1
|
Liang S, Zhao D, Liu X, Liu B, Li Y. The stomach, small intestine, and colon-specific gastrointestinal tract delivery systems for bioactive nutrients. Adv Colloid Interface Sci 2025; 341:103503. [PMID: 40209595 DOI: 10.1016/j.cis.2025.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/13/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
Oral administration is a convenient way to deliver bioactive nutrients. However, the complex and dynamic environment of the gastrointestinal (GI) tract poses distinct challenges. These include the acidic environment of the stomach, limited transport across the GI mucosa, and the risk of enzymatic degradation, all of which can compromise the nutritional effectiveness of orally delivered nutrients. In response to these challenges, various GI tract delivery systems have been developed to target specific regions, such as the stomach, small intestine, or colon, to precisely control the release of bioactive nutrients and enhance their health-promoting benefits. This review critically examines the principles underlying stomach-, small intestine-, and colon-targeted delivery systems, highlighting the selection of appropriate wall materials and the interactions between delivery systems and the mucosal epithelial barrier. Moreover, we describe relevant biological models and quantitative analyses to measure these interactions. In particular, we emphasize the significant advantages offered by colon-targeted delivery systems in maintaining a healthy colonic microenvironment. This review aims to inspire novel concepts and stimulate further research into GI tract delivery systems, offering promising avenues for maximizing the therapeutic effects of bioactive nutrients in practical applications.
Collapse
Affiliation(s)
- Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Central Laboratory, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Dongyu Zhao
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangyu Liu
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Zhang L, Wang Y, Li Y, Chen ZS, Hu C. Advanced materials for cancer treatment and beyond. Front Pharmacol 2025; 16:1557155. [PMID: 40110134 PMCID: PMC11920709 DOI: 10.3389/fphar.2025.1557155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Conservative anti-cancer treatment represented by chemotherapy and surgery lacks tumor-specificity and could hardly resolve the problems associated with multidrug resistance (MDR) in cancers. Novel therapeutic materials in cancer treatment, such as those with anti-MDR or controllable treatment features, represent a significant trend due to their advantages of high and specific efficacy and timely intervention of cancer progress. In addition to their excellent biocompatibility and specificity, they can be utilized in therapies that require ease of operation, provided they are designed with high detection sensitivity. In this review, we summarize a series of recently developed materials that exhibit these advantages, including immune-enhancing and tumor microenvironment (TME)- responsive materials, and those with integrated therapeutic and imaging capabilities. We also introduce advanced modification approaches that can impart essential targeting functionalities to these materials.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yanan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yangjia Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chaohua Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Wang E, Qi Z, Cao Y, Li R, Wu J, Tang R, Gao Y, Du R, Liu M. Gels as Promising Delivery Systems: Physicochemical Property Characterization and Recent Applications. Pharmaceutics 2025; 17:249. [PMID: 40006616 PMCID: PMC11858892 DOI: 10.3390/pharmaceutics17020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Gels constitute a versatile class of materials with considerable potential for applications in both technical and medical domains. Physicochemical property characterization is a critical evaluation method for gels. Common characterization techniques include pH measurement, structural analysis, mechanical property assessment, rheological analysis, and phase transition studies, among others. While numerous research articles report characterization results, few reviews comprehensively summarize the appropriate numerical ranges for these properties. This lack of standardization complicates harmonized evaluation methods and hinders direct comparisons between different gels. To address this gap, it is essential to systematically investigate characterization methods and analyze data from the extensive body of literature on gels. In this review, we provide a comprehensive summary of general characterization methods and present a detailed analysis of gel characterization data to support future research and promote standardized evaluation protocols.
Collapse
Affiliation(s)
- Enzhao Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaoying Qi
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuzhou Cao
- School of Science, National University of Singapore, Singapore 119077, Singapore;
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
| | - Jing Wu
- School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315100, China;
| | - Rongshuang Tang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minchen Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (E.W.); (Z.Q.); (R.L.); (R.T.)
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Lin Y, Su R, Huang Y. Thermo-responsive Fluorescent Nanopolymer Delivery Platform for Treatment of Diffuse Large B-cell Lymphoma (DLBCL). J Fluoresc 2025:10.1007/s10895-024-04092-y. [PMID: 39786693 DOI: 10.1007/s10895-024-04092-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive diffuse malignant proliferative disease of the lymphatic system. Patients usually present with progressive lymph node enlargement and/or extra-lymph node lesions and require early treatment upon diagnosis. Most of the patients are in stage III or IV at the time of diagnosis and about 40% of the patients are difficult to cure. In this study, we developed a novel drug delivery platform using poly(ε-caprolactone)-tetraphenylethylene (PCL-TPE). This fluorescent polymer, combined with a solid-state dye, exhibits temperature-dependent fluorescence. We loaded the synthesized ethyl 2-amino-4-(4-methylthiophen-2-yl)-5,6,7,8-tetrahydro-2 H-chromene-3-carboxylate (compound 1) onto PCL-TPE, creating PCL-TPE@1. By treating human lymphoma cells, we found that PCL-TPE@1 was able to effectively reduce the migratory ability of lymphoma cells by inhibiting the expression of PRMT6. This platform is easy to synthesize, offers thermo-responsive fluorescence, flexibility, and biocompatibility, making it suitable for biomedical drug delivery and smart devices.
Collapse
Affiliation(s)
- Yun Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Rui Su
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yun Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
5
|
Lin X, Zhang X, Wang Y, Chen W, Zhu Z, Wang S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int J Biol Macromol 2025; 285:138098. [PMID: 39608543 DOI: 10.1016/j.ijbiomac.2024.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Refractory wounds represent a significant health concern that presents considerable challenges within clinical practice. The healing process of refractory wounds, which involves various cell types and biologically active molecules, is dynamically influenced by multiple factors, including diabetes, infections, and inflammation. Owing to their hydrophilicity, biocompatibility, and capacity for drug loading, hydrogels have emerged as promising and innovative biomaterials for enhancing wound healing. In recent decades, hydrogels with inherent therapeutic properties have been identified. Moreover, advanced hydrogel-based drug delivery systems have been developed to facilitate the sustained and controlled release of therapeutic agents at the site of refractory wounds. This review aims to summarize recent advancements and applications of hydrogels, including those with intrinsic therapeutic properties and hydrogel-based drug delivery systems, in the treatment of refractory wounds. Additionally, we discuss the limitations associated with hydrogel applications and propose future perspectives, which will lead to ongoing efforts to optimize hydrogels as ideal biomaterials for refractory wound healing.
