1
|
Lu Z, Li Y. New Clues to Cardiovascular Disease: Erythrocyte Lifespan. Aging Dis 2023; 14:2003-2014. [PMID: 37199588 PMCID: PMC10676783 DOI: 10.14336/ad.2023.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/06/2023] [Indexed: 05/19/2023] Open
Abstract
Determination of erythrocyte lifespan is an important part of the diagnosis of hemolytic diseases. Recent studies have revealed alterations in erythrocyte lifespan among patients with various cardiovascular diseases, including atherosclerotic coronary heart disease, hypertension, and heart failure. This review summarizes the progress of research on erythrocyte lifespan in cardiovascular diseases.
Collapse
Affiliation(s)
- Ziyu Lu
- Department of Cardiology, the Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yuanmin Li
- Department of Cardiology, the Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
2
|
Pan Y, Zhang Y, Li J, Zhang Z, He Y, Zhao Q, Yang H, Zhou P. A proteoglycan isolated from Ganoderma lucidum attenuates diabetic kidney disease by inhibiting oxidative stress-induced renal fibrosis both in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116405. [PMID: 36966849 DOI: 10.1016/j.jep.2023.116405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/03/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (G. lucidum) was regarded as "miraculous herb" by the Chinese and recorded detailly in the "Shen Nong Ben Cao Jing" as a tonic to improve health and prolong life. A proteoglycan (namely, FYGL) was extracted from Ganoderma lucidum, which was a water-soluble hyperbranched proteoglycan, and was found to be able to protect pancreatic tissue against oxidative stress damage. AIM OF THE STUDY Diabetic kidney disease (DKD) is a complication of diabetes, but the effective treatment is still lack. Chronic hyperglycemia in diabetic patients induce the accumulation of ROS, which injure the renal tissue and lead to the renal dysfunction. In this work, the efficacy and target mechanics of FYGL on diabetic renal function were investigated. MATERIALS AND METHODS In the present study, the mechanism of the reno-protection of FYGL was analyzed on diabetic db/db mice and rat glomerular mesangial cells (HBZY-1) induced by high glucose (HG) with palmitate (PA) (HG/PA). In vitro, the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were evaluated by commercial kits. the expressions of NOX1 and NOX4, phosphorylation of MAPK and NF-κB, and pro-fibrotic proteins were measured by Western blot. In vivo, diabetic db/db mice were gavaged with FYGL for 8 weeks, body weight and fasting blood glucose (FBG) were tested weekly. On 8th week, the serum, urine and renal tissue were collected for glucose tolerance test (OGTT), redox indicator (SOD, CAT, GSH and MDA), lipid metabolism (TC, TG, LDL and HDL), blood urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA), 8-oxo-deoxyguanosine (8-OHdG), and the changes of histopathology and expression of collagen IV and AGEs. RESULTS The results in vitro showed that FYGL significantly inhibited the HG/PA-induced HBZY-1 cells proliferation, ROS generation, MDA production, promoted SOD activity, and suppressed NOX1, NOX4, MAPK, NF-κB, and pro-fibrotic proteins expression. In addition, FYGL markedly alleviated blood glucose, antioxidant activity and lipid metabolism, improved renal functions, and relieved renal histopathological abnormalities, especially renal fibrosis. CONCLUSIONS The antioxidant activity of FYGL can reduce ROS caused by diabetes and protect renal from oxidative stress-induced dysfunction, thereby improving renal function. This study shows that FYGL has the potential to treat diabetic kidney disease.
Collapse
Affiliation(s)
- Yanna Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| | - Ying Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Jiaqi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China
| | - Zeng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China
| | - Qingjie Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, PR China.
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
3
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
4
|
Impact of magnesium sulfate therapy in improvement of renal functions in high fat diet-induced diabetic rats and their offspring. Sci Rep 2023; 13:2273. [PMID: 36755074 PMCID: PMC9908981 DOI: 10.1038/s41598-023-29540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The role of magnesium sulfate (MgSO4) administration to prevent diabetic nephropathy (DN) by reducing insulin resistance (IR) and the relationship of this action with gender and the expression of NOX4 and ICAM1 genes in the parents and their offspring were studied. Males and females rat, and their pups were used. Type 2 diabetes induced by high-fat diet (HFD) administration and a low dose of streptozotocin. Animals were divided into the: non-treated diabetic (DC), the diabetic group received insulin (Ins), and the diabetic group received MgSO4. Two groups of parents received just a normal diet (NDC). Following each set of parents for 16 weeks and their pups for 4 months, while eating normally. We assessed the amount of water consumed, urine volume, and blood glucose level. The levels of glucose, albumin, and creatinine in the urine were also measured, as well as the amounts of sodium, albumin, and creatinine in the serum. Calculations were made for glomerular filtration rate (GFR) and the excretion rates of Na and glucose fractions (FE Na and FE G, respectively). The hyperinsulinemic-euglycemic clamp was done. NOX4 and ICAM1 gene expressions in the kidney were also measured. MgSO4 or insulin therapy decreased blood glucose, IR, and improved GFR, FE Na, and FE G in both parents and their offspring compared to D group. MgSO4 improved NOX4 and ICAM1 gene expressions in the parents and their offspring compared to D group. Our results indicated that MgSO4 could reduce blood glucose levels and insulin resistance, and it could improve kidney function.
Collapse
|
5
|
Liu T, Li CY, Chen H, Liu J, Zhong LL, Tang MM, Wang WB, Huang JP, Jiang XS. tBHQ attenuates podocyte injury in diabetic nephropathy by inhibiting NADPH oxidase-derived ROS generation via the Nrf2/HO-1 signalling pathway. Heliyon 2022; 8:e10515. [PMID: 36119860 PMCID: PMC9479023 DOI: 10.1016/j.heliyon.2022.e10515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Aims Oxidative stress plays a crucial role in podocyte injury in diabetic nephropathy (DN). tert-Butylhydroquinone (tBHQ) is an activator of Nrf2 that exerts protective effects in diabetic mice, but the underlying mechanism of tBHQ in the podocytes of DN is not fully understood. Materials and methods A high glucose (HG)-induced HK2 cell model and streptozotocin-induced rat model of DN were established and treated with tBHQ or apocynin. The expression levels of Nrf2, HO-1, NOX2 and NOX4 were determined by Western blot or immunohistochemical staining. The level of oxidative stress in podocytes or kidney tissues was assessed using DCFH-DA or dihydroethidium (DHE) staining. Cell injury was assessed by F-actin staining and flow cytometry analysis. Key findings We showed that HG treatment increased the expressions of NOX2 and NOX4 and enhanced ROS production in podocytes. Inhibition of NADPH oxidase activity by apocynin dramatically attenuated HG-induced ROS production and further alleviated cell injury and apoptosis in podocytes. Moreover, we found that HG inhibited the Nrf2/HO-1 signalling pathway in podocytes; however, tBHQ treatment significantly activated the Nrf2 signalling pathway, inhibited NADPH oxidase activity, and attenuated ROS production and cell injury in HG-treated podocytes. Furthermore, we observed that tBHQ treatment partially attenuated renal injury, activated the Nrf2 signalling pathway, inhibited NADPH oxidase activity and reduced ROS generation in the kidneys of STZ-induced diabetic rats. Significance These results suggest that tBHQ exerts a protective role in hyperglycaemia-induced podocyte injury, and that the potential protective mechanism of tBHQ involves inhibiting NADPH oxidase-derived ROS generation by activating the Nrf2/HO-1 signalling pathway.
Collapse
Affiliation(s)
- Ting Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Chang-Yan Li
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Hao Chen
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Juan Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Li-Li Zhong
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Ming-Min Tang
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Wen-Bo Wang
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Jin-Ping Huang
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Xu-Shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| |
Collapse
|
6
|
Shi H, Zhao Z, Jiang W, Zhu P, Zhou N, Huang X. A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Front Cell Dev Biol 2022; 10:878697. [PMID: 35686054 PMCID: PMC9173585 DOI: 10.3389/fcell.2022.878697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
In addition to its important transport functions, the skeletal system is involved in complex biological activities for the regulation of blood vessels. Endothelial progenitor cells (EPCs), as stem cells of endothelial cells (ECs), possess an effective proliferative capacity and a powerful angiogenic capacity prior to their differentiation. They demonstrate synergistic effects to promote bone regeneration and vascularization more effectively by co-culturing with multiple cells. EPCs demonstrate a significant therapeutic potential for the treatment of various bone diseases by secreting a combination of growth factors, regulating cellular functions, and promoting bone regeneration. In this review, we retrospect the definition and properties of EPCs, their interaction with mesenchymal stem cells, ECs, smooth muscle cells, and immune cells in bone regeneration, vascularization, and immunity, summarizing their mechanism of action and contribution to bone biology. Additionally, we generalized their role and potential mechanisms in the treatment of various bone diseases, possibly indicating their clinical application.
