mesohippocampal fibers. Intrahippocampal or systemic treatment with sulpiride during GBR infusions improved the NORT deficit but not that of OPRT. In vitro application of GBR on hippocampal slices abolished long-term depression (LTD) of fEPSP in temporal CA1. LTD was rescued by co-application with sulpiride. In conclusion, chronic DAT blockade in temporal CA1 profoundly altered mesohippocampal modulation of hippocampal functions. Contrary to previous observations in normodopaminergic mice, antagonising D2Rs was beneficial for cognitive functions in the context of hippocampal hyperdopaminergia.
Collapse
Affiliation(s)
- Jill Rocchetti
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Caroline Fasano
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Gregory Dal-Bo
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Elisa Guma
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
- Sorbonne Université, INSERM, CNRS, NPS – IBPS, Paris, France
| | - Tak-Pan Wong
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
- Université Paris-Cité, INCC UMR 8002, CNRS, Paris, France
| |
Collapse
|
14
|
Duval F. Systematic Review of the Apomorphine Challenge Test in the Assessment of Dopaminergic Activity in Schizophrenia. Healthcare (Basel) 2023; 11:healthcare11101487. [PMID: 37239772 DOI: 10.3390/healthcare11101487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
So far, neuroendocrine studies conducted in schizophrenic patients have yielded conflicting results. Many of these discrepancies may be explained by the diversity of factors that influence the hormonal levels (at baseline and in response to pharmacological stimuli), the heterogeneity of the populations studied, the absence of standardization of test challenges and the confounding and long-lasting effects of previous treatments. Numerous studies have used apomorphine (APO) in the evaluation of dopaminergic (DA) function in schizophrenic patients. APO, a direct acting DA receptor agonist, decreases prolactin (PRL) and stimulates growth hormone (GH), adrenocorticotropic hormone (ACTH) and cortisol secretion. Therefore, the magnitude of hormonal responses to APO is an indirect assessment of the functionality of DA receptors at the hypothalamic-pituitary level. This review provides an update on the applications of the APO test in schizophrenia in clinical, pathophysiological and therapeutic fields.
Collapse
Affiliation(s)
- Fabrice Duval
- Pôle 8/9-APF2R, Centre Hospitalier, 68250 Rouffach, France
| |
Collapse
|
15
|
Arani ZM, Heidariyeh N, Ghavipanjeh G, Lotfinia M, Banafshe HR. Effect of risperidone on morphine-induced conditioned place preference and dopamine receptor D2 gene expression in male rat hippocampus. Brain Behav 2023; 13:e2975. [PMID: 37042060 PMCID: PMC10175997 DOI: 10.1002/brb3.2975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/24/2022] [Accepted: 06/03/2022] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Previous studies suggest the possible effect of risperidone on brain reward system and D1 and D2 dopamine receptors' involvement in morphine-induced conditioned place preference (CPP). AIMS The present study was designed to investigate the effect of risperidone as an atypical antipsychotic drug on morphine-induced CPP and D2-like dopamine receptor gene expression in rat. MATERIALS AND METHODS An unbiased CPP paradigm was used to study the effect of risperidone. Intraperitoneal (i.p.) injection of risperidone (1, 2, and 4 mg/kg) was performed 30 min before the morphine (10 mg/kg, i.p.) injection and just after the rat was placed in the CPP box. The open field test was used to assay the locomotor activity of animal. The gene expression of D2 dopamine receptor in hippocampus was measured by real-time PCR technique. The hippocampi of rats were also used for histology evaluation. RESULTS Morphine-produced (10 mg/kg) CPP and morphine-induced CPP were reversed only by the administration of a low dose of risperidone (1 mg/kg). Low dose of risperidone (1 mg/kg) showed no effect on locomotor activity but a higher dose of risperidone (2 and 4 mg/kg) decreased locomotor activity. Real-time PCR data analysis revealed that the gene expression of D2 dopamine receptor had significant difference between morphine and a 1 mg/kg dose of risperidone. Moreover, in histological evaluation, apoptosis was observed in the morphine group, whereas there was no evidence of apoptosis in the risperidone-treated groups. CONCLUSION Our results suggest that risperidone (1 mg/kg) reverses the morphine-induced CPP and may reduce the rewarding properties of morphine. It is also demonstrated that risperidone decreases the expression of D2 receptor in rat hippocampus. Therefore, risperidone can be considered potential adjunct therapy in morphine dependence.
Collapse
Affiliation(s)
- Zahra Mansouri Arani
- Physiology Animal, Department of Biology, Faculty of Sciences, Qom BranchIslamic Azad UniversityQomIran
| | - Nasrin Heidariyeh
- Department of Biology, Faculty of Sciences, Qom BranchIslamic Azad UniversityQomIran
| | | | - Majid Lotfinia
- Department of Biotechnology, Physiology Research Center, Basic Sciences Research InstituteKashan University of Medical SciencesKashanIran
| | - Hamid Reza Banafshe
- Department of Addiction Studies, School of MedicineKashan University of Medical SciencesKashanIran
| |
Collapse
|
16
|
Tseligkaridou G, Egger ST, Spiller TR, Schneller L, Frauenfelder F, Vetter S, Seifritz E, Burrer A. Relationship between antipsychotic medication and aggressive events in patients with a psychotic disorder hospitalized for treatment. BMC Psychiatry 2023; 23:205. [PMID: 36978013 PMCID: PMC10052831 DOI: 10.1186/s12888-023-04692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Disruptive and aggressive behavior is frequent in patients with a psychotic disorder; furthermore, it is a recurrent reason for compulsory admission. Even during treatment, many patients continue to show aggressive behavior. Antipsychotic medication is posed to have anti-aggressive properties; its prescription is a common strategy for the treatment (and prevention) of violent behavior. The present study aims to investigate the relation between the antipsychotic class, according to the dopamine D2-Receptor binding affinity (i.e., "loose" - "tight binding"), and aggressive events perpetrated by hospitalized patients with a psychotic disorder. METHODS We conducted a four-year retrospective analysis of legally liable aggressive incidents perpetrated by patients during hospitalization. We extracted patients' basic demographic and clinical data from electronic health records. We used the Staff Observation Aggression Scale (SOAS-R) to grade the severity of an event. Differences between patients with a "loose" or "tight-binding" antipsychotic were analyzed. RESULTS In the observation period, there were 17,901 direct admissions; and 61 severe aggressive events (an incidence of 0.85 for every 1,000 admissions year). Patients with a psychotic disorder perpetrated 51 events (incidence of 2.90 for every 1,000 admission year), with an OR of 15.85 (CI: 8.04-31.25) compared to non-psychotic patients. We could identify 46 events conducted by patients with a psychotic disorder under medication. The mean SOAS-R total score was 17.02 (2.74). The majority of victims in the "loose-binding" group were staff members (73.1%, n = 19), while the majority of victims in the "tight-binding" group were fellow patients (65.0%, n = 13); (X2(3,46) = 19.687; p < 0.001). There were no demographic or clinical differences between the groups and no differences regarding dose equivalents or other prescribed medication. CONCLUSIONS In aggressive behaviors conducted by patients with a psychotic disorder under antipsychotic medication, the dopamine D2-Receptor affinity seems to have a high impact on the target of aggression. However, more studies are needed to investigate the anti-aggressive effects of individual antipsychotic agents.