Collapse
Affiliation(s)
- Xuran Lin
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xinge Zhang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yuechen Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Zhikang Zhu
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Shoujie Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China; Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
7
|
Buliga DI, Mocanu A, Rusen E, Diacon A, Toader G, Brincoveanu O, Călinescu I, Boscornea AC. Phycocyanin-Loaded Alginate-Based Hydrogel Synthesis and Characterization. Mar Drugs 2024; 22:434. [PMID: 39452842 PMCID: PMC11509733 DOI: 10.3390/md22100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Phycocyanin was extracted from Spirulina platensis using conventional extraction (CE), direct ultrasonic-assisted extraction (direct UAE), indirect ultrasonic-assisted extraction (indirect UAE), and microwave-assisted extraction (MAE) methods at different temperatures, extraction intervals, stirring rate, and power intensities while maintaining the same algae to solvent ratio (1:15 w/v). The optimization of the extraction parameters indicated that the direct UAE yielded the highest phycocyanin concentration (29.31 ± 0.33 mg/mL) and antioxidant activity (23.6 ± 0.56 mg TE/g algae), while MAE achieved the highest purity (Rp = 0.5 ± 0.002). Based on the RP value, phycocyanin extract obtained by MAE (1:15 w/v algae to solvent ratio, 40 min, 40 °C, and 900 rpm) was selected as active compound in an alginate-based hydrogel formulation designed as potential wound dressings. Phycocyanin extracts and loaded hydrogels were characterized by FT-IR analysis. SEM analysis confirmed a porous structure for both blank and phycocyanin loaded hydrogels, while the mechanical properties remained approximately unchanged in the presence of phycocyanin. Phycocyanin release kinetics was investigated at two pH values using Zero-order, First-order, Higuchi, and Korsmeyer-Peppas kinetics models. The Higuchi model best fitted the experimental results. The R2 value at higher pH was nearly 1, indicating a superior fit compared with lower pH values.
Collapse
Affiliation(s)
- Diana-Ioana Buliga
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Voluntari, Romania;
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (A.D.); (G.T.)
| | - Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (A.D.); (G.T.)
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae, 077190 Voluntari, Romania;
- Research Institute, University of Bucharest, ICUB Bucharest, 90 Panduri Rd., 5th District, 050663 Bucharest, Romania
| | - Ioan Călinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| | - Aurelian Cristian Boscornea
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gheorghe Polizu St., 1st District, 011061 Bucharest, Romania; (D.-I.B.); (A.M.); (E.R.); (I.C.)
| |
Collapse
|
8
|
Liu Y, Lin Y, Lin Y, Lin C, Lan G, Su Y, Hu F, Chang K, Chen V, Yeh Y, Chen T, Yu J. Injectable, Antioxidative, and Tissue-Adhesive Nanocomposite Hydrogel as a Potential Treatment for Inner Retina Injuries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308635. [PMID: 38233151 PMCID: PMC10953571 DOI: 10.1002/advs.202308635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Reactive oxygen species (ROS) have been recognized as prevalent contributors to the development of inner retinal injuries including optic neuropathies such as glaucoma, non-arteritic anterior ischemic optic neuropathy, traumatic optic neuropathy, and Leber hereditary optic neuropathy, among others. This underscores the pivotal significance of oxidative stress in the damage inflicted upon retinal tissue. To combat ROS-related challenges, this study focuses on creating an injectable and tissue-adhesive hydrogel with tailored antioxidant properties for retinal applications. GelCA, a gelatin-modified hydrogel with photo-crosslinkable and injectable properties, is developed. To enhance its antioxidant capabilities, curcumin-loaded polydopamine nanoparticles (Cur@PDA NPs) are incorporated into the GelCA matrix, resulting in a multifunctional nanocomposite hydrogel referred to as Cur@PDA@GelCA. This hydrogel exhibits excellent biocompatibility in both in vitro and in vivo assessments, along with enhanced tissue adhesion facilitated by NPs in an in vivo model. Importantly, Cur@PDA@GelCA demonstrates the potential to mitigate oxidative stress when administered via intravitreal injection in retinal injury models such as the optic nerve crush model. These findings underscore its promise in advancing retinal tissue engineering and providing an innovative strategy for acute neuroprotection in the context of inner retinal injuries.
Collapse
Affiliation(s)
- Yi‐Chen Liu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Ke Lin
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
| | - Yu‐Ting Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Che‐Wei Lin
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Guan‐Yu Lan
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yu‐Chia Su
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Fung‐Rong Hu
- Department of OphthalmologyCollege of MedicineNational Taiwan UniversityTaipei100233Taiwan
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
| | - Kai‐Hsiang Chang
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Vincent Chen
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yi‐Cheun Yeh
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Ta‐Ching Chen
- Department of OphthalmologyNational Taiwan University HospitalTaipei100225Taiwan
- Center of Frontier MedicineNational Taiwan University HospitalTaipei100225Taiwan
| | - Jiashing Yu
- Department of Chemical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
9
|
Zhang Y, Yu S, Huang X, Qin Z, Liu T, Tang G, Xie X. Preparation of porous superabsorbent particles based on starch by supercritical CO 2 drying and its water absorption mechanism. Int J Biol Macromol 2024; 258:129102. [PMID: 38163499 DOI: 10.1016/j.ijbiomac.2023.129102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The slow water-absorption speed of starch-based superabsorbent resin (St-SAP) limits its application. In this study, porous St-SAP (P-St-SAP) was prepared by inverse suspension polymerization and supercritical CO2 drying, the aim is to provide a preparation method of fast absorbent resin. The P-St-SAP at 33 % starch content had an interpenetrating porous structure with macropores, mesopores and micropores, and the surface area, pore volume and average pore diameter were 32.06 m2·g-1, 0.116 cm3·g-1 and 21.6 nm, respectively. The water-absorption process included rapid-section, medium-section and slow-section, according with internal diffusion, double-constant and quasi second-order kinetic models, respectively. In the initial 30 s, a water-absorption speed of 262.6 g·g-1·min-1 in distilled water was much higher than some previous research results, and the equilibrium absorption value of 517.9 g·g-1 in distilled water and 72.9 g·g-1 in 0.9 % saline was better than that of non-porous St-SAP at similar starch content. Moreover, at the same stage the percentage of saline absorption ratio to equilibrium absorption value was 1.0- 2.0 times higher than that of distilled water. These research results indicate that the P-St-SAP has fast water-absorption speed and good salt resistance, which will have greater application prospects in sanitary materials, building concrete pouring, and flood control blocking piping.
