1
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Jenke R, Oliinyk D, Zenz T, Körfer J, Schäker-Hübner L, Hansen FK, Lordick F, Meier-Rosar F, Aigner A, Büch T. HDAC inhibitors activate lipid peroxidation and ferroptosis in gastric cancer. Biochem Pharmacol 2024; 225:116257. [PMID: 38705532 DOI: 10.1016/j.bcp.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Gastric cancer remains among the deadliest neoplasms worldwide, with limited therapeutic options. Since efficacies of targeted therapies are unsatisfactory, drugs with broader mechanisms of action rather than a single oncogene inhibition are needed. Preclinical studies have identified histone deacetylases (HDAC) as potential therapeutic targets in gastric cancer. However, the mechanism(s) of action of HDAC inhibitors (HDACi) are only partially understood. This is particularly true with regard to ferroptosis as an emerging concept of cell death. In a panel of gastric cancer cell lines with different molecular characteristics, tumor cell inhibitory effects of different HDACi were studied. Lipid peroxidation levels were measured and proteome analysis was performed for the in-depth characterization of molecular alterations upon HDAC inhibition. HDACi effects on important ferroptosis genes were validated on the mRNA and protein level. Upon HDACi treatment, lipid peroxidation was found increased in all cell lines. Class I HDACi (VK1, entinostat) showed the same toxicity profile as the pan-HDACi vorinostat. Proteome analysis revealed significant and concordant alterations in the expression of proteins related to ferroptosis induction. Key enzymes like ACSL4, POR or SLC7A11 showed distinct alterations in their expression patterns, providing an explanation for the increased lipid peroxidation. Results were also confirmed in primary human gastric cancer tissue cultures as a relevant ex vivo model. We identify the induction of ferroptosis as new mechanism of action of class I HDACi in gastric cancer. Notably, these findings were independent of the genetic background of the cell lines, thus introducing HDAC inhibition as a more general therapeutic principle.
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| | - Denys Oliinyk
- Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany
| | - Tamara Zenz
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany
| | - Justus Körfer
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; University Hospital Leipzig, Institute for Anatomy, Leipzig, Germany
| | - Linda Schäker-Hübner
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, Bonn, Germany
| | - Finn K Hansen
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, Bonn, Germany
| | - Florian Lordick
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| | - Florian Meier-Rosar
- Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| | - Achim Aigner
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany.
| | - Thomas Büch
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| |
Collapse
|
3
|
Rodríguez-Ruiz M, Ramos MC, Campos MJ, Díaz-Sánchez I, Cautain B, Mackenzie TA, Vicente F, Corpas FJ, Palma JM. Pepper Fruit Extracts Show Anti-Proliferative Activity against Tumor Cells Altering Their NADPH-Generating Dehydrogenase and Catalase Profiles. Antioxidants (Basel) 2023; 12:1461. [PMID: 37507999 PMCID: PMC10376568 DOI: 10.3390/antiox12071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is considered one of the main causes of human death worldwide, being characterized by an alteration of the oxidative metabolism. Many natural compounds from plant origin with anti-tumor attributes have been described. Among them, capsaicin, which is the molecule responsible for the pungency in hot pepper fruits, has been reported to show antioxidant, anti-inflammatory, and analgesic activities, as well as anti-proliferative properties against cancer. Thus, in this work, the potential anti-proliferative activity of pepper (Capsicum annuum L.) fruits from diverse varieties with different capsaicin contents (California < Piquillo < Padrón < Alegría riojana) against several tumor cell lines (lung, melanoma, hepatoma, colon, breast, pancreas, and prostate) has been investigated. The results showed that the capsaicin content in pepper fruits did not correspond with their anti-proliferative activity against tumor cell lines. By contrast, the greatest activity was promoted by the pepper tissues which contained the lowest capsaicin amount. This indicates that other compounds different from capsaicin have this anti-tumor potentiality in pepper fruits. Based on this, green fruits from the Alegría riojana variety, which has negligible capsaicin levels, was used to study the effect on the oxidative and redox metabolism of tumor cell lines from liver (Hep-G2) and pancreas (MIA PaCa-2). Different parameters from both lines treated with crude pepper fruit extracts were determined including protein nitration and protein S-nitrosation (two post-translational modifications (PTMs) promoted by nitric oxide), the antioxidant capacity, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), among others. In addition, the activity of the NADPH-generating enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and NADP-isocitrate dehydrogenase (NADP-ICDH) was followed. Our data revealed that the treatment of both cell lines with pepper fruit extracts altered their antioxidant capacity, enhanced their catalase activity, and considerably reduced the activity of the NADPH-generating enzymes. As a consequence, less H2O2 and NADPH seem to be available to cells, thus avoiding cell proliferation and possibly triggering cell death in both cell lines.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - María C Ramos
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - María J Campos
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Inmaculada Díaz-Sánchez
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - Bastien Cautain
- Evotec, University Paul Sabatier Toulouse III, 31100 Toulouse, France
| | - Thomas A Mackenzie
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisca Vicente
- Department Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), 18008 Granada, Spain
| |
Collapse
|
4
|
Li K, Sun S, Xiao L, Zhang Z. Bioactivity-guided fractionation of Helicteres angustifolia L. extract and its molecular evidence for tumor suppression. Front Cell Dev Biol 2023; 11:1157172. [PMID: 37427379 PMCID: PMC10323433 DOI: 10.3389/fcell.2023.1157172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Helicteres angustifolia L. (Helicteres angustifolia) has been commonly used in folk medicine to treat cancer; however, its mechanisms of action remain obscure. In our earlier work, we reported that aqueous extract of H. angustifolia root (AQHAR) possesses attractive anticancer properties. In the present study, we isolated five ethanol fractions from AQHAR and investigated their therapeutic efficacy in human non-small cell lung cancer (NSCLC) cells. The results showed that among the five fractions, the 40% ethanol fraction (EF40) containing multiple bioactive compounds exhibited the best selective killing effect on NSCLC cells with no obvious toxicity to normal human fibroblasts. Mechanistically, EF40 reduced the expression of nuclear factor-E2-related factor 2 (Nrf2), which is constitutively expressed at high levels in many types of cancers. As a result, Nrf2-dependent cellular defense responses are suppressed, leading to the intracellular accumulation of reactive oxygen species (ROS). Extensive biochemical analyses revealed that EF40 caused cell cycle arrest and apoptosis through activation of the ROS-mediated DNA damage response. Furthermore, treatment with EF40 compromised NSCLC cell migration, as evidenced by the downregulation of matrix metalloproteinases (MMPs) and heterogeneous nuclear ribonucleoprotein K (hnRNP-K). In vivo studies using A549 xenografts in nude mice also revealed significant suppression of tumor growth and lung metastasis in the treated group. We propose that EF40 may serve as a potential natural anti-NSCLC drug that warrants further mechanistic and clinical attention.
Collapse
Affiliation(s)
- Kejuan Li
- College of Life Science, Sichuan Normal University, Chengdu, China
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shuang Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Long Xiao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023; 28:molecules28052151. [PMID: 36903395 PMCID: PMC10004647 DOI: 10.3390/molecules28052151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
After decades of research and development concerning cancer treatment, cancer is still at large and very much a threat to the global human population. Cancer remedies have been sought from all possible directions, including chemicals, irradiation, nanomaterials, natural compounds, and the like. In this current review, we surveyed the milestones achieved by green tea catechins and what has been accomplished in cancer therapy. Specifically, we have assessed the synergistic anticarcinogenic effects when green tea catechins (GTCs) are combined with other antioxidant-rich natural compounds. Living in an age of inadequacies, combinatorial approaches are gaining momentum, and GTCs have progressed much, yet there are insufficiencies that can be improvised when combined with natural antioxidant compounds. This review highlights that there are not many reports in this specific area and encourages and recommends research attention in this direction. The antioxidant/prooxidant mechanisms of GTCs have also been highlighted. The current scenario and the future of such combinatorial approaches have been addressed, and the lacunae in this aspect have been discussed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Correspondence: ; Tel.: +91-44-66726677; Fax: +91-44-2681-1009
| |
Collapse
|
6
|
Dharshini LCP, Rasmi RR, Kathirvelan C, Kumar KM, Saradhadevi KM, Sakthivel KM. Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Appl Biochem Biotechnol 2022; 195:2893-2916. [PMID: 36441404 DOI: 10.1007/s12010-022-04266-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
Cancer progression is closely linked to oxidative stress (OS) inflammation. OS is caused by an imbalance between the amount of reactive oxygen species produced and antioxidants present in the body. Excess ROS either oxidizes biomolecules or activates the signaling cascade, resulting in inflammation. Immune cells secrete cytokines and chemokines when inflammation is activated. These signaling molecules attract a wide range of immune cells to the site of infection or oxidative stress. Similarly, increased ROS production by immune cells at the inflamed site causes oxidative stress in the affected area. A review on the role of oxidative stress and inflammation in cancer-related literature was conducted to obtain data. All of the information gathered was focused on the current state of oxidative stress and inflammation in various cancers. After gathering all relevant information, a narrative review was created to provide a detailed note on oxidative stress and inflammation in cancer. Proliferation, differentiation, angiogenesis, migration, invasion, metabolic changes, and evasion of programmed cell death are all aided by OS and inflammation in cancer. Imbalance between reactive oxygen species (ROS) and antioxidants lead to oxidative stress that damages macromolecules (nucleic acids, lipids and proteins). It causes breakdown of the biological signaling cascade. Prolonged oxidative stress causes inflammation by activating transcription factors (NF-κB, p53, HIF-1α, PPAR-γ, Nrf2, AP-1) that alter the expression of many other genes and proteins, including growth factors, tumor-suppressor genes, oncogenes, and pro-inflammatory cytokines, resulting in cancer cell survival. The present review article examines the complex relationship between OS and inflammation in certain types of cancer (colorectal, breast, lung, bladder, and gastric cancer).