Collapse
Affiliation(s)
- Georgia Tseligkaridou
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stephan T Egger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Tobias R Spiller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Lena Schneller
- Legal and Compliance, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Fritz Frauenfelder
- Department of Nursing, Therapies and Social Work, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Vetter
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Achim Burrer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Free RB, Nilson AN, Boldizsar NM, Doyle TB, Rodriguiz RM, Pogorelov VM, Machino M, Lee KH, Bertz JW, Xu J, Lim HD, Dulcey AE, Mach RH, Woods JH, Lane JR, Shi L, Marugan JJ, Wetsel WC, Sibley DR. Identification and Characterization of ML321: A Novel and Highly Selective D 2 Dopamine Receptor Antagonist with Efficacy in Animal Models That Predict Atypical Antipsychotic Activity. ACS Pharmacol Transl Sci 2023; 6:151-170. [PMID: 36654757 PMCID: PMC9841785 DOI: 10.1021/acsptsci.2c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 12/31/2022]
Abstract
We have developed and characterized a novel D2R antagonist with exceptional GPCR selectivity - ML321. In functional profiling screens of 168 different GPCRs, ML321 showed little activity beyond potent inhibition of the D2R and to a lesser extent the D3R, demonstrating excellent receptor selectivity. The D2R selectivity of ML321 may be related to the fact that, unlike other monoaminergic ligands, ML321 lacks a positively charged amine group and adopts a unique binding pose within the orthosteric binding site of the D2R. PET imaging studies in non-human primates demonstrated that ML321 penetrates the CNS and occupies the D2R in a dose-dependent manner. Behavioral paradigms in rats demonstrate that ML321 can selectively antagonize a D2R-mediated response (hypothermia) while not affecting a D3R-mediated response (yawning) using the same dose of drug, thus indicating exceptional in vivo selectivity. We also investigated the effects of ML321 in animal models that are predictive of antipsychotic efficacy in humans. We found that ML321 attenuates both amphetamine- and phencyclidine-induced locomotor activity and restored pre-pulse inhibition (PPI) of acoustic startle in a dose-dependent manner. Surprisingly, using doses that were maximally effective in both the locomotor and PPI studies, ML321 was relatively ineffective in promoting catalepsy. Kinetic studies revealed that ML321 exhibits slow-on and fast-off receptor binding rates, similar to those observed with atypical antipsychotics with reduced extrapyramidal side effects. Taken together, these observations suggest that ML321, or a derivative thereof, may exhibit ″atypical″ antipsychotic activity in humans with significantly fewer side effects than observed with the currently FDA-approved D2R antagonists.
Collapse
Affiliation(s)
- R. Benjamin Free
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| | - Ashley N. Nilson
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| | - Noelia M. Boldizsar
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| | - Trevor B. Doyle
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| | - Ramona M. Rodriguiz
- Department
of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine
Analysis Core Facility, Duke University
Medical Center, 354 Sands Building, 303 Research Drive, Durham, North Carolina27710, United States
| | - Vladimir M. Pogorelov
- Department
of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine
Analysis Core Facility, Duke University
Medical Center, 354 Sands Building, 303 Research Drive, Durham, North Carolina27710, United States
| | - Mayako Machino
- Computational
Chemistry and Molecular Biophysics Section, Molecular Targets and
Medications Discovery Branch, National Institute on Drug Abuse, Intramural
Research Program, National Institutes of
Health, 333 Cassell Drive, Baltimore, Maryland21224, United
States
| | - Kuo Hao Lee
- Computational
Chemistry and Molecular Biophysics Section, Molecular Targets and
Medications Discovery Branch, National Institute on Drug Abuse, Intramural
Research Program, National Institutes of
Health, 333 Cassell Drive, Baltimore, Maryland21224, United
States
| | - Jeremiah W. Bertz
- Department
of Pharmacology, University of Michigan
Medical School, 1150 W. Medical Center Dr., Ann Arbor, Michigan48109, United States
| | - Jinbin Xu
- Division
of Radiological Sciences, Department of Radiology, Mallinckrodt Institute
of Radiology, Washington University School
of Medicine, St. Louis, Missouri63110, United States
| | - Herman D. Lim
- Drug Discovery
Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC3052, Australia
| | - Andrés E. Dulcey
- Division
of Pre-Clinical Innovation, National Center for Advancing Translational
Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland20850, United States
| | - Robert H. Mach
- Department
of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania19104, United States
| | - James H. Woods
- Department
of Pharmacology, University of Michigan
Medical School, 1150 W. Medical Center Dr., Ann Arbor, Michigan48109, United States
| | - J Robert Lane
- Centre
of Membrane Proteins and Receptors, Universities
of Birmingham and Nottingham, NottinghamNG7 2UH, United Kingdom
| | - Lei Shi
- Computational
Chemistry and Molecular Biophysics Section, Molecular Targets and
Medications Discovery Branch, National Institute on Drug Abuse, Intramural
Research Program, National Institutes of
Health, 333 Cassell Drive, Baltimore, Maryland21224, United
States
| | - Juan J. Marugan
- Division
of Pre-Clinical Innovation, National Center for Advancing Translational
Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland20850, United States
| | - William C. Wetsel
- Department
of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine
Analysis Core Facility, Duke University
Medical Center, 354 Sands Building, 303 Research Drive, Durham, North Carolina27710, United States
- Departments
of Neurobiology and Cell Biology, Duke University
Medical Center, 354 Sands Building, 303 Research Drive, Durham, North Carolina27710, United States
| | - David R. Sibley
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke, Intramural Research Program, National Institutes of Health, 35 Convent Drive, MSC-3723, Bethesda, Maryland20892, United States
| |
Collapse
|
18
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Al Abadey A, Connor B, Flamme ACL, Robichon K. Clozapine reduces chemokine-mediated migration of lymphocytes by targeting NF-κB and AKT phosphorylation. Cell Signal 2022; 99:110449. [PMID: 36031090 DOI: 10.1016/j.cellsig.2022.110449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis is a disease characterised by demyelination of axons in the central nervous system. The atypical antipsychotic drug clozapine has been shown to attenuate disease severity in experimental autoimmune encephalomyelitis (EAE), a mouse model that is useful for the study of multiple sclerosis. However, the mechanism of action by which clozapine reduces disease in EAE is poorly understood. To better understand how clozapine exerts its protective effects, we investigated the underlying signalling pathways by which clozapine may reduce immune cell migration by evaluating chemokine and dopamine receptor-associated signalling pathways. We found that clozapine inhibits migration of immune cells by reducing chemokine production in microglia cells by targeting NF-κB phosphorylation and promoting an anti-inflammatory milieu. Furthermore, clozapine directly targets immune cell migration by changing Ca2+ levels within immune cells and reduces the phosphorylation of signalling protein AKT. Linking these pathways to the antagonising effect of clozapine on dopamine and serotonin receptors, we provide insight into how clozapine alters immune cells migration by directly targeting the underlying migration-associated pathways.
Collapse
Affiliation(s)
- Afnan Al Abadey
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand; Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
20
|
Sumaya I, Dubocovich M. Melatonin-Mediated Attenuation of Fluphenazine-Induced Hypokinesia in C57BL/6 Mice is Dependent on the Light/Dark Phase. Behav Brain Res 2022; 425:113827. [DOI: 10.1016/j.bbr.2022.113827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
|
21
|
Miller CL. The Epigenetics of Psychosis: A Structured Review with Representative Loci. Biomedicines 2022; 10:561. [PMID: 35327363 PMCID: PMC8945330 DOI: 10.3390/biomedicines10030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
The evidence for an environmental component in chronic psychotic disorders is strong and research on the epigenetic manifestations of these environmental impacts has commenced in earnest. In reviewing this research, the focus is on three genes as models for differential methylation, MCHR1, AKT1 and TDO2, each of which have been investigated for genetic association with psychotic disorders. Environmental factors associated with psychotic disorders, and which interact with these model genes, are explored in depth. The location of transcription factor motifs relative to key methylation sites is evaluated for predicted gene expression results, and for other sites, evidence is presented for methylation directing alternative splicing. Experimental results from key studies show differential methylation: for MCHR1, in psychosis cases versus controls; for AKT1, as a pre-existing methylation pattern influencing brain activation following acute administration of a psychosis-eliciting environmental stimulus; and for TDO2, in a pattern associated with a developmental factor of risk for psychosis, in all cases the predicted expression impact being highly dependent on location. Methylation induced by smoking, a confounding variable, exhibits an intriguing pattern for all three genes. Finally, how differential methylation meshes with Darwinian principles is examined, in particular as it relates to the "flexible stem" theory of evolution.
Collapse
|
22
|
Aripiprazole Offsets Mutant ATXN3-Induced Motor Dysfunction by Targeting Dopamine D2 and Serotonin 1A and 2A Receptors in C. elegans. Biomedicines 2022; 10:biomedicines10020370. [PMID: 35203579 PMCID: PMC8962381 DOI: 10.3390/biomedicines10020370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023] Open
Abstract
The atypical antipsychotic aripiprazole is a Food and Drug Administration-approved drug for the treatment of psychotic, mood, and other psychiatric disorders. Previous drug discovery efforts pinpointed aripiprazole as an effective suppressor of Machado–Joseph disease (MJD) pathogenesis, as its administration resulted in a reduced abundance and aggregation of mutant Ataxin-3 (ATXN3) proteins. Dopamine partial agonism and functional selectivity have been proposed as the main pharmacological mechanism of action of aripiprazole in the treatment of psychosis; however, this mechanism remains to be determined in the context of MJD. Here, we focus on confirming the efficacy of aripiprazole to reduce motor dysfunction in vivo, using a Caenorhabditis elegans (C. elegans) model of MJD, and on unveiling the drug targets required for its positive action against mutant ATXN3 pathogenesis. We employed pharmacogenetics and pharmacological approaches to identify which dopamine and serotonin receptors are critical for aripiprazole-mediated improvements in motor function. We demonstrated that dopamine D2-like and serotonin 5-HT1A and 5-HT2A receptors play important roles in this process. Our findings strengthen the relevance of dopaminergic and serotoninergic signaling modulation against mutant ATXN3-mediated pathogenesis. The identification of aripiprazole’s cellular targets, relevant for MJD and perhaps other neurodegenerative diseases, may pave the way for prospective drug discovery and development campaigns aiming to improve the features of this prototypical compound and reduce side effects not negligible in the case of aripiprazole.