Collapse
Affiliation(s)
- Henglei Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Weidong Jiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Disease Treatment, Guangxi Clinical Research Center for Craniofacia Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surg Deformity, Nanning, China
| |
Collapse
|
7
|
Wang A, Lin Y, Liang B, Zhao X, Qiu M, Huang H, Li C, Wang W, Kong Y. Statins attenuate cholesterol-induced ROS via inhibiting NOX2/NOX4 and mitochondrial pathway in collecting ducts of the kidney. BMC Nephrol 2022; 23:184. [PMID: 35562673 PMCID: PMC9102638 DOI: 10.1186/s12882-022-02815-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background Statins therapy has been primarily recommended for the prevention of cardiovascular risk in patients with chronic kidney diseases. Statins has also been proved some benefits in lipid-induced kidney diseases. The current study aims to investigate the protection and underlying mechanisms of statins on renal tubular injuries induced by cholesterol overloaded. Methods We used tubular suspensions of inner medullary collecting duct (IMCD) cells from rat kidneys and mouse collecting duct cell line mpkCCD cells to investigate the effect of statins on reactive oxygen species (ROS) production induced by cholesterol. Protein and mRNA expression of NADPH oxidase 2 (NOX2) /NOX4 was examined by Western blot and RT-PCR in vitro studies and in rats with 5/6 nephrectomy and high-fat diet. Mitochondrial morphology and membrane potential was observed by Mito-tracker and JC-1. Results Statins treatment was associated with decreased NOX2 and NOX4 protein expression and mRNA levels in 5/6Nx rats with high-fat diet. Statins treatment markedly reduced the ROS production in IMCD suspensions and mpkCCD cells. Also, statins reduced NOX2 and NOX4 protein expression and mRNA levels in cholesterol overload mpkCCD cells and improved mitochondrial morphology and function. Conclusion Statins prevented ROS production induced by cholesterol in the kidney, likely through inhibiting NOXs protein expression and improving mitochondrial function. Statins may be a therapeutic option in treating obesity-associated kidney diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02815-6.
Collapse
Affiliation(s)
- Ani Wang
- Cardiovascular Center, The 5thAffiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yu Lin
- Department of Pathology, Zhujiang Hospitial, Southern Medical University, Guangzhou, 510282, China
| | - Baien Liang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China.,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoduo Zhao
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China.,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Miaojuan Qiu
- Research Center, The 7th Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hui Huang
- Department of Cardiology, The 8th Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China. .,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74# Zhongshan 2nd Road, Guangzhou, 510080, China. .,Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Bai L, Sun S, Sun Y, Wang F, Nishiyama A. N-type calcium channel and renal injury. Int Urol Nephrol 2022; 54:2871-2879. [PMID: 35416563 PMCID: PMC9534814 DOI: 10.1007/s11255-022-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
Accumulating evidences indicated that voltage-gated calcium channels (VDCC), including L-, T-, N-, and P/Q-type, are present in kidney and contribute to renal injury during various chronic diseases trough different mechanisms. As a voltage-gated calcium channel, N-type calcium channel was firstly been founded predominately distributed on nerve endings which control neurotransmitter releases. Since sympathetic nerve is distributed along renal afferent and efferent arterioles, N-type calcium channel blockade on sympathetic nerve terminals would bring renal dynamic improvement by dilating both arterioles and reducing glomerular pressure. In addition, large body of scientific research indicated that neurotransmitters, such as norepinephrine, releases by activating N-type calcium channel can trigger inflammatory and fibrotic signaling pathways in kidney. Interestingly, we recently demonstrated that N-type calcium channel is also expressed on podocytes and may directly contribute to podocyte injury in denervated animal models. In this paper, we will summarize our current knowledge regarding renal N-type calcium channels, and discuss how they might contribute to the river that terminates in renal injury.
Collapse
Affiliation(s)
- Lei Bai
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, People's Republic of China.
| | - Shichao Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yao Sun
- Department of Medical Image, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Fujun Wang
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, 761-0793, Japan
| |
Collapse
|
9
|
Ishimitsu A, Tojo A, Satonaka H, Ishimitsu T. Eucommia ulmoides (Tochu) and its extract geniposidic acid reduced blood pressure and improved renal hemodynamics. Biomed Pharmacother 2021; 141:111901. [PMID: 34328117 DOI: 10.1016/j.biopha.2021.111901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Eucommia ulmoides leaves are used as Tochu tea, which has a blood pressure lowering effect of unknown mechanism. PURPOSE AND METHODS The effects of Tochu tea and its component, geniposidic acid, on blood pressure and renal hemodynamics were investigated in Dahl salt-sensitive (DS) rats received 1% saline solution from 4 weeks of age. At 9 weeks of age, 1% saline alone (DSHS), Tochu tea extract added 1% saline (DSHS+T), or geniposidic acid added 1% saline (DSHS+G) was administered for another 4 weeks. DS rats fed with tap water were used as controls (DSLS). At 13 weeks, the blood pressure, the renal plasma flow (RPF) and the renal NADPH oxidase, endothelial nitric oxide synthase (eNOS) were examined. RESULTS Blood pressure in DSHS rats was significantly increased in comparison to DSLS (144 vs. 196 mmHg, p < 0.01), and was significantly reduced in DSHS+T (158 mmHg) and DSHS+G (162 mmHg) rats. RPF in DSHS+T rats was significantly higher than in DSHS rats (p < 0.05). The expression of NADPH oxidase in DSHS rats was enhanced in comparison to DSLS rats; however, it was suppressed in DSHS+T and DSHS+G rats, and the NO production by eNOS was increased; thus, RPF was improved. The urinary Na excretion in DSHS rats was higher than that in DSLS rats; however it was further increased in DSHS+T rats without changes in the tubular Na transporters. CONCLUSION Tochu tea and geniposidic acid suppressed NADPH oxidase, increased eNOS, and improved blood pressure and renal hemodynamics.
Collapse
Affiliation(s)
- Akira Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Akihiro Tojo
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | - Hiroshi Satonaka
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Toshihiko Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
10
|
El-Said YAM, Sallam NAA, Ain-Shoka AAM, Abdel-Latif HAT. Geraniol ameliorates diabetic nephropathy via interference with miRNA-21/PTEN/Akt/mTORC1 pathway in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2325-2337. [PMID: 32666288 DOI: 10.1007/s00210-020-01944-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Deregulated activity of protein kinase B/mammalian target of rapamycin complex-1 (Akt/mTORC1) incites crucial pathological characteristics of diabetic nephropathy. The acyclic monoterpene geraniol has been recently reported to possess antidiabetic effects; however, its potential renoprotective effect in diabetes has not yet been elucidated. This study aimed to assess the possible modulatory effect of geraniol on the Akt/mTORC1 pathway in diabetes-induced nephropathy in rats compared to the standard antidiabetic drug gliclazide. Geraniol and gliclazide was administered daily to diabetic rats for 6 weeks starting on the 3rd-day post diabetes induction by streptozotocin (STZ). Geraniol amended the deteriorated renal function (serum creatinine; blood urea nitrogen). It exerted a remarkable antihyperglycemic effect that is comparable to that of gliclazide and suppressed the fibrotic marker, transforming growth factor-β. Geraniol restored redox balance and inhibited lipid peroxidation by reducing nicotine amide adenine dinucleotide phosphate oxidase and enhancing the antioxidant enzyme, superoxide dismutase. These beneficial effects were associated with a robust downregulation of miRNA-21 and consequently, reversion of tumor suppressor protein phosphatase and tension homolog (PTEN)/Akt/mTORC1 cue and its downstream proteins required for mesangial cell proliferation and matrix protein synthesis. The current study indicates that geraniol interfered with miRNA-21/ PTEN/AKT/mTORC1 pathway signaling that contributes largely to the progression of mesangial expansion and extracellular matrix deposition in diabetic nephropathy.
Collapse
|
11
|
Mechanism of Albuminuria Reduction by Chymase Inhibition in Diabetic Mice. Int J Mol Sci 2020; 21:ijms21207495. [PMID: 33050674 PMCID: PMC7589797 DOI: 10.3390/ijms21207495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/29/2022] Open
Abstract
Chymase has several functions, such as angiotensin II formation, which can promote diabetic kidney disease (DKD). In this study, we evaluated the effect of the chymase inhibitor TY-51469 on DKD in diabetic db/db mice. Diabetic mice were administered TY-51469 (10 mg/kg/day) or placebo for 4 weeks. No significant difference was observed in body weight and fasting blood glucose between TY-51469- and placebo-treated groups. However, a significant reduction in urinary albumin/creatinine ratio was observed in the TY-51469-treated group compared with the placebo-treated group. In the renal extract, chymase activity was significantly higher in placebo-treated mice than in non-diabetic db/m mice, but it was reduced by treatment with TY-51469. Both NADPH oxidase 4 expression and the oxidative stress marker malondialdehyde were significantly augmented in the placebo-treated group, but they were attenuated in the TY-51469-treated group. Significant increases of tumor necrosis factor-α and transforming growth factor-β mRNA levels in the placebo-treated group were significantly reduced by treatment with TY-51469. Furthermore, the expression of nephrin, which is a podocyte-specific protein, was significantly reduced in the placebo-treated group, but it was restored in the TY-51469-treated group. These findings demonstrated that chymase inhibition reduced albuminuria via attenuation of podocyte injury by oxidative stress.