Collapse
Affiliation(s)
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India
| | - Chinnadurai Kathirvelan
- Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Namakkal, 637 002, Tamil Nadu, India
| | - Kalavathi Murugan Kumar
- School of Lifescience, Department of Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| | - K M Saradhadevi
- Department of Biochemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore, 641 014, Tamil Nadu, India.
| |
Collapse
|
7
|
Farhan M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. Int J Mol Sci 2022; 23:ijms231810713. [PMID: 36142616 PMCID: PMC9501439 DOI: 10.3390/ijms231810713] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Green tea’s (Camellia sinensis) anticancer and anti-inflammatory effects are well-known. Catechins are the most effective antioxidants among the physiologically active compounds found in Camellia sinesis. Recent research demonstrates that the number of hydroxyl groups and the presence of specific structural groups have a substantial impact on the antioxidant activity of catechins. Unfermented green tea is the finest source of these chemicals. Catechins have the ability to effectively neutralize reactive oxygen species. The catechin derivatives of green tea include epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate (EGCG). EGCG has the greatest anti-inflammatory and anticancer potential. Notably, catechins in green tea have been explored for their ability to prevent a variety of cancers. Literature evidence, based on epidemiological and laboratory studies, indicates that green tea catechins have certain properties that can serve as the basis for their consideration as lead molecules in the synthesis of novel anticancer drugs and for further exploration of their role as pharmacologically active natural adjuvants to standard chemotherapeutics. The various sections of the article will focus on how catechins affect the survival, proliferation, invasion, angiogenesis, and metastasis of tumors by modulating cellular pathways.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
8
|
Alseksek RK, Ramadan WS, Saleh E, El-Awady R. The Role of HDACs in the Response of Cancer Cells to Cellular Stress and the Potential for Therapeutic Intervention. Int J Mol Sci 2022; 23:8141. [PMID: 35897717 PMCID: PMC9331760 DOI: 10.3390/ijms23158141] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Throughout the process of carcinogenesis, cancer cells develop intricate networks to adapt to a variety of stressful conditions including DNA damage, nutrient deprivation, and hypoxia. These molecular networks encounter genomic instability and mutations coupled with changes in the gene expression programs due to genetic and epigenetic alterations. Histone deacetylases (HDACs) are important modulators of the epigenetic constitution of cancer cells. It has become increasingly known that HDACs have the capacity to regulate various cellular systems through the deacetylation of histone and bounteous nonhistone proteins that are rooted in complex pathways in cancer cells to evade death pathways and immune surveillance. Elucidation of the signaling pathways involved in the adaptive responses to cellular stress and the role of HDACs may lead to the development of novel therapeutic agents. In this article, we overview the dominant stress types including metabolic, oxidative, genotoxic, and proteotoxic stress imposed on cancer cells in the context of HDACs, which guide stress adaptation responses. Next, we expose a closer view on the therapeutic interventions and clinical trials that involve HDACs inhibitors, in addition to highlighting the impact of using HDAC inhibitors in combination with stress-inducing agents for the management of cancer and to overcome the resistance to current cancer therapy.
Collapse
Affiliation(s)
- Rahma K. Alseksek
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ekram Saleh
- Clinical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
9
|
Selvaraj R, Vasa NJ, Nagendra SMS, Mizaikoff B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020; 25:molecules25092227. [PMID: 32397389 PMCID: PMC7249025 DOI: 10.3390/molecules25092227] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Human exhaled breath consists of more than 3000 volatile organic compounds, many of which are relevant biomarkers for various diseases. Although gas chromatography has been the gold standard for volatile organic compound (VOC) detection in exhaled breath, recent developments in mid-infrared (MIR) laser spectroscopy have led to the promise of compact point-of-care (POC) optical instruments enabling even single breath diagnostics. In this review, we discuss the evolution of MIR sensing technologies with a special focus on photoacoustic spectroscopy, and its application in exhaled breath biomarker detection. While mid-infrared point-of-care instrumentation promises high sensitivity and inherent molecular selectivity, the lack of standardization of the various techniques has to be overcome for translating these techniques into more widespread real-time clinical use.
Collapse
Affiliation(s)
- Ramya Selvaraj
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
- Correspondence:
| | - Nilesh J. Vasa
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
| | - S. M. Shiva Nagendra
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
10
|
Xie W, Tan B, Yang Z, Yu X, Chen L, Ran D, Xu Q, Zhou X. Nrf2/ARE pathway activation is involved in negatively regulating heat-induced apoptosis in non-small cell lung cancer cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:439-445. [PMID: 32255482 DOI: 10.1093/abbs/gmaa013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/19/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Hyperthermia, particularly in combination with chemoradiotherapy, is widely used to treat various cancers. However, hyperthermia treatment is often insufficient due to thermo-tolerance. To date, the detailed mechanism underlying thermo-tolerance has not been clarified. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ antioxidant response element (ARE) pathway is an important cellular cytoprotective defense system that is activated by various stresses. In this study, using immunocytochemistry and western blot analysis, we demonstrated that heat stress induced Nrf2/ARE activation through the nuclear translocation of Nrf2 in non-small cell lung cancer cells. Luciferase activity was also increased. Additionally, antioxidant enzymes were increased through Nrf2 activation after heat stress. Transfection of lung cancer cells with siRNA directed against Nrf2 increased heat cytotoxicity and cell apoptosis. Heat stress could induce reactive oxygen species (ROS) accumulation, while the antioxidant NAC obviously reduced cell apoptosis ratio, indicating that heat stress induced cell apoptosis in a ROS-dependent manner. Knockdown of Nrf2 led to an abnormal elevation of ROS, and the antioxidant NAC could increase Nrf2 activation, indicating that ROS and Nrf2 act within a negative feedback loop. Taken together, these results demonstrated that Nrf2 pathway is important for maintaining resistance to heat stress, and we postulated that Nrf2 may represent a potential therapeutic target for hyperthermia in lung cancer.
Collapse
Affiliation(s)
- Wenyue Xie
- Department of Oncology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Benxu Tan
- Department of Oncology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Zhenzhou Yang
- Department of Oncology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xian Yu
- Department of Oncology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Lingxiu Chen
- Department of Respiratory, Chongqing Three Gorges Central Hospital, Chongqing 404000, China
| | - Danhua Ran
- Respiratory Department of the Elderly, Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Qing Xu
- Pulmonary And Critical Care Medicine Ward, Eastern Hospital, Sichuan Provincial Medical Sciences Academy & Sichuan Provincial People’s Hospital, Chengdu 610100, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, the First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| |
Collapse
|
11
|
Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial Properties of Green Tea Catechins. Int J Mol Sci 2020; 21:ijms21051744. [PMID: 32143309 PMCID: PMC7084675 DOI: 10.3390/ijms21051744] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/17/2022] Open
Abstract
Green tea (Camellia sinesis) is widely known for its anticancer and anti-inflammatory properties. Among the biologically active compounds contained in Camellia sinesis, the main antioxidant agents are catechins. Recent scientific research indicates that the number of hydroxyl groups and the presence of characteristic structural groups have a major impact on the antioxidant activity of catechins. The best source of these compounds is unfermented green tea. Depending on the type and origin of green tea leaves, their antioxidant properties may be uneven. Catechins exhibit the strong property of neutralizing reactive oxygen and nitrogen species. The group of green tea catechin derivatives includes: epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate. The last of these presents the most potent anti-inflammatory and anticancer potential. Notably, green tea catechins are widely described to be efficient in the prevention of lung cancer, breast cancer, esophageal cancer, stomach cancer, liver cancer and prostate cancer. The current review aims to summarize the potential anticancer effects and molecular signaling pathways of major green tea catechins. It needs to be clearly emphasized that green tea as well as green tea catechols cannot replace the standard chemotherapy. Nonetheless, their beneficial effects may support the standard anticancer approach.