Collapse
|
23
|
Stamoula Ε, Ainatzoglou A, Stamatellos V, Dardalas I, Siafis S, Matsas A, Stamoulas K, Papazisis G. Atypical antipsychotics in multiple sclerosis: A review of their in vivo immunomodulatory effects. Mult Scler Relat Disord 2022; 58:103522. [DOI: 10.1016/j.msard.2022.103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 11/17/2022]
|
24
|
Bampali K, Koniuszewski F, Silva LL, Rehman S, Vogel FD, Seidel T, Scholze P, Zirpel F, Garon A, Langer T, Willeit M, Ernst M. Tricyclic antipsychotics and antidepressants can inhibit α5-containing GABA A receptors by two distinct mechanisms. Br J Pharmacol 2022; 179:3675-3692. [PMID: 35088415 PMCID: PMC9314015 DOI: 10.1111/bph.15807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/10/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Many psychotherapeutic drugs, including clozapine, display polypharmacology and act on GABAA receptors. Patients with schizophrenia show alterations in function, structure and molecular composition of the hippocampus, and a recent study demonstrated aberrant levels of hippocampal α5 subunit‐containing GABAA receptors. The purpose of this study is to investigate the effects of tricyclic compounds on α5 subunit‐containing receptor subtypes. Experimental Approach Functional studies of effects by seven antipsychotic and antidepressant medications were performed in several GABAA receptor subtypes by two‐electrode voltage‐clamp electrophysiology using Xenopus laevis oocytes. Computational structural analysis was employed to design mutated constructs of the α5 subunit, probing a novel binding site. Radioligand displacement data complemented the functional and mutational findings. Key Results The antipsychotic drugs clozapine and chlorpromazine exerted functional inhibition on multiple GABAA receptor subtypes, including those containing α5‐subunits. Based on a chlorpromazine binding site observed in a GABA‐gated bacterial homologue, we identified a novel site in α5 GABAA receptor subunits and demonstrate differential usage of this and the orthosteric sites by these ligands. Conclusion and Implications Despite high molecular and functional similarities among the tested ligands, they reduce GABA currents by differential usage of allosteric and orthosteric sites. The chlorpromazine site we describe here is a new potential target for optimizing antipsychotic medications with beneficial polypharmacology. Further studies in defined subtypes are needed to substantiate mechanistic links between the therapeutic effects of clozapine and its action on certain GABAA receptor subtypes.
Collapse
Affiliation(s)
- Konstantina Bampali
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Luca L Silva
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Sabah Rehman
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Florian D Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Florian Zirpel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Arthur Garon
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
25
|
Kiss B, Krámos B, Laszlovszky I. Potential Mechanisms for Why Not All Antipsychotics Are Able to Occupy Dopamine D 3 Receptors in the Brain in vivo. Front Psychiatry 2022; 13:785592. [PMID: 35401257 PMCID: PMC8987915 DOI: 10.3389/fpsyt.2022.785592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Dysfunctions of the dopaminergic system are believed to play a major role in the core symptoms of schizophrenia such as positive, negative, and cognitive symptoms. The first line of treatment of schizophrenia are antipsychotics, a class of medications that targets several neurotransmitter receptors in the brain, including dopaminergic, serotonergic, adrenergic and/or muscarinic receptors, depending on the given agent. Although the currently used antipsychotics display in vitro activity at several receptors, majority of them share the common property of having high/moderate in vitro affinity for dopamine D2 receptors (D2Rs) and D3 receptors (D3Rs). In terms of mode of action, these antipsychotics are either antagonist or partial agonist at the above-mentioned receptors. Although D2Rs and D3Rs possess high degree of homology in their molecular structure, have common signaling pathways and similar in vitro pharmacology, they have different in vivo pharmacology and therefore behavioral roles. The aim of this review, with summarizing preclinical and clinical evidence is to demonstrate that while currently used antipsychotics display substantial in vitro affinity for both D3Rs and D2Rs, only very few can significantly occupy D3Rs in vivo. The relative importance of the level of endogenous extracellular dopamine in the brain and the degree of in vitro D3Rs receptor affinity and selectivity as determinant factors for in vivo D3Rs occupancy by antipsychotics, are also discussed.
Collapse
Affiliation(s)
- Béla Kiss
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Balázs Krámos
- Spectroscopic Research Department, Gedeon Richter Plc., Budapest, Hungary
| | | |
Collapse
|
26
|
Stuke H. Markers of muscarinic deficit for individualized treatment in schizophrenia. Front Psychiatry 2022; 13:1100030. [PMID: 36699495 PMCID: PMC9868756 DOI: 10.3389/fpsyt.2022.1100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Recent clinical studies have shown that agonists at muscarinic acetylcholine receptors effectively reduce schizophrenia symptoms. It is thus conceivable that, for the first time, a second substance class of procholinergic antipsychotics could become established alongside the usual antidopaminergic antipsychotics. In addition, various basic science studies suggest that there may be a subgroup of schizophrenia in which hypofunction of muscarinic acetylcholine receptors is of etiological importance. This could represent a major opportunity for individualized treatment of schizophrenia if markers can be identified that predict response to procholinergic vs. antidopaminergic interventions. In this perspective, non-response to antidopaminergic antipsychotics, specific symptom patterns like visual hallucinations and strong disorganization, the presence of antimuscarinic antibodies, ERP markers such as mismatch negativity, and radiotracers are presented as possible in vivo markers of muscarinic deficit and thus potentially of response to procholinergic therapeutics. Finally, open questions and further research steps are outlined.
Collapse
Affiliation(s)
- Heiner Stuke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| |
Collapse
|
27
|
Komatsu H. Innovative Therapeutic Approaches for Huntington's Disease: From Nucleic Acids to GPCR-Targeting Small Molecules. Front Cell Neurosci 2021; 15:785703. [PMID: 34899193 PMCID: PMC8662694 DOI: 10.3389/fncel.2021.785703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disorder due to an extraordinarily expanded CAG repeat in the huntingtin gene that confers a gain-of-toxic function in the mutant protein. There is currently no effective cure that attenuates progression and severity of the disease. Since HD is an inherited monogenic disorder, lowering the mutant huntingtin (mHTT) represents a promising therapeutic strategy. Huntingtin lowering strategies mostly focus on nucleic acid approaches, such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). While these approaches seem to be effective, the drug delivery to the brain poses a great challenge and requires direct injection into the central nervous system (CNS) that results in substantial burden for patients. This review discusses the topics on Huntingtin lowering strategies with clinical trials in patients already underway and introduce an innovative approach that has the potential to deter the disease progression through the inhibition of GPR52, a striatal-enriched class A orphan G protein-coupled receptor (GPCR) that represents a promising therapeutic target for psychiatric disorders. Chemically simple, potent, and selective GPR52 antagonists have been discovered through high-throughput screening and subsequent structure-activity relationship studies. These small molecule antagonists not only diminish both soluble and aggregated mHTT in the striatum, but also ameliorate HD-like defects in HD mice. This therapeutic approach offers great promise as a novel strategy for HD therapy, while nucleic acid delivery still faces considerable challenges.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Business Strategy, Kyowa Pharmaceutical Industry Co., Ltd., Osaka, Japan.,Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
28
|
He Z, Jiang Y, Gu S, Wu D, Qin D, Feng G, Ma X, Huang JH, Wang F. The Aversion Function of the Limbic Dopaminergic Neurons and Their Roles in Functional Neurological Disorders. Front Cell Dev Biol 2021; 9:713762. [PMID: 34616730 PMCID: PMC8488171 DOI: 10.3389/fcell.2021.713762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
The Freudian theory of conversion suggested that the major symptoms of functional neurological disorders (FNDs) are due to internal conflicts at motivation, especially at the sex drive or libido. FND patients might behave properly at rewarding situations, but they do not know how to behave at aversive situations. Sex drive is the major source of dopamine (DA) release in the limbic area; however, the neural mechanism involved in FND is not clear. Dopaminergic (DAergic) neurons have been shown to play a key role in processing motivation-related information. Recently, DAergic neurons are found to be involved in reward-related prediction error, as well as the prediction of aversive information. Therefore, it is suggested that DA might change the rewarding reactions to aversive reactions at internal conflicts of FND. So DAergic neurons in the limbic areas might induce two major motivational functions: reward and aversion at internal conflicts. This article reviewed the recent advances on studies about DAergic neurons involved in aversive stimulus processing at internal conflicts and summarizes several neural pathways, including four limbic system brain regions, which are involved in the processing of aversion. Then the article discussed the vital function of these neural circuits in addictive behavior, depression treatment, and FNDs. In all, this review provided a prospect for future research on the aversion function of limbic system DA neurons and the therapy of FNDs.