Collapse
|
12
|
Khokhar M, Roy D, Modi A, Agarwal R, Yadav D, Purohit P, Sharma P. Perspectives on the role of PTEN in diabetic nephropathy: an update. Crit Rev Clin Lab Sci 2020; 57:470-483. [PMID: 32306805 DOI: 10.1080/10408363.2020.1746735] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phosphatase and tensin homolog (PTEN) is a potent tumor suppressor gene that antagonizes the proto-oncogenic phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway and governs basic cellular metabolic processes. Recently, its role in cell growth, metabolism, architecture, and motility as an intramolecular and regulatory mediator has gained widespread research interest as it applies to non-tumorous diseases, such as insulin resistance (IR) and diabetic nephropathy (DN). DN is characterized by renal tubulointerstitial fibrosis (TIF) and epithelial-mesenchymal transition (EMT), and PTEN plays a significant role in the regulation of both. Epigenetics and microRNAs (miRNAs) are novel players in post-transcriptional regulation and research evidence demonstrates that they reduce the expression of PTEN by acting as key regulators of autophagy and TIF through activation of the Akt/mammalian target of rapamycin (mTOR) signaling pathway. These regulatory processes might play an important role in solving the complexities of DN pathogenesis and IR, as well as the therapeutic management of DN with the help of PTEN K27-linked polyubiquitination. Currently, there are no comprehensive reviews citing the role PTEN plays in the development of DN and its regulation via miRNA and epigenetic modifications. The present review explores these facets of PTEN in the pathogenesis of IR and DN.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Dipayan Roy
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Riddhi Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Dharmveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
13
|
Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol Res 2020; 155:104746. [PMID: 32156650 DOI: 10.1016/j.phrs.2020.104746] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes and causes kidney failure. Ginsenoside Rg5 (Rg5) is an important monomer in the main protopanaxadiol component of black ginseng. Rg5 has exhibited some beneficial biological effects, such as anti-cancer, neuroprotection, and anti-depression, but the effect of Rg5 on DN and its potential mechanism remains unclear. The aim of this study is to investigate the effect of Rg5 on kidney injury of C57BL/6 diabetic mice induced by high-fat diet and streptozotocin. After treatment with different concentration of Rg5 (30 and 60 mg kg-1·d-1) for 6 consecutive weeks, the fasting blood glucose, insulin levels, serum creatinine, serum urea, and serum UA in Rg5-treated DN mice were significantly reduced, while the renal histopathology was remarkably improved, compared with untreated DN mice. Moreover, ROS production, oxidative stress markers (MDA, SOD, and GSH-PX), Nox4 and TXNIP expressions of kidney in DN mice were significantly reduced after Rg5 treatment. Additionally, the expression levels of the NLRP3 inflammasome (NLRP3, ASC, and Caspase-1) and the inflammatory cytokines IL-1β and IL-18 were significantly inhibited, and the expression of NF-kB and the phosphorylation of p38 MAPK were also decreased with Rg5 treatment compared with no treatment in DN mice. Together, our results indicate that Rg5 attenuated renal injury in diabetic mice by inhibiting oxidative stress and NLRP3 inflammasome activation to reduce inflammatory responses, indicating that Rg5 is a potential compound to prevent or control diabetic renal injury.
Collapse
|
14
|
Farrerol alleviates high glucose-induced renal mesangial cell injury through the ROS/Nox4/ERK1/2 pathway. Chem Biol Interact 2020; 316:108921. [PMID: 31838053 DOI: 10.1016/j.cbi.2019.108921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Hyperproliferation and oxidative stress induced by hyperglycemia in mesangial cells plays crucial roles in the pathological process of diabetic nephropathy. Farrerol, isolated from rhododendron leaves, possesses broad anti-oxidative and anti-inflammatory properties towards several diseases, but its role in diabetic neuropathy remains unclear. The aim of this study was to evaluate the effects of farrerol in high glucose induced mesangial cell injury, and to explore underlying molecular mechanisms. Our results showed that high glucose in vitro conditions significantly stimulated cell proliferation, inflammatory cytokine secretion, extracellular matrix deposition, excessive oxidative stress, and NADPH oxidase activity in mesangial cells. Levels of NADPH oxidase 4 (Nox4) expression, ERK1/2 phosphorylation, and TGF-β1/Smad2 activation were significantly induced by high glucose conditions in mesangial cells. Inversely, farrerol treatments at 40, 60, and 80 μM concentrations, dose-dependently alleviated this molecular damage by high glucose in mesangial cells. We also found that restoration of Nox4 expression abolished the protective effects of farrerol on high glucose-induced proliferation and reactive oxygen species generation. Furthermore, pretreatment with the Nox4 inhibitor diphenyliodonium or the ERK1/2 pathway inhibitor PD98059, displayed similar ameliorated effects of farrerol on high glucose-induced mesangial cell damage. Taken together, these data suggest that farrerol displays protective effects on high glucose induced mesangial cell injury, partly through the Nox4-mediated ROS/ERK1/2 signaling pathway. These observations may provide novel insights into the application of farrerol as a diabetic neuropathy treatment.
Collapse
|
15
|
Protective effects of delphinidin against H 2O 2-induced oxidative injuries in human retinal pigment epithelial cells. Biosci Rep 2019; 39:BSR20190689. [PMID: 31345961 PMCID: PMC6695502 DOI: 10.1042/bsr20190689] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/20/2019] [Accepted: 07/14/2019] [Indexed: 02/04/2023] Open
Abstract
Age-related macular degeneration (AMD) is now one of the leading causes of blindness in the elderly population and oxidative stress-induced damage to retinal pigment epithelial (RPE) cells occurs as part of the pathogenesis of AMD. In the present study, we evaluated the protective effect of delphinidin (2-(3,4,5-trihydroxyphenyl) chromenylium-3,5,7-triol) against hydrogen peroxide (H2O2)-induced toxicity in human ARPE-19 cells and its molecular mechanism. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and flow cytometry demonstrated that pretreatment of ARPE-19 cells with delphinidin (25, 50, and 100 μg/ml) significantly increased cell viability and reduced the apoptosis from H2O2 (0.5 mM)-induced oxidative stress in a concentration-dependent manner, which was achieved by the inhibition of Bax, cytochrome c, and caspase-3 protein expression and enhancement of Bcl-2 protein. The same tendency was observed in ARPE-19 cells pre-treated with 15 mM of N-acetylcysteine (NAC) before the addition of H2O2. Furthermore, pre-incubation of ARPE-19 cells with delphinidin markedly inhibited the intracellular reactive oxygen species (ROS) generation and Nox1 protein expression induced by H2O2. Moreover, the decreased antioxidant enzymes activities of superoxide dismutase (SOD), catalase (CAT), and glutathione-peroxidase (GSH-PX) and elevated (MDA) level in H2O2-treated cells were reversed to the normal standard by the addition of delphinidin, which was regulated by increasing nuclear Nrf2 protein expression in ARPE-19 cells. Our results suggest that delphinidin effectively protects human ARPE-19 cells from H2O2-induced oxidative damage via anti-apoptotic and antioxidant effects.
Collapse
|
16
|
Long-Term Administration of Angiotensin (1-7) to db/db Mice Reduces Oxidative Stress Damage in the Kidneys and Prevents Renal Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1841046. [PMID: 30425780 PMCID: PMC6218718 DOI: 10.1155/2018/1841046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Aims The goal of this study was to evaluate the effects of long-term (16 weeks) administration of angiotensin (1–7) [A(1–7)] on kidney function in db/db mice and to identify the protective mechanisms of this therapy. Methods db/db mice and heterozygous controls were treated with A(1–7) or vehicle daily, subcutaneously for up to 16 weeks. Kidney injury was assessed by measuring blood flow in renal arteries, plasma creatinine levels, and proteinuria. Effects of treatment on oxidative stress were evaluated by histological staining and gene expression. Results 16 weeks of daily administration of A(1–7) to a mouse model of severe type 2 diabetes (db/db) prevented the progression of kidney damage. Treatment with A(1–7) improved blood flow in the renal arteries, as well as decreased plasma creatinine levels and proteinuria in diabetic mice. Reduction of oxidative stress was identified as one of the mechanisms of the renoprotective action of A(1–7). Treatment prevented formation of nitrotyrosine residues, a marker of oxidative stress damage. A(1–7) also reduced the expression of two enzymes involved in formation of nitrotyrosine, namely, eNOS and NOX-4. A(1–7) regulated the phosphorylation pattern of eNOS to enhance production of NO in diabetic animals, possibly through the Akt pathway. However, these elevated levels of NO did not result in increased nitrosylation, possibly due to reduced NOX-4 levels. Conclusions Long-term administration of A(1–7) improved kidney function and reduced oxidative stress damage in db/db mice.
Collapse
|
17
|
Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-κB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Int Immunopharmacol 2018; 63:227-238. [DOI: 10.1016/j.intimp.2018.07.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/01/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
|
18
|
Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med 2018; 116:50-63. [PMID: 29305106 DOI: 10.1016/j.freeradbiomed.2017.12.040] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 01/06/2023]
Abstract
Oxidative stress has been implicated in the pathophysiology of diabetic nephropathy. Studies in experimental animal models of diabetes strongly implicate oxidant species as a major determinant in the pathophysiology of diabetic kidney disease. The translation, in the clinical setting, of these concepts have been quite disappointing, and new theories have challenged the concepts that oxidative stress per se plays a role in the pathophysiology of diabetic kidney disease. The concept of mitochondrial hormesis has been introduced to explain this apparent disconnect. Hormesis is intended as any cellular process that exhibits a biphasic response to exposure to increasing amounts of a substance or condition: specifically, in diabetic kidney disease, oxidant species may represent, at determined concentration, an essential and potentially protective factor. It could be postulated that excessive production or inhibition of oxidant species formation might result in an adverse phenotype. This review discusses the evidence underlying these two apparent contradicting concepts, with the aim to propose and speculate on potential mechanisms underlying the role of oxidant species in the pathophysiology of diabetic nephropathy and possibly open future more efficient therapies to be tested in the clinical settings.
