1
|
Sintov AC. The Distinctive Role of Gluconic Acid in Retarding Percutaneous Drug Permeation: Formulation of Lidocaine-Loaded Chitosan Nanoparticles. Pharmaceutics 2024; 16:831. [PMID: 38931951 PMCID: PMC11207278 DOI: 10.3390/pharmaceutics16060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The objective of the present investigation was to evidence the skin retardation phenomenon of lidocaine by gluconic acid as an inactive ingredient involved in citrate-crosslinking chitosan nanoparticles. Lidocaine hydrochloride was loaded in nanoparticles based on chitosan, fabricated by using a water-in-oil microemulsion as a template and citric acid as an ionic cross-linker. Gluconic acid (pentahydroxy hexanoic acid) was added during the fabrication and compared with caproic acid, a non-hydroxy hexanoic acid. The chitosan nanoparticulate systems were characterized for mean particle size, particle size distribution, and zeta potential. The pentahydroxy hexanoic acid decreased the zeta potential to a significantly lower value than those obtained from both plain citrate and citrate-hexanoic acid formulations. The relatively lower value implies that gluconate ions are partly attached to the nanoparticle's surface and mask its positively charged groups. It was also noted that the in vitro percutaneous permeation flux of lidocaine significantly decreased when gluconate-containing chitosan nanoparticles were applied, i.e., 6.1 ± 1.5 μg‧cm-2‧h-1 without gluconic acid to 3.4 ± 2.3 μg‧cm-2‧h-1 with gluconic acid. According to this result, it is suggested that gluconate ions played a role in retarding drug permeation through the skin, probably by calcium chelation in the stratum granulosum, which in turn stimulated lamellar body secretion, lipid synthesis, and intracellular release of Ca2+ from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Amnon C. Sintov
- Department of Biomedical Engineering, Faculty of Engineering Sciences, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel; ; Tel.: +972-8-647-2709
- Laboratory for Biopharmaceutics, E.D. Bergmann Campus, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
2
|
Dzyhovskyi V, Romani A, Pula W, Bondi A, Ferrara F, Melloni E, Gonelli A, Pozza E, Voltan R, Sguizzato M, Secchiero P, Esposito E. Characterization Methods for Nanoparticle-Skin Interactions: An Overview. Life (Basel) 2024; 14:599. [PMID: 38792620 PMCID: PMC11122446 DOI: 10.3390/life14050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Research progresses have led to the development of different kinds of nanoplatforms to deliver drugs through different biological membranes. Particularly, nanocarriers represent a precious means to treat skin pathologies, due to their capability to solubilize lipophilic and hydrophilic drugs, to control their release, and to promote their permeation through the stratum corneum barrier. A crucial point in the development of nano-delivery systems relies on their characterization, as well as in the assessment of their interaction with tissues, in order to predict their fate under in vivo administration. The size of nanoparticles, their shape, and the type of matrix can influence their biodistribution inside the skin strata and their cellular uptake. In this respect, an overview of some characterization methods employed to investigate nanoparticles intended for topical administration is presented here, namely dynamic light scattering, zeta potential, scanning and transmission electron microscopy, X-ray diffraction, atomic force microscopy, Fourier transform infrared and Raman spectroscopy. In addition, the main fluorescence methods employed to detect the in vitro nanoparticles interaction with skin cell lines, such as fluorescence-activated cell sorting or confocal imaging, are described, considering different examples of applications. Finally, recent studies on the techniques employed to determine the nanoparticle presence in the skin by ex vivo and in vivo models are reported.
Collapse
Affiliation(s)
- Valentyn Dzyhovskyi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
| | - Arianna Romani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Elisabetta Melloni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Arianna Gonelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
| | - Rebecca Voltan
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (V.D.); (A.R.); (E.M.); (E.P.)
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA) Centre, University of Ferrara, 44121 Ferrara, Italy;
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (W.P.); (A.B.); (F.F.); (M.S.)
| |
Collapse
|
3
|
Abdallah RM, Hasan HE, Hammad A. Predictive modeling of skin permeability for molecules: Investigating FDA-approved drug permeability with various AI algorithms. PLOS DIGITAL HEALTH 2024; 3:e0000483. [PMID: 38568888 PMCID: PMC10990209 DOI: 10.1371/journal.pdig.0000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
The transdermal route of drug administration has gained popularity for its convenience and bypassing the first-pass metabolism. Accurate skin permeability prediction is crucial for successful transdermal drug delivery (TDD). In this study, we address this critical need to enhance TDD. A dataset comprising 441 records for 140 molecules with diverse LogKp values was characterized. The descriptor calculation yielded 145 relevant descriptors. Machine learning models, including MLR, RF, XGBoost, CatBoost, LGBM, and ANN, were employed for regression analysis. Notably, LGBM, XGBoost, and gradient boosting models outperformed others, demonstrating superior predictive accuracy. Key descriptors influencing skin permeability, such as hydrophobicity, hydrogen bond donors, hydrogen bond acceptors, and topological polar surface area, were identified and visualized. Cluster analysis applied to the FDA-approved drug dataset (2326 compounds) revealed four distinct clusters with significant differences in molecular characteristics. Predicted LogKp values for these clusters offered insights into the permeability variations among FDA-approved drugs. Furthermore, an investigation into skin permeability patterns across 83 classes of FDA-approved drugs based on the ATC code showcased significant differences, providing valuable information for drug development strategies. The study underscores the importance of accurate skin permeability prediction for TDD, emphasizing the superior performance of nonlinear machine learning models. The identified key descriptors and clusters contribute to a nuanced understanding of permeability characteristics among FDA-approved drugs. These findings offer actionable insights for drug design, formulation, and prioritization of molecules with optimum properties, potentially reducing reliance on costly experimental testing. Future research directions include offering promising applications in pharmaceutical research and formulation within the burgeoning field of computer-aided drug design.