Collapse
Affiliation(s)
- Claudia Musial
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (C.M.); (A.K.-J.)
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (C.M.); (A.K.-J.)
| | - Magdalena Gorska-Ponikowska
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (C.M.); (A.K.-J.)
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
- Euro-Mediterranean Institute of Science and Technology, 90139 Palermo, Italy
- Correspondence:
| |
Collapse
|
12
|
Méndez L, Muñoz S, Miralles-Pérez B, Nogués MR, Ramos-Romero S, Torres JL, Medina I. Modulation of the Liver Protein Carbonylome by the Combined Effect of Marine Omega-3 PUFAs and Grape Polyphenols Supplementation in Rats Fed an Obesogenic High Fat and High Sucrose Diet. Mar Drugs 2019; 18:E34. [PMID: 31906027 PMCID: PMC7024381 DOI: 10.3390/md18010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 01/05/2023] Open
Abstract
Diet-induced obesity has been linked to metabolic disorders such as cardiovascular diseases andtype 2 diabetes. A factor linking diet to metabolic disorders is oxidative stress, which can damagebiomolecules, especially proteins. The present study was designed to investigate the effect of marineomega-3 polyunsaturated fatty acids (PUFAs) (eicosapentaenoic acid (EPA) and docosahexaenoic acid(DHA)) and their combination with grape seed polyphenols (GSE) on carbonyl-modified proteins fromplasma and liver in Wistar Kyoto rats fed an obesogenic diet, namely high-fat and high-sucrose (HFHS)diet. A proteomics approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labelling of proteincarbonyls, visualization of FTSC-labelled protein on 1-DE or 2-DE gels, and protein identification byMS/MS was used for the protein oxidation assessment. Results showed the efficiency of the combinationof both bioactive compounds in decreasing the total protein carbonylation induced by HFHS diet in bothplasma and liver. The analysis of carbonylated protein targets, also referred to as the 'carbonylome',revealed an individual response of liver proteins to supplements and a modulatory effect on specificmetabolic pathways and processes due to, at least in part, the control exerted by the supplements on theliver protein carbonylome. This investigation highlights the additive effect of dietary fish oils and grapeseed polyphenols in modulating in vivo oxidative damage of proteins induced by the consumption ofHFHS diets.
Collapse
Affiliation(s)
- Lucía Méndez
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (S.M.); (I.M.)
| | - Silvia Muñoz
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (S.M.); (I.M.)
| | - Bernat Miralles-Pérez
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain (M.R.N.)
| | - Maria Rosa Nogués
- Unidad de Farmacología, Facultad de Medicina, Universidad Rovira i Virgili, Sant Llorenç 21, E-43201 Reus, Spain (M.R.N.)
| | - Sara Ramos-Romero
- Instituto de Química Avanzada de Cataluña-Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (J.L.T.)
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biología, Universitad de Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Josep Lluis Torres
- Instituto de Química Avanzada de Cataluña-Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; (S.R.-R.); (J.L.T.)
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain; (S.M.); (I.M.)
| |
Collapse
|
13
|
Punganuru SR, Madala HR, Arutla V, Srivenugopal KS. Selective killing of human breast cancer cells by the styryl lactone (R)-goniothalamin is mediated by glutathione conjugation, induction of oxidative stress and marked reactivation of the R175H mutant p53 protein. Carcinogenesis 2019; 39:1399-1410. [PMID: 30010803 DOI: 10.1093/carcin/bgy093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
The molecular basis of anticancer and apoptotic effects of R-goniothalamin (GON), a plant secondary metabolite was studied. We show that induction of oxidative stress and reactivation of mutant p53 underlie the strong cytotoxic effects of GON against the breast cancer cells. While GON was not toxic to the MCF10a breast epithelial cells, the SKBR3 breast cancer cells harboring an R175H mutant p53 were highly sensitive (IC50 = 7.3 µM). Flow cytometry and other pertinent assays showed that GON-induced abundant reactive oxygen species (ROS), glutathione depletion, protein glutathionylation and activation of apoptotic markers. GON was found to conjugate with glutathione both in vitro and in cells and the product was characterized by mass spectrometry. We hypothesized that the redox imbalance induced by GON may affect the structure of the R175H mutant p53 protein, and account for greater cytotoxicity. Using the SKBR3 breast cancer and p53-null H1299 lung cancer cells stably expressing the R175H p53 mutant protein, we demonstrated that GON triggers the appearance of a wild-type-like p53 protein by using conformation-specific antibodies, immunoprecipitation, DNA-binding assays and target gene expression. p53 restoration was associated with a G2/M arrest, senescence, reduced cell migration, invasion and increased cell death. GON elicited a highly synergistic cytotoxicity with cisplatin in SKBR3 cells. In SKBR3 xenografts developed in nude mice, there was a marked tumor growth delay by GON alone and GON + cisplatin combination. Our studies highlight the impact of tumor redox-stress generated by GON in activating the mutant p53 protein for greater antitumor efficacy.
Collapse
Affiliation(s)
- Surendra R Punganuru
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hanumantha Rao Madala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Viswanath Arutla
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Kalkunte S Srivenugopal
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
14
|
Li C, Zhang Z, Zhang S, Yan W, Si C, Lee MH, Li Z. Inhibitory Effects of the Extracts of Juglans sigillata Green Husks on the Proliferation, Migration and Survival of KYSE150 and EC9706 Human Esophageal Cancer Cell Lines. Nutr Cancer 2019; 71:149-158. [PMID: 30633592 DOI: 10.1080/01635581.2018.1557223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Caixia Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, P.R. China
| | - Zhongwei Zhang
- Department of Thoracic Surgery, Tianjin Nankai Hospital, Tianjin, P.R. China
| | - Shukun Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, P.R. China
| | - Wenqiang Yan
- Department of Thoracic Surgery, Tianjin Nankai Hospital, Tianjin, P.R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Zhigang Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Tianjin, P.R. China
- Department of Thoracic Surgery, Tianjin Nankai Hospital, Tianjin, P.R. China
- Cancer Center of Minimally Invasive and Comprehensive Therapy, Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical College, Haikou City, P.R. China
| |
Collapse
|
15
|
Exercise during pregnancy decreases doxorubicin-induced cardiotoxic effects on neonatal hearts. Toxicology 2016; 368-369:46-57. [PMID: 27565713 DOI: 10.1016/j.tox.2016.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
Cancer treatment with Doxorubicin (DOX) is limited due its dose-dependent cardiotoxicity, mainly related to the oxidative stress production. In experimental models of DOX treatment exercise can be used as a beneficial adjuvant therapy. This work aimed to investigate the effects of exercise during pregnancy on DOX-induced cardiotoxicity in cardiomyocytes of progeny, examining the possible intergenerational cardioprotective effects of maternal exercise. For this purpose pregnant rats were divided in control and exercise groups and pre-treated during gestational days. Hearts of newborns were used to obtain a culture of cardiomyocytes to be treated with DOX for analyses of cell viability, apoptosis and necrosis; ROS production; DNA damage; SOD and CAT activities; and Sirt6 protein expression. The results showed that exercise during pregnancy induced an increase in the viability of neonatal cardiomyocytes and a decrease in DOX-induced apoptotic and necrotic death which were correlated to the decrease in ROS production and an increase in antioxidant defenses. Exercise also protected neonatal cardiomyocytes from DOX-induced DNA damage, demonstrating a reduction in the oxidative DNA breaks. Likewise, exercise induced an increase in expression of Sirt6 in neonatal cardiomyocytes. Therefore, these results demonstrate for the first time that exercise performed by mothers protects the neonatal heart against DOX-induced toxicity. Our data demonstrate the intergenerational effect of exercise in cardiomyocytes of progeny, where the modulation of oxidative stress through antioxidant enzymes, and DNA integrity via Sirt6, were induced due to exercise in mothers, increasing the resistance of the neonatal heart against DOX toxicity.
Collapse
|
16
|
Barreiro E. The role of MicroRNAs in COPD muscle dysfunction and mass loss: implications on the clinic. Expert Rev Respir Med 2016; 10:1011-22. [PMID: 27348064 DOI: 10.1080/17476348.2016.1206819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a common preventable and treatable disease and a leading cause of morbidity and mortality worldwide. In COPD, comorbidities, acute exacerbations, and systemic manifestations negatively influence disease severity, prognosis, and progression regardless of the respiratory condition. AREAS COVERED Several factors and biological mechanisms are involved in the pathophysiology of COPD muscle dysfunction. The non-coding microRNAs were shown to be differentially expressed in the respiratory and limb muscles of patients with COPD. Moreover, a differential expression profile of muscle-specific microRNAs has also been demonstrated in the lower limb muscles of COPD patients with and without muscle mass loss and weakness. All these features are reviewed herein. The most relevant articles on the topic in question were selected from PubMed to write this review. Expert commentary: MicroRNAs are excellent targets for the design of specific therapeutic interventions in patients with muscle weakness. Selective enhancers of microRNAs that promote myogenesis (proliferation and differentiation of satellite cells) should be designed to alleviate the negative impact of skeletal muscle dysfunction and mass loss in COPD regardless of the degree of the airway obstruction.