Collapse
Affiliation(s)
- Manpreet K Sagoo
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
19
|
Hu F, Xue M, Li Y, Jia YJ, Zheng ZJ, Yang YL, Guan MP, Sun L, Xue YM. Early Growth Response 1 (Egr1) Is a Transcriptional Activator of NOX4 in Oxidative Stress of Diabetic Kidney Disease. J Diabetes Res 2018; 2018:3405695. [PMID: 29854821 PMCID: PMC5944279 DOI: 10.1155/2018/3405695] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/11/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND NADPH oxidase 4 (NOX4) plays a major role in renal oxidative stress of diabetic kidney disease (DKD). NOX4 was significantly increased in Egr1-expressing fibroblasts, but the relationship between Egr1 and NOX4 in DKD is unclear. METHODS For the evaluation of the potential relationship between Egr1 and NOX4, both were detected in HFD/STZ-induced mice and HK-2 cells treated with TGF-β1. Then, changes in NOX4 expression were detected in HK-2 cells and mice with overexpression and knockdown of Egr1. The direct relationship between Egr1 and NOX4 was explored via chromatin immunoprecipitation (ChIP). RESULTS We found increased levels of Egr1, NOX4, and α-SMA in the kidney cortices of diabetic mice and in TGF-β1-treated HK-2 cells. Overexpression or silencing of Egr1 in HK-2 cells could upregulate or downregulate NOX4 and α-SMA. ChIP assays revealed that TGF-β1 induced Egr1 to bind to the NOX4 promoter. Finally, Egr1 overexpression or knockdown in diabetic mice could upregulate or downregulate the expression of NOX4 and ROS, and α-SMA was also changed. CONCLUSION Our study provides strong evidence that Egr1 is a transcriptional activator of NOX4 in oxidative stress of DKD. Egr1 contributes to DKD by enhancing EMT, in part by targeting NOX4.
Collapse
Affiliation(s)
- Fang Hu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Meng Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Endocrinology and Metabolism, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Yang Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Geriatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Jie Jia
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zong-Ji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Lin Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mei-Ping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liao Sun
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yao-Ming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Tang L, Wu Y, Tian M, Sjöström CD, Johansson U, Peng XR, Smith DM, Huang Y. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am J Physiol Endocrinol Metab 2017; 313:E563-E576. [PMID: 28811292 DOI: 10.1152/ajpendo.00086.2017] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic oral agents indicating promising effects on cardiovascular and renal end points. However, the renoprotective effects of SGLT2 inhibitors are not fully understood. Also, metabolic effects of SGLT2 inhibition on other organ systems, such as effects on hepatic steatosis, are not fully understood. This study sought to address these questions by treating 18-wk-old uninephrectomized db/db mice with the selective SGLT2 inhibitor dapagliflozin. Untreated db/db mice developed progressive albuminuria, glomerular mesangial matrix expansion, and fatty liver associated with increased renal expression of TGFβ1, PAI-1, type IV collagen and fibronectin, and liver deposition of fibronectin, type I and III collagen, and laminin. Treatment with dapagliflozin (1 mg·kg-1·day-1) via gel diet from 18 to 22 wk of age not only reduced blood glucose (371.14 ± 55.02 mg/dl in treated db/db vs. 573.53 ± 21.73 mg/dl in untreated db/db, P < 0.05) and Hb A1c levels (9.47 ± 0.79% in treated db/db vs. 12.1 ± 0.73% in untreated db/db, P < 0.05) but also ameliorated the increases in albuminuria and markers of glomerulosclerosis and liver injury seen in untreated db/db mice. Furthermore, both renal expressions of NF-kB p65, MCP-1, Nox4, Nox2, and p47phox and urine TBARS levels and liver productions of myeloperoxidase and reactive oxygen species, the markers of tissue inflammation and oxidative stress, were increased in untreated db/db mice, which were reduced by dapagliflozin administration. These results demonstrate that dapagliflozin not only improves hyperglycemia but also slows the progression of diabetes-associated glomerulosclerosis and liver fibrosis by improving hyperglycemia-induced tissue inflammation and oxidative stress.
Collapse
Affiliation(s)
- Li Tang
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Center of Kidney Transplantation, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang, China
| | - Yuanyuan Wu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Mi Tian
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - C David Sjöström
- Global Medicine Development Unit, AstraZeneca Gothenburg, Sweden
| | - Ulrika Johansson
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden; and
| | - Xiao-Rong Peng
- Cardiovascular and Metabolic Diseases Innovative Medicines and Early Development Biotech Unit, AstraZeneca Gothenburg, Sweden; and
| | - David M Smith
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Yufeng Huang
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah;
| |
Collapse
|
21
|
Min SH, Kong SH, Lee JE, Lee DH, Oh TJ, Kim KM, Park KS, Jang HC, Lim S. Association of angiotensin-II levels with albuminuria in subjects with normal glucose metabolism, prediabetes, and type 2 diabetes mellitus. J Diabetes Complications 2017; 31:1499-1505. [PMID: 28797632 DOI: 10.1016/j.jdiacomp.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The relationship between the renin-angiotensin system (RAS) and diabetes has been studied for many years. However, studies that assessed RAS components comprehensively were limited. We hypothesized that serum RAS components, especially the effector peptide angiotensin-II, might be closely associated with glucose metabolism status and diabetic complications. METHODS We investigated the association of individual RAS component with albuminuria in 407 subjects with normal glucose metabolism (NGM), prediabetes, or type 2 diabetes mellitus (T2DM). Anthropometric and biochemical parameters, including glucose homeostasis, albuminuria, and RAS-related parameters such as plasma renin activity (PRA), aldosterone, angiotensin-converting enzyme (ACE), and angiotensin-II levels, were measured. RESULTS The mean±standard deviation (SD) age and body mass index were 57.1±11.1years and 24.7±3.3kg/m2, respectively. There were 54 subjects with NGM, 102 with prediabetes, and 251 with T2DM. The mean±SD angiotensin-II levels in these groups were 9.32±6.89, 12.89±10.39, and 17.00±15.28pg/mL, and the respective urinary albumin-to-creatinine ratios (ACRs) were 8.1±5.3, 13.3±17.3, and 30.7±51.9mg/g, which were significantly different among the groups. The serum angiotensin-II levels were correlated with levels of PRA, insulin resistance, C-reactive protein, and urinary ACR. Among RAS-related parameters, only the angiotensin-II level was significantly associated with urinary ACR after adjusting for relevant risk factors. CONCLUSIONS Angiotensin-II may play an important role in the development of albuminuria, particularly in subjects with impaired glucose metabolism.
Collapse
Affiliation(s)
- Se Hee Min
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sung Hye Kong
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jie-Eun Lee
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, South Korea
| | - Dong-Hwa Lee
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
22
|
Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal 2016; 25:657-684. [PMID: 26906673 PMCID: PMC5069735 DOI: 10.1089/ars.2016.6664] [Citation(s) in RCA: 421] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657-684.
Collapse
Affiliation(s)
- Jay C Jha
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Claudine Banal
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Bryna S M Chow
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Mark E Cooper
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| | - Karin Jandeleit-Dahm
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| |
Collapse
|
23
|
Blakely PK, Huber AK, Irani DN. Type-1 angiotensin receptor signaling in central nervous system myeloid cells is pathogenic during fatal alphavirus encephalitis in mice. J Neuroinflammation 2016; 13:196. [PMID: 27562117 PMCID: PMC5000512 DOI: 10.1186/s12974-016-0683-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/18/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Alphaviruses can cause fatal encephalitis in humans. Natural infections occur via the bite of infected mosquitos, but aerosol transmissibility makes some of these viruses potential bioterrorism agents. Central nervous system (CNS) host responses contribute to alphavirus pathogenesis in experimental models and are logical therapeutic targets. We investigated whether reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity within the CNS contributes to fatal alphavirus encephalitis in mice. METHODS Infected animals were treated systemically with the angiotensin receptor-blocking drug, telmisartan, given its ability to cross the blood-brain barrier, selectively block type-1 angiotensin receptors (AT1R), and inhibit Nox-derived ROS production in vascular smooth muscle and other extraneural tissues. Clinical, virological, biochemical, and histopathological outcomes were followed over time. RESULTS The importance of the angiotensin II (Ang II)/AT1R axis in disease pathogenesis was confirmed by demonstrating increased Ang II levels in the CNS following infection, enhanced disease survival when CNS Ang II production was suppressed, increased AT1R expression on microglia and tissue-infiltrating myeloid cells, and enhanced disease survival in AT1R-deficient mice compared to wild-type (WT) controls. Systemic administration of telmisartan protected WT mice from lethal encephalitis caused by two different alphaviruses in a dose-dependent manner without altering virus replication or exerting any anti-inflammatory effects in the CNS. Infection triggered up-regulation of multiple Nox subunits in the CNS, while drug treatment inhibited local Nox activity, ROS production, and oxidative neuronal damage. Telmisartan proved ineffective in Nox-deficient mice, demonstrating that this enzyme is its main target in this experimental setting. CONCLUSIONS Nox-derived ROS, likely arising from CNS myeloid cells triggered by AT1R signaling, are pathogenic during fatal alphavirus encephalitis in mice. Systemically administered telmisartan at non-hypotensive doses targets Nox activity in the CNS to exert a neuroprotective effect. Disruption of this pathway may have broader implications for the treatment of related infections as well as for other CNS diseases driven by oxidative injury.