Collapse
Affiliation(s)
- Zhengming He
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Dandan Wu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Duo Qin
- School of Foreign Languages, China University of Geosciences, Wuhan, China
| | - Guangkui Feng
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianjun Ma
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jason H Huang
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Zhu M, Liu Z, Guo Y, Sultana MS, Wu K, Lang X, Lv Q, Huang X, Yi Z, Li Z. Sex difference in the interrelationship between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. J Neuroinflammation 2021; 18:202. [PMID: 34526062 PMCID: PMC8444364 DOI: 10.1186/s12974-021-02261-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Increasing evidence indicates that dysregulated TNF-α and oxidative stress (OxS) contribute to the pathophysiology of schizophrenia. Additionally, previous evidence has demonstrated sex differences in many aspects of schizophrenia including clinical characteristics, cytokines, and OxS markers. However, to the best of our knowledge, there is no study investigating sex differences in the association between TNF-α, the OxS system, and their interaction with clinical symptoms in schizophrenia patients, especially in first-episode drug-naïve (FEDN) patients. Methods A total of 119 FEDN schizophrenia patients and 135 healthy controls were recruited for this study. Serum TNF-α, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA) were measured. The Positive and Negative Syndrome Scale (PANSS) was applied to evaluate psychotic symptoms. Two-way ANOVA, partial correlation analysis, and multivariate regression analysis were performed. Results A sex difference in MDA levels was demonstrated only in healthy controls (F = 7.06, pBonferroni = 0.045) and not seen in patients. Furthermore, only male patients had higher MDA levels than male controls (F = 8.19, pBonferroni = 0.03). Additionally, sex differences were observed in the association of TNF-α and MDA levels with psychotic symptoms (all pBonferroni < 0.05). The interaction of TNF-α and MDA was only associated with general psychopathology symptom in male patients (B = − 0.07, p = 0.02). Conclusion Our results demonstrate the sex difference in the relationship between TNF-α, MDA, and their interaction with psychopathological symptoms of patients with schizophrenia.
Collapse
Affiliation(s)
- Minghuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China.,Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Zhenjing Liu
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Yanhong Guo
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Mst Sadia Sultana
- Department of Public Health and Informatics, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Kang Wu
- Department of Laboratory Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoe Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Xiao Huang
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China.
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Guangzhou, 510370, China.
| |
Collapse
|
30
|
Inkster JAH, Sromek AW, Akurathi V, Neumeyer JL, Packard AB. The Non-Anhydrous, Minimally Basic Synthesis of the Dopamine D 2 Agonist [18F]MCL-524. CHEMISTRY (BASEL, SWITZERLAND) 2021; 3:1047-1056. [PMID: 37830058 PMCID: PMC10569134 DOI: 10.3390/chemistry3030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The dopamine D2 agonist MCL-524 is selective for the D2 receptor in the high-affinity state (D2high), and, therefore, the PET analogue, [18F]MCL-524, may facilitate the elucidation of the role of D2high in disorders such as schizophrenia. However, the previously reported synthesis of [18F]MCL-524 proved difficult to replicate and was lacking experimental details. We therefore developed a new synthesis of [18F]MCL-524 using a "non-anhydrous, minimally basic" (NAMB) approach. In this method, [18F]F- is eluted from a small (10-12 mg) trap-and-release column with tetraethylammonium tosylate (2.37 mg) in 7:3 MeCN:H2O (0.1 mL), rather than the basic carbonate or bicarbonate solution that is most often used for [18F]F- recovery. The tosylated precursor (1 mg) in 0.9 mL anhydrous acetonitrile was added directly to the eluate, without azeotropic drying, and the solution was heated (150 °C/15 min). The catechol was then deprotected with the Lewis acid In(OTf)3 (10 equiv.; 150 °C/20 min). In contrast to deprotection with protic acids, Lewis-acid-based deprotection facilitated the efficient removal of byproducts by HPLC and eliminated the need for SPE extraction prior to HPLC purification. Using the NAMB approach, [18F]MCL-524 was obtained in 5-9% RCY (decay-corrected, n = 3), confirming the utility of this improved method for the multistep synthesis of [18F]MCL-524 and suggesting that it may applicable to the synthesis of other 18F-labeled radiotracers.
Collapse
Affiliation(s)
- James A. H. Inkster
- Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - Anna W. Sromek
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Vamsidhar Akurathi
- Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| | - John L. Neumeyer
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA
| | - Alan B. Packard
- Division of Nuclear Medicine and Molecular Imaging, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA
| |
Collapse
|
31
|
Mundorf A, Kubitza N, Hünten K, Matsui H, Juckel G, Ocklenburg S, Freund N. Maternal immune activation leads to atypical turning asymmetry and reduced DRD2 mRNA expression in a rat model of schizophrenia. Behav Brain Res 2021; 414:113504. [PMID: 34331971 DOI: 10.1016/j.bbr.2021.113504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022]
Abstract
Atypical asymmetries have been reported in individuals diagnosed with schizophrenia, linking higher symptom severity to weaker lateralization. Furthermore, both lateralization and schizophrenia are influenced by the dopaminergic system. However, whether a direct link between the etiology of schizophrenia and atypical asymmetries exists is yet to be investigated. In this study, we examined whether maternal immune activation (MIA), a developmental animal model for schizophrenia and known to alter the dopaminergic system, induces atypical lateralization in adolescent and adult offspring. As the dopaminergic system is a key player in both, we analyzed neuronal dopamine D2 receptor (DRD2) mRNA expression. MIA was induced by injecting pregnant rats with 10 mg/kg polyinosinic:polycytidylic (PolyI:C) at gestational day 15. Controls were injected with 0.9 % NaCl. Offspring were tested at adolescence or early adulthood for asymmetry of turning behavior in the open field test. The total number of left and right turns per animal was assessed using DeepLabCut. Strength and preferred side of asymmetry were analyzed by calculating lateralization quotients. Additionally, DRD2 mRNA expression in the prefrontal cortex of offspring at both ages was analyzed using real-time PCR. MIA was associated with a rightward turning behavior in adolescents. In adults, MIA was associated with an absence of turning bias, indicating reduced asymmetry after MIA. The analysis of DRD2 mRNA expression revealed significantly lower mRNA levels after MIA compared to controls in adolescent, but not adult animals. Our results reinforce the association between atypical asymmetries, reduced DRD2 mRNA expression, and schizophrenia. However, more preclinical research is needed.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany; Institute for Systems Medicine, Department of Medicine, MSH Medical School Hamburg, Germany
| | - Nadja Kubitza
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany
| | - Karola Hünten
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany
| | - Hiroshi Matsui
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido, Japan
| | - Georg Juckel
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Department Biopsychology, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Germany.
