1
|
Herrera-Arozamena C, Estrada-Valencia M, García-Díez G, Pérez C, León R, Infantes L, Morales-García JA, Pérez-Castillo A, Del Sastre E, López MG, Rodríguez-Franco MI. Discovery of a potent melatonin-based inhibitor of quinone reductase-2 with neuroprotective and neurogenic properties. Eur J Med Chem 2024; 277:116763. [PMID: 39146834 DOI: 10.1016/j.ejmech.2024.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
5-Methoxy-3-(5-methoxyindolin-2-yl)-1H-indole (3), whose structure was unambiguously elucidated by X-ray analysis, was identified as a multi-target compound with potential application in neurodegenerative diseases. It is a low nanomolar inhibitor of QR2 (IC50 = 7.7 nM), with greater potency than melatonin and comparable efficacy to the most potent QR2 inhibitors described to date. Molecular docking studies revealed the potential binding mode of 3 to QR2, which explains its superior potency compared to melatonin. Furthermore, compound 3 inhibits hMAO-A, hMAO-B and hLOX-5 in the low micromolar range and is an excellent ROS scavenger. In phenotypic assays, compound 3 showed neuroprotective activity in a cellular model of oxidative stress damage, it was non-toxic, and was able to activate neurogenesis from neural stem-cell niches of adult mice. These excellent biological properties, together with its both good in silico and in vitro drug-like profile, highlight compound 3 as a promising drug candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
- Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Martín Estrada-Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Guillermo García-Díez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain
| | - Lourdes Infantes
- Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas (IQF-CSIC), C/ Serrano 119, E-28006, Madrid, Spain
| | - José A Morales-García
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Avda. Complutense s/n, E-28040, Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), C/ Arturo Duperier 4, E-28029, Madrid, Spain
| | - Eric Del Sastre
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), C/ Arzobispo Morcillo 4, E-28029, Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), C/ Arzobispo Morcillo 4, E-28029, Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006, Madrid, Spain.
| |
Collapse
|
2
|
Reiter RJ, Sharma RN, Manucha W, Rosales-Corral S, Almieda Chuffa LGD, Loh D, Luchetti F, Balduini W, Govitrapong P. Dysfunctional mitochondria in age-related neurodegeneration: Utility of melatonin as an antioxidant treatment. Ageing Res Rev 2024; 101:102480. [PMID: 39236857 DOI: 10.1016/j.arr.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Mitochondria functionally degrade as neurons age. Degenerative changes cause inefficient oxidative phosphorylation (OXPHOS) and elevated electron leakage from the electron transport chain (ETC) promoting increased intramitochondrial generation of damaging reactive oxygen and reactive nitrogen species (ROS and RNS). The associated progressive accumulation of molecular damage causes an increasingly rapid decline in mitochondrial physiology contributing to aging. Melatonin, a multifunctional free radical scavenger and indirect antioxidant, is synthesized in the mitochondrial matrix of neurons. Melatonin reduces electron leakage from the ETC and elevates ATP production; it also detoxifies ROS/RNS and via the SIRT3/FOXO pathway it upregulates activities of superoxide dismutase 2 and glutathione peroxidase. Melatonin also influences glucose processing by neurons. In neurogenerative diseases, neurons often adopt Warburg-type metabolism which excludes pyruvate from the mitochondria causing reduced intramitochondrial acetyl coenzyme A production. Acetyl coenzyme A supports the citric acid cycle and OXPHOS. Additionally, acetyl coenzyme A is a required co-substrate for arylalkylamine-N-acetyl transferase, which rate limits melatonin synthesis; therefore, melatonin production is diminished in cells that experience Warburg-type metabolism making mitochondria more vulnerable to oxidative stress. Moreover, endogenously produced melatonin diminishes during aging, further increasing oxidative damage to mitochondrial components. More normal mitochondrial physiology is preserved in aging neurons with melatonin supplementation.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA.
| | - Ramaswamy N Sharma
- Applied Biomedical Sciences, University of the Incarnate Word, School of Osteopathic Medicine, San Antonio, TX, USA.
| | - Walter Manucha
- Instituto de Medicina y Biologia Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Mendoza 5500, Argentina.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| | - Luiz Gustavo de Almieda Chuffa
- Departamento de Biologia Estrutural e Funcional, Setor de Anatomia - Instituto de Biociências, IBB/UNESP, Campus Botucatu, Botucatu, São Paulo, Brazil.
| | - Doris Loh
- Independent Researcher, Marble Falls, TX, USA.
| | - Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Laksi, Bangkok, Thailand.
| |
Collapse
|
3
|
Hagström A, Kal Omar R, Witzenhausen H, Lardner E, Abdiu O, Stålhammar G. Melatonin Receptor Expression in Primary Uveal Melanoma. Int J Mol Sci 2024; 25:8711. [PMID: 39201396 PMCID: PMC11354273 DOI: 10.3390/ijms25168711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Melatonin, noted for its anti-cancer properties in various malignancies, including cutaneous melanoma, shows promise in Uveal melanoma (UM) treatment. This study aimed to evaluate melatonin receptor expression in primary UM and its association with UM-related mortality and prognostic factors. Immunohistochemical analysis of 47 primary UM tissues showed low expression of melatonin receptor 1A (MTNR1A) and melatonin receptor 1B (MTNR1B), with MTNR1A significantly higher in patients who succumbed to UM. Analysis of TCGA data from 80 UM patients revealed RNA expression for MTNR1A, retinoic acid-related orphan receptor alpha (RORα), and N-ribosyldihydronicotinamide:quinone oxidoreductase (NQO2), but not MTNR1B or G protein-coupled receptor 50 (GPR50). Higher MTNR1A RNA levels were observed in patients with a BRCA1 Associated Protein 1 (BAP1) mutation, and higher NQO2 RNA levels were noted in patients with the epithelioid tumor cell type. However, Kaplan-Meier analysis did not show distinct survival probabilities based on receptor expression. This study concludes that UM clinical samples express melatonin receptors, suggesting a potential mechanism for melatonin's anti-cancer effects. Despite finding higher MTNR1A expression in patients who died of UM, no survival differences were observed.
Collapse
MESH Headings
- Humans
- Uveal Neoplasms/metabolism
- Uveal Neoplasms/genetics
- Uveal Neoplasms/pathology
- Uveal Neoplasms/mortality
- Melanoma/metabolism
- Melanoma/genetics
- Melanoma/pathology
- Male
- Female
- Middle Aged
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT1/genetics
- Aged
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Receptor, Melatonin, MT2/metabolism
- Receptor, Melatonin, MT2/genetics
- Gene Expression Regulation, Neoplastic
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Prognosis
- Adult
- Aged, 80 and over
- Mutation
- Melatonin/metabolism
- Kaplan-Meier Estimate
Collapse
Affiliation(s)
- Anna Hagström
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.O.); (H.W.)
| | - Ruba Kal Omar
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.O.); (H.W.)
| | - Hans Witzenhausen
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.O.); (H.W.)
| | | | - Oran Abdiu
- Ögonspecialisterna Farsta, 12347 Stockholm, Sweden;
| | - Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.O.); (H.W.)
- St. Erik Eye Hospital, 17164 Stockholm, Sweden;
| |
Collapse
|
4
|
Panmanee J, Charoensutthivarakul S, Cheng CW, Promthep K, Mukda S, Prasertporn T, Nopparat C, Teerapo K, Supcharoen P, Petchyam N, Chetsawang B, Govitrapong P, Phanchana M. A Complex Interplay Between Melatonin and RORβ: RORβ is Unlikely a Putative Receptor for Melatonin as Revealed by Biophysical Assays. Mol Neurobiol 2024:10.1007/s12035-024-04395-y. [PMID: 39105871 DOI: 10.1007/s12035-024-04395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
A nuclear retinoic acid receptor (RAR)-related orphan receptor β (RORβ) is strictly expressed in the brain, particularly in the pineal gland where melatonin is primarily synthesized and concentrated. The controversial issues regarding the direct interaction of melatonin toward ROR receptors have prompted us to investigate the potential melatonin binding sites on different ROR isoforms. We adopted computational and biophysical approaches to investigate the potential of melatonin as the ligand for RORs, in particular RORβ. Herein, possible melatonin binding sites were predicted by molecular docking on human RORs. The results showed that melatonin might be able to bind within the ligand-binding domain (LBD) of all RORs, despite their difference in sequence homology. The predicted melatonin binding scores were comparable to binding energies with respect to those of melatonin interaction to the well-characterized membrane receptors, MT1 and MT2. Although the computational analyses suggested the binding potential of melatonin to the LBD of RORβ, biophysical validation failed to confirm the binding. Melatonin was unable to alter the stability of human RORβ as shown by the unaltered melting temperatures upon melatonin administration in differential scanning fluorometry (DSF). A thermodynamic isothermal titration calorimetry (ITC) profile showed that melatonin did not interact with human RORβ in solutions, even in the presence of SRC-1 co-activator peptide. Although the direct interaction between the LBD of RORβ could not be established, RORα and RORβ gene expressions were increased upon 24 h treatment with μM-range melatonin. Our data, thus, support the studies that the nuclear effects of melatonin may not be directly mediated via its interaction with the RORβ. These findings warrant further investigation on how melatonin interacts with ROR signaling and urge the melatonin research community for a paradigm shift in the direct interaction of melatonin toward RORs. The quest to identify nuclear receptors for melatonin in neuronal cells remains valid for the community to achieve.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sitthivut Charoensutthivarakul
- Innovative Molecular Discovery Laboratory (iMOD), School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chew Weng Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Kornkanok Promthep
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanya Prasertporn
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Sukhumvit 23, Bangkok, 10110, Thailand
| | - Kittitat Teerapo
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Promsup Supcharoen
- Mahidol University-Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Boutin JA, Hamon de Almeida V, Coussay N, Legros C, Ferry G, Reybier K. Melatonin facts: Melatonin lacks immuno-inflammation boosting capacities at the molecular and cellular levels. Biochimie 2024; 222:195-202. [PMID: 38508513 DOI: 10.1016/j.biochi.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Among the properties melatonin is claimed to possess, are the immuno-inflammation inductive capacities that would be responsible of some of the paramount of activities melatonin is reported to have in most of the human pathological conditions. In the present paper, we measured the effect of melatonin on established cellular models of immuno-inflammation, and found none. The discrepancies are discussed, especially because those properties are reported at pharmacological concentration (1 μM and beyond) at which the melatonin receptors are desensitized by internalization, leading to putative non-receptor-dependent mechanism of action.