Collapse
Affiliation(s)
- Rami M. Abdallah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Hisham E. Hasan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Ahmad Hammad
- Department of Artificial Intelligence, Faculty of Information Technology, Middle East University, Amman, Jordan
| |
Collapse
|
4
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
5
|
Sajjad A, Ali H, Zia M. Fabrication and evaluation of vitamin doped Zno/AgNPs nanocomposite based wheat gluten films: a promising findings for burn wound treatment. Sci Rep 2023; 13:16072. [PMID: 37752271 PMCID: PMC10522583 DOI: 10.1038/s41598-023-43413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
Burn wound treatment remains a significant issue in wound care management especially when multidrug resistant bacterial infection and accumulation are present. Delayed wound healing is mostly due to ineffectiveness of commercially available wound dressings that protects the wound but less efficient in healing perspective. Therefore, nano-based wound dressing might be efficient solution for wound healing management. The present study reports the fabrication and evaluation of zinc oxide (ZnO) or silver nanoparticles (Ag NPs) capped with vitamin A or E nanocomposite that were incorporated in wheat gluten (WG) films. The chemical structure, phase purity, and morphological features confirmed the successful coating of NPs by vitamins A and E and their interaction with WG during film casting. The maximum swelling response was observed by NPs vitamin composite WG films than control films while slow release of vitamins and NPs from films was observed up to 24 h. WG films either carrying ZnO or Ag NPs, and vitamin A or E demonstrated significant antioxidant and antibacterial potential. The NPs-vitamin composite loaded WG films showed wound contraction within 14 days during in vivo burn wound healing experiments on mice model. The rates of wound healing, re-epithelialization, collagen deposition with fibroblast regeneration, adipocytes, and hair follicle development were observed through visual and histopathological examination. The study reveals that vitamin A or E doped ZnO or Ag NPs fabricated in WG can be efficiently used against burn wounds due to their physiochemical and biological properties. Furthermore the biocompatible nature and biodegradable potential make the films more prone to mankind maneuver for initial protection and healing remedy.
Collapse
Affiliation(s)
- Anila Sajjad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hussain Ali
- Veterinary Farms Management Sub-Division, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
6
|
Ma H, Pan Z, Lai B, Zan C, Liu H. Recent Research Advances in Nano-Based Drug Delivery Systems for Local Anesthetics. Drug Des Devel Ther 2023; 17:2639-2655. [PMID: 37667787 PMCID: PMC10475288 DOI: 10.2147/dddt.s417051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/01/2023] [Indexed: 09/06/2023] Open
Abstract
From a clinical perspective, local anesthetics have rather widespread application in regional blockade for surgery, postoperative analgesia, acute/chronic pain control, and even cancer treatments. However, a number of disadvantages are associated with traditional local anesthetic agents as well as routine drug delivery administration ways, such as neurotoxicity, short half-time, and non-sustained release, thereby limiting their application in clinical practice. Successful characterization of drug delivery systems (DDSs) for individual local anesthetic agents can support to achieve more efficient drug release and prolonged duration of action with reduced systemic toxicity. Different types of DDSs involving various carriers have been examined, including micromaterials, nanomaterials, and cyclodextrin. Among them, nanotechnology-based delivery approaches have significantly developed in the last decade due to the low systemic toxicity and the greater efficacy of non-conventional local anesthetics. Multiple nanosized materials, including polymeric, lipid (solid lipid nanoparticles, nanostructured lipid carriers, and nanoemulsions), metallic, inorganic non-metallic, and hybrid nanoparticles, offer a safe, localized, and long-acting solution for pain management and tumor therapy. This review provides a brief synopsis of different nano-based DDSs for local anesthetics with variable sizes and structural morphology, such as nanocapsules and nanospheres. Recent original research utilizing nanotechnology-based delivery systems is particularly discussed, and the progress and strengths of these DDSs are highlighted. A specific focus of this review is the comparison of various nano-based DDSs for local anesthetics, which can offer additional indications for their further improvement. All in all, nano-based DDSs with unique advantages provide a novel direction for the development of safer and more effective local anesthetic formulations.
Collapse
Affiliation(s)
- He Ma
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhenxiang Pan
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bingjie Lai
- Department of Intensive Care Unit, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chunfang Zan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
7
|
Elmotasem H, El-Marasy SA, Mohamed AL. Benzocaine mesoporous silica nanoparticles/bio polysaccharides-based hydrogels loaded cotton bandage as a platform for topical anesthesia. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Wang P, Wang G, Tang H, Feng S, Tan L, Zhang P, Wei G, Wang C. Preparation of Ropivacaine Encapsulated by Zeolite Imidazole Framework Microspheres as Sustained-Release System and Efficacy Evaluation. Chemistry 2023; 29:e202203458. [PMID: 36700555 DOI: 10.1002/chem.202203458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
The management of persistent postoperative pain still remains a clinical challenge currently. Although ropivacaine (RVC) is widely used for postoperative analgesia as a local anesthetic, the short half-life makes it difficult to achieve the desired duration of analgesia. Herein, a RVC sustained-release microspheres encapsulated by zeolite imidazole framework-8 (RVC@ZIF-8) was synthesized for the first time, which prolonged the sustained-release of RVC and decreased the resulting drug toxicity. RVC can continuously release in vitro for at least 96 h with high drug loading of 30.6 % and RVC@ZIF-8 had excellent biocompatibility and low cytotoxicity. In sciatic nerve block model, the sensory block time of RVC@ZIF-8 was significantly prolonged compared with RVC, achieving more than 72 h post injection and no inflammation or lesion were found. Based on high drug loading, ideal sustained-release and superior biological safety, RVC@ZIF-8 will be a novel delivery material for local anesthetic with potential application.