Collapse
Affiliation(s)
- Esther Barreiro
- a Respiratory Medicine Department, Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group , Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB) , Barcelona , Spain.,b Department of Health Sciences (CEXS) , Universitat Pompeu Fabra , Barcelona , Spain.,c Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III (ISCIII) , Barcelona , Spain
| |
Collapse
|
17
|
Ross BM, Babay S, Malik I. Brain and Liver Headspace Aldehyde Concentration Following Dietary Supplementation with n-3 Polyunsaturated Fatty Acids. Lipids 2015; 50:1123-31. [DOI: 10.1007/s11745-015-4063-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/04/2015] [Indexed: 01/05/2023]
|
18
|
Barreiro E, Gea J. Epigenetics and muscle dysfunction in chronic obstructive pulmonary disease. Transl Res 2015; 165:61-73. [PMID: 24794953 DOI: 10.1016/j.trsl.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 01/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease and a major leading cause of morbidity and mortality worldwide. In COPD, comorbidities, acute exacerbations, and systemic manifestations negatively influence disease severity and progression regardless of the respiratory condition. Skeletal muscle dysfunction, which is one of the commonest systemic manifestations in patients with COPD, has a tremendous impact on their exercise capacity and quality of life. Several pathophysiological and molecular underlying mechanisms including epigenetics (the process whereby gene expression is regulated by heritable mechanisms that do not affect DNA sequence) have been shown to participate in the etiology of COPD muscle dysfunction. The epigenetic modifications identified so far in cells include DNA methylation, histone acetylation and methylation, and noncoding RNAs such as microRNAs. Herein, we first review the role of epigenetic mechanisms in muscle development and adaptation to environmental factors in several models. Moreover, the epigenetic events reported so far to be potentially involved in muscle dysfunction and mass loss of patients with COPD are also discussed. Furthermore, the different expression profile of several muscle-enriched microRNAs in the diaphragm and vastus lateralis muscles of patients with COPD are also reviewed from results recently obtained in our group. The role of protein hyperacetylation in enhanced muscle protein catabolism of limb muscles is also discussed. Future research should focus on the full elucidation of the triggers of epigenetic mechanisms and their specific downstream biological pathways in COPD muscle dysfunction and wasting.
Collapse
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department-Muscle and Respiratory System Research Unit, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Joaquim Gea
- Respiratory Medicine Department-Muscle and Respiratory System Research Unit, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
19
|
Yeo CD, Kim JW, Ha JH, Kim SJ, Lee SH, Kim IK, Kim YK. Chemopreventive effect of phosphodieasterase-4 inhibition in benzo(a)pyrene-induced murine lung cancer model. Exp Lung Res 2014; 40:500-6. [DOI: 10.3109/01902148.2014.950769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Ross BM, Glen I. Breath ethane concentrations in healthy volunteers correlate with a systemic marker of lipid peroxidation but not with omega-3 Fatty Acid availability. Metabolites 2014; 4:572-9. [PMID: 25257995 PMCID: PMC4192680 DOI: 10.3390/metabo4030572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 12/13/2022] Open
Abstract
Ethane in human breath derives from lipid peroxidation, specifically the reaction between omega-3 fatty acids and reactive oxygen species. It has been proposed to be a non-invasive marker of oxidative stress, a deleterious process which may play an important role in the pathophysiology of several common diseases. It is unclear, however, whether ethane concentration actually correlates with systemic oxidative stress or whether it is primarily a marker of airway biochemistry. To investigate this possibility the breath ethane concentrations in 24 healthy volunteers were compared to that of a systemic measure of oxidative stress, plasma hydroperoxides, as well as to blood concentrations of the lipophilic anti-oxidant vitamin E, and the abundance of omega-3 fatty acids. Breath ethane concentrations were significantly (p < 0.05) positively correlated with blood hydroperoxide concentrations (rp = 0.60) and negatively with that of vitamin E (rp = -0.65), but were not correlated with either the total omega-3 fatty acid concentration (rp = -0.22) or that of any individual species of this fatty acid class. This data supports the hypothesis that breath ethane is a marker of systemic lipid peroxidation, as opposed to that of omega-3 fatty acid abundance.
Collapse
Affiliation(s)
- Brian M Ross
- Division of Medical Sciences, Northern Ontario School of Medicine, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B5E1, Canada.
| | - Iain Glen
- Highland Psychiatric Research Foundation, University of the Highlands and Islands, Inverness IV3 5SQ, UK
| |
Collapse
|
21
|
Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species. Proc Natl Acad Sci U S A 2014; 111:7849-54. [PMID: 24825887 DOI: 10.1073/pnas.1401787111] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Uncoupling protein 1 (Ucp1), which is localized in the mitochondrial inner membrane of mammalian brown adipose tissue (BAT), generates heat by uncoupling oxidative phosphorylation. Upon cold exposure or nutritional abundance, sympathetic neurons stimulate BAT to express Ucp1 to induce energy dissipation and thermogenesis. Accordingly, increased Ucp1 expression reduces obesity in mice and is correlated with leanness in humans. Despite this significance, there is currently a limited understanding of how Ucp1 expression is physiologically regulated at the molecular level. Here, we describe the involvement of Sestrin2 and reactive oxygen species (ROS) in regulation of Ucp1 expression. Transgenic overexpression of Sestrin2 in adipose tissues inhibited both basal and cold-induced Ucp1 expression in interscapular BAT, culminating in decreased thermogenesis and increased fat accumulation. Endogenous Sestrin2 is also important for suppressing Ucp1 expression because BAT from Sestrin2(-/-) mice exhibited a highly elevated level of Ucp1 expression. The redox-inactive mutant of Sestrin2 was incapable of regulating Ucp1 expression, suggesting that Sestrin2 inhibits Ucp1 expression primarily through reducing ROS accumulation. Consistently, ROS-suppressing antioxidant chemicals, such as butylated hydroxyanisole and N-acetylcysteine, inhibited cold- or cAMP-induced Ucp1 expression as well. p38 MAPK, a signaling mediator required for cAMP-induced Ucp1 expression, was inhibited by either Sestrin2 overexpression or antioxidant treatments. Taken together, these results suggest that Sestrin2 and antioxidants inhibit Ucp1 expression through suppressing ROS-mediated p38 MAPK activation, implying a critical role of ROS in proper BAT metabolism.
Collapse
|
22
|
Roato I. Bone metastases: When and how lung cancer interacts with bone. World J Clin Oncol 2014; 5:149-155. [PMID: 24829862 PMCID: PMC4014787 DOI: 10.5306/wjco.v5.i2.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/21/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023] Open
Abstract
Bone metastasis is a common and debilitating consequence of lung cancer: 30%-40% of patients with non-small cell lung cancer develop bone metastases during the course of their disease. Lung cancer cells find a favorable soil in the bone microenvironment due to factors released by the bone matrix, the immune system cells, and the same cancer cells. Many aspects of the cross-talk among lung tumor cells, the immune system, and bone cells are not clear, but this review aims to summarize the recent findings in this field, with particular attention to studies conducted to identify biomarkers for early detection of lung cancer bone metastases.