Collapse
Affiliation(s)
- Jean A Boutin
- Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), University Rouen Normandie, INSERM, NorDiC UMR 1239, F-76000, Rouen, France.
| | | | | | | | | | - Karine Reybier
- Pharma-Dev UMR 152, Université de Toulouse, IRD, UT3, Toulouse, France
| |
Collapse
|
6
|
Greco G, Di Lorenzo R, Ricci L, Di Serio T, Vardaro E, Laneri S. Clinical Studies Using Topical Melatonin. Int J Mol Sci 2024; 25:5167. [PMID: 38791203 PMCID: PMC11121188 DOI: 10.3390/ijms25105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Melatonin is ubiquitously present in all animals and plants, where it exerts a variety of physiological activities thanks to its antioxidant properties and its key role as the first messenger of extracellular signaling functions. Most of the clinical studies on melatonin refer to its widespread oral use as a dietary supplement to improve sleep. A far smaller number of articles describe the clinical applications of topical melatonin to treat or prevent skin disorders by exploiting its antioxidant and anti-inflammatory activities. This review focuses on the clinical studies in which melatonin was applied on the skin as a photoprotective, anti-aging, or hair growth-promoting agent. The methodologies and results of such studies are discussed to provide an overall picture of the state of the art in this intriguing field of research. The clinical studies in which melatonin was applied on the skin before exposure to radiation (UV, sunlight, and high-energy beams) were all characterized by an appropriate design (randomized, double-blind, and placebo-controlled) and strongly support its clinical efficacy in preventing or reducing skin damage such as dermatitis, erythema, and sunburn. Most of the studies examined in this review do not provide a clear demonstration of the efficacy of topical melatonin as a skin anti-aging or as a hair growth-promoting agent owing to limitations in their design and/or to the use of melatonin combined with extra active ingredients, except for one trial that suggests a possible beneficial role of melatonin in treating some forms of alopecia in women. Further research efforts are required to reach definitive conclusions concerning the actual benefits of topical melatonin to counteract skin aging and hair loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (G.G.); (R.D.L.); (L.R.); (T.D.S.); (E.V.)
| |
Collapse
|
7
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
8
|
Gu P, Wu Y, Lu W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 2024; 24:171-195. [PMID: 38436867 DOI: 10.1007/s40256-024-00631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.
Collapse
Affiliation(s)
- Pengchen Gu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Yuxin Wu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China.
| |
Collapse
|
9
|
Lei X, Xu Z, Huang L, Huang Y, Tu S, Xu L, Liu D. The potential influence of melatonin on mitochondrial quality control: a review. Front Pharmacol 2024; 14:1332567. [PMID: 38273825 PMCID: PMC10808166 DOI: 10.3389/fphar.2023.1332567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024] Open
Abstract
Mitochondria are critical for cellular energetic metabolism, intracellular signaling orchestration and programmed death regulation. Therefore, mitochondrial dysfunction is associated with various pathogeneses. The maintenance of mitochondrial homeostasis and functional recovery after injury are coordinated by mitochondrial biogenesis, dynamics and autophagy, which are collectively referred to as mitochondrial quality control. There is increasing evidence that mitochondria are important targets for melatonin to exert protective effects under pathological conditions. Melatonin, an evolutionarily conserved tryptophan metabolite, can be synthesized, transported and metabolized in mitochondria. In this review, we summarize the important role of melatonin in the damaged mitochondria elimination and mitochondrial energy supply recovery by regulating mitochondrial quality control, which may provide new strategies for clinical treatment of mitochondria-related diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Tu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Silva BR, Costa FC, De Lima Neto MF, Caetano Filho FF, de Assis EIT, Aguiar FLN, Silva AWB, Martins SD, Araújo VR, Matos MHT, Costa JJN, Silva JRV. Melatonin acts through different mechanisms to control oxidative stress and primordial follicle activation and survival during in vitro culture of bovine ovarian tissue. Domest Anim Endocrinol 2024; 86:106824. [PMID: 37976887 DOI: 10.1016/j.domaniend.2023.106824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
This study aims to evaluate the effects of melatonin and its mechanisms of action on preantral follicle activation and survival, stromal cell density and collagen distribution in extracellular matrix (ECM). The involvement of melatonin receptors and mTORC1 pathway in these procedures were also investigated. To this end, ovarian fragments were cultured for six days in α-MEM+ alone or supplemented with 1000 pM melatonin, 1000 pM melatonin with 1000 pM luzindole (inhibitor of melatonin receptors), or 1000 pM melatonin with 0.16 µg/ml rapamycin (mTORC1 inhibitor). At the end of culture period, tissues were processed for classical histology, and the follicles were classified as normal or degenerated, as well as in primordial or growing follicles. The ovarian stromal cell density and ECM collagen distribution were also evaluated. Samples of ovarian tissues were also destined to measure the levels of thiol and mRNA for CAT, SOD, GPX1 and PRDX1, as well as the activity of antioxidant enzymes CAT, SOD, and GPX1. The results demonstrated that ovarian tissues cultured with melatonin, melatonin with luzindole or melatonin with rapamycin had significantly higher percentage of morphologically normal follicles than those cultured in control medium (α-MEM+). However, the presence of either luzindole or rapamycin, did not block the positive effects of melatonin on follicle survival (P > 0.05). Although the presence of melatonin in culture medium reduced the percentage of primordial follicles and increased the percentage of development follicles, these positive effects of melatonin were blocked by either luzindole or rapamycin (P < 0.05). Melatonin, melatonin with luzindole or melatonin with rapamycin did not influence the number of ovarian stromal cells. In contrast, melatonin significantly increased the percentages of collagen in ovarian tissues, but the positive effects of melatonin were blocked by either luzindole or rapamycin. Tissues cultured with melatonin and rapamycin had higher levels of mRNA for CAT and lower GPx activity when compared to those cultured in control medium. In conclusion, melatonin promotes primordial follicle activation, increases collagen fiber in ECM of in vitro cultured bovine ovarian tissue through its membrane-coupled receptors and mTORC1. Oppositely, melatonin increase follicles survival by acting through other pathways, since it can pass through cell membranes and directly regulate oxidative stress.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Miguel F De Lima Neto
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Francisco F Caetano Filho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Francisco L N Aguiar
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Anderson W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - Solano D Martins
- Laboratory of Biochemistry and Gene Expression, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Valdevane R Araújo
- Laboratory of Biochemistry and Gene Expression, Higher Institute of Biomedical Sciences, State University of Ceará, Fortaleza, CE, 60714-903, Brazil
| | - Maria H T Matos
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - José J N Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Maurocélio Rocha Ponte 100, postal code 62041-040, Sobral, CE, Brazil.
| |
Collapse
|
11
|
Boutin JA, Liberelle M, Yous S, Ferry G, Nepveu F. Melatonin facts: Lack of evidence that melatonin is a radical scavenger in living systems. J Pineal Res 2024; 76:e12926. [PMID: 38146602 DOI: 10.1111/jpi.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 12/27/2023]
Abstract
Melatonin is a small natural compound, so called a neuro-hormone that is synthesized mainly in pineal gland in animals. Its main role is to master the clock of the body, under the surveillance of light. In other words, it transfers the information concerning night and day to the peripheral organs which, without it, could not "know" which part of the circadian rhythm the body is in. Besides its main circadian and circannual rhythms mastering, melatonin is reported to be a radical scavenger and/or an antioxidant. Because radical scavengers are chemical species able to neutralize highly reactive and toxic species such as reactive oxygen species, one would like to transfer this property to living system, despite impossibilities already largely reported in the literature. In the present commentary, we refresh the memory of the readers with this notion of radical scavenger, and review the possible evidence that melatonin could be an in vivo radical scavenger, while we only marginally discuss here the fact that melatonin is a molecular antioxidant, a feature that merits a review on its own. We conclude four things: (i) the evidence that melatonin is a scavenger in acellular systems is overwhelming and could not be doubted; (ii) the transposition of this property in living (animal) systems is (a) theoretically impossible and (b) not proven in any system reported in the literature where most of the time, the delay of the action of melatonin is over several hours, thus signing a probable induction of cellular enzymatic antioxidant defenses; (iii) this last fact needs a confirmation through the discovery of a nuclear factor-a key relay in induction processes-that binds melatonin and is activated by it and (iv) we also gather the very important description of the radical scavenging capacity of melatonin in acellular systems that is now proven and shared by many other double bond-bearing molecules. We finally discussed briefly on the reason-scientific or else-that led this description, and the consequences of this claim, in research, in physiology, in pathology, but most disturbingly in therapeutics where a vast amount of money, hope, and patient bien-être are at stake.
Collapse
Affiliation(s)
- Jean A Boutin
- Laboratory of Regulatory Peptides, Energy Metabolism and Motivated Behavior, Department of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Univ Rouen Normandie, Inserm, NorDiC, Rouen, France
| | - Maxime Liberelle
- University of Lille, Lille Neurosciences and Cognition Research Center, U1172, Lille, France
| | - Saïd Yous
- University of Lille, Lille Neurosciences and Cognition Research Center, U1172, Lille, France
| | | | - Françoise Nepveu
- Dpt Sciences Pharmaceutiques, Faculté de santé, PHARMADEV, UMR 152, Université Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
12
|
Slominski AT, Kim TK, Slominski RM, Song Y, Qayyum S, Placha W, Janjetovic Z, Kleszczyński K, Atigadda V, Song Y, Raman C, Elferink CJ, Hobrath JV, Jetten AM, Reiter RJ. Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma. Int J Mol Sci 2023; 24:15496. [PMID: 37895177 PMCID: PMC10607054 DOI: 10.3390/ijms242015496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive damage caused by MT1- and MT2-independent mechanisms. The aryl hydrocarbon receptor (AhR) is a perfect candidate for mediating the latter effects because melatonin has structural similarity to its natural ligands, including tryptophan metabolites and indolic compounds. Using a cell-based Human AhR Reporter Assay System, we demonstrated that melatonin and its indolic and kynuric metabolites act as agonists on the AhR with EC50's between 10-4 and 10-6 M. This was further validated via the stimulation of the transcriptional activation of the CYP1A1 promoter. Furthermore, melatonin and its metabolites stimulated AhR translocation from the cytoplasm to the nucleus in human keratinocytes, as demonstrated by ImageStream II cytometry and Western blot (WB) analyses of cytoplasmic and nuclear fractions of human keratinocytes. These functional analyses are supported by in silico analyses. We also investigated the peroxisome proliferator-activated receptor (PPAR)γ as a potential target for melatonin and metabolites bioregulation. The binding studies using a TR-TFRET kit to assay the interaction of the ligand with the ligand-binding domain (LBD) of the PPARγ showed agonistic activities of melatonin, 6-hydroxymelatonin and N-acetyl-N-formyl-5-methoxykynuramine with EC50's in the 10-4 M range showing significantly lower affinities that those of rosiglitazone, e.g., a 10-8 M range. These interactions were substantiated by stimulation of the luciferase activity of the construct containing PPARE by melatonin and its metabolites at 10-4 M. As confirmed by the functional assays, binding mode predictions using a homology model of the AhR and a crystal structure of the PPARγ suggest that melatonin and its metabolites, including 6-hydroxymelatonin, 5-methoxytryptamine and N-acetyl-N-formyl-5-methoxykynuramine, are excellent candidates to act on the AhR and PPARγ with docking scores comparable to their corresponding natural ligands. Melatonin and its metabolites were modeled into the same ligand-binding pockets (LBDs) as their natural ligands. Thus, functional assays supported by molecular modeling have shown that melatonin and its indolic and kynuric metabolites can act as agonists on the AhR and they can interact with the PPARγ at high concentrations. This provides a mechanistic explanation for previously reported cytoprotective actions of melatonin and its metabolites that require high local concentrations of the ligands to reduce cellular damage under elevated oxidative stress conditions. It also identifies these compounds as therapeutic agents to be used at pharmacological doses in the prevention or therapy of skin diseases.