Collapse
Affiliation(s)
- Youquan Zhang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shenghua Yu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xinyi Huang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuzeng Qin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tusong Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Guangxi Shengya Technology Group Co., Ltd, Liuzhou 545600, China
| | - Guo Tang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xinling Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Mittal RK, Mishra R, Uddin R, Sharma V. Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications. Curr Pharm Biotechnol 2024; 25:1436-1451. [PMID: 38288792 DOI: 10.2174/0113892010281021231229100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this review is to present a succinct summary of the latest advancements in the utilization of hydrogels for diverse biomedical applications, with a particular focus on their revolutionary impact in augmenting the delivery of drugs, tissue engineering, along with diagnostic methodologies. METHODS Using a meticulous examination of current literary works, this review systematically scrutinizes the nascent patterns in applying hydrogels for biomedical progress, condensing crucial discoveries to offer a comprehensive outlook on their ever-changing importance. RESULTS The analysis presents compelling evidence regarding the growing importance of hydrogels in biomedicine. It highlights their potential to significantly enhance drug delivery accuracy, redefine tissue engineering strategies, and advance diagnostic techniques. This substantiates their position as a fundamental element in the progress of modern medicine. CONCLUSION In summary, the constantly evolving advancement of hydrogel applications in biomedicine calls for ongoing investigation and resources, given their diverse contributions that can revolutionize therapeutic approaches and diagnostic methods, thereby paving the way for improved patient well-being.
Collapse
Affiliation(s)
- Ravi K Mittal
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| | - Raghav Mishra
- Lloyd School of Pharmacy, Knowledge Park II, Greater Noida-201306, Uttar Pradesh, India
- GLA University, Mathura-281406, Uttar Pradesh, India
| | - Rehan Uddin
- Sir Madanlal Institute of Pharmacy, Etawah-206001 Uttar Pradesh, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| |
Collapse
|
11
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
12
|
Ma L, Long T, Yuan S, Qi P, Han L, Hao J. A pH-indicating smart tag based on porous hydrogel as food freshness sensors. J Colloid Interface Sci 2023; 647:32-42. [PMID: 37244174 DOI: 10.1016/j.jcis.2023.05.145] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
HYPOTHESIS The pH-indicating smart packaging and tags are identified within the general research and pH colorimetric smart tags are effective, non-invasive methods for indicating food freshness on a real-time basis, but their sensitivity is limited. EXPERIMENTS In Herin, we developed a porous hydrogel with high sensitivity, water content, modulus, and safety. Hydrogels were prepared with gellan gum, starch, and anthocyanin. The phase separations provide an adjustable porous structure, which can enhance the capture and transformation of gas from food spoilage, hence improving the sensitivity. Hydrogel is physically crosslinked by the entanglement of chains through freeze-thawing cycles, and porosity can be adjusted by the addition of starch, so avoiding the use of toxicity crosslinkers and porogen. FINDINGS Our study demonstrates that the gel undergoes an obvious color shift during the spoilage of milk and shrimp, revealing its potential application as a smart tag signaling food freshness.
Collapse
Affiliation(s)
- Lin Ma
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Teng Long
- School of Materials Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Shideng Yuan
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Ping Qi
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Lin Han
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
13
|
Masloh S, Culot M, Gosselet F, Chevrel A, Scapozza L, Zeisser Labouebe M. Challenges and Opportunities in the Oral Delivery of Recombinant Biologics. Pharmaceutics 2023; 15:pharmaceutics15051415. [PMID: 37242657 DOI: 10.3390/pharmaceutics15051415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Recombinant biological molecules are at the cutting-edge of biomedical research thanks to the significant progress made in biotechnology and a better understanding of subcellular processes implicated in several diseases. Given their ability to induce a potent response, these molecules are becoming the drugs of choice for multiple pathologies. However, unlike conventional drugs which are mostly ingested, the majority of biologics are currently administered parenterally. Therefore, to improve their limited bioavailability when delivered orally, the scientific community has devoted tremendous efforts to develop accurate cell- and tissue-based models that allow for the determination of their capacity to cross the intestinal mucosa. Furthermore, several promising approaches have been imagined to enhance the intestinal permeability and stability of recombinant biological molecules. This review summarizes the main physiological barriers to the oral delivery of biologics. Several preclinical in vitro and ex vivo models currently used to assess permeability are also presented. Finally, the multiple strategies explored to address the challenges of administering biotherapeutics orally are described.
Collapse
Affiliation(s)
- Solene Masloh
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
14
|
pH-Responsive Super-Porous Hybrid Hydrogels for Gastroretentive Controlled-Release Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15030816. [PMID: 36986676 PMCID: PMC10053105 DOI: 10.3390/pharmaceutics15030816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Super-porous hydrogels are considered a potential drug delivery network for the sedation of gastric mechanisms with retention windows in the abdomen and upper part of the gastrointestinal tract (GIT). In this study, a novel pH-responsive super-porous hybrid hydrogels (SPHHs) was synthesized from pectin, poly 2-hydroxyethyl methacrylate (2HEMA), and N, N methylene-bis-acrylamide (BIS) via the gas-blowing technique, and then loaded with a selected drug (amoxicillin trihydrate, AT) at pH 5 via an aqueous loading method. The drug-loaded SPHHs-AT carrier demonstrated outstanding (in vitro) gastroretentive drug delivery capability. The study attributed excellent swelling and delayed drug release to acidic conditions at pH 1.2. Moreover, in vitro controlled-release drug delivery systems at different pH values, namely, 1.2 (97.99%) and 7.4 (88%), were studied. These exceptional features of SPHHs—improved elasticity, pH responsivity, and high swelling performance—should be investigated for broader drug delivery applications in the future.
Collapse
|
15
|
Aziz T, Ullah A, Ali A, Shabeer M, Shah MN, Haq F, Iqbal M, Ullah R, Khan FU. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J Appl Polym Sci 2022. [DOI: 10.1002/app.52624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tariq Aziz
- School of Engineering Westlake University Hangzhou China
| | - Asmat Ullah
- School of Pharmacy Xi'an Jiaotong University Shaanxi China
| | - Amjad Ali
- Institute of Polymer Material, School of Material Science & Engineering Jiangsu University Zhenjiang China
| | | | - Muhammad Naeem Shah
- College of Electronics and Information Engineering Shenzhen University Shenzhen China
| | - Fazal Haq
- Department of Chemistry Gomal University D I Khan KPK Pakistan
| | - Mudassir Iqbal
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Roh Ullah
- School of Chemistry and Chemical Engineering Beijing Institute of Technology (BIT) Beijing China
| | - Farman Ullah Khan
- Department of Chemistry University of Science & Technology, Bannu KPK Pakistan
| |
Collapse
|
16
|
Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, Nami SAA. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 2021; 10:170-203. [PMID: 34889937 DOI: 10.1039/d1tb01345a] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.