Collapse
Affiliation(s)
- Pennelope K Blakely
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Room 4007, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Amanda K Huber
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Room 4007, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - David N Irani
- Holtom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan Medical School, Room 4007, A. Alfred Taubman Biomedical Sciences Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
24
|
Role of NADPH Oxidase in Metabolic Disease-Related Renal Injury: An Update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7813072. [PMID: 27597884 PMCID: PMC5002489 DOI: 10.1155/2016/7813072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/17/2016] [Indexed: 01/09/2023]
Abstract
Metabolic syndrome has been linked to an increased risk of chronic kidney disease. The underlying pathogenesis of metabolic disease-related renal injury remains obscure. Accumulating evidence has shown that NADPH oxidase is a major source of intrarenal oxidative stress and is upregulated by metabolic factors leading to overproduction of ROS in podocytes, endothelial cells, and mesangial cells in glomeruli, which is closely associated with the initiation and progression of glomerular diseases. This review focuses on the role of NADPH oxidase-induced oxidative stress in the pathogenesis of metabolic disease-related renal injury. Understanding of the mechanism may help find potential therapeutic strategies.
Collapse
|
25
|
Prezent MA, Ruban SV, Baranin SV, Bubnov YN. Methyl (5-oxopyrazol-3-yl)acetate N,S-ketene acetal as a new building block for the construction of pyrazolo[4,3-c]pyridines. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1403-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Song SE, Jo HJ, Kim YW, Cho YJ, Kim JR, Park SY. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells. J Pharmacol Sci 2016; 130:235-43. [PMID: 27103328 DOI: 10.1016/j.jphs.2016.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/22/2016] [Accepted: 03/10/2016] [Indexed: 02/02/2023] Open
Abstract
This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6-25 mM) increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM) prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM). High glucose increased reactive oxygen species (ROS) generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX) 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK)1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor) prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF)-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.
Collapse
Affiliation(s)
- Seung Eun Song
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, South Korea
| | - Hye Jun Jo
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, South Korea
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, South Korea
| | - Young-Je Cho
- School of Food Sciences & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, South Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 42415, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, South Korea.
| |
Collapse
|
27
|
Peleli M, Al-Mashhadi A, Yang T, Larsson E, Wåhlin N, Jensen BL, G Persson AE, Carlström M. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis. Am J Physiol Renal Physiol 2015; 310:F43-56. [PMID: 26538440 DOI: 10.1152/ajprenal.00345.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022] Open
Abstract
Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 ± 2 vs. 5 ± 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates hypertension and restores the renal excretion pattern, which is associated with reduced renal NOX and components of the renin-angiotensin-aldosterone system. This study emphasizes a link between renal nerves, the development of hypertension, and modulation of NOX function.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ammar Al-Mashhadi
- Division of Pediatric Surgery, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ting Yang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Erik Larsson
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Nils Wåhlin
- Department of Pediatric Surgery, Astrid Lindgren Hospital, Karolinska Institutet, Stockholm, Sweden; and
| | - Boye L Jensen
- Department of Physiology and Pharmacology, University of Southern Denmark, Odense, Denmark
| | - A Erik G Persson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
| |
Collapse
|
28
|
Abstract
Diabetic nephropathy (DN), a leading cause of end-stage renal disease (ESRD) affecting ∼20-30% diabetics, is associated with increased cardiovascular mortality. The progression of kidney disease in patients with diabetes can take many years. It occurs as a result of interaction between both genetic and environmental factors in individuals with both type 1 and type 2 diabetes. Hyperglycaemia, hypertension, and genetic pre-disposition are the main risk factors besides elevated serum lipids, smoking habits, and the amount of dietary proteins. Interventions such as glycaemic control, blood pressure control and inhibition of the renin-angiotensin-aldosterone system have been shown to slow this progression. Despite the implementation of these strategies, the number of patients with diabetes that ultimately develop end-stage renal disease remains high. The treatment of DN, therefore, has posed a formidable challenge besides optimization of renin-angiotensin-aldosterone system blockade in patients with DN; additional investigation has focused on the potential of novel therapies that target various pathways upregulated by hyperglycaemia or other targets believed to promote the progression of DN such as oxidative stress, inflammation, endothelin system and vitamin D receptors. This review article addresses the pathogenesis and some of the well established principles regarding the progression and accepted management of DN, and also includes the perspectives of novel anti-DN agents and the future directions for the prevention of DN.
Collapse
Affiliation(s)
- Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
29
|
Burger D, Viñas JL, Akbari S, Dehak H, Knoll W, Gutsol A, Carter A, Touyz RM, Allan DS, Burns KD. Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2309-23. [PMID: 26073035 DOI: 10.1016/j.ajpath.2015.04.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/20/2015] [Accepted: 04/16/2015] [Indexed: 01/16/2023]
Abstract
The administration of certain progenitor cells is protective in experimental acute kidney injury (AKI), and mechanisms may involve the release of paracrine factors. Endothelial colony-forming cells (ECFCs) are endothelial precursor cells with a high proliferative capacity and pro-angiogenic potential. We examined the effects of human umbilical cord blood-derived ECFCs and their extracellular vesicles in a mouse model of ischemic AKI and in cultured human umbilical vein endothelial cells subjected to hypoxia/reoxygenation. In mice with ischemic AKI, administration of ECFCs (i.v.) at the time of reperfusion significantly attenuated increases in plasma creatinine, tubular necrosis, macrophage infiltration, oxidative stress, and apoptosis, without cell persistence in the kidneys. In cultured human umbilical vein endothelial cells, hypoxia/reoxygenation stimulated apoptosis. This effect was inhibited by incubation with conditioned medium or exosomes (40- to 100-nm diameter) derived from ECFCs, but not by microparticles (100- to 1000-nm diameter) or vesicle-depleted conditioned medium. Administration of exosomes (i.v.) directly to mice with ischemic AKI attenuated renal injury, as assessed by plasma creatinine, tubular necrosis, and apoptosis. Taken together, these studies indicate protective effects of human cord blood-derived ECFCs in experimental AKI and suggest that ECFC-derived exosomes may mediate the protective response via inhibition of endothelial cell apoptosis.
Collapse
Affiliation(s)
- Dylan Burger
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jose L Viñas
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Shareef Akbari
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Hajira Dehak
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - William Knoll
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Gutsol
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Anthony Carter
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Rhian M Touyz
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - David S Allan
- Division of Hematology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin D Burns
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
30
|
Winiarska K, Jarzyna R, Dzik JM, Jagielski AK, Grabowski M, Nowosielska A, Focht D, Sierakowski B. ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity. Free Radic Biol Med 2015; 81:13-21. [PMID: 25601753 DOI: 10.1016/j.freeradbiomed.2014.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/27/2014] [Accepted: 12/26/2014] [Indexed: 01/11/2023]
Abstract
The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has delivered some new insights into the recently discussed issue of the usefulness of Nox inhibition as a potential antidiabetic strategy.
Collapse
Affiliation(s)
- Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Robert Jarzyna
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jolanta M Dzik
- Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Adam K Jagielski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Grabowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agata Nowosielska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Dorota Focht
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Bartosz Sierakowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
31
|
Therapeutic strategies of diabetic nephropathy: recent progress and future perspectives. Drug Discov Today 2014; 20:332-46. [PMID: 25448752 DOI: 10.1016/j.drudis.2014.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/20/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes with high mortality rates worldwide. The treatment of DN has posed a formidable challenge to the scientific community. Simple control of risk factors has been insufficient to cope with the progression of DN. During the process of anti-DN drug discovery, multiple pathogeneses such as oxidative stress, inflammation and fibrosis should all be considered. In this review, the pathogenesis of DN is summarized. The major context focuses on a few small molecules toward the pathogenesis available in animal models and clinical trials for the treatment of DN. The perspectives of novel anti-DN agents and the future directions for the prevention of DN are discussed.