| |
Collapse
|
32
|
Rampino A, Torretta S, Gelao B, Veneziani F, Iacoviello M, Marakhovskaya A, Masellis R, Andriola I, Sportelli L, Pergola G, Minelli A, Magri C, Gennarelli M, Vita A, Beaulieu JM, Bertolino A, Blasi G. Evidence of an interaction between FXR1 and GSK3β polymorphisms on levels of Negative Symptoms of Schizophrenia and their response to antipsychotics. Eur Psychiatry 2021; 64:e39. [PMID: 33866994 PMCID: PMC8260562 DOI: 10.1192/j.eurpsy.2021.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Genome-Wide Association Studies (GWASs) have identified several genes associated with Schizophrenia (SCZ) and exponentially increased knowledge on the genetic basis of the disease. In addition, products of GWAS genes interact with neuronal factors coded by genes lacking association, such that this interaction may confer risk for specific phenotypes of this brain disorder. In this regard, fragile X mental retardation syndrome-related 1 (FXR1) gene has been GWAS associated with SCZ. FXR1 protein is regulated by glycogen synthase kinase-3β (GSK3β), which has been implicated in pathophysiology of SCZ and response to antipsychotics (APs). rs496250 and rs12630592, two eQTLs (Expression Quantitative Trait Loci) of FXR1 and GSK3β, respectively, interact on emotion stability and amygdala/prefrontal cortex activity during emotion processing. These two phenotypes are associated with Negative Symptoms (NSs) of SCZ suggesting that the interaction between these SNPs may also affect NS severity and responsiveness to medication. METHODS To test this hypothesis, in two independent samples of patients with SCZ, we investigated rs496250 by rs12630592 interaction on NS severity and response to APs. We also tested a putative link between APs administration and FXR1 expression, as already reported for GSK3β expression. RESULTS We found that rs496250 and rs12630592 interact on NS severity. We also found evidence suggesting interaction of these polymorphisms also on response to APs. This interaction was not present when looking at positive and general psychopathology scores. Furthermore, chronic olanzapine administration led to a reduction of FXR1 expression in mouse frontal cortex. DISCUSSION Our findings suggest that, like GSK3β, FXR1 is affected by APs while shedding new light on the role of the FXR1/GSK3β pathway for NSs of SCZ.
Collapse
Affiliation(s)
- Antonio Rampino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Silvia Torretta
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Gelao
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Federica Veneziani
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Matteo Iacoviello
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Rita Masellis
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Ileana Andriola
- Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Leonardo Sportelli
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonio Vita
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | | | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Azienda Ospedaliero-Universitaria Consorziale Policlinico, Bari, Italy
| |
Collapse
|
33
|
Mann A, Keen AC, Mark H, Dasgupta P, Javitch JA, Canals M, Schulz S, Robert Lane J. New phosphosite-specific antibodies to unravel the role of GRK phosphorylation in dopamine D 2 receptor regulation and signaling. Sci Rep 2021; 11:8288. [PMID: 33859231 PMCID: PMC8050214 DOI: 10.1038/s41598-021-87417-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
The dopamine D2 receptor (D2R) is the target of drugs used to treat the symptoms of Parkinson’s disease and schizophrenia. The D2R is regulated through its interaction with and phosphorylation by G protein receptor kinases (GRKs) and interaction with arrestins. More recently, D2R arrestin-mediated signaling has been shown to have distinct physiological functions to those of G protein signalling. Relatively little is known regarding the patterns of D2R phosphorylation that might control these processes. We aimed to generate antibodies specific for intracellular D2R phosphorylation sites to facilitate the investigation of these mechanisms. We synthesised double phosphorylated peptides corresponding to regions within intracellular loop 3 of the hD2R and used them to raise phosphosite-specific antibodies to capture a broad screen of GRK-mediated phosphorylation. We identify an antibody specific to a GRK2/3 phosphorylation site in intracellular loop 3 of the D2R. We compared measurements of D2R phosphorylation with other measurements of D2R signalling to profile selected D2R agonists including previously described biased agonists. These studies demonstrate the utility of novel phosphosite-specific antibodies to investigate D2R regulation and signalling.
Collapse
Affiliation(s)
- Anika Mann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Alastair C Keen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Hanka Mark
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Pooja Dasgupta
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, USA
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK. .,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
34
|
Carli M, Kolachalam S, Longoni B, Pintaudi A, Baldini M, Aringhieri S, Fasciani I, Annibale P, Maggio R, Scarselli M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals (Basel) 2021; 14:238. [PMID: 33800403 PMCID: PMC8001502 DOI: 10.3390/ph14030238] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics (AAPs) are commonly prescribed medications to treat schizophrenia, bipolar disorders and other psychotic disorders. However, they might cause metabolic syndrome (MetS) in terms of weight gain, dyslipidemia, type 2 diabetes (T2D), and high blood pressure, which are responsible for reduced life expectancy and poor adherence. Importantly, there is clear evidence that early metabolic disturbances can precede weight gain, even if the latter still remains the hallmark of AAPs use. In fact, AAPs interfere profoundly with glucose and lipid homeostasis acting mostly on hypothalamus, liver, pancreatic β-cells, adipose tissue, and skeletal muscle. Their actions on hypothalamic centers via dopamine, serotonin, acetylcholine, and histamine receptors affect neuropeptides and 5'AMP-activated protein kinase (AMPK) activity, thus producing a supraphysiological sympathetic outflow augmenting levels of glucagon and hepatic glucose production. In addition, altered insulin secretion, dyslipidemia, fat deposition in the liver and adipose tissues, and insulin resistance become aggravating factors for MetS. In clinical practice, among AAPs, olanzapine and clozapine are associated with the highest risk of MetS, whereas quetiapine, risperidone, asenapine and amisulpride cause moderate alterations. The new AAPs such as ziprasidone, lurasidone and the partial agonist aripiprazole seem more tolerable on the metabolic profile. However, these aspects must be considered together with the differences among AAPs in terms of their efficacy, where clozapine still remains the most effective. Intriguingly, there seems to be a correlation between AAP's higher clinical efficacy and increase risk of metabolic alterations. Finally, a multidisciplinary approach combining psychoeducation and therapeutic drug monitoring (TDM) is proposed as a first-line strategy to avoid the MetS. In addition, pharmacological treatments are discussed as well.
Collapse
Affiliation(s)
- Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Anna Pintaudi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Marco Baldini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany;
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| |
Collapse
|
35
|
Bielawski T, Albrechet-Souza L, Frydecka D. Endocannabinoid system in trauma and psychosis: distant guardian of mental stability. Rev Neurosci 2021; 32:707-722. [PMID: 33656307 DOI: 10.1515/revneuro-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Central endocannabinoid system (eCBS) is a neuromodulatory system that inhibits potentially harmful, excessive synaptic activation. Endocannabinoid receptors are abundant among brain structures pivotal in different mental disorders development (for example, hippocampus, amygdala, medial-prefrontal cortex, hypothalamus). Here, we review eCBS function in etiology of psychosis, emphasizing its role in dealing with environmental pressures such as traumatic life events. Moreover, we explore eCBS as a guard against hypothalamic-pituitary-adrenal axis over-activation, and discuss its possible role in etiology of different psychopathologies. Additionally, we review eCBS function in creating adaptive behavioral patterns, as we explore its involvement in the memory formation process, extinction learning and emotional response. We discuss eCBS in the context of possible biomarkers of trauma, and in preclinical psychiatric conditions, such as at-risk mental states and clinical high risk states for psychosis. Finally, we describe the role of eCBS in the cannabinoid self-medication-theory and extinction learning.
Collapse
Affiliation(s)
- Tomasz Bielawski
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Lucas Albrechet-Souza
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA.,Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, 10 Pasteur Street, 50-367Wroclaw, Poland
| |
Collapse
|
36
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|
37
|
Robichon K, Sondhauss S, Jordan TW, Keyzers RA, Connor B, La Flamme AC. Localisation of clozapine during experimental autoimmune encephalomyelitis and its impact on dopamine and its receptors. Sci Rep 2021; 11:2966. [PMID: 33536582 PMCID: PMC7858600 DOI: 10.1038/s41598-021-82667-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/14/2021] [Indexed: 01/11/2023] Open
Abstract
Multiple sclerosis is a disease characterised by axonal demyelination in the central nervous system (CNS). The atypical antipsychotic drug clozapine attenuates experimental autoimmune encephalomyelitis (EAE), a mouse model used to study multiple sclerosis, but the precise mechanism is unknown and could include both peripheral and CNS-mediated effects. To better understand where clozapine exerts its protective effects, we investigated the tissue distribution and localisation of clozapine using matrix-assisted laser desorption ionization imaging mass spectrometry and liquid chromatography-mass spectrometry. We found that clozapine was detectable in the brain and enriched in specific brain regions (cortex, thalamus and olfactory bulb), but the distribution was not altered by EAE. Furthermore, although not altered in other organs, clozapine levels were significantly elevated in serum during EAE. Because clozapine antagonises dopamine receptors, we analysed dopamine levels in serum and brain as well as dopamine receptor expression on brain-resident and infiltrating immune cells. While neither clozapine nor EAE significantly affected dopamine levels, we observed a significant downregulation of dopamine receptors 1 and 5 and up-regulation of dopamine receptor 2 on microglia and CD4+-infiltrating T cells during EAE. Together these findings provide insight into how neuroinflammation, as modelled by EAE, alters the distribution and downstream effects of clozapine.