Collapse
Affiliation(s)
- Faisal Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Atif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Haseen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid Kamal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shahab A A Nami
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
18
|
Formulation strategies to improve the efficacy of intestinal permeation enhancers . Adv Drug Deliv Rev 2021; 177:113925. [PMID: 34418495 DOI: 10.1016/j.addr.2021.113925] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
The use of chemical permeation enhancers (PEs) is the most widely tested approach to improve oral absorption of low permeability active agents, as represented by peptides. Several hundred PEs increase intestinal permeability in preclinical bioassays, yet few have progressed to clinical testing and, of those, only incremental increases in oral bioavailability (BA) have been observed. Still, average BA values of ~1% were sufficient for two recent FDA approvals of semaglutide and octreotide oral formulations. PEs are typically screened in static in vitro and ex-vivo models where co-presentation of active agent and PE in high concentrations allows the PE to alter barrier integrity with sufficient contact time to promote flux across the intestinal epithelium. The capacity to maintain high concentrations of co-presented agents at the epithelium is not reached by standard oral dosage forms in the upper GI tract in vivo due to dilution, interference from luminal components, fast intestinal transit, and possible absorption of the PE per se. The PE-based formulations that have been assessed in clinical trials in either immediate-release or enteric-coated solid dosage forms produce low and variable oral BA due to these uncontrollable physiological factors. For PEs to appreciably increase intestinal permeability from oral dosage forms in vivo, strategies must facilitate co-presentation of PE and active agent at the epithelium for a sustained period at the required concentrations. Focusing on peptides as examples of a macromolecule class, we review physiological impediments to optimal luminal presentation, discuss the efficacy of current PE-based oral dosage forms, and suggest strategies that might be used to improve them.
Collapse
|
19
|
Djemaa IB, Auguste S, Drenckhan-Andreatta W, Andrieux S. Hydrogel foams from liquid foam templates: Properties and optimisation. Adv Colloid Interface Sci 2021; 294:102478. [PMID: 34280600 DOI: 10.1016/j.cis.2021.102478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/20/2022]
Abstract
Hydrogel foams are an important sub-class of macroporous hydrogels. They are commonly obtained by integrating closely-packed gas bubbles of 10-1000 μm into a continuous hydrogel network, leading to gas volume fractions of more than 70% in the wet state and close to 100% in the dried state. The resulting wet or dried three-dimensional architectures provide hydrogel foams with a wide range of useful properties, including very low densities, excellent absorption properties, a large surface-to-volume ratio or tuneable mechanical properties. At the same time, the hydrogel may provide biodegradability, bioabsorption, antifungal or antibacterial activity, or controlled drug delivery. The combination of these properties are increasingly exploited for a wide range of applications, including the biomedical, cosmetic or food sector. The successful formulation of a hydrogel foam from an initially liquid foam template raises many challenging scientific and technical questions at the interface of hydrogel and foam research. Goal of this review is to provide an overview of the key notions which need to be mastered and of the state of the art of this rapidly evolving field at the interface between chemistry and physics.
Collapse
Affiliation(s)
- I Ben Djemaa
- Institut Charles Sadron, University of Strasbourg, CNRS UPR22, 23 rue du Loess, 67037 Strasbourg, France; Urgo Research Innovation and Development, 42 rue de Longvic, 21304 Chenôve Cedex, France
| | - S Auguste
- Urgo Research Innovation and Development, 42 rue de Longvic, 21304 Chenôve Cedex, France
| | - W Drenckhan-Andreatta
- Institut Charles Sadron, University of Strasbourg, CNRS UPR22, 23 rue du Loess, 67037 Strasbourg, France
| | - S Andrieux
- Institut Charles Sadron, University of Strasbourg, CNRS UPR22, 23 rue du Loess, 67037 Strasbourg, France.
| |
Collapse
|
20
|
Yang M, Wu J, Graham GM, Lin J, Huang M. Hotspots, Frontiers, and Emerging Trends of Superabsorbent Polymer Research: A Comprehensive Review. Front Chem 2021; 9:688127. [PMID: 34395377 PMCID: PMC8358602 DOI: 10.3389/fchem.2021.688127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Superabsorbent polymer (SAP) is a kind of functional macromolecule with super-high water absorption and retention properties, which attracts extensive research and has wide application, especially in the areas of hygiene and agriculture. With reference to the Web of Science database, the SAP research literature from 2000 to 2019 is reviewed both quantitatively and qualitatively. By examining research hotspots, top research clusters, the most influential works, the representative frontier literature, and key emerging research trends, a visual panorama of the continuously and significantly increasing SAP research over the past 2 decades was presented, and issues behind the sharp increase in the literature were discovered. The findings are as follows. The top ten keywords/hotspots headed by hydrogel highlight the academic attention on SAP properties and composites. The top ten research themes headed by clay-based composites which boast the longest duration and the strongest impact have revealed the academic preference for application rather than theoretical study. Academically influential scholars and research studies have been acknowledged, and the Wu group was at the forefront of the research; however, more statistically significant works have been less detected in the last 10 years despite the sharper increase in publications. Hydrogel, internal curing, and aerogel are both current advances and future directions.
Collapse
Affiliation(s)
- Minmin Yang
- College of Foreign Languages, International School, Huaqiao Univ., Quanzhou, China
| | - Jihuai Wu
- Engineering Research Centre of Environment-Friendly Functional Materials, Ministry of Education Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, China
| | - Geoffrey M. Graham
- College of Foreign Languages, International School, Huaqiao Univ., Quanzhou, China
| | - Jianming Lin
- Engineering Research Centre of Environment-Friendly Functional Materials, Ministry of Education Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, China
| | - Miaoliang Huang
- Engineering Research Centre of Environment-Friendly Functional Materials, Ministry of Education Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, China
| |
Collapse
|
21
|
Li W, Zhu X, Zhou X, Wang X, Zhai W, Li B, Du J, Li G, Sui X, Wu Y, Zhai M, Qi Y, Chen G, Gao Y. An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy. J Control Release 2021; 334:376-388. [PMID: 33940058 DOI: 10.1016/j.jconrel.2021.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 01/06/2023]
Abstract
Blockade of the immune checkpoint PD-1/PD-L1 with monoclonal antibodies demonstrated unprecedented clinical efficacies in many cancers. But the orally available low molecular weight inhibitors remain infancy. Compared to small molecules, peptide exhibits better selectivity and fewer side effects, but poor half-life and a big challenge to be orally administrated. Here, we developed a proteolysis-resistant D peptide OPBP-1 (Oral PD-L1 Binding Peptide 1) which could selectively bind PD-L1, significantly block PD-1/PD-L1 interaction and enhance IFN-γ (interferon γ) secretion from CD8+ T cells in human PBMCs (Peripheral blood mononuclear cells). OPBP-1 could significantly inhibit tumor growth in murine colorectal CT26 and melanoma B16-OVA models at a relatively low dose of 0.5 mg/kg, with enhancing the infiltration and function of CD8+ T cells. More interestingly, oral delivery of OPBP-1 loaded TMC (N, N, N-trimethyl chitosan) hydrogel (OPBP-1@TMC) showed promising OPBP-1 oral bioavailability (52.8%) and prolonged half-life (14.55 h) in rats, and also significantly inhibited tumor growth in CT26 model. In conclusion, we discovered and optimized a PD-1/PD-L1 blocking peptide OPBP-1, and subsequently loaded into a TMC based hydrogel oral delivery system, in order to maximally elevate the oral bioavailability of the peptide drug and effectively inhibit tumor growth. These results opened up a new prospect for oral drug development in cancer immunotherapy.