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Radomir M. Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
- Brigham’s Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Wojciech Placha
- Department of Medicinal Biochemistry, Collegium Medicum, Jagiellonian University, 31-008 Kraków, Poland;
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48161 Münster, Germany;
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Cornelis J. Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 79567, USA;
| | | | - Anton M. Jetten
- Cell Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| |
Collapse
|
13
|
Gould NL, Scherer GR, Carvalho S, Shurrush K, Kayyal H, Edry E, Elkobi A, David O, Foqara M, Thakar D, Pavesi T, Sharma V, Walker M, Maitland M, Dym O, Albeck S, Peleg Y, Germain N, Babaev I, Sharir H, Lalzar M, Shklyar B, Hazut N, Khamaisy M, Lévesque M, Lajoie G, Avoli M, Amitai G, Lefker B, Subramanyam C, Shilton B, Barr H, Rosenblum K. Specific quinone reductase 2 inhibitors reduce metabolic burden and reverse Alzheimer's disease phenotype in mice. J Clin Invest 2023; 133:e162120. [PMID: 37561584 PMCID: PMC10541198 DOI: 10.1172/jci162120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Biological aging can be described as accumulative, prolonged metabolic stress and is the major risk factor for cognitive decline and Alzheimer's disease (AD). Recently, we identified and described a quinone reductase 2 (QR2) pathway in the brain, in which QR2 acts as a removable memory constraint and metabolic buffer within neurons. QR2 becomes overexpressed with age, and it is possibly a novel contributing factor to age-related metabolic stress and cognitive deficit. We found that, in human cells, genetic removal of QR2 produced a shift in the proteome opposing that found in AD brains while simultaneously reducing oxidative stress. We therefore created highly specific QR2 inhibitors (QR2is) to enable evaluation of chronic QR2 inhibition as a means to reduce biological age-related metabolic stress and cognitive decline. QR2is replicated results obtained by genetic removal of QR2, while local QR2i microinjection improved hippocampal and cortical-dependent learning in rats and mice. Continuous consumption of QR2is in drinking water improved cognition and reduced pathology in the brains of AD-model mice (5xFAD), with a noticeable between-sex effect on treatment duration. These results demonstrate the importance of QR2 activity and pathway function in the healthy and neurodegenerative brain and what we believe to be the great therapeutic potential of QR2is as first-in-class drugs.
Collapse
Affiliation(s)
| | - Gila R. Scherer
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Silvia Carvalho
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Khriesto Shurrush
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Haneen Kayyal
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Efrat Edry
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Centre for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Alina Elkobi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Orit David
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Maria Foqara
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Darshit Thakar
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Tommaso Pavesi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Matthew Walker
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Matthew Maitland
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Orly Dym
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Peleg
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nicolas Germain
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Babaev
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Haleli Sharir
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | | | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Neta Hazut
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Maxime Lévesque
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gilles Lajoie
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gabriel Amitai
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Bruce Lefker
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Chakrapani Subramanyam
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Brian Shilton
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israeli National Center for Personalized Medicine (GINCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Centre for Genetic Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
14
|
Boutin JA, Kennaway DJ, Jockers R. Melatonin: Facts, Extrapolations and Clinical Trials. Biomolecules 2023; 13:943. [PMID: 37371523 DOI: 10.3390/biom13060943] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Melatonin is a fascinating molecule that has captured the imagination of many scientists since its discovery in 1958. In recent times, the focus has changed from investigating its natural role as a transducer of biological time for physiological systems to hypothesized roles in virtually all clinical conditions. This goes along with the appearance of extensive literature claiming the (generally) positive benefits of high doses of melatonin in animal models and various clinical situations that would not be receptor-mediated. Based on the assumption that melatonin is safe, high doses have been administered to patients, including the elderly and children, in clinical trials. In this review, we critically review the corresponding literature, including the hypotheses that melatonin acts as a scavenger molecule, in particular in mitochondria, by trying not only to contextualize these interests but also by attempting to separate the wheat from the chaff (or the wishful thinking from the facts). We conclude that most claims remain hypotheses and that the experimental evidence used to promote them is limited and sometimes flawed. Our review will hopefully encourage clinical researchers to reflect on what melatonin can and cannot do and help move the field forward on a solid basis.
Collapse
Affiliation(s)
- J A Boutin
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of Normandy, INSERM U1239, 76000 Rouen, France
| | - D J Kennaway
- Robinson Research Institute and Adelaide School of Medicine, University of Adelaide, Adelaide Health and Medical Science Building, North Terrace, Adelaide, SA 5006, Australia
| | - R Jockers
- Institut Cochin, Université Paris Cité, INSERM, CNRS, 75014 Paris, France
| |
Collapse
|
15
|
Mohammed Obaid N, Ulelah Abd Ali ZA, Shakir Al-Zaidi M. Association of Melatonin and superoxide dismutase enzyme in patients with type 2 Diabetes Mellitus. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2023:2091-2095. [DOI: 10.52711/0974-360x.2023.00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Background: Diabetes mellitus (DM) is a group of diseases characterized by high blood glucose levels resulting from a defect in the body's ability to produce and/or use insulin. It is believed that oxidative stress plays important role in the development of vascular complications in type 2 diabetes Objectives: to determine the serum concentrations of endogenous melatonin and superoxide dismutase(SOD) in cases of Type 2 DM and compare it with normal controls and to assess the correlation between melatonin and SOD. Materials and methods: A case control study was done on 70 patients with diabetes mellitus type 2 according to ADA definition of DM type 2 recruited from Al Imamain Al-Kathemeaain medical city, Baghdad, Iraq who compared with 70 age, BMI and gender matched healthy control group in the levels of serum melatonin, serum superoxide dismutase (SOD), fasting blood glucose (FBG) level, glycated hemoglobin (HbA1c), lipid profile, serum urea and serum creatinine. Results: the activities of SOD enzyme were significantly (p=0.037) lower than those of controls which is accompanied with a significant reduction in the melatonin levels in patients comparing with controls with a significant positive correlation between GPX activity and melatonin levels in both patients and control groups. Conclusions: melatonin levels showed to be reduced significantly in diabetic patient which may play an essential role in reducing the defense mechanism against ROS via affecting the activity of GPx enzyme.
Collapse
Affiliation(s)
| | - Zinah Abd Ulelah Abd Ali
- Department of Chemistry and Biochemistry, Al Nahrain University, College of Medicine, Baghdad, Iraq
| | | |
Collapse
|
16
|
Zhang S, Yao X. Mechanism of action and promising clinical application of melatonin from a dermatological perspective. J Transl Autoimmun 2023; 6:100192. [PMID: 36860771 PMCID: PMC9969269 DOI: 10.1016/j.jtauto.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Melatonin is the main neuroendocrine product in the pineal gland. Melatonin can regulate circadian rhythm-related physiological processes. Evidence indicates an important role of melatonin in hair follicles, skin, and gut. There appears to be a close association between melatonin and skin disorders. In this review, we focus on the latest research of the biochemical activities of melatonin (especially in the skin) and its promising clinical applications.
Collapse
Key Words
- 5HT, Serotonin
- AAD, Aromatic amino acid decarboxylase
- AANAT/NAT, serotonin-N-acetyltransferase(s)
- Anti-Inflammation
- Antioxidation
- CAT, catalase
- COX-2, Cyclooxygenase-2
- CYP450, cytochrome P450
- Casp-1/3, caspase 1/3
- DNCB, 2,4-dinitrochlorobenzene
- GPx, Glutathione peroxidase
- GSH, Glutathione
- HIOMT, 4-hydroxyindole-O-methyl transferase
- HO-1, heme oxygenase-1
- HSP 70, Heat Shock Protein 70
- IKK-α, IkB kinase-α
- IL-1β, interleukin-1 β
- IL-6, interleukin- 6
- IkB, NF-κ-B inhibitor
- Immunoregulation
- MT, Melatonin
- MT1/2, Melatonin receptor
- Melatonin
- NF-κB, Nuclear factor kappa-B
- NQO1, NAD(P), quinone oxidoreductase 1
- NQO2, NRH, Quinone oxidoreductase 2
- Nrf2, Nuclear erythroid 2-related factor
- Oncostatic mechanism
- PEPT1/2, oligopeptide transporter 1/2
- RNS, Reactive nitrogen species
- ROS, Reactive oxygen species
- RZR-α, Retinoid Z receptor α
- SOD, superoxide dismutase
- Skin barrier
- TPH, tryptophan5-hydroxylase enzymes, including dominant TPH1 and TPH2
- Trp, Tryptophan
- iNOS, Inducible nitric oxide synthase
- γ-GCS, c-glutamylcysteine synthetase
Collapse
Affiliation(s)
| | - Xu Yao
- Corresponding author. Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
17
|
Silva BR, Silva JRV. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim Reprod Sci 2023; 249:107186. [PMID: 36638648 DOI: 10.1016/j.anireprosci.2022.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
In vitro follicle growth and oocyte maturation still has a series of limitations, since not all oocytes matured in vitro have the potential to develop in viable embryos. One of the factors associated with low oocyte quality is the generation of reactive oxygen species (ROS) during in vitro culture. Therefore, this review aims to discuss the role of non-enzymatic antioxidants in the control of oxidative stress during in vitro follicular growth, oocyte maturation and embryonic development. A wide variety of non-enzymatic antioxidants (melatonin, resveratrol, L-ascorbic acid, L-carnitine, N-acetyl-cysteine, cysteamine, quercetin, nobiletin, lycopene, acteoside, mogroside V, phycocyanin and laminarin) have been used to supplement culture media. Some of them, like N-acetyl-cysteine, cysteamine, nobiletin and quercetin act by increasing the levels of glutathione (GSH), while melatonin and resveratrol increase the expression of antioxidant enzymes and minimize oocyte oxidative stress. L-ascorbic acid reduces free radicals and reactive oxygen species. Lycopene positively regulates the expression of many antioxidant genes. Additionally, L-carnitine protects DNA against ROS-induced damage, while acteoside and laminarin reduces the expression of proapoptotic genes. Mogrosides increases mitochondrial function and reduces intracellular ROS levels, phycocyanin reduces lipid peroxidation, and lycopene neutralizes the adverse effects of ROS. Thus, it is very important to know their mechanisms of actions, because the combination of two or more antioxidants with different activities has great potential to improve in vitro culture systems.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil
| | - José R V Silva
- Laboratory of Physiology and Biotechnology of Reproduction, Federal University of Ceara, Sobral, CE, Brazil.