Collapse
|
32
|
Winiarska K, Focht D, Sierakowski B, Lewandowski K, Orlowska M, Usarek M. NADPH oxidase inhibitor, apocynin, improves renal glutathione status in Zucker diabetic fatty rats: A comparison with melatonin. Chem Biol Interact 2014; 218:12-9. [DOI: 10.1016/j.cbi.2014.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/27/2013] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
33
|
Franzén S, Friederich-Persson M, Fasching A, Hansell P, Nangaku M, Palm F. Differences in susceptibility to develop parameters of diabetic nephropathy in four mouse strains with type 1 diabetes. Am J Physiol Renal Physiol 2014; 306:F1171-8. [DOI: 10.1152/ajprenal.00595.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
One-third of diabetes mellitus patients develop diabetic nephropathy, and with underlying mechanisms unknown it is imperative that diabetic animal models resemble human disease. The present study investigated the susceptibility to develop diabetic nephropathy in four commonly used and commercially available mouse strains with type 1 diabetes to determine the suitability of each strain. Type 1 diabetes was induced in C57Bl/6, NMRI, BALB/c, and 129Sv mice by alloxan, and conscious glomerular filtration rate, proteinuria, and oxidative stress levels were measured in control and diabetic animals at baseline and after 5 and 10 wk. Histological alterations were analyzed using periodic acid-Schiff staining. Diabetic C57Bl/6 displayed increased glomerular filtration rate, i.e., hyperfiltration, whereas all other parameters remained unchanged. Diabetic NMRI developed the most pronounced hyperfiltration as well as increased oxidative stress and proteinuria but without glomerular damage. Diabetic BALB/c did not develop hyperfiltration but presented with pronounced proteinuria, increased oxidative stress, and glomerular damage. Diabetic 129Sv displayed proteinuria and increased oxidative stress without glomerular hyperfiltration or damage. However, all strains displayed intrastrain correlation between oxidative stress and proteinuria. In conclusion, diabetic C57Bl/6 and NMRI both developed glomerular hyperfiltration but neither presented with histological damage, although NMRI developed low-degree proteinuria. Thus these strains may be suitable when investigating the mechanism causing hyperfiltration. Neither BALB/c nor 129Sv developed hyperfiltration although both developed pronounced proteinuria. However, only BALB/c developed detectable histological damage. Thus BALB/c may be suitable when studying the roles of proteinuria and histological alterations for the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Stephanie Franzén
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | | | - Angelica Fasching
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Peter Hansell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | - Fredrik Palm
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; and
| |
Collapse
|
34
|
Valsartan slows the progression of diabetic nephropathy in db/db mice via a reduction in podocyte injury, and renal oxidative stress and inflammation. Clin Sci (Lond) 2014; 126:707-20. [PMID: 24195695 DOI: 10.1042/cs20130223] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Higher doses of AngII (angiotensin II) blockers are intended to optimize albuminuria reduction rather than for blood pressure control in chronic kidney disease. However, the long-term renoprotection of high-dose AngII blockers has yet to be defined. The present study sought to determine whether doses of ARB (AngII receptor blocker) that maximally reduce proteinuria could slow the progression of glomerulosclerosis in the uninephrectomized db/db mouse, a model of Type 2 diabetes. Untreated uninephrectomized db/db mice had normal blood pressure, but developed progressive albuminuria and mesangial matrix expansion between 18 and 22 weeks of age, which was associated with increased renal expression of TGFβ1 (transforming growth factor β1), PAI-1 (plasminogen-activator inhibitor-1), type IV collagen and FN (fibronectin). Treatment with valsartan in the drinking water of db/db mice from 18 to 22 weeks of age, at a dose that was determined previously to maximally reduce proteinuria, prevented the increases in albuminuria and the markers of renal fibrosis seen in untreated db/db mice. In addition, WT-1 (Wilms tumour protein-1)-immunopositive podocyte numbers were found to be lower in the untreated glomeruli of mice with diabetes. The expression of podocin and nephrin were continually decreased in mice with diabetes between 18 and 22 weeks of age. These changes are indicative of podocyte injury and the administration of valsartan ameliorated them substantially. Renal expression of TNFα (tumour necrosis factor α), MCP-1 (monocyte chemoattractant protein-1), Nox2 (NADPH oxidase 2), p22phox and p47phox and urine TBARS (thiobarbituric acid-reacting substance) levels, the markers of renal inflammation and oxidative stress, were increased during disease progression in mice with diabetes. Valsartan treatment was shown to reduce these markers. Thus high doses of valsartan not only reduce albuminuria maximally, but also halt the progression of the glomerulosclerosis resulting from Type 2 diabetes via a reduction in podocyte injury and renal oxidative stress and inflammation.
Collapse
|
35
|
Zhu S, Yang Y, Hu J, Qian L, Jiang Y, Li X, Yang Q, Bai H, Chen Q. Wld(S) ameliorates renal injury in a type 1 diabetic mouse model. Am J Physiol Renal Physiol 2014; 306:F1348-56. [PMID: 24598800 DOI: 10.1152/ajprenal.00418.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease worldwide. The purpose of this study is to investigate whether the Wld(S) (slow Wallerian degeneration; also known as Wld) gene plays a renoprotective role during the progression of DN. Diabetes was induced in 8-wk-old male wild-type (WT) and C57BL/Wld(S) mice by streptozotocin (STZ) injection. Blood and urinary variables including blood glucose, glycated hemoglobin (GHb), insulin, urea nitrogen, and albumin/creatinine ratio were assessed 4, 7, and 14 wk after STZ injection. Periodic acid-Schiff staining, Masson staining, and silver staining were performed for renal pathological analyses. In addition, the renal ultrastructure was observed by electron microscope. The activities of p38 and ERK signaling in renal cortical tissues were evaluated by Western blotting. NAD(+)/NADH ratio and NADPH oxidase activity were also measured. Moreover, the expressions of TNF-α, IL-1, and IL-6 were examined. We provide experimental evidence demonstrating that the Wld(S) gene is expressed in kidney cells and protects against the early stage of diabetes-induced renal dysfunction and extracellular matrix accumulation through delaying the reduction of the NAD(+)/NADH ratio, inhibiting the activation of p38 and ERK signaling, and suppressing oxidative stress as evidenced by the decreased NADPH oxidase activity and lower expression of TNF-α, IL-1, and IL-6.
Collapse
Affiliation(s)
- Shuaishuai Zhu
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yelin Yang
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin Hu
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lingling Qian
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuchen Jiang
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoyu Li
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing Yang
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hui Bai
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qi Chen
- Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
36
|
Daehn I, Casalena G, Zhang T, Shi S, Fenninger F, Barasch N, Yu L, D'Agati V, Schlondorff D, Kriz W, Haraldsson B, Bottinger EP. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J Clin Invest 2014; 124:1608-21. [PMID: 24590287 DOI: 10.1172/jci71195] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/02/2014] [Indexed: 01/08/2023] Open
Abstract
Focal segmental glomerular sclerosis (FSGS) is a primary kidney disease that is commonly associated with proteinuria and progressive loss of glomerular function, leading to development of chronic kidney disease (CKD). FSGS is characterized by podocyte injury and depletion and collapse of glomerular capillary segments. Progression of FSGS is associated with TGF-β activation in podocytes; however, it is not clear how TGF-β signaling promotes disease. Here, we determined that podocyte-specific activation of TGF-β signaling in transgenic mice and BALB/c mice with Adriamycin-induced glomerulosclerosis is associated with endothelin-1 (EDN1) release by podocytes, which mediates mitochondrial oxidative stress and dysfunction in adjacent endothelial cells via paracrine EDN1 receptor type A (EDNRA) activation. Endothelial dysfunction promoted podocyte apoptosis, and inhibition of EDNRA or scavenging of mitochondrial-targeted ROS prevented podocyte loss, albuminuria, glomerulosclerosis, and renal failure. We confirmed reciprocal crosstalk between podocytes and endothelial cells in a coculture system. Biopsies from patients with FSGS exhibited increased mitochondrial DNA damage, consistent with EDNRA-mediated glomerular endothelial mitochondrial oxidative stress. Our studies indicate that segmental glomerulosclerosis develops as a result of podocyte-endothelial crosstalk mediated by EDN1/EDNRA-dependent mitochondrial dysfunction and suggest that targeting the reciprocal interaction between podocytes and endothelia may provide opportunities for therapeutic intervention in FSGS.
Collapse
MESH Headings
- Animals
- Cell Line
- Disease Models, Animal
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Glomerulosclerosis, Focal Segmental/genetics
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Mitochondria/metabolism
- Models, Biological
- Oxidative Stress
- Podocytes/metabolism
- Podocytes/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Endothelin A/genetics
- Receptor, Endothelin A/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Transforming Growth Factor beta/metabolism
Collapse
|
37
|
Okada H, Fukui M, Tanaka M, Matsumoto S, Kobayashi K, Iwase H, Tomiyasu K, Nakano K, Hasegawa G, Nakamura N. Low serum bilirubin concentration is a novel risk factor for the development of albuminuria in patients with type 2 diabetes. Metabolism 2014; 63:409-14. [PMID: 24332706 DOI: 10.1016/j.metabol.2013.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/13/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Bilirubin has been recognized as an important endogeneous antioxidant. Previous studies reported that bilirubin could prevent atherosclerosis. The aim of this study was to investigate if serum bilirubin concentration could be a predictor for the development of albuminuria in patients with type 2 diabetes. MATERIALS AND METHODS We measured serum bilirubin in 320 consecutive patients with normoalbuminuria. We performed follow-up study to assess the development of albuminuria, mean interval of which was 3.2±0.9years. Cox proportional hazards regression was used to examine the relationship between serum bilirubin concentration and the development of albuminuria. RESULTS During follow-up duration, 43 patients have developed albuminuria. In multivariate analysis, after adjusting for comprehensive risk factors, the risk of developing albuminuria was higher in the lowest quartile of serum bilirubin concentrations than that in the highest quartile of serum bilirubin concentrations (Hazard ratio, 5.76; 95% CI, 1.65 to 24.93). CONCLUSIONS Low serum bilirubin concentration could be a novel risk factor for the development of albuminuria in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hiroshi Okada
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Muhei Tanaka
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shinobu Matsumoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kanae Kobayashi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hiroya Iwase
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kiichiro Tomiyasu
- Department of Cardiology, Kyoto Yamashiro General Medical Center, Japan
| | - Koji Nakano
- Department of Endocrinology and Metabolism, Kyoto Yamashiro General Medical Center, Japan
| | - Goji Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Naoto Nakamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
38
|
Abais JM, Xia M, Li G, Gehr TWB, Boini KM, Li PL. Contribution of endogenously produced reactive oxygen species to the activation of podocyte NLRP3 inflammasomes in hyperhomocysteinemia. Free Radic Biol Med 2014; 67:211-20. [PMID: 24140862 PMCID: PMC3945111 DOI: 10.1016/j.freeradbiomed.2013.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
Abstract
Hyperhomocysteinemia (hHcys) is an important pathogenic factor contributing to the progression of end-stage renal disease. Recent studies have demonstrated the implication of nicotinamide adenine dinucleotide phosphate oxidase-mediated NLRP3 inflammasome activation in the development of podocyte injury and glomerular sclerosis during hHcys. However, it remains unknown which reactive oxygen species (ROS) are responsible for this activation of NLRP3 inflammasomes and how such action of ROS is controlled. This study tested the contribution of common endogenous ROS including superoxide (O2(-)), hydrogen peroxide (H2O2), peroxynitrite (ONOO(-)), and hydroxyl radical (OH) to the activation of NLRP3 inflammasomes in mouse podocytes and glomeruli. In vitro, confocal microscopy and size-exclusion chromatography demonstrated that dismutation of O2(-) by 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) and decomposition of H2O2 by catalase prevented Hcys-induced aggregation of NLRP3 inflammasome proteins and inhibited Hcys-induced caspase-1 activation and IL-1β production in mouse podocytes. However, scavenging of ONOO(-) or OH had no significant effect on either Hcys-induced NLRP3 inflammasome formation or activation. In vivo, scavenging of O2(-) by Tempol and removal of H2O2 by catalase substantially inhibited NLRP3 inflammasome formation and activation in glomeruli of hHcys mice as shown by reduced colocalization of NLRP3 with ASC or caspase-1 and inhibition of caspase-1 activation and IL-1β production. Furthermore, Tempol and catalase significantly attenuated hHcys-induced glomerular injury. In conclusion, endogenously produced O2(-) and H2O2 primarily contribute to NLRP3 inflammasome formation and activation in mouse glomeruli resulting in glomerular injury or consequent sclerosis during hHcys.