Collapse
Affiliation(s)
- Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingyu Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guodong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingxia Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
22
|
Eigel D, Schuster R, Männel MJ, Thiele J, Panasiuk MJ, Andreae LC, Varricchio C, Brancale A, Welzel PB, Huttner WB, Werner C, Newland B, Long KR. Sulfonated cryogel scaffolds for focal delivery in ex-vivo brain tissue cultures. Biomaterials 2021; 271:120712. [PMID: 33618220 DOI: 10.1016/j.biomaterials.2021.120712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The human brain has unique features that are difficult to study in animal models, including the mechanisms underlying neurodevelopmental and psychiatric disorders. Despite recent advances in human primary brain tissue culture systems, the use of these models to elucidate cellular disease mechanisms remains limited. A major reason for this is the lack of tools available to precisely manipulate a specific area of the tissue in a reproducible manner. Here we report an easy-to-use tool for site-specific manipulation of human brain tissue in culture. We show that line-shaped cryogel scaffolds synthesized with precise microscale dimensions allow the targeted delivery of a reagent to a specific region of human brain tissue in culture. 3-sulfopropyl acrylate (SPA) was incorporated into the cryogel network to yield a negative surface charge for the reversible binding of molecular cargo. The fluorescent dyes BODIPY and DiI were used as model cargos to show that placement of dye loaded scaffolds onto brain tissue in culture resulted in controlled delivery without a burst release, and labelling of specific regions without tissue damage. We further show that cryogels can deliver tetrodotoxin to tissue, inhibiting neuronal function in a reversible manner. The robust nature and precise dimensions of the cryogel resulted in a user-friendly and reproducible tool to manipulate primary human tissue cultures. These easy-to-use cryogels offer an innovate approach for more complex manipulations of ex-vivo tissue.
Collapse
Affiliation(s)
- Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Romy Schuster
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany
| | - Max J Männel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Martyna J Panasiuk
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Laura C Andreae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Petra B Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Ben Newland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Katherine R Long
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, D-01307, Dresden, Germany; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
| |
Collapse
|
23
|
Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021; 13:357. [PMID: 33800402 PMCID: PMC7999964 DOI: 10.3390/pharmaceutics13030357] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133203, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
24
|
Oliveira IS, Machado RL, Araújo MJ, Gomes AC, Marques EF. Stimuli-Sensitive Self-Assembled Tubules Based on Lysine-Derived Surfactants for Delivery of Antimicrobial Proteins. Chemistry 2021; 27:692-704. [PMID: 32830362 DOI: 10.1002/chem.202003320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/06/2022]
Abstract
Drug delivery vectors based on amphiphiles have important features such as versatile physicochemical properties and stimuli-responsiveness. Amino acid-based surfactants are especially promising amphiphiles due to their enhanced biocompatibility compared to conventional surfactants. They can self-organize into micelles, vesicles and complex hierarchical structures, such as fibers, twisted and coiled ribbons, and tubules. In this work, we investigated the self-assembly and drug loading properties of a family of novel anionic double-tailed lysine-derived surfactants, with variable degree of tail length mismatch, designated as mLys10 and 10Lysn, where m and n are the number of carbon atoms in the tails. These surfactants form tubular aggregates with assorted morphologies in water that undergo gelation due to dense entanglement, as evidenced by light and electron microscopy. Lysozyme (LZM), an enzyme with antimicrobial properties, was selected as model protein for loading. After the characterization of the interfacial properties and phase behavior of the amphiphiles, the LZM-loading ability of the tubules was investigated, under varying experimental conditions, to assess the efficiency of the aggregates as pH- and temperature-sensitive nanocarriers. Further, the toxicological profile of the surfactants per se and surfactant/LZM hydrogels was obtained, using human skin fibroblasts (BJ-5ta cell line). Overall, the results show that the tubule-based hydrogels exhibit very interesting properties for the transport and controlled release of molecules of therapeutic interest.
Collapse
Affiliation(s)
- Isabel S Oliveira
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Rui L Machado
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J Araújo
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Andreia C Gomes
- CBMA-Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
25
|
Liang X, Liang X. Chondroitin sulfate modified and adriamycin preloaded hybrid nanoparticles for tumor-targeted chemotherapy of lung cancer. Kaohsiung J Med Sci 2020; 37:411-418. [PMID: 33340254 DOI: 10.1002/kjm2.12339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/26/2020] [Accepted: 11/22/2020] [Indexed: 11/10/2022] Open
Abstract
Promising cancer treatment requires the assistant of drug delivery systems (DDS) with the aim to increase the accumulation of drugs in tumor tissue. Herein, a hybrid DDS was successfully developed to integrate chondroitin sulfate (CS) and calcium carbonate (CC) in to one system. Anticancer drug adriamycin (Adr) was preloaded into CC nanoparticles to obtain Adr-loaded CC nanoparticles (CC/Adr). The resulted CS-CC/Adr nanoparticles as a biocompatible DDS was able to specifically target cancer cells to enhance the chemotherapy of lung cancer due to the surface modification of CS. Intracellular uptake as well as in vivo imaging results revealed the obtained CS-CC/Adr nanoparticles (size of ~100 nm) showed CS mediated tumor specific accumulation into A549 and LLC cells than unmodified CC/Adr, in which the CD44 receptor might be involved, which finally resulted in stronger anticancer capability than Adr or CC/Adr. As a result, CS-CC/Adr nanoparticles could be further extended to clinical administration in our future works.
Collapse
Affiliation(s)
- Xiang Liang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xi Liang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Le TN, Her J, Sim T, Jung CE, Kang JK, Oh KT. Preparation of Gastro-retentive Tablets Employing Controlled Superporous Networks for Improved Drug Bioavailability. AAPS PharmSciTech 2020; 21:320. [PMID: 33180220 DOI: 10.1208/s12249-020-01851-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
The development of an oral formulation that ensures increased bioavailability of drugs is a great challenge for pharmaceutical scientists. Among many oral formulation systems, a drug delivery system employing superporous networks was developed to provide a prolonged gastro-retention time as well as improved bioavailability of drugs with a narrow absorption window in the gastrointestinal tract. Superporous networks (SPNs) were prepared from chitosan by crosslinking with glyoxal and poly(vinyl alcohol) (PVA). The SPNs showed less porosity and decreased water uptake with an increase in the crosslinking density and content of PVA. Gastro-retentive tablets (GRTs) were formulated using hydroxypropyl methylcellulose (HPMC, a hydrophilic polymer) and the prepared SPNs. Ascorbic acid (AA), which is mainly absorbed in the proximal part of the small intestine, was selected as a model drug. The formulated GRTs exhibited no floating lag time and stayed afloat until the end of the dissolution test. The in vitro drug release from the GRTs decreased with a decrease in the water uptake of the SPNs. The profile of drug release from the GRTs corresponded to the first-order and Higuchi drug-release models. Overall, floating tablets composed of the SPNs and HPMC have potential as a favorable platform to ensure sustained release and improved bioavailability of drugs that are absorbed in the proximal part of the small intestine.