| |
Collapse
|
18
|
3-Arylidene-2-oxindoles as Potent NRH:Quinone Oxidoreductase 2 Inhibitors. Molecules 2023; 28:molecules28031174. [PMID: 36770840 PMCID: PMC9920986 DOI: 10.3390/molecules28031174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
The enzyme NRH:quinone oxidoreductase 2 (NQO2) plays an important role in the pathogenesis of various diseases such as neurodegenerative disorders, malaria, glaucoma, COVID-19 and cancer. NQO2 expression is known to be increased in some cancer cell lines. Since 3-arylidene-2-oxindoles are widely used in the design of new anticancer drugs, such as kinase inhibitors, it was interesting to study whether such structures have additional activity towards NQO2. Herein, we report the synthesis and study of 3-arylidene-2-oxindoles as novel NRH:quinone oxidoreductase inhibitors. It was demonstrated that oxindoles with 6-membered aryls in the arylidene moiety were obtained predominantly as E-isomers while for some 5-membered aryls, the Z-isomers prevailed. The most active compounds inhibited NQO2 with an IC50 of 0.368 µM. The presence of a double bond in the oxindoles was crucial for NQO2 inhibition activity. There was no correlation between NQO2 inhibition activity of the synthesized compounds and their cytotoxic effect on the A549 cell line.
Collapse
|
19
|
Zhang XY, Zhang Y, Zhou Y, Liu ZF, Wei BB, Feng XS. Melatonin in different food samples: Recent update on distribution, bioactivities, pretreatment and analysis techniques. Food Res Int 2023; 163:112272. [PMID: 36596183 DOI: 10.1016/j.foodres.2022.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Melatonin (MLT) plays a significant role on maintaining the basic physiological functions and regulating various metabolic processes in plentiful organisms. Recent years have witnessed an increase in MLT's share in global market with its affluent functions. However, the worrisome quality issues and inappropriate or excessive application of MLT take place inevitably. In addition, its photosensitive properties, oxidation, complex substrate concentration and trace levels leave exact detection of MLT doubly difficult. Therefore, it is essential to exploit precise, sensitive and stable extraction and detection methods to resolve above questions. In this study, we reviewed the distribution and bioactivities of MLT and conducted a comprehensive overview of the developments of pretreatment and analysis methods for MLT in food samples since 2010. Commonly used pretreatment methods for MLT include not only traditional techniques, but also novel ones, such as solid-phase extraction, QuEChERS, microextraction by packed sorbent, solid phase microextraction, liquid phase microextraction, and so on. Analysis methods include liquid chromatography coupled with different detectors, GC methods, capillary electrophoresis, sensors, and so on. The advantages and disadvantages of different techniques have been compared and the development tendency was prospected.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Clinical Pharmacy & Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bin-Bin Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
20
|
Hamid K, Tran VH, Duke RK, Duke CC. Three Australian Lepidosperma Labill. Species as sources of prenylated and oxyprenylated derivatives of piceatannol, resveratrol and pinosylvin: Melatoninergic binding and inhibition of quinone reductase 2. PHYTOCHEMISTRY 2022; 203:113396. [PMID: 35998831 DOI: 10.1016/j.phytochem.2022.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Prenylated and hydroxyprenylated piceatannol, resveratrol and pinosylvin derivatives were isolated from resin produced by three Australian Lepidosperma Labill. Species (Cyperaceae). From L. congestum R.Br. one known compound, 3',5'-bis-prenyl-E-resveratrol, and five undescribed compounds were isolated, 3'-O-prenyl-5'-prenyl-E-piceatannol, 5',6'-bis-prenyl-E-piceatannol, 5'-prenyl-E-piceatannol, 3',5'-bis(3-hydroxy-3-methylbutyl)-E-resveratrol and 3',5'-bis-E-hydroxyprenyl-E-resveratrol. From L. gunnii Boeckeler one undescribed compound was isolated, 3'-E-hydroxyprenyl-5'-Z-hydroxyprenyl-E-resveratrol. From L. laterale R.Br. six undescribed compounds were isolated, 3-O-prenyl-E-pinosylvin, 3-O-Z-hydroxyprenyl-E-pinosylvin, 3'-Z-hydroxyprenyl-E-resveratrol, 3-O-Z-hydroxyprenyl-E-resveratrol, 3-O-Z-hydroxyprenyl-4'-O-methyl-E-resveratrol, and 3-O-prenyl-3'-δ,δ'-dihydroxyprenyl-E-resveratrol. Compounds, including a reference compound 3-O-prenyl-3'-O-methyl-E-piceatannol, were screened in an assay for melatoninergic binding to MT1 and MT2 receptors and binding to QR2/MT3 enzyme, and for inhibition of QR2/MT3 in a functional assay. Strong binding was observed for 3-O-Z-hydroxyprenyl-E-resveratrol with a Ki of 0.022 nM and the strongest inhibition of QR2/MT3 observed was for the reference compound, 3-O-prenyl-3'-O-methyl-E-piceatannol, with an inhibition of 61% at 1 μM and 95% at 10 μM. The three most active binders and inhibitors of QR2/MT3 were found to have a common substructure corresponding to 3-O-prenylresveratrol.
Collapse
Affiliation(s)
- Kaiser Hamid
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Van H Tran
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Rujee K Duke
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Colin C Duke
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia.
| |
Collapse
|
21
|
Huang J, Li Z, Hu Y, Li Z, Xie Y, Huang H, Chen Q, Chen G, Zhu W, Chen Y, Su W, Chen X, Liang D. Melatonin, an endogenous hormone, modulates Th17 cells via the reactive-oxygen species/TXNIP/HIF-1α axis to alleviate autoimmune uveitis. J Neuroinflammation 2022; 19:124. [PMID: 35624485 PMCID: PMC9145533 DOI: 10.1186/s12974-022-02477-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Melatonin, an indoleamine produced by the pineal gland, plays a pivotal role in maintaining circadian rhythm homeostasis. Recently, the strong antioxidant and anti-inflammatory properties of melatonin have attracted attention of researchers. We evaluated the therapeutic efficacy of melatonin in experimental autoimmune uveitis (EAU), which is a representative animal model of human autoimmune uveitis. Methods EAU was induced in mice via immunization with the peptide interphotoreceptor retinoid binding protein 1–20 (IRBP1–20). Melatonin was then administered via intraperitoneal injection to induce protection against EAU. With EAU induction for 14 days, clinical and histopathological scores were graded to evaluate the disease progression. T lymphocytes accumulation and the expression of inflammatory cytokines in the retinas were assessed via flow cytometry and RT-PCR, respectively. T helper 1 (Th1), T helper 17 (Th17), and regulatory T (Treg) cells were detected via flow cytometry for both in vivo and in vitro experiments. Reactive-oxygen species (ROS) from CD4 + T cells was tested via flow cytometry. The expression of thioredoxin-interacting protein (TXNIP) and hypoxia-inducible factor 1 alpha (HIF-1α) proteins were quantified via western blot. Results Melatonin treatment resulted in notable attenuation of ocular inflammation in EAU mice, evidenced by decreasing optic disc edema, few signs of retinal vasculitis, and minimal retinal and choroidal infiltrates. Mechanistic studies revealed that melatonin restricted the proliferation of peripheral Th1 and Th17 cells by suppressing their transcription factors and potentiated Treg cells. In vitro studies corroborated that melatonin restrained the polarization of retina-specific T cells towards Th17 and Th1 cells in addition to enhancing the proportion of Treg cells. Pretreatment of retina-specific T cells with melatonin failed to induce EAU in naïve recipients. Furthermore, the ROS/ TXNIP/ HIF-1α pathway was shown to mediate the therapeutic effect of melatonin in EAU. Conclusions Melatonin regulates autoimmune T cells by restraining effector T cells and facilitating Treg generation, indicating that melatonin could be a hopeful treatment alternative for autoimmune uveitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02477-z.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yuxi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratoryof Ophthalmologyand VisualScience, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
22
|
Sevilla A, Chéret J, Slominski RM, Slominski AT, Paus R. Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective. J Pineal Res 2022; 72:e12790. [PMID: 35133682 PMCID: PMC8930624 DOI: 10.1111/jpi.12790] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
The evolutionarily ancient methoxyindoleamine, melatonin, has long perplexed investigators by its versatility of functions and mechanisms of action, which include the regulation of vertebrate pigmentation. Although first discovered through its potent skin-lightening effects in amphibians, melatonin's role in human skin and hair follicle pigmentation and its impact on melanocyte physiology remain unclear. Synthesizing our limited current understanding of this role, we specifically examine its impact on melanogenesis, oxidative biology, mitochondrial function, melanocyte senescence, and pigmentation-related clock gene activity, with emphasis on human skin, yet without ignoring instructive pointers from nonhuman species. Given the strict dependence of melanocyte functions on the epithelial microenvironment, we underscore that melanocyte responses to melatonin are best interrogated in a physiological tissue context. Current evidence suggests that melatonin and some of its metabolites inhibit both, melanogenesis (via reducing tyrosinase activity) and melanocyte proliferation by stimulating melatonin membrane receptors (MT1, MT2). We discuss whether putative melanogenesis-inhibitory effects of melatonin may occur via activation of Nrf2-mediated PI3K/AKT signaling, estrogen receptor-mediated and/or melanocortin-1 receptor- and cAMP-dependent signaling, and/or via melatonin-regulated changes in peripheral clock genes that regulate human melanogenesis, namely Bmal1 and Per1. Melatonin and its metabolites also accumulate in melanocytes where they exert net cyto- and senescence-protective as well as antioxidative effects by operating as free radical scavengers, stimulating the synthesis and activity of ROS scavenging enzymes and other antioxidants, promoting DNA repair, and enhancing mitochondrial function. We argue that it is clinically and biologically important to definitively clarify whether melanocyte cell culture-based observations translate into melatonin-induced pigmentary changes in a physiological tissue context, that is, in human epidermis and hair follicles ex vivo, and are confirmed by clinical trial results. After defining major open questions in this field, we close by suggesting how to begin answering them in clinically relevant, currently available preclinical in situ research models.