Collapse
Affiliation(s)
- Justine M Abais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Min Xia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Todd W B Gehr
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Krishna M Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
39
|
Role of angiotensin-converting enzyme 2 (ACE2) in diabetic cardiovascular complications. Clin Sci (Lond) 2013; 126:471-82. [DOI: 10.1042/cs20130344] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus results in severe cardiovascular complications, and heart disease and failure remain the major causes of death in patients with diabetes. Given the increasing global tide of obesity and diabetes, the clinical burden of diabetes-induced cardiovascular disease is reaching epidemic proportions. Therefore urgent actions are needed to stem the tide of diabetes which entails new prevention and treatment tools. Clinical and pharmacological studies have demonstrated that AngII (angiotensin II), the major effector peptide of the RAS (renin–angiotensin system), is a critical promoter of insulin resistance and diabetes mellitus. The role of RAS and AngII has been implicated in the progression of diabetic cardiovascular complications and AT1R (AngII type 1 receptor) blockers and ACE (angiotensin-converting enzyme) inhibitors have shown clinical benefits. ACE2, the recently discovered homologue of ACE, is a monocarboxypeptidase which converts AngII into Ang-(1–7) [angiotensin-(1–7)] which, by virtue of its actions on the MasR (Mas receptor), opposes the effects of AngII. In animal models of diabetes, an early increase in ACE2 expression and activity occurs, whereas ACE2 mRNA and protein levels have been found to decrease in older STZ (streptozotocin)-induced diabetic rats. Using the Akita mouse model of Type 1 diabetes, we have recently shown that loss of ACE2 disrupts the balance of the RAS in a diabetic state and leads to AngII/AT1R-dependent systolic dysfunction and impaired vascular function. In the present review, we will discuss the role of the RAS in the pathophysiology and treatment of diabetes and its complications with particular emphasis on potential benefits of the ACE2/Ang-(1–7)/MasR axis activation.
Collapse
|
40
|
Hagiwara S, Jha JC, Cooper ME. Identifying and interpreting novel targets that address more than one diabetic complication: a strategy for optimal end organ protection in diabetes. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0148-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Gorin Y, Block K. Nox4 and diabetic nephropathy: with a friend like this, who needs enemies? Free Radic Biol Med 2013; 61:130-42. [PMID: 23528476 PMCID: PMC3716866 DOI: 10.1016/j.freeradbiomed.2013.03.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, a complication of diabetes in the kidney. NADPH oxidases of the Nox family are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current understanding of the roles of Nox catalytic and regulatory subunits in the processes that control mesangial cell, podocyte, and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-β. The role of the Nox isoform Nox4 in the redox processes that alter renal biology in diabetes is highlighted.
Collapse
Affiliation(s)
- Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA.
| |
Collapse
|
42
|
Abstract
Oxidative stress has been linked to the pathogenesis of the major complications of diabetes in the kidney, the heart, the eye or the vasculature. NADPH oxidases of the Nox family are a major source of ROS (reactive oxygen species) and are critical mediators of redox signalling in cells from different organs afflicted by the diabetic milieu. In the present review, we provide an overview of the current knowledge related to the understanding of the role of Nox in the processes that control cell injury induced by hyperglycaemia and other predominant factors enhanced in diabetes, including the renin–angiotensin system, TGF-β (transforming growth factor-β) and AGEs (advanced glycation end-products). These observations support a critical role for Nox homologues in diabetic complications and indicate that NADPH oxidases are an important therapeutic target. Therefore the design and development of small-molecule inhibitors that selectively block Nox oxidases appears to be a reasonable approach to prevent or retard the complications of diabetes in target organs. The bioefficacy of these agents in experimental animal models is also discussed in the present review.
Collapse
|
43
|
Urinary and glomerular podocytes in patients with chronic kidney diseases. Clin Exp Nephrol 2013; 18:95-103. [DOI: 10.1007/s10157-013-0814-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
44
|
Lan X, Rai P, Chandel N, Cheng K, Lederman R, Saleem MA, Mathieson PW, Husain M, Crosson JT, Gupta K, Malhotra A, Singhal PC. Morphine induces albuminuria by compromising podocyte integrity. PLoS One 2013; 8:e55748. [PMID: 23555556 PMCID: PMC3612045 DOI: 10.1371/journal.pone.0055748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/31/2012] [Indexed: 12/27/2022] Open
Abstract
Morphine has been reported to accelerate the progression of chronic kidney disease. However, whether morphine affects slit diaphragm (SD), the major constituent of glomerular filtration barrier, is still unclear. In the present study, we examined the effect of morphine on glomerular filtration barrier in general and podocyte integrity in particular. Mice were administered either normal saline or morphine for 72 h, then urine samples were collected and kidneys were subsequently isolated for immunohistochemical studies and Western blot. For in vitro studies, human podocytes were treated with morphine and then probed for the molecular markers of slit diaphragm. Morphine-receiving mice displayed a significant increase in albuminuria and showed effacement of podocyte foot processes. In both in vivo and in vitro studies, the expression of synaptopodin, a molecular marker for podocyte integrity, and the slit diaphragm constituting molecules (SDCM), such as nephrin, podocin, and CD2-associated protein (CD2AP), were decreased in morphine-treated podocytes. In vitro studies indicated that morphine modulated podocyte expression of SDCM through opiate mu (MOR) and kappa (KOR) receptors. Since morphine also enhanced podocyte oxidative stress, the latter seems to contribute to decreased SDCM expression. In addition, AKT, p38, and JNK pathways were involved in morphine-induced down regulation of SDCM in human podocytes. These findings demonstrate that morphine has the potential to alter the glomerular filtration barrier by compromising the integrity of podocytes.
Collapse
Affiliation(s)
- Xiqian Lan
- Renal Molecular Research Laboratoy, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, New York, United States of America
| | - Partab Rai
- Renal Molecular Research Laboratoy, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, New York, United States of America
| | - Nirupama Chandel
- Renal Molecular Research Laboratoy, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, New York, United States of America
| | - Kang Cheng
- Renal Molecular Research Laboratoy, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, New York, United States of America
| | - Rivka Lederman
- Renal Molecular Research Laboratoy, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, New York, United States of America
| | - Moin A. Saleem
- Academic Renal Unit, Southmead Hospital, Bristol, United Kingdom
| | | | - Mohammad Husain
- Renal Molecular Research Laboratoy, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, New York, United States of America
| | - John T. Crosson
- Department of Lab Medicine Pathology, Hennepin County Medical Center, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kalpna Gupta
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Ashwani Malhotra
- Renal Molecular Research Laboratoy, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, New York, United States of America
| | - Pravin C. Singhal
- Renal Molecular Research Laboratoy, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, Great Neck, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Shao D, Liu J, Ni J, Wang Z, Shen Y, Zhou L, Huang Y, Wang J, Xue H, Zhang W, Lu L. Suppression of XBP1S mediates high glucose-induced oxidative stress and extracellular matrix synthesis in renal mesangial cell and kidney of diabetic rats. PLoS One 2013; 8:e56124. [PMID: 23457509 PMCID: PMC3573021 DOI: 10.1371/journal.pone.0056124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022] Open
Abstract
Recent evidences suggest that endoplasmic reticulum (ER) stress was involved in multi pathological conditions, including diabetic nephropathy (DN). X-box binding protein 1(XBP1), as a key mediator of ER stress, has been proved having the capability of preventing oxidative stress. In this study, we investigated the effects of spliced XBP1 (XBP1S), the dominant active form of XBP1, on high glucose (HG)-induced reactive oxygen species (ROS) production and extracellular matrix (ECM) synthesis in cultured renal mesangial cells (MCs) and renal cortex of STZ-induced diabetic rats. Real time PCR and Western blot were used to evaluate the mRNA and protein levels respectively. Transfection of recombinant adenovirus vector carrying XBP1S gene (Ad-XBP1S) was used to upregulate XBP1S expression. XBP1S siRNA was used to knockdown XBP1S expression. ROS level was detected by dihydroethidium (DHE) fluorescent probe assay. The results showed that HG treatment significantly reduced XBP1S protein and mRNA level in the cultured MCs while no obvious change was observed in unspliced XBP1 (XBP1U). In the mean time, the ROS production, collagen IV and fibronectin expressions were increased. Diphenylene-chloride iodonium (DPI), a NADPH oxidase inhibtor, prevented HG-induced increases in ROS as well as collagen IV and fibronectin expressions. Transfection of Ad-XBP1S reversed HG-induced ROS production and ECM expressions. Knockdown intrinsic XBP1S expression induced increases in ROS production and ECM expressions. Supplementation of supreoxide reversed the inhibitory effect of Ad-XBP1S transfection on ECM synthesis. P47phox was increased in HG-treated MCs. Ad-XBP1S transfection reversed HG-induced p47phox increase while XBP1S knockdown upregulated p47phox expression. In the renal cortex of diabetic rats, the expression of XBP1S was reduced while p47phox, collagen IV and fibronectin expression were elevated. These results suggested that XBP1S pathway of ER stress was involved in HG-induced oxidative stress and ECM synthesis. A downstream target of XBP1S in regulating ROS formation might be NADPH oxidase.