Collapse
Affiliation(s)
- Peng Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Guangyu Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Hongwen Tang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Siwen Feng
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Lichuan Tan
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Pu Zhang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing institute for Food and Drug Control, Chongqing, 401121, P. R. China
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Cuijuan Wang
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
9
|
Yuan S, Chen J, Feng S, Li M, Sun Y, Liu Y. Combination anesthetic therapy: co-delivery of ropivacaine and meloxicam using transcriptional transactivator peptide modified nanostructured lipid carriers in vitro and in vivo. Drug Deliv 2022; 29:263-269. [PMID: 35014916 PMCID: PMC8757603 DOI: 10.1080/10717544.2021.2023695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Combination therapy combining two drugs in one modified drug delivery system is used to achieve synergistic analgesic effect, and bring effective control of pain management, especially postoperative pain management. In the present study, a combination of drug delivery technologies was utilized. Transcriptional transactivator (TAT) peptide modified, transdermal nanocarriers were designed to co-deliver ropivacaine (RVC) and meloxicam (MLX) and anticipated to achieve longer analgesic effect and lower side effect. TAT modified nanostructured lipid carriers (TAT-NLCs) were used to co-deliver RVC and MLX. RVC and MLX co-loaded TAT-NLCs (TAT-NLCs-RVC/MLX) were evaluated through in vitro skin permeation and in vivo treatment studies. NLCs-RVC/MLX showed uniform and spherical morphology, with a size of 133.4 ± 4.6 nm and a zeta potential of 20.6 ± 1.8 mV. The results illustrated the anesthetic pain relief ability of the present constructed system was significantly improved by the TAT modification through the enhanced skin permeation efficiency and the co-delivery of MLX along with RVC that improved pain management by reducing inflammation at the injured area. This study provides an efficient and facile method for preparing TAT-NLCs-RVC/MLX as a promising system to achieve synergistic analgesic effect.
Collapse
Affiliation(s)
- Shu Yuan
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Jun Chen
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Shuo Feng
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Min Li
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Yingui Sun
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Yuzhen Liu
- Department of Gynecology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
10
|
Daryab M, Faizi M, Mahboubi A, Aboofazeli R. Preparation and Characterization of Lidocaine-Loaded, Microemulsion-Based Topical Gels. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123787. [PMID: 35765506 PMCID: PMC9191217 DOI: 10.5812/ijpr.123787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023]
Abstract
Microemulsion-based gels (MBGs) were prepared for transdermal delivery of lidocaine and evaluated for their potential for local anesthesia. Lidocaine solubility was measured in various oils, and phase diagrams were constructed to map the concentration range of oil, surfactant, cosurfactant, and water for oil-in-water (o/w) microemulsion (ME) domains, employing the water titration method at different surfactant/cosurfactant weight ratios. Refractive index, electrical conductivity, droplet size, zeta potential, pH, viscosity, and stability of fluid o/w MEs were evaluated. Carbomer® 940 was incorporated into the fluid drug-loaded MEs as a gelling agent. Microemulsion-based gels were characterized for spreadability, pH, viscosity, and in-vitro drug release measurements, and based on the results obtained, the best MBGs were selected and subsequently subjected to ex-vivo rat skin permeation anesthetic effect and irritation studies. Data indicated the formation of nano-sized droplets of MEs ranging from 20 - 52 nm with a polydispersity of less than 0.5. In-vitro release and ex-vivo permeation studies on MBGs showed significantly higher drug release and permeation in comparison to the marketed topical gel. Developed MBG formulations demonstrated greater potential for transdermal delivery of lidocaine and advantage over the commercially available gel product, and therefore, they may be considered as potential vehicles for the topical delivery of lidocaine.
Collapse
Affiliation(s)
- Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Aboofazeli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Lotfipour F, Shahi S, Khezri K, Salatin S, Dizaj SM. Safety issues of nanomaterials for dermal pharmaceutical products. Pharm Nanotechnol 2022; 10:PNT-EPUB-122273. [PMID: 35382729 DOI: 10.2174/1871520622666220405093811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
Nanomaterials (NMs) have favorable application in the medicine area, specifically in regard to the carry of pharmaceutical ingredients to provide targeted drug delivery systems. The skin is an excellent route for the delivery of pharmaceutical nano-transporters for skin-related applications. The physicochemical properties of nanomaterials such as size, hydrophobicity, loading capacity, charge and weight are vital for a skin penetrating system. Many nanocarriers such as polymeric nanoparticles, inorganic nanomaterials and, lipid nanostructures have been utilized for dermal delivery of active ingredients and others such as carbon nanotubes and fullerenes require more examination for future application in the skin-related area. Some negative side effects and nano-cytotoxicity of nanomaterials require special attention while investigating different nanomaterials for medicinal applications. Then, in the current review, we had a view on the safety issues of nanomaterials for dermal pharmaceutical products.
Collapse
Affiliation(s)
- Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa,ON K1H 8M5, Canada
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Dentistry, Department of Endodontics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Injectable thermosensitive lipo-hydrogels loaded with ropivacaine for prolonging local anesthesia. Int J Pharm 2022; 611:121291. [PMID: 34780929 DOI: 10.1016/j.ijpharm.2021.121291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023]
Abstract
Reducing post-surgical pain can promote recovery of mobility, improve patient satisfaction, and reduce the risk of chronic pain syndrome. When managing post-surgical pain, single-injection local anesthesia is more convenient and involves lower risk to the patient than multi-injection regimes, but the effects are not long-lasting. Here we developed a system that can prolong local anesthesia after a single injection. In this system, ropivacaine (Ro) is encapsulated into liposomes, which are then loaded into Poloxamer 407-based thermosensitive hydrogels. The Ro-loaded liposome-in-gel system (Ro-Lip-Gel) is in a sol state before injection, and immediately after subcutaneous injection, it forms a gel in situ. We show through in vitro release and in vivo pharmacokinetics studies that this gel acts as a drug release depot. In rats, the initial burst release of Ro was smaller from Ro-Lip-Gel than from Ro solution or Ro-Gel, and Ro-Lip-Gel caused nerve blockade lasting four times longer than Ro solution. Ro-Lip-Gel degraded in vivo and showed good biocompatibility. Our results suggest that a liposome-in-gel system can show small initial burst release, long-term nerve blockade and good biocompatibility in vitro and in vivo. Therefore, such a system may be useful for sustained local anesthesia without systemic toxicity.