Collapse
Affiliation(s)
- Alec Sevilla
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Radomir M. Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL35294, USA
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON – Skin & Hair Innovations, Hamburg, Germany
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| |
Collapse
|
23
|
Herrera-Arozamena C, Estrada-Valencia M, López-Caballero P, Pérez C, Morales-García JA, Pérez-Castillo A, Sastre ED, Fernández-Mendívil C, Duarte P, Michalska P, Lombardía J, Senar S, León R, López MG, Rodríguez-Franco MI. Resveratrol-Based MTDLs to Stimulate Defensive and Regenerative Pathways and Block Early Events in Neurodegenerative Cascades. J Med Chem 2022; 65:4727-4751. [PMID: 35245051 PMCID: PMC8958504 DOI: 10.1021/acs.jmedchem.1c01883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
By replacing a phenolic
ring of (E)-resveratrol
with an 1,3,4-oxadiazol-2(3H)-one heterocycle, new
resveratrol-based multitarget-directed ligands (MTDLs) were obtained.
They were evaluated in several assays related to oxidative stress
and inflammation (monoamine oxidases, nuclear erythroid 2-related
factor, quinone reductase-2, and oxygen radical trapping) and then
in experiments of increasing complexity (neurogenic properties and
neuroprotection vs okadaic acid). 5-[(E)-2-(4-Methoxyphenyl)ethenyl]-3-(prop-2-yn-1-yl)-1,3,4-oxadiazol-2(3H)-one (4e) showed a well-balanced MTDL profile:
cellular activation of the NRF2-ARE pathway (CD = 9.83 μM),
selective inhibition of both hMAO-B and QR2 (IC50s = 8.05
and 0.57 μM), and the best ability to promote hippocampal neurogenesis.
It showed a good drug-like profile (positive in vitro central nervous
system permeability, good physiological solubility, no glutathione
conjugation, and lack of PAINS or Lipinski alerts) and exerted neuroprotective
and antioxidant actions in both acute and chronic Alzheimer models
using hippocampal tissues. Thus, 4e is an interesting
MTDL that could stimulate defensive and regenerative pathways and
block early events in neurodegenerative cascades.
Collapse
Affiliation(s)
- Clara Herrera-Arozamena
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Programa de Doctorado en Química Orgánica, Facultad de Química, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Martín Estrada-Valencia
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Patricia López-Caballero
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain.,Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), C/Arturo Duperier, 4, E-28029 Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, E-28031 Madrid, Spain
| | - Eric Del Sastre
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Pablo Duarte
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Patrycja Michalska
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - José Lombardía
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Sergio Senar
- DrTarget Machine Learning, C/Alejo Carpentier 13, E-28806 Alcalá de Henares, Madrid, Spain
| | - Rafael León
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain.,Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 4, E-28029 Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa (IIS-IP), C/Diego de León 62, E-28006 Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
24
|
Boutin JA. [Melatonin: A short clarification for the over-enthusiasts]. Med Sci (Paris) 2022; 38:89-95. [PMID: 35060893 DOI: 10.1051/medsci/2021115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Melatonin is a naturally occurring molecule derived from tryptophan. Melatonin is a key player in relaying the circadian rhythm between our environment and our body. It has also a key role in rhythming the seasons (more production during long nights and less during short ones) as well as in the reproduction cycles of the mammals. Melatonin is often and surprisingly presented as a molecule with multiple therapeutic properties that can fix (or help to fix) many health issues, such as diseases (cancer, ageing, virus-induced affections including COVID-19, etc…) or toxicological situations (metals, venoms, chemical such as adriamycin [doxorubicin], methotrexate or paclitaxel). The mechanistics behind those wonders is still missing and this is puzzling. In the present commentary, the main well-established biological properties are presented and briefly discussed with the aim of delineating the borders between facts and wishful thinking.
Collapse
Affiliation(s)
- Jean A Boutin
- PHARMADEV, Pharmacochimie et biologie pour le développement, UUM 152, Faculté de pharmacie, Rue des Maraîchers, 31000 Toulouse, France
| |
Collapse
|
25
|
Ferry G, Boutin JA. Measurement of NQO2 Catalytic Activity and of Its Inhibition by Melatonin. Methods Mol Biol 2022; 2550:315-321. [PMID: 36180702 DOI: 10.1007/978-1-0716-2593-4_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The third melatonin binding site MT3 turned out to be an enzyme, NQO2 (E.C. 1.6.99.2). Its catalytic activity is inhibited by melatonin with an IC50 in the 50-100 μM range. Some of the functions of melatonin at pharmacological concentrations (1 μM and above) might be explained by this inhibition capacity of melatonin at NQO2. In order to determine precisely these parameters, it is required to comprehend the basic enzymology of this enzyme. In the following chapter, we present the basic conditions of measuring NQO2 catalytic activities and inhibition.
Collapse
Affiliation(s)
- Gilles Ferry
- Pole d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A Boutin
- Pole d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.
- Pharma-Dev, UMR 152, Université de Toulouse, Toulouse, France.
| |
Collapse
|
26
|
Gautier C, Theret I, Lizzo G, Ferry G, Guénin SP, Boutin JA. Why Are We Still Cloning Melatonin Receptors? A Commentary. Methods Mol Biol 2022; 2550:267-281. [PMID: 36180698 DOI: 10.1007/978-1-0716-2593-4_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cloning may seem to be a view from the past. The time before software, computers and AI were invented. It seems to us worth discussing these points in view of our favorite target: the melatoninergic system. In a few stances, it might be important to point out that even in the new era of dry science, there is still a need to experiment and to prove at the bench that our in silico assertions are right. Most of the living animals express to some extend the melatonin receptors. Some of these animal genomes were completely or partially sequenced, and it is tempting to extract from this huge information the sequence(s) of our favorite genes (MLT receptors). Then, why bother cloning, as opposed to simply built the gene and express it in a host cell? Because the genetic boundaries of the expressed sequence(s) are not 100% sure. Because the melatonin receptor gene(s) comprise a first exon 25,000 base pair far from the second one and the limits between this Ex1 and In1-as between In1 and Ex2-are subject to changes that might have a huge impact on the biochemical properties of the receptor, once expressed. Because a receptor is a biochemical entity with characteristics that are important for the functioning of this particular pathway, and more generally, for the functioning of life.
Collapse
Affiliation(s)
- Célia Gautier
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Isabelle Theret
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Giulia Lizzo
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Gilles Ferry
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sophie-Pénélope Guénin
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A Boutin
- Pôle d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.
- Pharma-Dev (Pharmacochimie et Biologie pour le Développement), Faculté de Pharmacie, UMR 152, Université de Toulouse, Toulouse, France.
| |
Collapse
|
27
|
Usefulness of Melatonin and Other Compounds as Antioxidants and Epidrugs in the Treatment of Head and Neck Cancer. Antioxidants (Basel) 2021; 11:antiox11010035. [PMID: 35052539 PMCID: PMC8773331 DOI: 10.3390/antiox11010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Along with genetic mutations, aberrant epigenetic alterations are the initiators of head and neck cancer carcinogenesis. Currently, several drugs are being developed to correct these epigenetic alterations, known as epidrugs. Some compounds with an antioxidant effect have been shown to be effective in preventing these malignant lesions and in minimizing the complications derived from cytotoxic treatment. Furthermore, in vitro and in vivo studies show a promising role in the treatment of head and neck squamous cell carcinoma (HNSCC). This is the case of supplements with DNA methylation inhibitory function (DNMTi), such as epigallocatechin gallate, sulforaphane, and folic acid; histone deacetylase inhibitors (HDACi), such as sodium butyrate and melatonin or histone acetyltransferase inhibitors (HATi), such as curcumin. The objective of this review is to describe the role of some antioxidants and their epigenetic mechanism of action, with special emphasis on melatonin and butyric acid given their organic production, in the prevention and treatment of HNSCC.
Collapse
|
28
|
Shabajee-Alibay P, Bonnaud A, Malpaux B, Delagrange P, Audinot V, Yous S, Boutin JA, Stephan JP, Leprince J, Legros C. A putative new melatonin binding site in sheep brain, MTx: preliminary observations and characteristics. J Pharmacol Exp Ther 2021; 380:JPET-AR-2021-000785. [PMID: 34706966 DOI: 10.1124/jpet.121.000785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
In mammals, MT1 and MT2 melatonin receptors are high affinity G protein-coupled receptors and are thought to be involved in the integration of the melatonin signaling throughout the brain and periphery. In the present study, we describe a new melatonin binding site, named MTx, with a peculiar pharmacological profile. This site had a low affinity for 2-[125I]-melatonin in saturation assays in hypothalamus and retina (pKD = 9.13 {plus minus} 0.05, Bmax = 1.12 {plus minus} 0.11 fmol/mg protein and pKD = 8.81 {plus minus} 0.50, Bmax = 7.65 {plus minus} 2.64 fmol/mg protein, respectively) and a very high affinity, in competition assays, for melatonin (pKi = 13.08 {plus minus} 0.18), and other endogenous compounds. Using autoradiography, we showed a preferential localization of the MTx in periventricular areas of the sheep brain, with a density 3 to 8 times higher than those observed for ovine MT1 In addition, using a set of well-characterized ligands, we showed that this site did not correspond to any of the following receptors: MT1, MT2, MT3 , D1, D2, noradrenergic, nor 5-HT2 Based on its affinity for melatonin, MTx did not seem to be implicated in the integration of cerebral melatonin concentration variations since they were saturating for MTx. Nevertheless, it remained of prime importance because of its periventricular distribution, in close contact with the CSF, and its peculiar pharmacological profile responding to both melatoninergic and serotoninergic compounds. Significance Statement Herein a putative new melatonin binding site is described in sheep brain parts in close contact with the 3rd ventricle. The characteristics of the pharmacological profile of this site is different from anything previously reported in the literature. The present work forms the basis of future full pharmacological characterization.