Collapse
|
27
|
Xu W, Lou Y, Chen W, Kang Y. Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. ACTA ACUST UNITED AC 2020; 65:229-236. [PMID: 31605575 DOI: 10.1515/bmt-2019-0056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/27/2019] [Indexed: 01/16/2023]
Abstract
Effective cancer therapy usually requires the assistance of well-designed drug carriers. In order to increase the drug accumulation to tumor tissue as well as to reduce the side effects of drug carriers, the hybrid drug delivery system (DDS) was developed by integrating folic acid (FA) and a metal-organic framework (MOF). The anticancer drug doxorubicin (DOX) was preloaded into the MOF nanoparticles during the synthesis process of the MOF nanoparticles. After surface modification with FA, the resulting FA/MOF/DOX nanoparticles were capable of serving as a biocompatible osteosarcoma targeting a DDS to enhance the chemotherapy of osteosarcoma. The dynamic light scattering method revealed that the obtained FA/MOF/DOX nanoparticles were particles with a size around 100 nm. Moreover, FA/MOF/DOX nanoparticles could enhance the delivery efficacy of DOX into MG63 (human osteosarcoma) cells as compared to FA free nanoparticles (MOF/DOX), in which a folate receptor (FR) might be involved. It was worth mentioning that in vitro [methylthio tetrazole (MTT) study in the MG63 cells] and in vivo (anticancer study in the MG63 xenograft model) assays both revealed that FA/MOF/DOX nanoparticles possessed stronger anticancer capability than free DOX or MOF/DOX nanoparticles.
Collapse
Affiliation(s)
- Weifan Xu
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| | - Yi Lou
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| | - WangShenjie Chen
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| | - Yifan Kang
- Department of Orthopaedics, Eastern Hepatobiliary Surgery Hospital, Naval Military Medical University, 201800 Shanghai, China
| |
Collapse
|
28
|
Kaur G, Arora M, Ravi Kumar MNV. Oral Drug Delivery Technologies-A Decade of Developments. J Pharmacol Exp Ther 2019; 370:529-543. [PMID: 31010845 PMCID: PMC6806634 DOI: 10.1124/jpet.118.255828] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Advanced drug delivery technologies, in general, enable drug reformulation and administration routes, together contributing to life-cycle management and allowing the innovator to maintain the product monopoly. Over the years, there has been a steady shift from mere life-cycle management to drug repurposing-applying delivery technologies to tackle solubility and permeability issues in early stages or safety and efficacy issues in the late stages of drug discovery processes. While the drug and the disease in question primarily drive the choice of route of administration, the oral route, for its compliance and safety attributes, is the most preferred route, particularly when it comes to chronic conditions, including pain, which is not considered a disease but a symptom of a primary cause. Therefore, the attempt of this review is to take a stock of the advances in oral delivery technologies that are applicable for injectable to oral transformation, improve risk-benefit profiles of existing orals, and apply them in the early discovery program to minimize the drug attrition rates.
Collapse
Affiliation(s)
- G Kaur
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, Texas
| | - M Arora
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, Texas
| | - M N V Ravi Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, Texas
| |
Collapse
|
29
|
Chatterjee S, Chi-Leung Hui P. Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules 2019; 24:E2547. [PMID: 31336916 PMCID: PMC6681499 DOI: 10.3390/molecules24142547] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
This review describes some commercially available stimuli-responsive polymers of natural and synthetic origin, and their applications in drug delivery and textiles. The polymers of natural origin such as chitosan, cellulose, albumin, and gelatin are found to show both thermo-responsive and pH-responsive properties and these features of the biopolymers impart sensitivity to act differently under different temperatures and pH conditions. The stimuli-responsive characters of these natural polymers have been discussed in the review, and their respective applications in drug delivery and textile especially for textile-based transdermal therapy have been emphasized. Some practically important thermo-responsive polymers such as pluronic F127 (PF127) and poly(N-isopropylacrylamide) (pNIPAAm) of synthetic origin have been discussed in the review and they are of great importance commercially because of their in situ gel formation capacity. Some pH-responsive synthetic polymers have been discussed depending on their surface charge, and their drug delivery and textile applications have been discussed in this review. The selected stimuli-responsive polymers of synthetic origin are commercially available. Above all, the applications of bio-based or synthetic stimuli-responsive polymers in textile-based transdermal therapy are given special regard apart from their general drug delivery applications. A special insight has been given for stimuli-responsive hydrogel drug delivery systems for textile-based transdermal therapy, which is critical for the treatment of skin disease atopic dermatitis.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
30
|
Çetin Altındal D, Türkyılmaz P, Gümüşderelioğlu M. P(HEMA)-based SPH vehicles for high molecular weight protein delivery. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1616198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Pınar Türkyılmaz
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
31
|
Darbasizadeh B, Motasadizadeh H, Foroughi-Nia B, Farhadnejad H. Tripolyphosphate-crosslinked chitosan/poly (ethylene oxide) electrospun nanofibrous mats as a floating gastro-retentive delivery system for ranitidine hydrochloride. J Pharm Biomed Anal 2018; 153:63-75. [DOI: 10.1016/j.jpba.2018.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022]
|
32
|
Chatterjee S, Hui PCL, Kan CW. Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. Polymers (Basel) 2018; 10:E480. [PMID: 30966514 PMCID: PMC6415431 DOI: 10.3390/polym10050480] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 01/19/2023] Open
Abstract
Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature) hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Chi-Wai Kan
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
33
|
Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy. Polymers (Basel) 2018. [PMID: 30966514 DOI: 10.3390/polym10050480]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Various natural and synthetic polymers are capable of showing thermoresponsive properties and their hydrogels are finding a wide range of biomedical applications including drug delivery, tissue engineering and wound healing. Thermoresponsive hydrogels use temperature as external stimulus to show sol-gel transition and most of the thermoresponsive polymers can form hydrogels around body temperature. The availability of natural thermoresponsive polymers and multiple preparation methods of synthetic polymers, simple preparation method and high functionality of thermoresponsive hydrogels offer many advantages for developing drug delivery systems based on thermoresponsive hydrogels. In textile field applications of thermoresponsive hydrogels, textile based transdermal therapy is currently being applied using drug loaded thermoresponsive hydrogels. The current review focuses on the preparation, physico-chemical properties and various biomedical applications of thermoresponsive hydrogels based on natural and synthetic polymers and especially, their applications in developing functionalized textiles for transdermal therapies. Finally, future prospects of dual responsive (pH/temperature) hydrogels made by these polymers for textile based transdermal treatments are mentioned in this review.