Collapse
Affiliation(s)
- Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Sven Sondhauss
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - T William Jordan
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand.
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
38
|
Valle-León M, Callado LF, Aso E, Cajiao-Manrique MM, Sahlholm K, López-Cano M, Soler C, Altafaj X, Watanabe M, Ferré S, Fernández-Dueñas V, Menchón JM, Ciruela F. Decreased striatal adenosine A 2A-dopamine D 2 receptor heteromerization in schizophrenia. Neuropsychopharmacology 2021; 46:665-672. [PMID: 33010795 PMCID: PMC8027896 DOI: 10.1038/s41386-020-00872-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023]
Abstract
According to the adenosine hypothesis of schizophrenia, the classically associated hyperdopaminergic state may be secondary to a loss of function of the adenosinergic system. Such a hypoadenosinergic state might either be due to a reduction of the extracellular levels of adenosine or alterations in the density of adenosine A2A receptors (A2ARs) or their degree of functional heteromerization with dopamine D2 receptors (D2R). In the present study, we provide preclinical and clinical evidences for this latter mechanism. Two animal models for the study of schizophrenia endophenotypes, namely the phencyclidine (PCP) mouse model and the A2AR knockout mice, were used to establish correlations between behavioural and molecular studies. In addition, a new AlphaLISA-based method was implemented to detect native A2AR-D2R heteromers in mouse and human brain. First, we observed a reduction of prepulse inhibition in A2AR knockout mice, similar to that observed in the PCP animal model of sensory gating impairment of schizophrenia, as well as a significant upregulation of striatal D2R without changes in A2AR expression in PCP-treated animals. In addition, PCP-treated animals showed a significant reduction of striatal A2AR-D2R heteromers, as demonstrated by the AlphaLISA-based method. A significant and pronounced reduction of A2AR-D2R heteromers was next demonstrated in postmortem caudate nucleus from schizophrenic subjects, even though both D2R and A2AR were upregulated. Finally, in PCP-treated animals, sub-chronic administration of haloperidol or clozapine counteracted the reduction of striatal A2AR-D2R heteromers. The degree of A2AR-D2R heteromer formation in schizophrenia might constitute a hallmark of the illness, which indeed should be further studied to establish possible correlations with chronic antipsychotic treatments.
Collapse
Affiliation(s)
- Marta Valle-León
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Luis F. Callado
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Instituto Salud Carlos III, Madrid, Spain ,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ester Aso
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - María M. Cajiao-Manrique
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.412041.20000 0001 2106 639XBordeaux International Neuroscience Master, University of Bordeaux, Bordeaux, France
| | - Kristoffer Sahlholm
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.4714.60000 0004 1937 0626Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Marc López-Cano
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Concepció Soler
- grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Immunology Unit, Faculty of Medicine and Health Sciences, Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Altafaj
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Masahiko Watanabe
- grid.39158.360000 0001 2173 7691Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-0818 Japan
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Víctor Fernández-Dueñas
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - José M. Menchón
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Instituto Salud Carlos III, Madrid, Spain ,grid.411129.e0000 0000 8836 0780Department of Psychiatry, University Hospital of Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Psychiatry and Mental Health Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, School of Medicine, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L'Hospitalet de Llobregat, Barcelona, Spain. .,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
39
|
Xu JL, Guo Y. Identification of Gene Loci That Overlap Between Mental Disorders and Poor Prognosis of Cancers. Front Psychiatry 2021; 12:678943. [PMID: 34262492 PMCID: PMC8273260 DOI: 10.3389/fpsyt.2021.678943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Co-morbid psychiatric disorders are common in patients with cancers, which make the treatment more difficult. Studying the connection between mental disease-related genes and the prognosis of cancers may potentially lead to novel therapeutic methods. Method: All mental disorders genes were selected from published articles. The correlations between the expression of these genes and the prognosis of different cancers were analyzed by starBase v2.0 and TIMER. The molecular functions, reactome pathways, and interactions among diverse genes were explored via the STRING tool. Results: 239 genes were identified for further survival analysis, 5 of which were overlapping genes across at least five cancer types, including RHEBL1, PDE4B, ANKRD55, EPHB2, and GIMAP7. 146 high-expression and 157 low-expression genes were found to be correlated with the unfavorable prognosis of diverse cancer types. Tight links existed among various mental disease genes. Besides, risk genes were mostly related to the dismal outcome of low-grade glioma (LGG) and kidney renal clear cell carcinoma (KIRC) patients. Gene Ontology (GO) and reactome pathway analysis revealed that most genes involved in various critical molecular functions and primarily related to metabolism, signal transduction, and hemostasis. Conclusions: To explore co-expression genes between mental illnesses and cancers may aid in finding preventive strategies and therapeutic methods for high-risk populations and patients with one or more diseases.
Collapse
Affiliation(s)
- Ji-Li Xu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
40
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
41
|
Khlghatyan J, Quintana C, Parent M, Beaulieu JM. High Sensitivity Mapping of Cortical Dopamine D2 Receptor Expressing Neurons. Cereb Cortex 2020; 29:3813-3827. [PMID: 30295716 DOI: 10.1093/cercor/bhy261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Cortical D2 dopamine receptor (Drd2) have mostly been examined in the context of cognitive function regulation and neurotransmission modulation of medial prefrontal cortex by principal neurons and parvalbumin positive, fast-spiking, interneurons in schizophrenia. Early studies suggested the presence of D2 receptors in several cortical areas, albeit with major technical limitations. We used combinations of transgenic reporter systems, recombinase activated viral vectors, quantitative translatome analysis, and high sensitivity in situ hybridization to identify D2 receptor expressing cells and establish a map of their respective projections. Our results identified previously uncharacterized clusters of D2 expressing neurons in limbic and sensory regions of the adult mouse brain cortex. Characterization of these clusters by translatome analysis and cell type specific labeling revealed highly heterogeneous expression of D2 receptors in principal neurons and various populations of interneurons across cortical areas. Transcript enrichment analysis also demonstrated variable levels of D2 receptor expression and several orphan G-protein-coupled receptors coexpression in different neuronal clusters, thus suggesting strategies for genetic and therapeutic targeting of D2 expressing neurons in specific cortical areas. These results pave the way for a thorough re-examination of cortical D2 receptor functions, which could provide information about neuronal circuits involved in psychotic and mood disorders.
Collapse
Affiliation(s)
- Jivan Khlghatyan
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Quebec, Canada
| | - Clémentine Quintana
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Quebec, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec-City, Quebec, Canada
| |
Collapse
|
42
|
Fagiolini A, Alcalá JÁ, Aubel T, Bienkiewicz W, Bogren MMK, Gago J, Cerveri G, Colla M, Sanchez FC, Cuomo A, Helge F, Iacoponi E, Karlsson PA, Peddu P, Pettorruso M, Pereira HJR, Schölin JS, Vernaleken IB. Treating schizophrenia with cariprazine: from clinical research to clinical practice. Real world experiences and recommendations from an International Panel. Ann Gen Psychiatry 2020; 19:55. [PMID: 32999683 PMCID: PMC7520022 DOI: 10.1186/s12991-020-00305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/17/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Management of schizophrenia is sub-optimal in many patients. Targeting negative symptoms, among the most debilitating aspects of schizophrenia, together with positive symptoms, can result in significant functional benefits and dramatically improve quality of life for patients and their carers. Cariprazine, a partial agonist of the dopamine receptors D2/D3 has demonstrated effectiveness across symptom domains in clinical trials, particularly on negative symptoms. OBJECTIVE To obtain a broader insight from clinicians with specific experience with cariprazine, on how it affects patient populations outside the clinical trial setting. METHODS The panel addressed a series of psychopharmacologic topics not comprehensively addressed by the evidence-based literature, including characteristics of patients treated, dosing and switching strategies, duration of therapy, role of concomitant medications and tolerability as well as recommendations on how to individualize cariprazine treatment for patients with schizophrenia. RESULTS Patients recommended for cariprazine treatment are those with first episodes of psychosis, predominant negative symptoms (maintenance/acute phase) and significant side effects (metabolic side effects, hyperprolactinemia, sedation) with other antipsychotics. When the long-term treatment of a lifetime illness is adequately weighted, cariprazine becomes one of the first-line medications, not only for patients with predominant negative symptoms but also for those with relatively severe positive symptoms, especially if they are at the first episodes and if a specific medication is added for symptoms such as agitation or insomnia. For instance, patients with agitation may also benefit from the combination of cariprazine and a benzodiazepine or another sedating agent. Cariprazine may be prescribed as add-on to medications such as clozapine, when that medication alone is ineffective for negative symptoms, and sometimes the first may be discontinued or its dose lowered, after a period of stability, leaving the patient on a better tolerated antipsychotic regimen. CONCLUSIONS Based on real-world clinical experience, the panel considered that cariprazine, with its distinct advantages including pharmacokinetics/pharmacodynamics, good efficacy and tolerability, represents a drug of choice in the long-term management of schizophrenia not only for patients with predominant negative symptoms but also for those with positive symptoms.