Collapse
Affiliation(s)
- Preety Shabajee-Alibay
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, UNIROUEN, INSERM 1239, France
| | | | - Benoit Malpaux
- UMR Physiologie de la Reproduction et des Comportements, INRA Val de Loire, France
| | | | | | - Said Yous
- UMR-S 1172-LiNC-Lille Neuroscience & Cognition, Univ. Lille, INSERM, CHU Lille, France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier, France
| | | | - Jérôme Leprince
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, UNIROUEN, INSERM 1239, France
| | | |
Collapse
|
29
|
Said ES, Ahmed RM, Mohammed RA, Morsi EM, Elmahdi MH, Elsayed HS, Mahmoud RH, Nadwa EH. Ameliorating effect of melatonin on mercuric chloride-induced neurotoxicity in rats. Heliyon 2021; 7:e07485. [PMID: 34307937 PMCID: PMC8287146 DOI: 10.1016/j.heliyon.2021.e07485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mercury is a highly toxic metal. It induces its toxicity via production of reactive oxygen species. Brain tissues are more susceptible to oxidative damage. Melatonin and its metabolites are free radical scavengers. The aim of this work is to elucidate the neuroprotective effect of melatonin on mercuric chloride-induced neurotoxicity in rats. Fifty male albino rats were used and divided into five groups. Group I acts as normal control. Group II (LD HgCl2) received mercuric chloride at a dose of 2 mg/kg. Group III (HD HgCl2) received HgCl2 at a dose of 4 mg/kg. Rats in group IV (LD HgCl2 +MLT) received HgCl2 2 mg/kg + Melatonin 5 mg/kg. Rats in group V (HD HgCl2+MLT) received HgCl2 4 mg/kg + Melatonin5 mg/kg. This study revealed that mercuric chloride decreased the activity of superoxide dismutase, catalase and glutathione peroxidase enzymes and increased malondialdehyde levels. Toxicity of mercuric chloride lead to upregulation of the gene expression level vascular endothelial growth factor. HgCl2 induced fragmentation of rough endoplasmic reticulum, ballooning of Golgi apparatus, nuclear and cytoplasmic degeneration of pyramidal neurones of rat cerebral cortex. This neuronal damage caused by HgCl2 was significantly improved by melatonin.
Collapse
Affiliation(s)
- Eman S. Said
- Department of Clinical Pharmacology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Saudi Arabia
| | - Radwa M. Ahmed
- Department of Anatomy and Embryology, Faculty of Medicine, Fayoum University, Egypt
| | - Rehab A. Mohammed
- Department of Medical Physiology, Faculty of Medicine, Fayoum University, Egypt
| | - Enas M. Morsi
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Fayoum University, Egypt
| | | | - Hassan S. Elsayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Egypt
| | - Rania H. Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Egypt
| | - Eman H. Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka, Saudi Arabia
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
30
|
Ezzati M, Velaei K, Kheirjou R. Melatonin and its mechanism of action in the female reproductive system and related malignancies. Mol Cell Biochem 2021; 476:3177-3190. [PMID: 33864572 DOI: 10.1007/s11010-021-04151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), the main product of pineal gland in vertebrates, is well known for its multifunctional role which has great influences on the reproductive system. Recent studies documented that melatonin is a powerful free radical scavenger that affects the reproductive system function and female infertility by MT1 and MT2 receptors. Furthermore, cancer researches indicate the influence of melatonin on the modulation of tumor cell signaling pathways resulting in growth inhibitor of the both in vivo/in vitro models. Cancer adjuvant therapy can also benefit from melatonin through therapeutic impact and decreasing the side effects of radiation and chemotherapy. This article reviews the scientific evidence about the influence of melatonin and its mechanism of action on the fertility potential, physiological alteration, and anticancer efficacy, during experimental and clinical studies.
Collapse
Affiliation(s)
- Maryam Ezzati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Immunology Research Center, Tabriz University of Medical Sciences, PO. Box: 51376563833, Tabriz, Iran.
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Boutin JA, Jockers R. Melatonin controversies, an update. J Pineal Res 2021; 70:e12702. [PMID: 33108677 DOI: 10.1111/jpi.12702] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Melatonin was discovered more than 60 years ago. Since then, several seminal discoveries have allowed us to define its function as a neuroendocrine hormone and its molecular targets in mammals and many other species. However, many fundamental issues have not yet been solved such as the subcellular localization of melatonin synthesis and the full spectrum of its molecular targets. In addition, a considerable number of controversies persist in the field, mainly concerning how many functions melatonin has. Altogether, this illustrates how "immature" the field still is. The intention of this opinion article is to note the controversies and limitations in the field, to initiate a discussion and to make proposals/guidelines to overcome them and move the field forward.
Collapse
Affiliation(s)
- Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes Cedex, France
| | - Ralf Jockers
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France
| |
Collapse
|
32
|
Xie WQ, Chen SF, Tao XH, Zhang LY, Hu PW, Pan WL, Fan YB, Li YS. Melatonin: Effects on Cartilage Homeostasis and Therapeutic Prospects in Cartilage-related Diseases. Aging Dis 2021; 12:297-307. [PMID: 33532142 PMCID: PMC7801270 DOI: 10.14336/ad.2020.0519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
Cartilage is a relatively simple connective tissue that plays a variety of roles in the human body, including joint support and protection, load bearing of the intervertebral discs, joint lubrication, formation of the external structure of the ears and nose and support of the trachea. The maintenance of cartilage homeostasis is therefore crucial. Cartilage-related diseases are difficult to diagnose and treat because their molecular and pathological mechanisms are not fully understood. Melatonin, which has a wide range of physiological effects, is an endocrine hormone mainly secreted by the pineal gland. Its biological effects include its antioxidant, antiaging, analgesic, and hypnotic effects and its ability to stabilize the circadian rhythm. In recent years, research on cartilage homeostasis and melatonin has been increasing, and melatonin has gradually been used in the treatment of cartilage-related diseases. Therefore, this article will briefly review the role of melatonin in cartilage homeostasis, including its anti-inflammatory effects and effects in protecting cartilage from damage by other factors and promoting chondrocyte growth and the expression of cartilage-related genes. Based on the above, the current status and future developmental direction of melatonin in the treatment of cartilage-related diseases are also discussed, demonstrating the broad prospects of melatonin in maintaining cartilage homeostasis and treating cartilage injury-related diseases.
Collapse
Affiliation(s)
- Wen-Qing Xie
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China.,6National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Song-Feng Chen
- 2Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xiao-Hua Tao
- 3Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Li-Yang Zhang
- 4Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Pei-Wu Hu
- 5Department of Scientific Research, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Wei-Li Pan
- 3Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Yi-Bin Fan
- 3Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310000, China
| | - Yu-Sheng Li
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China.,6National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| |
Collapse
|
33
|
Boutin JA, Witt-Enderby PA, Sotriffer C, Zlotos DP. Melatonin receptor ligands: A pharmaco-chemical perspective. J Pineal Res 2020; 69:e12672. [PMID: 32531076 DOI: 10.1111/jpi.12672] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Melatonin MT1 and MT2 receptor ligands have been vigorously explored for the last 4 decades. Inspection of approximately 80 publications in the field revealed that most melatonergic ligands were structural analogues of melatonin combining three essential features of the parent compound: an aromatic ring bearing a methoxy group and an amide side chain in a relative arrangement similar to that present in melatonin. While several series of MT2 -selective agents-agonists, antagonists, or partial agonists-were reported, the field was lacking MT1 -selective agents. Herein, we describe various approaches toward the development of melatonergic ligands, keeping in mind that most of the molecules/pharmacophores obtained were essentially melatonin copies, even though diverse tri- or tetra-cyclic compounds were explored. In addition to lack of structural diversity, only few studies examined the activity of the reported melatonergic ligands in vivo. Moreover, an extensive pharmacological characterization including biopharmaceutical stability, pharmacokinetic properties, specificity toward other major receptors to name a few remained scarce. For example, many of the antagonists described were not stable in vivo, were not selective for the melatonin receptor subtype of interest, and were not fully characterized from a pharmacological standpoint. Indeed, virtual screening of large compound libraries has led to the recent discovery of potent and selective melatonin receptor agonists and partial agonists of new chemotypes. Having said this, the melatonergic field is still lacking subtype-selective melatonin receptor antagonists "active" in vivo, which are critical to our understanding of melatonin and melatonin receptors' role in basic physiology and disease.