Collapse
|
34
|
DiCiccio AM, Lee YAL, Glettig DL, Walton ESE, de la Serna EL, Montgomery VA, Grant TM, Langer R, Traverso G. Caffeine-catalyzed gels. Biomaterials 2018; 170:127-135. [PMID: 29660635 PMCID: PMC5937912 DOI: 10.1016/j.biomaterials.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 01/02/2023]
Abstract
Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices.
Collapse
Affiliation(s)
- Angela M DiCiccio
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Young-Ah Lucy Lee
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dean L Glettig
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth S E Walton
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, UK
| | - Eva L de la Serna
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Veronica A Montgomery
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tyler M Grant
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Giovanni Traverso
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
De France KJ, Xu F, Hoare T. Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities. Adv Healthc Mater 2018; 7. [PMID: 29195022 DOI: 10.1002/adhm.201700927] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/15/2017] [Indexed: 12/15/2022]
Abstract
Structured macroporous hydrogels that have controllable porosities on both the nanoscale and the microscale offer both the swelling and interfacial properties of bulk hydrogels as well as the transport properties of "hard" macroporous materials. While a variety of techniques such as solvent casting, freeze drying, gas foaming, and phase separation have been developed to fabricate structured macroporous hydrogels, the typically weak mechanics and isotropic pore structures achieved as well as the required use of solvent/additives in the preparation process all limit the potential applications of these materials, particularly in biomedical contexts. This review highlights recent developments in the field of structured macroporous hydrogels aiming to increase network strength, create anisotropy and directionality within the networks, and utilize solvent-free or additive-free fabrication methods. Such functional materials are well suited for not only biomedical applications like tissue engineering and drug delivery but also selective filtration, environmental sorption, and the physical templating of secondary networks.
Collapse
Affiliation(s)
- Kevin J. De France
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Fei Xu
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Todd Hoare
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| |
Collapse
|
36
|
History, Classification, Properties and Application of Hydrogels: An Overview. GELS HORIZONS: FROM SCIENCE TO SMART MATERIALS 2018. [DOI: 10.1007/978-981-10-6077-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Sayed E, Haj-Ahmad R, Ruparelia K, Arshad MS, Chang MW, Ahmad Z. Porous Inorganic Drug Delivery Systems-a Review. AAPS PharmSciTech 2017; 18:1507-1525. [PMID: 28247293 DOI: 10.1208/s12249-017-0740-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 11/30/2022] Open
Abstract
Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities.
Collapse
|
38
|
Udeni Gunathilake TMS, Ching YC, Chuah CH. Enhancement of Curcumin Bioavailability Using Nanocellulose Reinforced Chitosan Hydrogel. Polymers (Basel) 2017; 9:E64. [PMID: 30970742 PMCID: PMC6431856 DOI: 10.3390/polym9020064] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 11/30/2022] Open
Abstract
A unique biodegradable, superporous, swellable and pH sensitive nanocellulose reinforced chitosan hydrogel with dynamic mechanical properties was prepared for oral administration of curcumin. Curcumin, a less water-soluble drug was used due to the fact that the fast swellable, superporous hydrogel could release a water-insoluble drug to a great extent. CO₂ gas foaming was used to fabricate hydrogel as it eradicates using organic solvents. Field emission scanning electron microscope images revealed that the pore size significantly increased with the formation of widely interconnected porous structure in gas foamed hydrogels. The maximum compression of pure chitosan hydrogel was 25.9 ± 1 kPa and it increased to 38.4 ± 1 kPa with the introduction of 0.5% cellulose nanocrystals. In vitro degradation of hydrogels was found dependent on the swelling ratio and the amount of CNC of the hydrogel. All the hydrogels showed maximum swelling ratios greater than 300%. The 0.5% CNC-chitosan hydrogel showed the highest swelling ratio of 438% ± 11%. FTIR spectrum indicated that there is no interaction between drug and ingredients present in hydrogels. The drug release occurred in non-Fickian (anomalous) manner in simulated gastric medium. The drug release profiles of hydrogels are consistent with the data obtained from the swelling studies. After gas foaming of the hydrogel, the drug loading efficiency increased from 41% ± 2.4% to 50% ± 2.0% and release increased from 0.74 to 1.06 mg/L. The drug release data showed good fitting to Ritger-Peppas model. Moreover, the results revealed that the drug maintained its chemical activity after in vitro release. According to the results of this study, CNC reinforced chitosan hydrogel can be suggested to improve the bioavailability of curcumin for the absorption from stomach and upper intestinal tract.
Collapse
Affiliation(s)
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
39
|
Ramburrun P, Kumar P, Choonara YE, du Toit LC, Pillay V. Design and characterization of neurodurable gellan-xanthan pH-responsive hydrogels for controlled drug delivery. Expert Opin Drug Deliv 2016; 14:291-306. [DOI: 10.1080/17425247.2017.1266331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Abstract
Digital PCR (dPCR) is an emerging technology for genetic analysis and clinical diagnostics. To facilitate the widespread application of dPCR, here we developed a new micropatterned superporous absorbent array chip (μSAAC) which consists of an array of microwells packed with highly porous agarose microbeads. The packed beads construct a hierarchically porous microgel which confers superior water adsorption capacity to enable spontaneous filling of PDMS microwells for fluid compartmentalization without the need of sophisticated microfluidic equipment and operation expertise. Using large λ-DNA as the model template, we validated the μSAAC for stochastic partitioning and quantitative digital detection of DNA molecules. Furthermore, as a proof-of-concept, we conducted dPCR detection and single-molecule sequencing of a mutation prevalent in blood cancer, the chromosomal translocation t(14;18), demonstrating the feasibility of the μSAAC for analysis of disease-associated mutations. These experiments were carried out using the standard molecular biology techniques and instruments. Because of its low cost, ease of fabrication, and equipment-free liquid partitioning, the μSAAC is readily adaptable to general lab settings, which could significantly facilitate the widespread application of dPCR technology in basic research and clinical practice.
Collapse
Affiliation(s)
- Yazhen Wang
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
41
|
Singhal R, Gupta K. A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING 2016; 55:54-70. [DOI: 10.1080/03602559.2015.1050520] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Chen B, Zhang S, Zhang Q, Mu Q, Deng L, Chen L, Wei Y, Tao L, Zhang X, Wang K. Microorganism inspired hydrogels: fermentation capacity, gelation process and pore-forming mechanism under temperature stimulus. RSC Adv 2015. [DOI: 10.1039/c5ra16811b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By controlling the temperature of fermentation and gelation, 3D microorganism inspired hydrogels (MIH) with a pore size from 5 μm to 900 μm could be obtained.
Collapse
Affiliation(s)
- Bingjie Chen
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Materials Science and Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Shuhua Zhang
- College of Textile
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Qingsong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Materials Science and Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Qifeng Mu
- College of Textile
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Lingli Deng
- College of Textile
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes
- School of Materials Science and Engineering
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Yen Wei
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Lei Tao
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Xiaoyong Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Ke Wang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
43
|
Haldar U, Nandi M, Maiti B, De P. POSS-induced enhancement of mechanical strength in RAFT-made thermoresponsive hydrogels. Polym Chem 2015. [DOI: 10.1039/c5py00664c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, covalently cross-linked thermoresponsive hydrogels were prepared with higher mechanical stability by the introduction of polyhedral oligomeric silsesquioxane (POSS) moieties.