Collapse
|
23
|
Chen W, Lu Y, Chen G, Huang S. Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anticancer Agents Med Chem 2014; 13:979-87. [PMID: 23272908 DOI: 10.2174/18715206113139990115] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 12/27/2022]
Abstract
Cryptotanshinone is one of the major tanshinones isolated from the roots of the plant Salvia miltiorrhiza Bunge (Danshen). Danshen has been widely used in traditional Chinese medicine for treatment of a variety of diseases, including coronary artery disease, acute ischemic stroke, hyperlipidemia, chronic renal failure, chronic hepatitis, and Alzheimer's disease, showing no serious adverse effects. Recent studies have shown that cryptotanshinone not only possesses the potential for treatment and prevention of the above-mentioned diseases, but also is a potent anticancer agent. Here we briefly summarize the physical and chemical properties and the pharmacokinetic profiles of cryptotanshinone, and then comprehensively review its anticancer activities as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Wenxing Chen
- College of Pharmacy and Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, China.
| | | | | | | |
Collapse
|
24
|
Iff S, Craig JC, Turner R, Chapman JR, Wang JJ, Mitchell P, Wong G. Reduced Estimated GFR and Cancer Mortality. Am J Kidney Dis 2014; 63:23-30. [DOI: 10.1053/j.ajkd.2013.07.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/05/2013] [Indexed: 12/22/2022]
|
25
|
Barreiro E, Fermoselle C, Mateu-Jimenez M, Sánchez-Font A, Pijuan L, Gea J, Curull V. Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radic Biol Med 2013; 65:859-871. [PMID: 23954470 DOI: 10.1016/j.freeradbiomed.2013.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/25/2013] [Accepted: 08/07/2013] [Indexed: 01/05/2023]
Abstract
Respiratory conditions such as chronic obstructive pulmonary disease (COPD) are associated with a greater risk for lung cancer (LC). Oxidative stress and inflammation are involved in LC pathophysiology. Studies conducted so far have focused solely on lung tumor parenchyma and not the airways. We explored levels of local and systemic oxidative stress and inflammation within normal bronchial epithelium and blood of patients with lung cancer (n=52), with and without COPD, and in control subjects (COPD and non-COPD, n=21). In normal bronchial epithelium specimens (bronchoscopy) and blood from patients with similar smoking history (LC-COPD and LC) and control subjects (both COPD and non-COPD), redox balance and inflammatory markers were measured (ELISA and immunoblotting). All subjects were clinically evaluated. Absence of malignant cells within the bronchial specimens was always pathologically confirmed. Bronchial levels of protein carbonylation, MDA-protein adducts, antioxidants, TNF-α, interferon-γ, TGF-β, and VEGF and blood levels of superoxide anion, oxidatively damaged DNA and proteins, TNF-α, interferon-γ, TGF-β, VEGF, and neutrophils were significantly greater in all LC patients compared to control subjects. Systemic levels of oxidatively damaged DNA, superoxide anion, and TNF-α and bronchial levels of TGF-β and TNF-α showed high sensitivity and specificity for LC among patients. Regardless of the presence of an underlying respiratory condition (COPD), protein oxidation, oxidatively damaged DNA, and inflammation were remarkably increased in the normal airways and blood of patients with LC. Furthermore, the potential predictive value for LC development of these molecular events warrants attention and should be explored in future larger longitudinal studies.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department, Muscle and Respiratory System Research Unit, IMIM-Institut Hospital del Mar, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra, Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Bunyola, Majorca, Balearic Islands, Spain.
| | - Clara Fermoselle
- Pulmonology Department, Muscle and Respiratory System Research Unit, IMIM-Institut Hospital del Mar, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra, Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Bunyola, Majorca, Balearic Islands, Spain
| | - Mercè Mateu-Jimenez
- Pulmonology Department, Muscle and Respiratory System Research Unit, IMIM-Institut Hospital del Mar, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra, Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Bunyola, Majorca, Balearic Islands, Spain
| | - Albert Sánchez-Font
- Pulmonology Department, Muscle and Respiratory System Research Unit, IMIM-Institut Hospital del Mar, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra, Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona, E-08003 Barcelona, Spain
| | - Lara Pijuan
- Pathology Department, IMIM-Institut Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Joaquim Gea
- Pulmonology Department, Muscle and Respiratory System Research Unit, IMIM-Institut Hospital del Mar, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra, Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Bunyola, Majorca, Balearic Islands, Spain
| | - Víctor Curull
- Pulmonology Department, Muscle and Respiratory System Research Unit, IMIM-Institut Hospital del Mar, Parc de Salut Mar, and Health and Experimental Sciences Department, Universitat Pompeu Fabra, Universitat Autònoma de Barcelona, Parc de Recerca Biomèdica de Barcelona, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Bunyola, Majorca, Balearic Islands, Spain
| |
Collapse
|
26
|
Seo M, Lee YH. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. J Mol Biol 2013; 426:830-42. [PMID: 24295899 DOI: 10.1016/j.jmb.2013.11.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 01/04/2023]
Abstract
Whereas moderately increased cellular oxidative stress is supportive for cancerous growth of cells, excessive levels of reactive oxygen species (ROS) are detrimental to their growth and survival. We demonstrated that high ROS levels, via increased oxidized glutathione (GSSG), induce isoform-specific S-glutathionylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) at residue Cys206, which is located near the entrance to the 6-phosphofructo-2-kinase catalytic pocket. Upon this ROS-dependent, reversible, covalent modification, a marked decrease in its catalytic ability to synthesize fructose-2,6-bisphosphate (Fru-2,6-P₂), the key glycolysis allosteric activator, was observed. This event was coupled to a decrease in glycolytic flux and an increase in glucose metabolic flux into the pentose phosphate pathway. This shift, in turn, caused an increase in reduced glutathione (GSH) and, ultimately, resulted in ROS detoxification inside HeLa cells. The ability of PFKFB3 to control the Fru-2,6-P₂ levels in an ROS-dependent manner allows the PFKFB3-expressing cancer cells to continue energy metabolism with a reduced risk of excessive oxidative stress and, thereby, to support their cell survival and proliferation. This study provides a new insight into the roles of PFKFB3 as switch that senses and controls redox homeostasis in cancer in addition to its role in cancer glycolysis.
Collapse
Affiliation(s)
- Minsuh Seo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yong-Hwan Lee
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
27
|
Sawant A, Schafer CC, Jin TH, Zmijewski J, Tse HM, Roth J, Sun Z, Siegal GP, Thannickal VJ, Grant SC, Ponnazhagan S, Deshane JS. Enhancement of antitumor immunity in lung cancer by targeting myeloid-derived suppressor cell pathways. Cancer Res 2013; 73:6609-20. [PMID: 24085788 DOI: 10.1158/0008-5472.can-13-0987] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chemoresistance due to heterogeneity of the tumor microenvironment (TME) hampers the long-term efficacy of first-line therapies for lung cancer. Current combination therapies for lung cancer provide only modest improvement in survival, implicating necessity for novel approaches that suppress malignant growth and stimulate long-term antitumor immunity. Oxidative stress in the TME promotes immunosuppression by tumor-infiltrating myeloid-derived suppressor cells (MDSC), which inhibit host protective antitumor immunity. Using a murine model of lung cancer, we demonstrate that a combination treatment with gemcitabine and a superoxide dismutase mimetic targets immunosuppressive MDSC in the TME and enhances the quantity and quality of both effector and memory CD8(+) T-cell responses. At the effector cell function level, the unique combination therapy targeting MDSC and redox signaling greatly enhanced cytolytic CD8(+) T-cell response and further decreased regulatory T cell infiltration. For long-term antitumor effects, this therapy altered the metabolism of memory cells with self-renewing phenotype and provided a preferential advantage for survival of memory subsets with long-term efficacy and persistence. Adoptive transfer of memory cells from this combination therapy prolonged survival of tumor-bearing recipients. Furthermore, the adoptively transferred memory cells responded to tumor rechallenge exerting long-term persistence. This approach offers a new paradigm to inhibit immunosuppression by direct targeting of MDSC function, to generate effector and persistent memory cells for tumor eradication, and to prevent lung cancer relapse.
Collapse
Affiliation(s)
- Anandi Sawant
- Authors' Affiliations: Departments of Pathology, Medicine, Microbiology, and Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen YC, Huang WJ, Hsu JL, Yu CC, Wang WT, Guh JH. A novel hydroxysuberamide derivative potentiates MG132-mediated anticancer activity against human hormone refractory prostate cancers--the role of histone deacetylase and endoplasmic reticulum stress. Prostate 2013; 73:1270-80. [PMID: 23813634 DOI: 10.1002/pros.22641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/18/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors are successful for treatment of advanced cutaneous T-cell lymphoma but only show modest effect in solid tumors. Approaches for HDAC inhibitors to improve activity against solid tumors are necessary. METHODS Sulforhodamine B assay and flow cytometric analysis detected cell proliferation and cell-cycle progression, respectively. Protein expression was determined by Western blotting. Comet assay and DNA end-binding activity of Ku proteins detected DNA damage and DNA repair activity, respectively. siRNA technique was used for knockdown of specific cellular target. RESULTS WJ25591 displayed inhibitory activity against HDAC1 and cell proliferation in human hormone-refractory prostate cancers PC-3 and DU-145. WJ25591 caused an arrest of cell-cycle at both G1- and G2-phase and increased protein expressions of p21 and cyclin E, followed by cell apoptosis. WJ25591-induced Bcl-2 down-regulation and activation of caspase-9, -8, and -3, suggesting apoptotic execution through both intrinsic and extrinsic apoptotic pathways. WJ25591 also significantly inhibited DNA repair activity but not directly induced DNA damage. Moreover, the proteasome inhibitor MG-132 dramatically sensitized WJ25591-induced cell apoptosis. The siRNA technique demonstrated that endoplasmic reticulum (ER) stress, in particular CHOP/GADD153 up-regulation, contributed to the synergistic effect. CONCLUSIONS The data suggest that WJ25591 inhibited HDAC activity, leading to cell-cycle arrest and inhibition of DNA repair. Caspase cascades are subsequently triggered to execute cell apoptosis. MG-132 dramatically sensitizes WJ25591-mediated apoptosis, at least partly, through ER stress response. The data also reveal that combination of HDAC inhibitors and proteasome inhibitors may be a potential strategy against hormone-refractory prostate cancers.