Collapse
MESH Headings
- Animals
- Humans
- Ligands
- Melatonin/chemistry
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/antagonists & inhibitors
- Receptor, Melatonin, MT2/chemistry
Collapse
Affiliation(s)
- Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Paula A Witt-Enderby
- School of Pharmacy & Graduate School of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburg, PA, USA
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Egypt
| |
Collapse
|
34
|
Janda E, Nepveu F, Calamini B, Ferry G, Boutin JA. Molecular Pharmacology of NRH:Quinone Oxidoreductase 2: A Detoxifying Enzyme Acting as an Undercover Toxifying Enzyme. Mol Pharmacol 2020; 98:620-633. [DOI: 10.1124/molpharm.120.000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
|
35
|
Reiter RJ, Sharma R, Ma Q, Rorsales-Corral S, de Almeida Chuffa LG. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell Mol Life Sci 2020; 77:2527-2542. [PMID: 31970423 PMCID: PMC11104865 DOI: 10.1007/s00018-019-03438-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Melatonin has the ability to intervene in the initiation, progression and metastasis of some experimental cancers. A large variety of potential mechanisms have been advanced to describe the metabolic and molecular events associated with melatonin's interactions with cancer cells. There is one metabolic perturbation that is common to a large number of solid tumors and accounts for the ability of cancer cells to actively proliferate, avoid apoptosis, and readily metastasize, i.e., they use cytosolic aerobic glycolysis (the Warburg effect) to rapidly generate the necessary ATP required for the high metabolic demands of the cancer cells. There are several drugs, referred to as glycolytic agents, that cause cancer cells to abandon aerobic glycolysis and shift to the more conventional mitochondrial oxidative phosphorylation for ATP synthesis as in normal cells. In doing so, glycolytic agents also inhibit cancer growth. Herein, we hypothesize that melatonin also functions as an inhibitor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase kinase) that interferes with the conversion of pyruvate to acetyl CoA in the mitochondria, as do other glycolytic drugs. In doing so, melatonin halts the proliferative activity of cancer cells, reduces their metastatic potential and causes them to more readily undergo apoptosis. This hypothesis is discussed in relation to the previously published reports. Whereas melatonin is synthesized in the mitochondria of normal cells, we hypothesize that this synthetic capability is not present in cancer cell mitochondria because of the depressed acetyl CoA; acetyl CoA is necessary for the rate limiting enzyme in melatonin synthesis, arylalkylamine-N-acetyltransferase. Finally, the ability of melatonin to switch glucose oxidation from the cytosol to the mitochondria also explains how tumors that become resistant to conventional chemotherapies are re-sensitized to the same treatment when melatonin is applied.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Qiang Ma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Sergio Rorsales-Corral
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | | |
Collapse
|
36
|
Muscarinic-Dependent miR-182 and QR2 Expression Regulation in the Anterior Insula Enables Novel Taste Learning. eNeuro 2020; 7:ENEURO.0067-20.2020. [PMID: 32217627 PMCID: PMC7266141 DOI: 10.1523/eneuro.0067-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
In a similar manner to other learning paradigms, intact muscarinic acetylcholine receptor (mAChR) neurotransmission or protein synthesis regulation in the anterior insular cortex (aIC) is necessary for appetitive taste learning. Here we describe a parallel local molecular pathway, where GABAA receptor control of mAChR activation causes upregulation of miRNA-182 and quinone reductase 2 (QR2) mRNA destabilization in the rodent aIC. Damage to long-term memory by prevention of this process, with the use of mAChR antagonist scopolamine before novel taste learning, can be rescued by local QR2 inhibition, demonstrating that QR2 acts downstream of local muscarinic activation. Furthermore, we prove for the first time the presence of endogenous QR2 cofactors in the brain, establishing QR2 as a functional reductase there. In turn, we show that QR2 activity causes the generation of reactive oxygen species, leading to modulation in Kv2.1 redox state. QR2 expression reduction therefore is a previously unaccounted mode of mAChR-mediated inflammation reduction, and thus adds QR2 to the cadre of redox modulators in the brain. The concomitant reduction in QR2 activity during memory consolidation suggests a complementary mechanism to the well established molecular processes of this phase, by which the cortex gleans important information from general sensory stimuli. This places QR2 as a promising new target to tackle neurodegenerative inflammation and the associated impediment of novel memory formation in diseases such as Alzheimer’s disease.
Collapse
|
37
|
Herrera-Arozamena C, Estrada-Valencia M, Pérez C, Lagartera L, Morales-García JA, Pérez-Castillo A, Franco-Gonzalez JF, Michalska P, Duarte P, León R, López MG, Mills A, Gago F, García-Yagüe ÁJ, Fernández-Ginés R, Cuadrado A, Rodríguez-Franco MI. Tuning melatonin receptor subtype selectivity in oxadiazolone-based analogues: Discovery of QR2 ligands and NRF2 activators with neurogenic properties. Eur J Med Chem 2020; 190:112090. [DOI: 10.1016/j.ejmech.2020.112090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
|
38
|
Ma N, Zhang J, Reiter RJ, Ma X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med Res Rev 2020; 40:606-632. [PMID: 31420885 DOI: 10.1002/med.21628] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Nowadays, melatonin, previously considered only as a pharmaceutical product for rhythm regulation and sleep aiding, has shown its potential as a co-adjuvant treatment in intestinal diseases, however, its mechanism is still not very clear. A firm connection between melatonin at a physiologically relevant concentration and the gut microbiota and inflammation has recently established. Herein, we summarize their crosstalk and focus on four novelties. First, how melatonin is synthesized and degraded in the gut and exerts potentially diverse phenotypic effects through its diverse metabolites. Second, how melatonin mediates the activation and proliferation of intestinal mucosal immune cells with paracrine and autocrine properties. By modulating T/B cells, mast cells, macrophages and dendritic cells, melatonin immunomodulatory involved in regulating T-cell differentiation, intervening T/B cell interaction and attenuating the production of pro-inflammatory factors, achieving its antioxidant action via specific receptors. Third, how melatonin exerts antimicrobial action and modulates microbial components, such as lipopolysaccharide, amyloid-β peptides via nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) or signal transducers and activators of transcription (STAT1) pathway to modulate intestinal immune function in immune-pineal axis. The last, how melatonin mediates the effect of intestinal bacterial activity signals on the body rhythm system through the NF-κB pathway and influences the mucosal epithelium oscillation via clock gene expression. These processes are achieved at mitochondrial and nuclear levels to control the host immune cell development. Considering unclear mechanisms and undiscovered actions of melatonin in gut-microbiome-immune axis, it's time to reveal them and provide new insight for the outlook of melatonin as a potential therapeutic target in the treatment and management of intestinal diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
39
|
Boutin JA, Legros C. The five dimensions of receptor pharmacology exemplified by melatonin receptors: An opinion. Pharmacol Res Perspect 2020; 8:e00556. [PMID: 31893125 PMCID: PMC6935684 DOI: 10.1002/prp2.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022] Open
Abstract
Receptology has been complicated with enhancements in our knowledge of G-protein-coupled-receptor (GPCR) biochemistry. This complexity is exemplified by the pharmacology of melatonin receptors. Here, we describe the complexity of GPCR biochemistry in five dimensions: (a) receptor expression, particularly in organs/tissues that are only partially understood; (b) ligands and receptor-associated proteins (interactome); (c) receptor function, which might be more complex than the known G-protein-coupled systems; (d) ligand bias, which favors a particular pathway; and (e) receptor dimerization, which might concern all receptors coexpressed in the same cell. Thus, receptor signaling might be modified or modulated, depending on the nature of the receptor complex. Fundamental studies are needed to clarify these points and find new ways to tackle receptor functionality. This opinion article emphasizes the global questions attached to new descriptions of GPCRs and aims to raise our awareness of the tremendous complexity of modern receptology.
Collapse
Affiliation(s)
- Jean A. Boutin
- Institut de Recherches Internationales ServierSuresnesFrance
| | - Céline Legros
- Institut de Recherches ServierCroissy‐sur‐SeineFrance
| |
Collapse
|
40
|
Legros C, Dupré C, Brasseur C, Bonnaud A, Bruno O, Valour D, Shabajee P, Giganti A, Nosjean O, Kenakin TP, Boutin JA. Characterization of the various functional pathways elicited by synthetic agonists or antagonists at the melatonin MT 1 and MT 2 receptors. Pharmacol Res Perspect 2020; 8:e00539. [PMID: 31893123 PMCID: PMC6935685 DOI: 10.1002/prp2.539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a neurohormone that translates the circadian rhythm to the peripheral organs through a series of binding sites identified as G protein-coupled receptors MT1 and MT2. Due to minute amounts of receptor proteins in target organs, the main tool of studies of the melatoninergic system is recombinant expression of the receptors in cellular hosts. Although a number of studies exist on these receptors, studies of several signaling pathways using a large number of melatoninergic compounds are rather limited. We chose to fill this gap to better describe a panel of compounds that have been only partially characterized in terms of functionality. First, we characterized HEK cells expressing MT1 or MT2, and several signaling routes with melatonin itself to validate the approach: GTPγS, cAMP production, internalization, β-arrestin recruitment, and cell morphology changes (CellKey ® ). Second, we chose 21 compounds from our large melatoninergic chemical library and characterized them using this panel of signaling pathways. Notably, antagonists were infrequent, and their functionality depended largely on the pathway studied. This will permit redefining the availability of molecular tools that can be used to better understand the in situ activity and roles of these receptors.
Collapse
Affiliation(s)
- Céline Legros
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Clémence Dupré
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Chantal Brasseur
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Anne Bonnaud
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Bruno
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Damien Valour
- Pôle d’Expetise Méthodologie et Valorisation des DonnéesInstitut de Recherches Internationales ServierSuresnesFrance
| | - Preety Shabajee
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Adeline Giganti
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Nosjean
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Present address:
Institut de Recherches Internationales SERVIERSuresnesFrance
| | - Terrence P. Kenakin
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Jean A. Boutin
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Present address:
Institut de Recherches Internationales SERVIERSuresnesFrance
| |
Collapse
|
41
|
Liu L, Labani N, Cecon E, Jockers R. Melatonin Target Proteins: Too Many or Not Enough? Front Endocrinol (Lausanne) 2019; 10:791. [PMID: 31803142 PMCID: PMC6872631 DOI: 10.3389/fendo.2019.00791] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
The neurohormone N-acetyl-5-methoxytryptamine, better known as melatonin, is a tryptophan derivative with a wide range of biological effects that is present in many organisms. These effects are believed to rely either on the chemical properties of melatonin itself as scavenger of free radicals or on the binding of melatonin to protein targets. More than 15 proteins, including receptors (MT1, MT2, Mel1c, CAND2, ROR, VDR), enzymes (QR2, MMP-9, pepsin, PP2A, PR-10 proteins), pores (mtPTP), transporters (PEPT1/2, Glut1), and other proteins (HBS, CaM, tubulin, calreticuline), have been suggested to interact with melatonin at sub-nanomolar to millimolar melatonin concentrations. In this review we assemble for the first time the available information on proposed melatonin targets and discuss them in a comprehensive manner to evaluate the robustness of these findings in terms of methodology, physiological relevance, and independent replication.
Collapse
Affiliation(s)
- Lei Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Erika Cecon
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Ralf Jockers
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
42
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
43
|
Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis 2019; 10:317. [PMID: 30962427 PMCID: PMC6453953 DOI: 10.1038/s41419-019-1556-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Melatonin, more commonly known as the sleep hormone, is mainly secreted by the pineal gland in dark conditions and regulates the circadian rhythm of the organism. Its intrinsic properties, including high cell permeability, the ability to easily cross both the blood–brain and placenta barriers, and its role as an endogenous reservoir of free radical scavengers (with indirect extra activities), confer it beneficial uses as an adjuvant in the biomedical field. Melatonin can exert its effects by acting through specific cellular receptors on the plasma membrane, similar to other hormones, or through receptor-independent mechanisms that involve complex molecular cross talk with other players. There is increasing evidence regarding the extraordinary beneficial effects of melatonin, also via exogenous administration. Here, we summarize molecular pathways in which melatonin is considered a master regulator, with attention to cell death and inflammation mechanisms from basic, translational and clinical points of view in the context of newborn care.