Collapse
Affiliation(s)
- Ujjal Haldar
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246, Nadia
- India
| | - Mridula Nandi
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246, Nadia
- India
| | - Binoy Maiti
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246, Nadia
- India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur – 741246, Nadia
- India
| |
Collapse
|
44
|
Şenel S. Functionalization of marine materials for drug delivery systems. FUNCTIONAL MARINE BIOMATERIALS 2015:109-121. [DOI: 10.1016/b978-1-78242-086-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
45
|
Goganian AM, Hamishehkar H, Arsalani N, Khiabani HK. Microwave-Promoted Synthesis of Smart Superporous Hydrogel for the Development of Gastroretentive Drug Delivery System. ADVANCES IN POLYMER TECHNOLOGY 2014. [DOI: 10.1002/adv.21490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amir Mohammad Goganian
- Research Laboratory of Polymer, Department of Organic and Biochemistry; Faculty of Chemistry, University of Tabriz; Tabriz Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry; Faculty of Chemistry, University of Tabriz; Tabriz Iran
| | - Hanie Khaksar Khiabani
- Research Laboratory of Polymer, Department of Organic and Biochemistry; Faculty of Chemistry, University of Tabriz; Tabriz Iran
| |
Collapse
|
46
|
Mahdavinia GR, Etemadi H. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 45:250-60. [DOI: 10.1016/j.msec.2014.09.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 08/04/2014] [Accepted: 09/12/2014] [Indexed: 01/20/2023]
|
47
|
Drug delivery in aortic valve tissue engineering. J Control Release 2014; 196:307-23. [DOI: 10.1016/j.jconrel.2014.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 01/08/2023]
|
48
|
Lacík I, Stach M, Kasák P, Semak V, Uhelská L, Chovancová A, Reinhold G, Kilz P, Delaittre G, Charleux B, Chaduc I, D'Agosto F, Lansalot M, Gaborieau M, Castignolles P, Gilbert RG, Szablan Z, Barner-Kowollik C, Hesse P, Buback M. SEC Analysis of Poly(Acrylic Acid) and Poly(Methacrylic Acid). MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400339] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Igor Lacík
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Marek Stach
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Peter Kasák
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Vladislav Semak
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Lucia Uhelská
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Anna Chovancová
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Günter Reinhold
- PSS Polymer Standards Service GmbH; In der Dalheimer Wiese 5 D-55120 Mainz Germany
| | - Peter Kilz
- PSS Polymer Standards Service GmbH; In der Dalheimer Wiese 5 D-55120 Mainz Germany
| | - Guillaume Delaittre
- UPMC Univ. Paris 6, Sorbonne Universités and CNRS; Laboratoire de Chimie des Polymères, UMR 7610; 3 rue Galilée 94200 Ivry France
| | - Bernadette Charleux
- UPMC Univ. Paris 6, Sorbonne Universités and CNRS; Laboratoire de Chimie des Polymères, UMR 7610; 3 rue Galilée 94200 Ivry France
| | - Isabelle Chaduc
- Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers and Processes), Team LCPP; Bat 308F, 43 Bd du 11 Novembre 1918, BP 2077 69616 Villeurbanne France
| | - Franck D'Agosto
- Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers and Processes), Team LCPP; Bat 308F, 43 Bd du 11 Novembre 1918, BP 2077 69616 Villeurbanne France
| | - Muriel Lansalot
- Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers and Processes), Team LCPP; Bat 308F, 43 Bd du 11 Novembre 1918, BP 2077 69616 Villeurbanne France
| | - Marianne Gaborieau
- University of Sydney; School of Chemistry; Key Centre for Polymers and Colloids; Sydney NSW 2006 Australia
- University of Western Sydney; School of Science and Health; Australian Centre for Research on Separation Science; Molecular Medicine Research Group; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Patrice Castignolles
- University of Sydney; School of Chemistry; Key Centre for Polymers and Colloids; Sydney NSW 2006 Australia
- University of Western Sydney; School of Science and Health; Australian Centre for Research on Separation Science; Molecular Medicine Research Group; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Robert G. Gilbert
- The University of Queensland; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; Brisbane QLD 4072 Australia
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei 430030 China
| | - Zachary Szablan
- Centre for Advanced Macromolecular Design; School of Chemical Engineering and Industrial Chemistry; The University of New South Wales (UNSW); Sydney NSW 2052 Australia
| | - Christopher Barner-Kowollik
- Centre for Advanced Macromolecular Design; School of Chemical Engineering and Industrial Chemistry; The University of New South Wales (UNSW); Sydney NSW 2052 Australia
| | - Pascal Hesse
- Institute of Physical Chemistry; University of Goettingen; Tammannstraße 6 37077 Goettingen Germany
| | - Michael Buback
- Institute of Physical Chemistry; University of Goettingen; Tammannstraße 6 37077 Goettingen Germany
| |
Collapse
|
49
|
Abeer MM, Amin MCIM, Lazim AM, Pandey M, Martin C. Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation. Carbohydr Polym 2014; 110:505-12. [DOI: 10.1016/j.carbpol.2014.04.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 12/29/2022]
|
50
|
Zhao S, Lv Y, Zhang JB, Wang B, Lv GJ, Ma XJ. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori. World J Gastroenterol 2014; 20:9321-9. [PMID: 25071326 PMCID: PMC4110563 DOI: 10.3748/wjg.v20.i28.9321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/04/2014] [Accepted: 04/15/2014] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common pathogenic bacterial infections and is found in the stomachs of approximately half of the world's population. It is the primary known cause of gastritis, gastroduodenal ulcer disease and gastric cancer. However, combined drug therapy as the general treatment in the clinic, the rise of antibiotic-resistant bacteria, adverse reactions and poor patient compliance are major obstacles to the eradication of H. pylori. Oral site-specific drug delivery systems that could increase the longevity of the treatment agent at the target site might improve the therapeutic effect and avoid side effects. Gastroretentive drug delivery systems potentially prolong the gastric retention time and controlled/sustained release of a drug, thereby increasing the concentration of the drug at the application site, potentially improving its bioavailability and reducing the necessary dosage. Recommended gastroretentive drug delivery systems for enhancing local drug delivery include floating systems, bioadhesive systems and expandable systems. In this review, we summarize the important physiological parameters of the gastrointestinal tract that affect the gastric residence time. We then focus on various aspects useful in the development of gastroretentive drug delivery systems, including current trends and the progress of novel forms, especially with respect to their application for the treatment of H. pylori infections.
Collapse
|