Collapse
Affiliation(s)
- Yi-Cheng Chen
- College of Medicine, School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Greene CM, Varley RB, Lawless MW. MicroRNAs and liver cancer associated with iron overload: Therapeutic targets unravelled. World J Gastroenterol 2013; 19:5212-5226. [PMID: 23983424 PMCID: PMC3752555 DOI: 10.3748/wjg.v19.i32.5212] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/22/2013] [Accepted: 05/20/2013] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is a global disease that is on the increase. Hepatocellular carcinoma (HCC) accounts for most primary liver cancers and has a notably low survival rate, largely attributable to late diagnosis, resistance to treatment, tumour recurrence and metastasis. MicroRNAs (miRNAs/miRs) are regulatory RNAs that modulate protein synthesis. miRNAs are involved in several biological and pathological processes including the development and progression of HCC. Given the poor outcomes with current HCC treatments, miRNAs represent an important new target for therapeutic intervention. Several studies have demonstrated their role in HCC development and progression. While many risk factors underlie the development of HCC, one process commonly altered is iron homeostasis. Iron overload occurs in several liver diseases associated with the development of HCC including Hepatitis C infection and the importance of miRNAs in iron homeostasis and hepatic iron overload is well characterised. Aberrant miRNA expression in hepatic fibrosis and injury response have been reported, as have dysregulated miRNA expression patterns affecting cell cycle progression, evasion of apoptosis, invasion and metastasis. In 2009, miR-26a delivery was shown to prevent HCC progression, highlighting its therapeutic potential. Several studies have since investigated the clinical potential of other miRNAs with one drug, Miravirsen, currently in phase II clinical trials. miRNAs also have potential as biomarkers for the diagnosis of HCC and to evaluate treatment efficacy. Ongoing studies and clinical trials suggest miRNA-based treatments and diagnostic methods will have novel clinical applications for HCC in the coming years, yielding improved HCC survival rates and patient outcomes.
Collapse
|
30
|
Zhu L, Wang P, Qin QL, Zhang H, Wu YJ. Protective effect of polypeptides from larva of housefly (Musca domestica) on hydrogen peroxide-induced oxidative damage in HepG2 cells. Food Chem Toxicol 2013; 60:385-90. [PMID: 23933357 DOI: 10.1016/j.fct.2013.07.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 02/06/2023]
Abstract
Housefly (Musca domestica) is an important medical insect and its larva is an ideal high protein food source. We isolated from housefly larvae the polypeptides hydrolyzed by neutral protease (PHNP), and investigated the protective effect of PHNP on hydrogen peroxide (H₂O₂)-induced oxidative damage in HepG2 cells. Cells exposed to H₂O₂ showed a marked decrease in proliferation and intracellular superoxide dismutase (SOD) activity, and a significant increase in reactive oxygen species (ROS) level and malondialdehyde (MDA) content. H₂O₂ also caused apoptosis and mitochondrial dysfunction including mitochondrial fragmentation and the loss of mitochondrial membrane potential. Pretreatment with PHNP at concentrations of 2.5, 5, 10 μg/mL blocked these H₂O₂-induced cellular events in a dose-dependent manner. The effect of PHNP at 10 μg/mL is equal to that of ascorbic acid at 10 μM. In summary, PHNP has a protective effect against H₂O₂-induced oxidative injury in cells due to its ability to decrease intracellular ROS and elevate antioxidant enzyme activities.
Collapse
Affiliation(s)
- Li Zhu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing 100101, China
| | | | | | | | | |
Collapse
|
31
|
Baird AM, Dockry E, Daly A, Stack E, Doherty DG, O'Byrne KJ, Gray SG. IL-23R is Epigenetically Regulated and Modulated by Chemotherapy in Non-Small Cell Lung Cancer. Front Oncol 2013; 3:162. [PMID: 23802098 PMCID: PMC3685824 DOI: 10.3389/fonc.2013.00162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/06/2013] [Indexed: 12/11/2022] Open
Abstract
The Interleukin-23 (IL-23)/IL-23R signaling axis is an important inflammatory pathway, involved in the stimulation and regulation of the T helper (Th) 17 lymphocytes, resulting in the production of IL-17. Aside from auto-immunity, this cytokine has also been linked to carcinogenesis and polymorphisms in the IL-23R gene are associated with an increased risk for the development of a number of different cancers. Activation of the IL-23 pathway results in the up-regulation of STAT3 and it is thought that the pathological consequences associated with this are in part due to the production of IL-17. We have previously identified IL-23A as pro-proliferative and epigenetically regulated in non-small cell lung cancer (NSCLC). The current study aims to evaluate IL-23R in greater detail in NSCLC. We demonstrate that IL-23R is expressed and epigenetically regulated in NSCLC through histone post-translation modifications and CpG island methylation. In addition, Gemcitabine treatment, a chemotherapy drug used in the treatment of NSCLC, resulted in the up-regulation of the IL-23R. Furthermore, Apilimod (STA 5326), a small molecule which blocks the expression of IL-23 and IL-12, reduced the proliferative capacity of NSCLC cells, particularly in the adenocarcinoma (A549) sub-type. Apilimod is currently undergoing investigation in a number of clinical trials for the treatment of auto-immune conditions such as Crohn’s disease and Rheumatoid Arthritis. Our results may have implications for treating NSCLC patients with Gemcitabine or epigenetic targeted therapies. However, Apilimod may possibly provide a new treatment avenue for NSCLC patients. Work is currently ongoing to further delineate the IL-23/IL-23R axis in this disease.
Collapse
Affiliation(s)
- Anne-Marie Baird
- Department of Clinical Medicine, Trinity College Dublin , Dublin , Ireland ; Thoracic Oncology Research Group, Institute of Molecular Medicine, St. James's Hospital , Dublin , Ireland
| | | | | | | | | | | | | |
Collapse
|
32
|
Barreiro E, Sznajder JI. Epigenetic regulation of muscle phenotype and adaptation: a potential role in COPD muscle dysfunction. J Appl Physiol (1985) 2013; 114:1263-72. [PMID: 23305984 DOI: 10.1152/japplphysiol.01027.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Quadriceps muscle dysfunction occurs in one-third of patients with chronic obstructive pulmonary disease (COPD) in very early stages of their condition, even prior to the development of airway obstruction. Among several factors, deconditioning and muscle mass loss are the most relevant contributing factors leading to this dysfunction. Moreover, epigenetics, defined as the process whereby gene expression is regulated by heritable mechanisms that do not affect DNA sequence, could be involved in the susceptibility to muscle dysfunction, pathogenesis, and progression. Herein, we review the role of epigenetic mechanisms in muscle development and adaptation to environmental factors such as immobilization and exercise, and their implications in the pathophysiology and susceptibility to muscle dysfunction in COPD. The epigenetic modifications identified so far include DNA methylation, histone acetylation and methylation, and non-coding RNAs such as microRNAs (miRNAs). In the present review, we describe the specific contribution of epigenetic mechanisms to the regulation of embryonic myogenesis, muscle structure and metabolism, immobilization, and exercise, and in muscles of COPD patients. Events related to muscle development and regeneration and the response to exercise and immobilization are tightly regulated by epigenetic mechanisms. These environmental factors play a key role in the outcome of muscle mass and function as well as in the susceptibility to muscle dysfunction in COPD. Future research remains to be done to shed light on the specific target pathways of miRNA function and other epigenetic mechanisms in the susceptibility, pathogenesis, and progression of COPD muscle dysfunction.