Collapse
|
13
|
Synthesis of transdermal patches loaded with greenly synthesized zinc oxide nanoparticles and their cytotoxic activity against triple negative breast cancer. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02166-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Qi RQ, Liu W, Wang DY, Meng FQ, Wang HY, Qi HY. Development of local anesthetic drug delivery system by administration of organo-silica nanoformulations under ultrasound stimuli: in vitro and in vivo investigations. Drug Deliv 2021; 28:54-62. [PMID: 33342323 PMCID: PMC7751425 DOI: 10.1080/10717544.2020.1856220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The development of local anesthetic (LA) system is the application of commercial drug for the pain management that indorses the reversible obstructive mechanism of neural transmission through preventing the innervation process in human peripheral nerves. Ropivacaine (RV) is one of the greatest frequently used LA s with the actions of long-lasting and low-toxicity for the post-operative pain management. In this work, we have approached novel design and development of glycosylated chitosan (GCS) encapsulated mesoporous silica nanoparticles (GCS-MONPs)-based nano-scaffold for sustainable distributions and controlled/supported arrival of stacked RV for targeting sites, which can be activated by either outer ultrasound activating to discharge the payload, foundation on-request and dependable analgesia. The structural and morphology analyses result established that prepared nano-formulations have successful molecular interactions and RV loaded spherical morphological structures. The drug release profile of developed nanostructure with ultrasound-activation has been achieved 50% of drug release in 2 h and 90% of drug release was achieved in 12 h, which displays more controlled release when compared to free RV solution. The in vitro cell compatibility analysis exhibited GCS-MONPs with RV has improved neuron cell survival rates when compared to other samples due to its porous surface and suitable biopolymer proportions. The analysis of ex vitro and in vivo pain relief analysis demonstrated treated animal models have high compatibility with GCS-MONPs@RV, which was confirmed by histomorphology. This developed MONPs based formulations with ultrasound-irradiation gives a prospective technique to clinical agony the board through on-request and dependable help with discomfort.
Collapse
Affiliation(s)
- Rong-Qin Qi
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| | - Wei Liu
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| | - Duan-Yu Wang
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Fan-Qing Meng
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| | - Hong-Ying Wang
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| | - Hai-Yan Qi
- Department of Anesthesiology, Jinan Maternal and Child Health Hospital, Jinan, China
| |
Collapse
|
15
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
16
|
Cordeiro Lima Fernandes P, David de Moura L, Freitas de Lima F, Henrique Rodrigues da Silva G, Isaias Carvalho Souza R, de Paula E. Lipid nanocapsules loaded with prilocaine and lidocaine and incorporated in gel for topical application. Int J Pharm 2021; 602:120675. [PMID: 33961954 DOI: 10.1016/j.ijpharm.2021.120675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023]
Abstract
Lipid nanocapsules (LNC) are special drug delivery system (DDS) carriers obtained by the phase-inversion temperature method (PIT). This study describes the encapsulation of the local anesthetics (LA) prilocaine (PLC) and lidocaine (LDC) in lipid nanocapsules (LNCPLC+LDC) optimized by 23 factorial design, characterized through DLS, NTA, CRYO-EM and release kinetics and incorporated in carbopol gel (GelLNC PLC+LDC) prior to in vivo anesthetic effect (in mice) evaluation. A very homogeneous population of small (50 nm; polydispersity index = 0.05) spherical nanocapsules with negative zeta potentials (-21 mV) and ca. 2.3 × 1015 particles/mL was obtained. The encapsulation efficiency was high (81% and 89% for prilocaine and lidocaine, respectively). The release rate profile was free PLC = free LDC > LNCPLC+LDC > GelLNC PLC+LDC. The hybrid system increased (4x) the anesthesia time in comparison to an equipotent gel formulation prepared without LNC. No tissue damage was detected on the tail skin of mice that received the formulations. This study shows that lipid nanocapsules are suitable carriers for PLC and LDC, promoting longer and safer topical anesthesia. GelLNC PLC+LDC is mucoadhesive and suitable for application in the mouth, where it could be used as a pre-anesthetic, to reduce pain of needle stick (infiltrative anesthesia).
Collapse
Affiliation(s)
- Priscila Cordeiro Lima Fernandes
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Ludmilla David de Moura
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Fernando Freitas de Lima
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
17
|
Jiang T, Ma S, Shen Y, Li Y, Pan R, Xing H. Topical anesthetic and pain relief using penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers. Drug Deliv 2021; 28:478-486. [PMID: 33641554 PMCID: PMC7952054 DOI: 10.1080/10717544.2021.1889717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Many strategies have been developed to overcome the stratum corneum (SC) barrier, including functionalized nanostructures. Chemical penetration enhancers (CPEs) and cell-penetrating peptides (CPP) were applied to decorate nanostructured lipid carriers (NLC) for topical anesthetic and pain relief. A novel pyrenebutyrate (PB-PEG-DSPE) compound was synthesized by the amide action of the carboxylic acid group of PB with the amido groups of DSPE-PEG. PB-PEG-DSPE has a hydrophobic group, hydrophilic group, and lipid group. The lipid group can be inserted into NLC to form PB functional NLC. In order to improve the penetrability, TAT and PB multi-decorated NLC were designed for the delivery of lidocaine hydrochloride (LID) (TAT/PB LID NLC). The therapeutic effects of NLC in terms of in vitro skin penetration and in vivo in animal models were further studied. The size of TAT/PB LID NLC tested by DLS was 153.6 ± 4.3 nm. However, the size of undecorated LID NLC was 115.3 ± 3.6 nm. The PDI values of NLC vary from 0.13 ± 0.01 to 0.16 ± 0.03. Zeta potentials of NLC were negative, between -20.7 and -29.3 mV. TAT/PB LID NLC (851.2 ± 25.3 µg/cm2) showed remarkably better percutaneous penetration ability than PB LID NLC (610.7 ± 22.1 µg/cm2), TAT LID NLC (551.9 ± 21.8 µg/cm2) (p < .05) and non-modified LID NLC (428.2 ± 21.4 µg/cm2). TAT/PB LID NLC exhibited the most prominent anesthetic effect than single ligand decorated or undecorated LID NLC in vivo. The resulting TAT/PB LID NLC exhibited good skin penetration and anesthetic efficiency, which could be applied as a promising anesthesia system.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuangshuang Ma