Collapse
|
44
|
Boutin JA, Bouillaud F, Janda E, Gacsalyi I, Guillaumet G, Hirsch EC, Kane DA, Nepveu F, Reybier K, Dupuis P, Bertrand M, Chhour M, Le Diguarher T, Antoine M, Brebner K, Da Costa H, Ducrot P, Giganti A, Goswami V, Guedouari H, Michel PP, Patel A, Paysant J, Stojko J, Viaud-Massuard MC, Ferry G. S29434, a Quinone Reductase 2 Inhibitor: Main Biochemical and Cellular Characterization. Mol Pharmacol 2018; 95:269-285. [PMID: 30567956 DOI: 10.1124/mol.118.114231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Quinone reductase 2 (QR2, E.C. 1.10.5.1) is an enzyme with a feature that has attracted attention for several decades: in standard conditions, instead of recognizing NAD(P)H as an electron donor, it recognizes putative metabolites of NADH, such as N-methyl- and N-ribosyl-dihydronicotinamide. QR2 has been particularly associated with reactive oxygen species and memory, strongly suggesting a link among QR2 (as a possible key element in pro-oxidation), autophagy, and neurodegeneration. In molecular and cellular pharmacology, understanding physiopathological associations can be difficult because of a lack of specific and powerful tools. Here, we present a thorough description of the potent, nanomolar inhibitor [2-(2-methoxy-5H-1,4b,9-triaza(indeno[2,1-a]inden-10-yl)ethyl]-2-furamide (S29434 or NMDPEF; IC50 = 5-16 nM) of QR2 at different organizational levels. We provide full detailed syntheses, describe its cocrystallization with and behavior at QR2 on a millisecond timeline, show that it penetrates cell membranes and inhibits QR2-mediated reactive oxygen species (ROS) production within the 100 nM range, and describe its actions in several in vivo models and lack of actions in various ROS-producing systems. The inhibitor is fairly stable in vivo, penetrates cells, specifically inhibits QR2, and shows activities that suggest a key role for this enzyme in different pathologic conditions, including neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Frederic Bouillaud
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Elzbieta Janda
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - István Gacsalyi
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Gérald Guillaumet
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Etienne C Hirsch
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Daniel A Kane
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Françoise Nepveu
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Karine Reybier
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Philippe Dupuis
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Marc Bertrand
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Monivan Chhour
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Thierry Le Diguarher
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Mathias Antoine
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Karen Brebner
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Hervé Da Costa
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Pierre Ducrot
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Adeline Giganti
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Vishalgiri Goswami
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Hala Guedouari
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Patrick P Michel
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Aakash Patel
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Jérôme Paysant
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Johann Stojko
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Marie-Claude Viaud-Massuard
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| | - Gilles Ferry
- Pôle d'Expertise Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France (J.A.B., M.A., Pi.D., A.G., J.S., G.F.); Institut Cochin, INSERM U1016, CNRS-UMR8104, Université Paris Descartes, Paris, France (F.B., H.G.); Department of Health Sciences, Magna Graecia University, Catanzaro, Italy (E.J.); Egis Pharmaceuticals PLC, Budapest, Hungary (I.G.); Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans Cedex 2, France (G.G., H.D.C.); Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France (E.C.H., P.P.M.); Departments of Human Kinetics (D.A.K.) and Psychology (K.B.), St. Francis Xavier University, Antigonish, Nova Scotia, Canada; UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, Toulouse, France (F.N., K.R., M.C.); EUROFINS-CEREP SA, Celle L'Evescault, France (Ph.D.); Technologie Servier, Orléans, France (M.B., T.L.D.); CNRS-UMR 7292, GICC Innovation Moléculaire et Thérapeutique, Université de Tours, Tours, France (H.D.C., M.-C.V.-M.); Oxygen Healthcare Pvt Ltd, Ahmedabad, Gujarat, India (V.G., A.P.); and Pôle d'Innovation Thérapeutique de Cardiologie, Institut de Recherches SERVIER, Suresnes, France (J.P.)
| |
Collapse
|
45
|
Reinhardt CR, Hu QH, Bresnahan CG, Hati S, Bhattacharyya S. Cyclic Changes in Active Site Polarization and Dynamics Drive the 'Ping-pong' Kinetics in NRH:Quinone Oxidoreductase 2: An Insight from QM/MM Simulations. ACS Catal 2018; 8:12015-12029. [PMID: 31583178 DOI: 10.1021/acscatal.8b04193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Quinone reductases belong to the family of flavin-dependent oxidoreductases. With the redox active cofactor, flavin adenine dinucleotide, quinone reductases are known to utilize a 'ping-pong' kinetic mechanism during catalysis in which a hydride is bounced back and forth between flavin and its two substrates. However, the continuation of this catalytic cycle requires product displacement steps, where the product of one redox half-cycle is displaced by the substrate of the next half-cycle. Using improved hybrid quantum mechanical/molecular mechanical simulations, both the catalytic hydride transfer and the product displacement reactions were studied in NRH:quinone oxidoreductase 2. Initially, the self-consistent charge-density functional tight binding theory was used to describe flavin ring and the substrate atoms, while embedded in the molecular mechanically-treated solvated active site. Then, for each step of the catalytic cycle, a further improvement of energetics was made using density functional theory-based corrections. The present study showcases an integrated interplay of solvation, protonation, and protein matrix-induced polarization as the driving force behind the thermodynamic wheel of the 'ping-pong' kinetics. Reported here is the first-principles model of the 'ping-pong' kinetics that portrays how cyclic changes in the active site polarization and dynamics govern the oscillatory hydride transfer and product displacement in this enzyme.
Collapse
Affiliation(s)
- Clorice R. Reinhardt
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Quin H. Hu
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Caitlin G. Bresnahan
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Sanchita Hati
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| | - Sudeep Bhattacharyya
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin 54702, United States
| |
Collapse
|
46
|
Boutin JA, Ferry G. Is There Sufficient Evidence that the Melatonin Binding SiteMT3Is Quinone Reductase 2? J Pharmacol Exp Ther 2018; 368:59-65. [DOI: 10.1124/jpet.118.253260] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022] Open
|
47
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
48
|
Yang HL, Zhou WJ, Gu CJ, Meng YH, Shao J, Li DJ, Li MQ. Pleiotropic roles of melatonin in endometriosis, recurrent spontaneous abortion, and polycystic ovary syndrome. Am J Reprod Immunol 2018; 80:e12839. [PMID: 29493042 DOI: 10.1111/aji.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/06/2018] [Indexed: 12/22/2022] Open
Abstract
Melatonin is a neurohormone synthesized from the aromatic amino acid tryptophan mainly by the pineal gland of mammals. Melatonin acts as a broad-spectrum antioxidant, powerful free radical scavenger, anti-inflammatory agent, anticarcinogenic factor, sleep inducer and regulator of the circadian rhythm, and potential immunoregulator. Melatonin and reproductive system are interrelated under both physiological and pathological conditions. Oxidative stress, inflammation, and immune dysregulation are associated with the pathogenesis of the female reproductive system which causes endometriosis (EMS), recurrent spontaneous abortion (RSA), and polycystic ovary syndrome (PCOS). Accumulating studies have indicated that melatonin plays pleiotropic and essential roles in these obstetrical and gynecological disorders and would be a candidate therapeutic drug to regulate inflammation and immune function and protect special cells or organs. Here, we systematically review the pleiotropic roles of melatonin in EMS, RSA, and PCOS to explore its pathological implications and treatment potential.
Collapse
Affiliation(s)
- Hui-Li Yang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Chun-Jie Gu
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Han Meng
- Reproductive Medical Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
49
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: Central Organelles for Melatonin's Antioxidant and Anti-Aging Actions. Molecules 2018; 23:E509. [PMID: 29495303 PMCID: PMC6017324 DOI: 10.3390/molecules23020509] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin, along with its metabolites, have long been known to significantly reduce the oxidative stress burden of aging cells or cells exposed to toxins. Oxidative damage is a result of free radicals produced in cells, especially in mitochondria. When measured, melatonin, a potent antioxidant, was found to be in higher concentrations in mitochondria than in other organelles or subcellular locations. Recent evidence indicates that mitochondrial membranes possess transporters that aid in the rapid uptake of melatonin by these organelles against a gradient. Moreover, we predicted several years ago that, because of their origin from melatonin-producing bacteria, mitochondria likely also synthesize melatonin. Data accumulated within the last year supports this prediction. A high content of melatonin in mitochondria would be fortuitous, since these organelles produce an abundance of free radicals. Thus, melatonin is optimally positioned to scavenge the radicals and reduce the degree of oxidative damage. In light of the "free radical theory of aging", including all of its iterations, high melatonin levels in mitochondria would be expected to protect against age-related organismal decline. Also, there are many age-associated diseases that have, as a contributing factor, free radical damage. These multiple diseases may likely be deferred in their onset or progression if mitochondrial levels of melatonin can be maintained into advanced age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Dun Xian Tan
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituo Mexicana del Seguro Social, Guadalajara 44346, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapatapa, Mexico D.F. 09340, Mexico.
| | - Xin Jia Zhou
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Bing Xu
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| |
Collapse
|
50
|
Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions. J Invest Dermatol 2018; 138:490-499. [PMID: 29428440 DOI: 10.1016/j.jid.2017.10.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. Although melatonin is best known to regulate circadian rhythmicity and lower vertebrate skin pigmentation, the full spectrum of functional activities of this free radical-scavenging molecule, which also induces/promotes complex antioxidative and DNA repair systems, includes immunomodulatory, thermoregulatory, and antitumor properties. Because this plethora of functional melatonin properties still awaits to be fully appreciated by dermatologists, the current review synthesizes the main features that render melatonin a promising candidate for the management of several dermatoses associated with substantial oxidative damage. We also review why melatonin promises to be useful in skin cancer prevention, skin photo- and radioprotection, and as an inducer of repair mechanisms that facilitate the recovery of human skin from environmental damage. The fact that human skin and hair follicles not only express functional melatonin receptors but also engage in substantial, extrapineal melatonin synthesis further encourages one to systematically explore how the skin's melatonin system can be therapeutically targeted in future clinical dermatology and enrolled for preventive medicine strategies.
Collapse
|