Collapse
Affiliation(s)
- Andrea Fagiolini
- School of Medicine, Department of Molecular Medicine, University of Siena, Siena, Italy
| | - José Ángel Alcalá
- Clinical Unit of Mental Health, Reina Sofia University Hospital, Cordoba, Spain
| | - Thomas Aubel
- Kliniken Essen-Mitte, Klinik für Psychiatrie, Psychotherapie, Psychosomatik und Suchtmedizin, Essen, Germany
| | | | - Mats Magnus Knut Bogren
- Divsion of Psychiatry, Department of Clinical Sciences, Lund University Hospital,, Lund, Sweden
| | - Joaquim Gago
- Mental Health Department, Nova Medical School, Lisbon, Portugal
| | | | - Michael Colla
- Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany
| | - Francisco Collazos Sanchez
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alessandro Cuomo
- School of Medicine, Department of Molecular Medicine, University of Siena, Siena, Italy
| | - Frieling Helge
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Eduardo Iacoponi
- Lambeth Early Onset (LEO), South London & Maudsley NHS Foundation Trust and Psychosis Studies Department, Institute of Psychiatry, Psychology and Neurosciences, London, UK
| | | | - Pradeep Peddu
- Psychosis Pathway Coventry and Warwickshire Partnership NHS Trust and Buckingham Medical School, Rugby, UK
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, D’Annunzio University of Chieti, Pescara, Italy
| | | | | | - Ingo Bernd Vernaleken
- Department of Psychiatry and Psychotherapy, Fliedner Krankenhaus Neunkirchen Kreuznacher Diakonie, Neunkirchen, Germany
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
43
|
Michely J, Viswanathan S, Hauser TU, Delker L, Dolan RJ, Grefkes C. The role of dopamine in dynamic effort-reward integration. Neuropsychopharmacology 2020; 45:1448-1453. [PMID: 32268344 PMCID: PMC7360543 DOI: 10.1038/s41386-020-0669-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/16/2020] [Accepted: 03/20/2020] [Indexed: 01/08/2023]
Abstract
When deciding to act, the neurotransmitter dopamine is implicated in a valuation of prospective effort and reward. However, its role in dynamic effort-reward integration during action, a process central to everyday behaviour, remains unclear. In a placebo-controlled, within-subject, study, we probed the impact of increasing brain dopamine levels (150 mg of levodopa) and blocking dopamine receptors (1.5 mg of haloperidol) in the context of a novel dynamic effort task in healthy human subjects. We show that modulating homoeostatic dopamine balance distinctly alters implicit and explicit effort allocation as a function of instantaneous reward. Pharmacologically boosting dopamine enhanced motor vigour, reflected in an implicit increase in effort allocation for high rewards. Conversely, pharmacological blockade of dopamine attenuated sensitivity to differences in reward context, reflected in reduced strategic effort discounting. These findings implicate dopamine in an integration of momentary physical experience and instantaneous reward, suggesting a key role of dopamine in acting to maximise reward on the fly.
Collapse
Affiliation(s)
- Jochen Michely
- 0000000121901201grid.83440.3bWellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG UK ,0000000121901201grid.83440.3bMax Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH UK ,0000 0000 8852 305Xgrid.411097.aMedical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany
| | - Shivakumar Viswanathan
- 0000 0001 2297 375Xgrid.8385.6Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, 52425 Juelich, Germany
| | - Tobias U. Hauser
- 0000000121901201grid.83440.3bWellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG UK ,0000000121901201grid.83440.3bMax Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH UK
| | - Laura Delker
- 0000 0000 8852 305Xgrid.411097.aMedical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany
| | - Raymond J. Dolan
- 0000000121901201grid.83440.3bWellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG UK ,0000000121901201grid.83440.3bMax Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH UK
| | - Christian Grefkes
- Medical Faculty, University of Cologne and Department of Neurology, University Hospital Cologne, 50937, Cologne, Germany. .,Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany.
| |
Collapse
|
44
|
Dai X, Kuang L, Feng L, Yi X, Tang W, Liao Q, Long X, Wang J, Li J, Yang H, Xiao B, Li G, Chen S. Anti-Dopamine Receptor 2 Antibody-Positive Encephalitis in Adolescent. Front Neurol 2020; 11:471. [PMID: 32612568 PMCID: PMC7308480 DOI: 10.3389/fneur.2020.00471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/29/2020] [Indexed: 01/11/2023] Open
Abstract
Autoimmune encephalitic syndromes include mutism, somnolence, movement disorder, and behavioral, or psychiatric symptoms. When paired with bilateral basal ganglia lesions on magnetic resonance imaging, these support the diagnosis of basal ganglia encephalitis (BGE). BGE is a rare but distinct entity of putative autoimmune etiology, with specific basal ganglia inflammation and acute movement disorders. A previous study identified dopamine-2 receptors (D2R) antibody to be positive in most BGE children, indicating that the D2R antibody may trigger the downstream pathological process in BGE patients. The highest levels of D2R are found in the striatum, the nucleus accumbens, and the olfactory tubercle. D2R antibody-positive BGE is widely reported in children. Here we present a 17-year-old girl with a typical clinical feature of basal ganglia encephalitis, who benefited from immune therapy.
Collapse
Affiliation(s)
- Xuejiao Dai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lilu Kuang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, Liuyang Jili Hospital, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiting Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiao Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Guoliang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Young JW, Roberts BZ, Breier M, Swerdlow NR. Amphetamine improves rat 5-choice continuous performance test (5C-CPT) irrespective of concurrent low-dose haloperidol treatment. Psychopharmacology (Berl) 2020; 237:1959-1972. [PMID: 32318751 DOI: 10.1007/s00213-020-05511-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE Cognitive dysfunction mediates functional impairment in patients with schizophrenia, necessitating the timely development of pro-cognitive therapeutics. An important initial step in this process is to establish what, if any, pro-cognitive agents and associated mechanisms can be identified using cross-species translational paradigms. For example, attentional deficits-a core feature of schizophrenia-can be measured across species using the 5-choice continuous performance test (5C-CPT). The psychostimulant, amphetamine, improves human and rodent 5C-CPT performance. OBJECTIVE Here, we tested whether amphetamine would similarly improve 5C-CPT performance in the presence of dopamine D2 receptor blockade, since pro-cognitive treatments in schizophrenia would virtually always be used in conjunction with D2 receptor antagonists. METHODS We established the dose-response effects of amphetamine (0, 0.1, 0.3, or 1.0 mg/kg) and haloperidol (0, 3.2, 10, or 32 μg/kg) on 5C-CPT performance in Long Evans rats, and then tested an amphetamine (0.3 mg/kg) × haloperidol (10 μg/kg) interaction; the low dose was chosen because higher doses exerted deleterious non-specific effects on performance. RESULTS Amphetamine improved 5C-CPT performance in poorly performing rats by increasing target detection, independent of haloperidol pretreatment. CONCLUSIONS The pro-attentional effects of amphetamine were most likely mediated by dopamine release at D1-family receptors, since they persisted in the presence of acute D2 blockade. Alternative explanations for these findings are also discussed, as are their potential implications for future pro-cognitive therapeutics in schizophrenia.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA. .,Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Michelle Breier
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| |
Collapse
|
46
|
Yin J, Chen KYM, Clark MJ, Hijazi M, Kumari P, Bai XC, Sunahara RK, Barth P, Rosenbaum DM. Structure of a D2 dopamine receptor-G-protein complex in a lipid membrane. Nature 2020; 584:125-129. [PMID: 32528175 PMCID: PMC7415663 DOI: 10.1038/s41586-020-2379-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
The D2 dopamine receptor (DRD2) is a therapeutic target for Parkinson’s disease1 and antipsychotic drugs2. DRD2 is activated by the endogenous neurotransmitter dopamine and synthetic agonist drugs such as bromocriptine3, leading to stimulation of Gi and inhibition of adenylyl cyclase. We used cryo-electron microscopy to elucidate the structure of an agonist-bound activated DRD2-Gi complex reconstituted into a phospholipid membrane. The extracellular ligand binding site of DRD2 is remodeled in response to agonist binding, with conformational changes in extracellular loop 2 (ECL2), transmembrane domain 5 (TM5), TM6, and TM7 propagating to opening of the intracellular Gi binding site. The DRD2-Gi structure represents the first experimental model of a GPCR-G protein complex embedded in a phospholipid bilayer, which serves as a benchmark to validate the interactions seen in previous detergent-bound structures. The structure also reveals interactions that are unique to the membrane-embedded complex, including helix 8 burial in the inner leaflet, ordered lysine and arginine sidechains in the membrane interfacial regions, and lipid anchoring of the G protein in the membrane. Our model of the activated DRD2 will help inform the design of subtype-selective DRD2 ligands for multiple human CNS disorders.