Collapse
Affiliation(s)
- Decui Shao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Ni
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Huang
- School of Biomedical Sciences and Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Jun Wang
- Department of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Xue
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
46
|
Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul Pharmacol 2013; 58:259-71. [PMID: 23313806 DOI: 10.1016/j.vph.2013.01.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is known to trigger retinopathy, neuropathy and nephropathy. Diabetic nephropathy, a long-term major microvascular complication of uncontrolled hyperglycemia, affects a large population worldwide. Recent findings suggest that numerous pathways are activated during the course of diabetes mellitus and that these pathways individually or collectively play a role in the induction and progression of diabetic nephropathy. However, clinical strategies targeting these pathways to manage diabetic nephropathy remain unsatisfactory, as the number of diabetic patients with nephropathy is increasing yearly. To develop ground-breaking therapeutic options to prevent the development and progression of diabetic nephropathy, a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of the disease is mandatory. Therefore, the purpose of this paper is to discuss the underlying mechanisms and downstream pathways involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Mandeep Kumar Arora
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut 250005, Uttar Pradesh, India.
| | | |
Collapse
|
47
|
Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes. Clin Sci (Lond) 2012; 124:191-202. [DOI: 10.1042/cs20120330] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nox (NADPH oxidase)-derived ROS (reactive oxygen species) have been implicated in the development of diabetic nephropathy. Of the Nox isoforms in the kidney, Nox4 is important because of its renal abundance. In the present study, we tested the hypothesis that GKT136901, a Nox1/4 inhibitor, prevents the development of nephropathy in db/db (diabetic) mice. Six groups of male mice (8-week-old) were studied: (i) untreated control db/m, (ii) low-dose GKT136901-treated db/m (30 mg/kg of body weight per day), (iii) high-dose GKT136901-treated db/m (90 mg/kg of body weight per day), (iv) untreated db/db; (v) low dose GKT136901-treated db/db; and (vi) high-dose GKT136901-treated db/db. GKT136901, in chow, was administered for 16 weeks. db/db mice developed diabetes and nephropathy as evidenced by hyperglycaemia, albuminuria and renal injury (mesangial expansion, tubular dystrophy and glomerulosclerosis). GKT136901 treatment had no effect on plasma glucose or BP (blood pressure) in any of the groups. Plasma and urine TBARSs (thiobarbituric acid-reacting substances) levels, markers of systemic and renal oxidative stress, respectively, were increased in diabetic mice. Renal mRNA expression of Nox4, but not of Nox2, increased, Nox1 was barely detectable in db/db. Expression of the antioxidant enzyme SOD-1 (superoxide dismutase 1) decreased in db/db mice. Renal content of fibronectin, pro-collagen, TGFβ (transforming growth factor β) and VCAM-1 (vascular cell adhesion molecule 1) and phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2) were augmented in db/db kidneys, with no change in p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase). Treatment reduced albuminuria, TBARS and renal ERK1/2 phosphorylation and preserved renal structure in diabetic mice. Our findings suggest a renoprotective effect of the Nox1/4 inhibitor, possibly through reduced oxidative damage and decreased ERK1/2 activation. These phenomena occur independently of improved glucose control, suggesting GKT136901-sensitive targets are involved in complications of diabetes rather than in the disease process.
Collapse
|
48
|
Shi F, Zhu X. NOX-mediated MAPK and PI3K/Akt signaling pathways and liver fibrosis. Shijie Huaren Xiaohua Zazhi 2012; 20:2685-2690. [DOI: 10.11569/wcjd.v20.i28.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic satellite cells (HSCs) are the main cell type involved in the development of liver fibrosis and have been recognized as the important cellular source of extracellular matrix (ECM). NADPH oxidase (NOX) catalyzes the generation of reactive oxygen species (ROS), regulates signal transduction in HSCs, and thereby plays a key role in the pathogenesis of hepatic fibrosis. ROS generated by NOX promotes proliferation and inhibits apoptosis of HSCs by activation of mitogen-activated protein kinase and phosphatidylinositol-3 kinase/Akt signaling pathways, thus contributing to the development of liver fibrosis. Inhibition of NOX activation to generate ROS and NOX-mediated signal transduction induces HSC apoptosis. Therefore, drugs that target specific NOX can be expected to be useful in arresting the progression of liver fibrosis.
Collapse
|
49
|
Stieger N, Worthmann K, Teng B, Engeli S, Das AM, Haller H, Schiffer M. Impact of high glucose and transforming growth factor-β on bioenergetic profiles in podocytes. Metabolism 2012; 61:1073-86. [PMID: 22365040 DOI: 10.1016/j.metabol.2011.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 02/04/2023]
Abstract
Diabetic nephropathy is the most common cause of chronic renal failure in industrialized countries. Depletion of podocytes plays an important role in the progression of diabetic glomerulopathy. Various factors in the diabetic milieu lead to serious podocyte stress driving the cells toward cell cycle arrest (p27(Kip1)), hypertrophy, detachment, and apoptosis. Mitochondria are responsible for oxidative phosphorylation and energy supply in podocytes. Recent studies indicated that mitochondrial dysfunction is a key factor in diabetic nephropathy. In the present study, we investigated metabolic profiles of podocytes under diabetic conditions. We examined oxygen consumption rates (OCRs) and oxidative phosphorylation complex activities in murine podocytes. Cells were exposed to high glucose for 48 hours, cultured for 10 passages under high-glucose conditions (30 mmol/L), or incubated with transforming growth factor-β (5 ng/mL) for 24 hours. After prolonged exposure to high glucose, podocytes showed a significantly increased OCR at baseline and also a higher OCR after addition of oligomycin, indicating significant changes in mitochondrial energy metabolism. Higher OCRs after inhibition of respiration by rotenone also indicated changes in nonmitochondrial respiration. Podocytes stimulated with a proapoptotic concentration of transforming growth factor-β displayed similar bioenergetic profiles, even with decreased citrate synthase activity. In all tested conditions, we found a higher cellular nicotinamide adenine dinucleotide content and changes in activities of respiratory chain complexes. In summary, we provide for the first time evidence that key factors of the diabetic milieu induce changes in glucose metabolism and mitochondrial function in podocytes.
Collapse
Affiliation(s)
- Nicole Stieger
- Division of Nephrology, Department of Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Xu J, Li Z, Xu P, Yang Z. Protective effects of leukemia inhibitory factor against oxidative stress during high glucose-induced apoptosis in podocytes. Cell Stress Chaperones 2012; 17:485-93. [PMID: 22270613 PMCID: PMC3368028 DOI: 10.1007/s12192-012-0325-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 02/01/2023] Open
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic glycoprotein belonging to the interleukin-6 family of cytokines. In kidney, LIF regulates nephrogenesis, involves in tubular regeneration, responds to pro- and anti-inflammatory stimuli, and so on. LIF also plays an essential role in protective mechanisms triggered by preconditioning-induced oxidative stress. Although LIF shows a wide range of biologic activities, effects of LIF on high glucose-induced oxidative stress in podocytes remain unclear. The aim of the study was to assess whether LIF can attenuate high glucose-induced apoptosis in podocytes. The result of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated that LIF protected podocytes against high glucose-induced cytotoxicity. The flow cytometry assay showed that LIF attenuated high glucose-induced apoptosis in podocytes. Meanwhile, the result of flow cytometric assay gave the clear indication that LIF decreased high glucose-induced elevated level of reactive oxygen species (ROS). The measurement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase (SOD), malondialdehyde (MDA), and caspase-3 activity levels showed that LIF attenuated the high glucose-induced decreased level of SOD and elevated level of NADPH oxidase, MDA and caspase-3 activity. These results may provide potential therapy for diabetic nephropathy in the future.
Collapse
Affiliation(s)
- Jing Xu
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Zhigui Li
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Pengjuan Xu
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Zhuo Yang
- College of Medicine, Nankai University, Tianjin, 300071 China
| |
Collapse
|