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yangyang Shen
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuwen Li
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ruirui Pan
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
18
|
Rodrigues da Silva GH, Geronimo G, García-López JP, Ribeiro LNM, de Moura LD, Breitkreitz MC, Feijóo CG, de Paula E. Articaine in functional NLC show improved anesthesia and anti-inflammatory activity in zebrafish. Sci Rep 2020; 10:19733. [PMID: 33184457 PMCID: PMC7665027 DOI: 10.1038/s41598-020-76751-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 02/08/2023] Open
Abstract
Anesthetic failure is common in dental inflammation processes, even when modern agents, such as articaine, are used. Nanostructured lipid carriers (NLC) are systems with the potential to improve anesthetic efficacy, in which active excipients can provide desirable properties, such as anti-inflammatory. Coupling factorial design (FD) for in vitro formulation development with in vivo zebrafish tests, six different NLC formulations, composed of synthetic (cetyl palmitate/triglycerides) or natural (avocado butter/olive oil/copaiba oil) lipids were evaluated for loading articaine. The formulations selected by FD were physicochemically characterized, tested for shelf stability and in vitro release kinetics and had their in vivo effect (anti-inflammatory and anesthetic effect) screened in zebrafish. The optimized NLC formulation composed of avocado butter, copaiba oil, Tween 80 and 2% articaine showed adequate physicochemical properties (size = 217.7 ± 0.8 nm, PDI = 0.174 ± 0.004, zeta potential = - 40.2 ± 1.1 mV, %EE = 70.6 ± 1.8) and exhibited anti-inflammatory activity. The anesthetic effect on touch reaction and heart rate of zebrafish was improved to 100 and 60%, respectively, in comparison to free articaine. The combined FD/zebrafish approach was very effective to reveal the best articaine-in-NLC formulation, aiming the control of pain at inflamed tissues.
Collapse
Affiliation(s)
- Gustavo H Rodrigues da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil
| | - Gabriela Geronimo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil
| | - Juan P García-López
- Laboratory of Fish Immunology, Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, 8370146, Santiago, Chile
| | - Lígia N M Ribeiro
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil
| | - Ludmilla D de Moura
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil
| | - Márcia C Breitkreitz
- Department of Analytical Chemistry, Institute of Chemistry, UNICAMP, Campinas, São Paulo, Brazil
| | - Carmen G Feijóo
- Laboratory of Fish Immunology, Department of Biological Sciences, Faculty of Life Sciences, Andres Bello University, 8370146, Santiago, Chile.
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Rua Monteiro Lobato, 255, Cid. Universitária Zeferino Vaz, Campinas, São Paulo, 13083862, Brazil.
| |
Collapse
|
19
|
Gu TW, Wang MZ, Niu J, Chu Y, Guo KR, Peng LH. Outer membrane vesicles derived from E. coli as novel vehicles for transdermal and tumor targeting delivery. NANOSCALE 2020; 12:18965-18977. [PMID: 32914815 DOI: 10.1039/d0nr03698f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transdermal drug delivery is favored in clinical therapy because of its ability to overcome the shortcomings of the first pass elimination of the liver caused by traditional oral administration and the irreversibility of the injection. However, skin stratum corneum (SC) forms a big barrier that precludes most of the biomacromolecules. Herein, we propose the engineering of transformed Escherichia coli (E. coli) derived outer membrane vesicles, detoxified by lysozymes (named TEVs) as the carrier for transdermal drug delivery. TEVs were derived from transgenic E. coli and then modified by an integrin alpha(v)beta(3) (αvβ3) targeting peptide and co-loaded with indocyanine green (ICG) (P-TEVs-G). TEVs were shown to have excellence in penetrating through intact SC without any additional enhancement, followed by targeting of melanoma cells. TEVs are promising nanoplatforms for transdermal and tumor targeting drug delivery with high efficacy and biosafety, possessing great potential in the treatment of superficial tumors.
Collapse
Affiliation(s)
- Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | | | | | | | | | | |
Collapse
|
20
|
Tian X, Zhu H, Du S, Zhang XQ, Lin F, Ji F, Tsou YH, Li Z, Feng Y, Ticehurst K, Hannaford S, Xu X, Tao YX. Injectable PLGA-Coated Ropivacaine Produces A Long-Lasting Analgesic Effect on Incisional Pain and Neuropathic Pain. THE JOURNAL OF PAIN 2020; 22:180-195. [PMID: 32739615 DOI: 10.1016/j.jpain.2020.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
The management of persistent postsurgical pain and neuropathic pain remains a challenge in the clinic. Local anesthetics have been widely used as simple and effective treatment for these 2 disorders, but the duration of their analgesic effect is short. We here reported a new poly lactic-co-glycolic acid (PLGA)-coated ropivacaine that was continuously released in vitro for at least 6 days. Perisciatic nerve injection of the PLGA-coated ropivacaine attenuated paw incision-induced mechanical allodynia and heat hyperalgesia during the incisional pain period, and spared nerve injury-induced mechanical and cold allodynia for at least 7 days postinjection. This effect was dose-dependent. Perisciatic nerve injection of the PLGA-coated ropivacaine did not produce detectable inflammation, tissue irritation, or damage in the sciatic nerve and surrounding muscles at the injected site, dorsal root ganglion, spinal cord, or brain cortex, although the scores for grasping reflex were mildly and transiently reduced in the higher dosage-treated groups. PERSPECTIVE: Given that PLGA is an FDA-approved medical material, and that ropivacaine is used currently in clinical practice, the injectable PLGA-coated ropivacaine represents a new and highly promising avenue in the management of postsurgical pain and neuropathic pain.