Collapse
Affiliation(s)
- Jie Yin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kuang-Yui M Chen
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Mary J Clark
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Mahdi Hijazi
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Punita Kumari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao-Chen Bai
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Patrick Barth
- Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
47
|
Multiple Adenosine-Dopamine (A2A-D2 Like) Heteroreceptor Complexes in the Brain and Their Role in Schizophrenia. Cells 2020; 9:cells9051077. [PMID: 32349279 PMCID: PMC7290895 DOI: 10.3390/cells9051077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
In the 1980s and 1990s, the concept was introduced that molecular integration in the Central Nervous System could develop through allosteric receptor–receptor interactions in heteroreceptor complexes presents in neurons. A number of adenosine–dopamine heteroreceptor complexes were identified that lead to the A2A-D2 heteromer hypothesis of schizophrenia. The hypothesis is based on strong antagonistic A2A-D2 receptor–receptor interactions and their presence in the ventral striato-pallidal GABA anti-reward neurons leading to reduction of positive symptoms. Other types of adenosine A2A heteroreceptor complexes are also discussed in relation to this disease, such as A2A-D3 and A2A-D4 heteroreceptor complexes as well as higher order A2A-D2-mGluR5 and A2A-D2-Sigma1R heteroreceptor complexes. The A2A receptor protomer can likely modulate the function of the D4 receptors of relevance for understanding cognitive dysfunction in schizophrenia. A2A-D2-mGluR5 complex is of interest since upon A2A/mGluR5 coactivation they appear to synergize in producing strong inhibition of the D2 receptor protomer. For understanding the future of the schizophrenia treatment, the vulnerability of the current A2A-D2like receptor complexes will be tested in animal models of schizophrenia. A2A-D2-Simag1R complexes hold the highest promise through Sigma1R enhancement of inhibition of D2R function. In line with this work, Lara proposed a highly relevant role of adenosine for neurobiology of schizophrenia.
Collapse
|
48
|
Kotarska A, Fernandes L, Kleene R, Schachner M. Cell adhesion molecule close homolog of L1 binds to the dopamine receptor D2 and inhibits the internalization of its short isoform. FASEB J 2020; 34:4832-4851. [PMID: 32052901 DOI: 10.1096/fj.201900577rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023]
Abstract
Cell adhesion molecule close homolog of L1 (CHL1) and the dopamine receptor D2 (DRD2) are associated with psychiatric and mental disorders. We here show that DRD2 interacts with CHL1 in mouse brain, as evidenced by co-immunostaining, proximity ligation assay, co-immunoprecipitation, and pull-down assay with recombinant extracellular CHL1 domain fused to Fc (CHL1-Fc). Direct binding of CHL1-Fc to the first extracellular loop of DRD2 was shown by ELISA. Using HEK cells transfected to co-express CHL1 and the short (DRD2-S) or long (DRD2-L) DRD2 isoforms, co-localization of CHL1 and both isoforms was observed by immunostaining and proximity ligation assay. Moreover, CHL1 inhibited agonist-triggered internalization of DRD2-S. Proximity ligation assay showed close interaction between CHL1 and DRD2 in neurons expressing dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP32) or tyrosine hydroxylase (TH) in tissue sections of adult mouse striatum. In cultures of striatum or ventral midbrain, CHL1 was also closely associated with DRD2 in DARPP32- or TH-immunopositive cells, respectively. In the dorsal striatum of CHL1-deficient mice, lower levels of DRD2 and phosphorylated TH were observed, when compared to wild-type littermates. In the ventral striatum of CHL1-deficient mice, levels of phosphorylated DARPP32 were reduced. We propose that CHL1 regulates DRD2-dependent presynaptic and postsynaptic functions.
Collapse
Affiliation(s)
- Agnieszka Kotarska
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Luciana Fernandes
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
49
|
Iino Y, Sawada T, Yamaguchi K, Tajiri M, Ishii S, Kasai H, Yagishita S. Dopamine D2 receptors in discrimination learning and spine enlargement. Nature 2020; 579:555-560. [PMID: 32214250 DOI: 10.1038/s41586-020-2115-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
Abstract
Dopamine D2 receptors (D2Rs) are densely expressed in the striatum and have been linked to neuropsychiatric disorders such as schizophrenia1,2. High-affinity binding of dopamine suggests that D2Rs detect transient reductions in dopamine concentration (the dopamine dip) during punishment learning3-5. However, the nature and cellular basis of D2R-dependent behaviour are unclear. Here we show that tone reward conditioning induces marked stimulus generalization in a manner that depends on dopamine D1 receptors (D1Rs) in the nucleus accumbens (NAc) of mice, and that discrimination learning refines the conditioning using a dopamine dip. In NAc slices, a narrow dopamine dip (as short as 0.4 s) was detected by D2Rs to disinhibit adenosine A2A receptor (A2AR)-mediated enlargement of dendritic spines in D2R-expressing spiny projection neurons (D2-SPNs). Plasticity-related signalling by Ca2+/calmodulin-dependent protein kinase II and A2ARs in the NAc was required for discrimination learning. By contrast, extinction learning did not involve dopamine dips or D2-SPNs. Treatment with methamphetamine, which dysregulates dopamine signalling, impaired discrimination learning and spine enlargement, and these impairments were reversed by a D2R antagonist. Our data show that D2Rs refine the generalized reward learning mediated by D1Rs.
Collapse
Affiliation(s)
- Yusuke Iino
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Takeshi Sawada
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Kenji Yamaguchi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Mio Tajiri
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Shin Ishii
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.,Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
50
|
Hussain S, Villarreal S, Ramirez N, Hussain A, Sumaya IC. Haloperidol-induced hypokinesia in rats is differentially affected by the light/dark phase, age, and melatonin. Behav Brain Res 2020; 379:112313. [PMID: 31715211 DOI: 10.1016/j.bbr.2019.112313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
It has been well established that the striatal dopaminergic system is compromised with aging, namely D2 receptor function. Also well documented is the age related decline of the neurohormone, melatonin, in both humans and nonhuman animals. What has not been well studied is the possible interaction between the D2 receptor system and the age related decline in melatonin with its unmistakable pattern of synthesis and release exclusively during the dark phase. We tested the effect of the D2 antagonist, haloperidol (1.0 mg/kg ip), in adolescent (2 mo old) and adult rats (10 mo old) in the light (ZT3) and dark phases (ZT 15) in rats kept in a 12 L/12D cycle and the effect of exogenous melatonin (15 mg/kg ip/day x 4 days for a total of 60 mg/kg) on D2 antagonism. Using the bar test, measuring the extrapyramidal side-effect of hypokinesia, we report haloperidol to work differentially depending on both age and phase. Adult rats experienced the effect of the D2 antagonist in both the light and dark phases, while younger rats did not show hypokinetic affects in the dark. By manipulated lighting, we were able to restore the effect of haloperidol in younger rats in the dark phase. We also found ameliorating effects of melatonin lessening time on the bar after treatment with haloperidol, however, this effect was only found in older rats. These data demonstrate the importance of the light/dark cycle and age in the susceptibility of extrapyramidal effects with use of drugs that target D2 receptor function.
Collapse
Affiliation(s)
- Samirah Hussain
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Susie Villarreal
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Nayeli Ramirez
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Anjum Hussain
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Isabel C Sumaya
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States.
| |
Collapse
|