Collapse
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department-Lung Cancer Research Group, Institute of Medical Research of Hospital del Mar (IMIMHospital del Mar, Barcelona Biomedical Research Park (PRBB Barcelona, Spain.
| | | |
Collapse
|
33
|
Liu CX, Zhou HC, Yin QQ, Wu YL, Chen GQ. Targeting peroxiredoxins against leukemia. Exp Cell Res 2013; 319:170-6. [DOI: 10.1016/j.yexcr.2012.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 12/18/2022]
|
34
|
Du GJ, Zhang Z, Wen XD, Yu C, Calway T, Yuan CS, Wang CZ. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients 2012. [PMID: 23201840 PMCID: PMC3509513 DOI: 10.3390/nu4111679] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Green tea is a popular drink consumed daily by millions of people around the world. Previous studies have shown that some polyphenol compounds from green tea possess anticancer activities. However, systemic evaluation was limited. In this study, we determined the cancer chemopreventive potentials of 10 representative polyphenols (caffeic acid, CA; gallic acid, GA; catechin, C; epicatechin, EC; gallocatechin, GC; catechin gallate, CG; gallocatechin gallate, GCG; epicatechin gallate, ECG; epigallocatechin, EGC; and epigallocatechin gallate, EGCG), and explored their structure-activity relationship. The effect of the 10 polyphenol compounds on the proliferation of HCT-116 and SW-480 human colorectal cancer cells was evaluated using an MTS assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry after staining with propidium iodide (PI)/RNase or annexin V/PI. Among the 10 polyphenols, EGCG showed the most potent antiproliferative effects, and significantly induced cell cycle arrest in the G1 phase and cell apoptosis. When the relationship between chemical structure and anticancer activity was examined, C and EC did not show antiproliferative effects, and GA showed some antiproliferative effects. When C and EC esterified with GA to produce CG and ECG, the antiproliferative effects were increased significantly. A similar relationship was found between EGC and EGCG. The gallic acid group significantly enhanced catechin’s anticancer potential. This property could be utilized in future semi-synthesis of flavonoid derivatives to develop novel anticancer agents.
Collapse
Affiliation(s)
- Guang-Jian Du
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; (G.-J.D.); (Z.Z.);
(X.-D.W); (C.Y.); (T.C.);
(C.-S.Y.)
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Zhiyu Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; (G.-J.D.); (Z.Z.);
(X.-D.W); (C.Y.); (T.C.);
(C.-S.Y.)
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Xiao-Dong Wen
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; (G.-J.D.); (Z.Z.);
(X.-D.W); (C.Y.); (T.C.);
(C.-S.Y.)
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chunhao Yu
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; (G.-J.D.); (Z.Z.);
(X.-D.W); (C.Y.); (T.C.);
(C.-S.Y.)
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Tyler Calway
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; (G.-J.D.); (Z.Z.);
(X.-D.W); (C.Y.); (T.C.);
(C.-S.Y.)
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; (G.-J.D.); (Z.Z.);
(X.-D.W); (C.Y.); (T.C.);
(C.-S.Y.)
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; (G.-J.D.); (Z.Z.);
(X.-D.W); (C.Y.); (T.C.);
(C.-S.Y.)
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-773-702-0166; Fax: +1-773-834-0601
| |
Collapse
|
35
|
Chuang LY, Guh JY, Chao LK, Lu YC, Hwang JY, Yang YL, Cheng TH, Yang WY, Chien YJ, Huang JS. Anti-proliferative effects of cinnamaldehyde on human hepatoma cell lines. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Nandekar PP, Sangamwar AT. Cytochrome P450 1A1-mediated anticancer drug discovery: in silico findings. Expert Opin Drug Discov 2012; 7:771-89. [PMID: 22716293 DOI: 10.1517/17460441.2012.698260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Target-specific drugs may offer fewer side/adverse effects in comparison with other anticancer agents and thus save normal healthy cells to a greater extent. The selective overexpression of cytochrome P450 1A1 (CYP1A1) in tumor cells induces the metabolism of benzothiazole and aminoflavone compounds to their reactive species, which are responsible for DNA adduct formation and cell death. This review encompasses the novelty of CYP1A1 as an anticancer drug target and explores the possible in silico strategies that would be applicable in the discovery and development of future antitumor compounds. AREAS COVERED This review highlights the various ligand-based and target-based in silico methodologies that were efficiently used in exploration of CYP1A1 as a novel antitumor target. These methodologies include electronic structure analysis, CoMFA studies, homology modeling, molecular docking, molecular dynamics analysis, pharmacophore mapping and quantitative structure activity relationship (QSAR) studies. It also focuses on the various approaches used in the development of the lysyl amide prodrug of 5F-203 (NSC710305) and dimethanesulfonate salt of 5-aminoflavone (NSC710464) as clinical candidates from their less potent analogues. EXPERT OPINION Selective overexpression of CYP1A1 in cancer cells offers tumor-specific drug design to ameliorate the current adverse effects associated with existing antitumor agents. Medicinal chemistry and in vitro driven approaches, in combination with knowledge-based drug design and by using the currently available tools of in silico methodologies, would certainly make it possible to design and develop novel anticancer compounds targeting CYP1A1.
Collapse
Affiliation(s)
- Prajwal P Nandekar
- National Institute of Pharmaceutical Education and Research (NIPER), Department of Pharmacoinformatics, S.A.S. Nagar (Mohali), Punjab-160062, India
| | | |
Collapse
|
37
|
Emre S, Metin A, Demirseren DD, Akoglu G, Oztekin A, Neselioglu S, Erel O. The association of oxidative stress and disease activity in seborrheic dermatitis. Arch Dermatol Res 2012; 304:683-7. [DOI: 10.1007/s00403-012-1254-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 01/05/2023]
|
38
|
Toll-like receptor signalling in liver disease: ER stress the missing link? Cytokine 2012; 59:195-202. [PMID: 22579700 DOI: 10.1016/j.cyto.2012.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 12/20/2022]
Abstract
Toll-like receptors induce a complex inflammatory response that can function to alert the body to infection, neutralize pathogens and repair damaged tissues. Toll-like receptors are expressed on kupffer, endothelial, dendritic, biliary epithelial, hepatic stellate cells, and hepatocytes in the liver. The endoplasmic reticulum (ER) is a central organelle of eukaryotic cells that exists as a place of lipid synthesis, protein folding and protein maturation. The ER is a major signal transduction organelle that senses and responds to changes in homeostasis. Conditions interfering with the function of the ER are collectively known as ER stress and can be induced by accumulation of unfolded protein aggregates or by excessive protein traffic as can occur during viral infection. The ability of ER stress to induce an inflammatory response is considered to play a role in disease pathogenesis. Importantly, ER stress is viewed as a contributor to the pathogenesis of liver diseases with evidence linking components of ER homeostasis as requirements for optimal Toll-like receptor function. In this context this review discusses the association of Toll-like receptors with ER stress. This is an emerging paradigm in the understanding of Toll-like receptor signalling which may have an underlying role in the pathogenesis of liver disease.
Collapse
|
39
|
Cortés-Sempere M, de Miguel MP, Pernía O, Rodriguez C, de Castro Carpeño J, Nistal M, Conde E, López-Ríos F, Belda-Iniesta C, Perona R, Ibanez de Caceres I. IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer. Oncogene 2012; 32:1274-83. [PMID: 22543588 DOI: 10.1038/onc.2012.146] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although many cancers initially respond to cisplatin (CDDP)-based chemotherapy, resistance frequently develops. Insulin-like growth factor-binding protein-3 (IGFBP-3) silencing by promoter methylation is involved in the CDDP-acquired resistance process in non-small cell lung cancer (NSCLC) patients. Our purpose is to design a translational-based profile to predict resistance in NSCLC by studying the role of IGFBP-3 in the phosphatidyl inositol 3-kinase (PI3K) signaling pathway. We have first examined the relationship between IGFBP-3 expression regulated by promoter methylation and activation of the epidermal growth factor receptor (EGFR), insulin-like growth factor-I receptor (IGFIR) and PI3K/AKT pathways in 10 human cancer cell lines and 25 NSCLC patients with known IGFBP-3 methylation status and response to CDDP. Then, to provide a helpful tool that enables clinicians to identify patients with a potential response to CDDP, we have calculated the association between our diagnostic test and the true outcome of analyzed samples in terms of cisplatin IC50; the inhibitory concentration that kills 50% of the cell population. Our results suggest that loss of IGFBP-3 expression by promoter methylation in tumor cells treated with CDDP may activate the PI3K/AKT pathway through the specific derepression of IGFIR signaling, inducing resistance to CDDP. This study also provides a predictive test for clinical practice with an accuracy and precision of 0.84 and 0.9, respectively, (P=0.0062). We present a biomarker test that could provide clinicians with a robust tool with which to decide on the use of CDDP, improving patient clinical outcomes.