Collapse
Affiliation(s)
- Xue Tian
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey; Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - He Zhu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fuqing Lin
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Fengtao Ji
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Yung-Hao Tsou
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Zhongyu Li
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China
| | - Kathryn Ticehurst
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Stephen Hannaford
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
21
|
Ahsan A, Tian WX, Farooq MA, Khan DH. An overview of hydrogels and their role in transdermal drug delivery. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anam Ahsan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, P. R. China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing Jiangsu, P. R. China
| | - Daulat Haleem Khan
- Department of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore, Pakistan
| |
Collapse
|
22
|
Bayat F, Hosseinpour-Moghadam R, Mehryab F, Fatahi Y, Shakeri N, Dinarvand R, Ten Hagen TLM, Haeri A. Potential application of liposomal nanodevices for non-cancer diseases: an update on design, characterization and biopharmaceutical evaluation. Adv Colloid Interface Sci 2020; 277:102121. [PMID: 32092487 DOI: 10.1016/j.cis.2020.102121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Liposomes, lipid-based vesicular systems, have attracted major interest as a means to improve drug delivery to various organs and tissues in the human body. Recent literature highlights the benefits of liposomes for use as drug delivery systems, including encapsulating of both hydrophobic and hydrophilic cargos, passive and active targeting, enhanced drug bioavailability and therapeutic effects, reduced systemic side effects, improved cargo penetration into the target tissue and triggered contents release. Pioneering work of liposomes researchers led to introduction of long-circulating, ligand-targeted and triggered release liposomes, as well as, liposomes containing nucleic acids and vesicles containing combination of cargos. Altogether, these findings have led to widespread application of liposomes in a plethora of areas from cancer to conditions such as cardiovascular, neurologic, respiratory, skin, autoimmune and eye disorders. There are numerous review articles on the application of liposomes in treatment of cancer, which seems the primary focus, whereas other diseases also benefit from liposome-mediated treatments. Therefore, this article provides an illustrated detailed overview of liposomal formulations, in vitro characterization and their applications in different disorders other than cancer. Challenges and future directions, which must be considered to obtain the most benefit from applications of liposomes in these disorders, are discussed.
Collapse
Affiliation(s)
- Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hosseinpour-Moghadam
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niayesh Shakeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC Cancer Center, Rotterdam, the Netherlands.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
ALQuadeib BT, Eltahir EK, Alagili MF. The Oral Administration of Lidocaine HCl Biodegradable Microspheres: Formulation and Optimization. Int J Nanomedicine 2020; 15:857-869. [PMID: 32103942 PMCID: PMC7008179 DOI: 10.2147/ijn.s236273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/03/2020] [Indexed: 01/17/2023] Open
Abstract
Purpose Lidocaine (LID) is a local anesthetic that is administered either by injection and/or a topical/transdermal route. However, there is a current need to develop efficacious methods for the oral delivery of LID with optimized bioavailability. Methods We developed oral LID biodegradable microspheres that were loaded with alginate-chitosan with different mass ratios, and characterized these microspheres in vitro. We also developed, and utilized, a simple and sensitive HPLC-tandem mass spectrometry (LC-MS-MS) method for assaying LID microspheres. Results The mean particle size (MPS) of the LID microspheres ranged from 340.7 to 528.3 nm. As the concentration of alginate was reduced, there was a significant reduction in MPS. However, there was no significant change in drug entrapment efficiency (DEE), or drug yield, when the alginate concentration was either increased or decreased. DSC measurements demonstrated the successful loading of LID to the new formulations. After a slow initial release, less than 10% of the LID was released in vitro within 4 h at pH 1.2. In order to evaluate nephrotoxicity, we carried out MTT assays of LID in two types of cell line (LLC-PK1 and MDCK). LID significantly suppressed the cell toxicity of both cell lines at the concentrations tested (100, 200, and 400ng/µL). Conclusion Experiments involving the oral delivery of LID formulations showed a significant reduction in particle size and an improvement in dissolution rate. The formulations of LID developed exhibit significantly less toxicity than LID alone.
Collapse
Affiliation(s)
- Bushra T ALQuadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11671, Saudi Arabia
| | - Eram Kd Eltahir
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11671, Saudi Arabia
| | - Modhi F Alagili
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
24
|
Zhang X, Dang M, Zhang W, Lei Y, Zhou W. Sustained delivery of prilocaine and lidocaine using depot microemulsion system:in vitro, ex vivoandin vivoanimal studies. Drug Dev Ind Pharm 2020; 46:264-271. [PMID: 32000536 DOI: 10.1080/03639045.2020.1716377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaomin Zhang
- Department of Neurology, The Second People’s Hospital of Yunnan Province, Yunnan, China
| | - Minyan Dang
- Innoscience Research Sdn Bhd, Selangor, Malaysia
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd, Selangor, Malaysia
| | - Yan Lei
- Innoscience Research Sdn Bhd, Selangor, Malaysia
| | - Wentao Zhou
- Department of Anesthesiology, The Second People's Hospital of Shaanxi Province, Shaanxi, China
| |
Collapse
|
25
|
Lalatsa A, Patel PV, Sun Y, Kiun CC, Karimi F, Zekonyte J, Emeriewen K, Saleh GM. Transcutaneous anaesthetic nano-enabled hydrogels for eyelid surgery. Int J Pharm 2020; 577:119003. [PMID: 31935474 DOI: 10.1016/j.ijpharm.2019.119003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/01/2019] [Accepted: 12/26/2019] [Indexed: 12/28/2022]
Abstract
Local anaesthetics are administered as a diffuse superficial slow injection in blepharoplasty. Current transcutaneous local anaesthetic formulations are not licensed for use on the face due to safety concerns. Here we report for the first time the permeation of local anaesthetics (lidocaine, bupivacaine loaded SNEDDS and their hydrogels) across human eyelid and mouse skin as a novel and ocular safe formulation for eyelid surgery. SNEDDS were loaded with high levels of anaesthetics and incorporated within carbomer hydrogels to yield nano-enabled gels. Lidocaine hydrogels have a significantly reduced lag time compared to EMLA, while they enhance lidocaine flux across human eyelid skin by 5.2 fold. Ex vivo tape stripping experiments indicated localisation of anaesthetics within the stratum corneum and dermis. Initial histopathological studies have shown no apparent signs of skin irritation. These results highlight the potential clinical capability of nano-enabled anaesthetic hydrogels as a non-invasive anaesthetic procedure for eyelid surgery.
Collapse
Affiliation(s)
- Aikaterini Lalatsa
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK.
| | - Priyanka V Patel
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Yujiao Sun
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Chong C Kiun
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Ferishtah Karimi
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, Faculty of Technology, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ, UK
| | - Krisztina Emeriewen
- The National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - George M Saleh
- The National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 2PD, UK
| |
Collapse
|
26
|
Yang Y, Qiu D, Liu Y, Chao L. Topical anesthetic analgesic therapy using the combination of ropivacaine and dexmedetomidine: hyaluronic acid modified long-acting nanostructured lipid carriers containing a skin penetration enhancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3307-3319. [PMID: 31571832 PMCID: PMC6755955 DOI: 10.2147/dddt.s211443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
Purpose Hyaluronic acid-poly(ethylene glycol)-distearoyl phosphoethanolamine (HA-PEG-DSPE) modified and tocopheryl polyethylene glycol 1000 succinate (TPGS) contained nanostructured lipid carriers (NLCs) were prepared loading ropivacaine and dexmedetomidine to improve the topical anesthetic analgesic anesthesia efficiency. Methods NLCs were prepared by the solvent diffusion method. The average particle size, zeta potential, release behavior, and cytotoxicity of the NLCs were tested. Ex vivo skin permeation was studied using a Franz diffusion cell mounted with depilated rat skin. Local anesthesia antinociceptive efficiency was evaluated by rat tail flick latency study in vivo. Results NLCs have sizes of about 100 nm, with negative zeta potentials. All the NLCs formulations were found to be significantly less cytotoxic than free drugs at equivalent concentrations. The cumulative amount of drugs penetrated through rat skin from NLCs was 2.0–4.7 folds higher than that of the drugs solution. The in vivo anesthesia antinociception study displayed that NLCs showed stronger and longer anesthesia antinociceptive effect when compared with single drugs loaded NLCs and drugs solution even at a lower dosage of drugs. Conclusion The results demonstrated that the HA modified, TPGS contained, dual drugs loaded NLCs could perform a synergistic effect and may reduce the amount of drugs, which can lower the toxicity of the system and at the meanwhile, increase the anesthesia antinociceptive efficiency.
Collapse
Affiliation(s)
- Yongjian Yang
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong Province 250013, People's Republic of China
| | - Dahai Qiu
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong Province 250013, People's Republic of China
| | - Yajun Liu
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong Province 250013, People's Republic of China
| | - Lei Chao
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University, Ji'nan, Shandong Province 250013, People's Republic of China
| |
Collapse
|
27
|
Long-term anesthetic analgesic effects: Comparison of tetracaine loaded polymeric nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers in vitro and in vivo. Biomed Pharmacother 2019; 117:109057. [DOI: 10.1016/j.biopha.2019.109057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
|
28
|
de Araújo DR, Ribeiro LNDM, de Paula E. Lipid-based carriers for the delivery of local anesthetics. Expert Opin Drug Deliv 2019; 16:701-714. [PMID: 31172838 DOI: 10.1080/17425247.2019.1629415] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION There is a clinical need for pharmaceutical dosage forms devised to prolong the acting time of local anesthetic (LA) agents or to reduce their toxicity. Encapsulation of LA in drug delivery systems (DDSs) can provide long-term anesthesia for inpatients (e.g. in immediate postsurgical pain control, avoiding the side effects from systemic analgesia) and diminished systemic toxicity for outpatients (in ambulatory/dentistry procedures). The lipid-based formulations described here, such as liposomes, microemulsions, and lipid nanoparticles, have provided several nanotechnological advances and therapeutic alternatives despite some inherent limitations associated with the fabrication processes, costs, and preclinical evaluation models. AREAS COVERED A description of the currently promising lipid-based carriers, including liposomes, microemulsions, and nanostructured lipid carriers, followed by a systematic review of the existing lipid-based formulations proposed for LA. Trends in the research of these LA-in-DDS are then exposed, from the point of view of administration route and alternatives for non-traditionally administered LA molecules. EXPERT OPINION Considering the current state and potential future developments in the field, we discuss the reasons for why dozens of formulations published every year fail to reach clinical trials; only one lipid-based formulation for the delivery of local anesthetic (Exparel®) has been approved so far.
Collapse
Affiliation(s)
| | - Lígia Nunes de Morais Ribeiro
- b Department of Biochemistry and Tissue Biology , Institute of Biology, University of Campinas - UNICAMP , Campinas, São Paulo , Brazil
| | - Eneida de Paula
- b Department of Biochemistry and Tissue Biology , Institute of Biology, University of Campinas - UNICAMP , Campinas, São Paulo , Brazil
| |
Collapse
|
29
|
Vigato AA, Querobino SM, de Faria NC, de Freitas ACP, Leonardi GR, de Paula E, Cereda CMS, Tófoli GR, de Araujo DR. Synthesis and characterization of nanostructured lipid-poloxamer organogels for enhanced skin local anesthesia. Eur J Pharm Sci 2019; 128:270-278. [PMID: 30553060 DOI: 10.1016/j.ejps.2018.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
The aim of this study was to synthesize a novel drug delivery system using organogels (ORGs) and characterize its physicochemical properties, in vitro and ex vivo permeation abilities, cytotoxicity and in vivo local anesthetic effects. The ORG formulations contained a mixture of oleic acid-lanolin (OA-LAN), poloxamer (PL407), and the commonly used local anesthetic lidocaine (LDC). The main focus was to evaluate the impact of LAN and PL407 concentrations on the ORG structural features and their biopharmaceutical performance. Results revealed that LDC, OA, and LAN incorporation separately shifted the systems transitions phase temperatures and modified the elastic/viscous moduli relationships (G'/G″ = ~15×). Additionally, the formulation with the highest concentrations of LAN and PL407 reduced the LDC flux from ~17 to 12 μg·cm-2·h-1 and the permeability coefficients from 1.2 to 0.62 cm·h-1 through ex vivo skin. In vivo pharmacological evaluation showed that the ORG-based drug delivery system presented low cytotoxicity, increased and prolonged the local anesthetic effects compared to commercial alternatives. The data from this study indicate that ORG represent a promising new approach to effectively enhance the topical administration of local anesthetics.