Collapse
Affiliation(s)
- M Cortés-Sempere
- Instituto de Investigaciones Biomedicas CSIC/UAM, CIBER de Enfermedades Raras CIBERER, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cadet J, Douki T, Ravanat JL, Wagner JR. Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12566-012-0029-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Jin Y, Yu Q, Zhou D, Chen L, Huang X, Xu G, Huang J, Gao X, Gao Y, Shen L. The mitochondrial DNA 9-bp deletion polymorphism is a risk factor for hepatocellular carcinoma in the Chinese population. Genet Test Mol Biomarkers 2012; 16:330-4. [PMID: 22283196 DOI: 10.1089/gtmb.2011.0208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Although molecular biology of carcinogenesis and tumor progression of HCC has been increasingly understood with intense research in recent years, the molecular and cellular mechanisms of HCC pathogenesis are still poorly understood. In the present study, a case-control study including 390 HCC patients and 431 healthy controls was conducted to investigate the association of HCC susceptibility with the mitochondrial DNA (mtDNA) 9-bp deletion polymorphism in Chinese population. Chi-square testing showed that frequencies of 9-bp one repeat or two repeats were significantly different between HCC and control groups. Carriage of 9-bp one repeat fragment was associated with a significantly increased risk of developing HCC (odds ratio=1.48, 95% confidence interval: 1.03-2.14, p=0.027). Stratification analysis further showed that the differences between cases and controls were more obvious in drinkers than nondrinkers. Computational modeling of the 9-bp deletion polymorphism suggests that the mtDNA sequence without the 9-bp deletion polymorphism lies within a predicted binding site (seed region) for hsa-miR-519c-5p and hsa-miR-526a. Our data suggested that the 9-bp deletion polymorphism in mitochondria may influence HCC risk, likely through specific microRNA-mediated regulation, which was possibly involved in the pathogenesis of HCC. The replication of our studies in other populations with larger sample size is warranted.
Collapse
Affiliation(s)
- Yiqi Jin
- Department of Vascular/Interventional Radiology, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC, Pierattelli R, Reif B. Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin. J Biol Chem 2012; 287:1128-38. [PMID: 22090033 PMCID: PMC3256888 DOI: 10.1074/jbc.m111.309047] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/08/2011] [Indexed: 12/20/2022] Open
Abstract
The human small heat-shock protein αB-crystallin (αB) rescues misfolded proteins from irreversible aggregation during cellular stress. Binding of Cu(II) was shown to modulate the oligomeric architecture and the chaperone activity of αB. However, the mechanistic basis of this stimulation is so far not understood. We provide here first structural insights into this Cu(II)-mediated modulation of chaperone function using NMR spectroscopy and other biophysical approaches. We show that the α-crystallin domain is the elementary Cu(II)-binding unit specifically coordinating one Cu(II) ion with picomolar binding affinity. Putative Cu(II) ligands are His(83), His(104), His(111), and Asp(109) at the dimer interface. These loop residues are conserved among different metazoans, but also for human αA-crystallin, HSP20, and HSP27. The involvement of Asp(109) has direct implications for dimer stability, because this residue forms a salt bridge with the disease-related Arg(120) of the neighboring monomer. Furthermore, we observe structural reorganization of strands β2-β3 triggered by Cu(II) binding. This N-terminal region is known to mediate both the intermolecular arrangement in αB oligomers and the binding of client proteins. In the presence of Cu(II), the size and the heterogeneity of αB multimers are increased. At the same time, Cu(II) increases the chaperone activity of αB toward the lens-specific protein β(L)-crystallin. We therefore suggest that Cu(II) binding unblocks potential client binding sites and alters quaternary dynamics of both the dimeric building block as well as the higher order assemblies of αB.
Collapse
Affiliation(s)
- Andi Mainz
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin-Buch 13125, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, Neuherberg 85764, Germany
| | - Benjamin Bardiaux
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin-Buch 13125, Germany
| | - Frank Kuppler
- the Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Gerd Multhaup
- the Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Isabella C. Felli
- the Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy, and
| | - Roberta Pierattelli
- the Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy, and
| | - Bernd Reif
- From the Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, Berlin-Buch 13125, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, Neuherberg 85764, Germany
- the Center for Integrated Protein Science Munich, Department of Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| |
Collapse
|
43
|
Madian AG, Myracle AD, Diaz-Maldonado N, Rochelle NS, Janle EM, Regnier FE. Differential carbonylation of proteins as a function of in vivo oxidative stress. J Proteome Res 2011; 10:3959-72. [PMID: 21800835 PMCID: PMC3196594 DOI: 10.1021/pr200140x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study reports for the first time qualitative and quantitative differences in carbonylated proteins shed into blood as a function of increasing levels of OS. Carbonylated proteins in freshly drawn blood from pairs of diabetic and lean rats were derivatized with biotin hydrazide, dialyzed, and enriched with avidin affinity chromatography. Proteins thus selected were used in several ways. Differences between control and diabetic subjects in relative concentration of proteins was achieved by differential labeling of tryptic digests with iTRAQ reagents followed by reversed phase chromatography (RPC) and tandem mass spectrometry (MS/MS). Identification and characterization of OS induced post-translational modification sites in contrast was achieved by fractionation of affinity selected proteins before proteolysis and RPC-MS/MS. Relative quantification of peptides bearing oxidative modifications was achieved for the first time by selective reaction monitoring (SRM). Approximately 1.7% of the proteins in Zucker diabetic rat plasma were selected by the avidin affinity column as compared to 0.98% in lean animal plasma. Among the 35 proteins identified and quantified, Apo AII, clusterin, hemopexin precursor, and potassium voltage-gated channel subfamily H member 7 showed the most dramatic changes in concentration. Seventeen carbonylation sites were identified and quantified, 11 of which changed more than 2-fold in oxidation state. Three types of carbonylation were identified at these sites: direct oxidative cleavage from reactive oxygen species, glycation and addition of advanced glycation end products, and addition of lipid peroxidation products. Direct oxidation was the dominant form of carbonylation observed while hemoglobin and murinoglobulin 1 homologue were the most heavily oxidized proteins.
Collapse
Affiliation(s)
- Ashraf G. Madian
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA 47907
| | - Angela D. Myracle
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, USA 47907
| | | | - Nishi S. Rochelle
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA 47907
| | - Elsa M. Janle
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, USA 47907
| | - Fred E. Regnier
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA 47907
| |
Collapse
|
44
|
Dennery PA. Introduction to the special issue on translational research involving oxidative stress. Free Radic Biol Med 2011; 51:923-4. [PMID: 21679766 DOI: 10.1016/j.freeradbiomed.2011.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Espey MG, Chen P, Chalmers B, Drisko J, Sun AY, Levine M, Chen Q. Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radic Biol Med 2011; 50:1610-9. [PMID: 21402145 PMCID: PMC3482496 DOI: 10.1016/j.freeradbiomed.2011.03.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 12/19/2022]
Abstract
Conventional treatment approaches have had little impact on the course of pancreatic cancer, which has the highest fatality rate among cancers. Gemcitabine, the primary therapeutic agent for pancreatic carcinoma, produces minimal survival benefit as a single agent. Therefore, numerous efforts have focused on gemcitabine combination treatments. Using a ratio design, this study established that combining pharmacologically achievable concentrations of ascorbate with gemcitabine resulted in a synergistic cytotoxic response in eight pancreatic tumor cell lines. Sensitization was evident regardless of inherent gemcitabine resistance and epithelial-mesenchymal phenotype. Our analysis suggested that the promiscuous oxidative actions of H(2)O(2) derived from pharmacologic ascorbate can culminate in synergism independent of the cancer cell's underlying phenotype and resistance to gemcitabine monotherapy. Gemcitabine-ascorbate combinations administered to mice bearing pancreatic tumor xenografts consistently enhanced inhibition of growth compared to gemcitabine alone, produced 50% growth inhibition in a tumor type not responsive to gemcitabine, and demonstrated a gemcitabine dose-sparing effect. These data support the testing of pharmacologic ascorbate in adjunctive treatments for cancers prone to high failure rates with conventional therapeutic regimens, such as pancreatic cancer.
Collapse
Affiliation(s)
- Michael Graham Espey
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ping Chen
- Program in Integrative Medicine, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Genetic and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Brian Chalmers
- Program in Integrative Medicine, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeanne Drisko
- Program in Integrative Medicine, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew Y. Sun
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qi Chen
- Program in Integrative Medicine, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
46
|
The role of epigenetics in resistance to Cisplatin chemotherapy in lung cancer. Cancers (Basel) 2011; 3:1426-53. [PMID: 24212667 PMCID: PMC3756421 DOI: 10.3390/cancers3011426] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 12/23/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer related death in the world. Cisplatin and carboplatin are the most commonly used cytotoxic chemotherapeutic agents to treat the disease. These agents, usually combined with drugs such as gemcitabine or pemetrexed, induce objective tumor responses in only 20-30% of patients. Aberrant epigenetic regulation of gene expression is a frequent event in NSCLC. In this article we review the emerging evidence that epigenetics and the cellular machinery involved with this type of regulation may be key elements in the development of cisplatin resistance in NSCLC.
Collapse
|
47
|
Calvisi DF. Of mice and men: the nonrandom genomic instability in hepatocarcinogenesis. Hepatology 2011; 53:723-5. [PMID: 21374655 DOI: 10.1002/hep.24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|