Collapse
|
30
|
Influence of hybrid polymeric nanoparticle/thermosensitive hydrogels systems on formulation tracking and in vitro artificial membrane permeation: A promising system for skin drug-delivery. Colloids Surf B Biointerfaces 2019; 174:56-62. [DOI: 10.1016/j.colsurfb.2018.10.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/23/2022]
|
31
|
Zhao X, Sun Y, Li Z. Topical anesthesia therapy using lidocaine-loaded nanostructured lipid carriers: tocopheryl polyethylene glycol 1000 succinate-modified transdermal delivery system. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4231-4240. [PMID: 30587919 PMCID: PMC6296185 DOI: 10.2147/dddt.s187177] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purpose Transdermal drug delivery of local anesthetics using lipid nanoparticles could enhance lipophilic drugs permeation through the stratum corneum, improve drug diffusion to deeper skin, and exert good therapeutic effects. The purpose of this study was to engineer a Tocopheryl Polyethylene Glycol 1000 Succinate (TPGS)-modified cationic nanostructured lipid carriers (NLC) for the delivery of lidocaine (LID; TPGS/LID-NLC). Materials and methods TPGS/LID-NLC was prepared by solvent diffusion method. The particle size, polydispersity index, zeta potential, drug entrapment efficiency, drug loading, stability, drug release, and cytotoxicity were tested to evaluate the basic characters of NLC. In vitro skin permeation and in vivo anesthesia effect in an animal model were further investigated to determine the therapeutic efficiency of the system. Results TPGS/LID-NLC had a particle size of 167.6±4.3 nm, a zeta potential of +21.2±2.3 mV, an entrapment efficiency of 85.9%±3.1%, and a drug loading of 11.5%±0.9%. A sustained release pattern was achieved by TPGS/LID-NLC, with 81.2% of LID released at 72 hours. In vitro permeation study showed that the steady-state fluxes (Jss), permeability coefficient (Kp), and cumulative drug permeation Qn at 72 hours (Q72) of TPGS/LID-NLC were 15.6±1.8 µg/cm2/hour, 10.3±0.9 cm/hour (×10−3), and 547.5±23.6 µg/cm2, respectively, which were significantly higher than the nonmodified NLC and free drug groups. In vivo anesthesia effect of TPGS/LID-NLC was the most remarkable and long acting among the formulations tested, which could be concluded by the most considerable maximum possible effect from 10 to 120 minutes during the whole research. Conclusion The most prominent in vitro permeation efficiency and in vivo anesthetic effect of TPGS/LID-NLC could be the evidence that TPGS-modified NLC could function as a promising drug delivery system for prolonged and efficient local anesthetic therapy.
Collapse
Affiliation(s)
- Xiangju Zhao
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, People's Republic of China,
| | - Ying Sun
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, People's Republic of China,
| | - Zhaoguo Li
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, People's Republic of China,
| |
Collapse
|
32
|
Barbosa RM, Casadei BR, Duarte EL, Severino P, Barbosa LRS, Duran N, de Paula E. Electron Paramagnetic Resonance and Small-Angle X-ray Scattering Characterization of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Dibucaine Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13296-13304. [PMID: 30299102 DOI: 10.1021/acs.langmuir.8b02559] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dibucaine (DBC) is one of the most potent long-acting local anesthetics, but it also has significant toxic side effects and low water solubility. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been proposed as drug-delivery systems to increase the bioavailability of local anesthetics. The purpose of the present study was to characterize SLNs and NLCs composed of cetyl palmitate or myristyl myristate, a mixture of capric and caprylic acids (for NLCs only) plus Pluronic F68 prepared for the encapsulation of DBC. We intended to provide a careful structural characterization of the nanoparticles to identify the relevant architectural parameters that lead to the desirable biological response. Initially, SLNs and NLCs were assessed in terms of their size distribution, morphology, surface charge, and drug loading. Spectroscopic techniques (infrared spectroscopy and electron paramagnetic resonance, EPR) plus small-angle X-ray scattering (SAXS) provided information on the interactions between nanoparticle components and their structural organization. The sizes of nanoparticles were in the 180 nm range with low polydispersity and negative zeta values (-25 to -46 mV). The partition coefficient of DBC between nanoparticles and water at pH 8.2 was very high (>104). EPR (with doxyl-stearate spin labels) data revealed the existence of lamellar arrangements inside the lipid nanoparticles, which was also confirmed by SAXS experiments. Moreover, the addition of DBC increased the molecular packing of both SLN and NLC lipids, indicative of DBC insertion between the lipids, in the milieu assessed by spin labels. Such structural information brings insights into understanding the molecular organization of these versatile drug-delivery systems which have already demonstrated their potential for therapeutic applications in pain control.
Collapse
Affiliation(s)
- Raquel M Barbosa
- Biochemistry and Tissue Biology Department, Institute of Biology , University of Campinas (UNICAMP) , 13083-862 Campinas , São Paulo , Brazil
- Pharmacy Department , UNINASSAU College , 59080-400 Natal , Rio Grande do Norte , Brazil
| | - Bruna R Casadei
- Biophysics Department , Federal University of São Paulo (UNIFESP) , 04021-001 São Paulo , São Paulo , Brazil
| | - Evandro L Duarte
- Physics Institute , University of São Paulo (USP) , 05508-090 São Paulo , São Paulo , Brazil
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMED) , Tiradentes University (UNIT) and Institute of Technology and Research (ITP) , Av. Murilo Dantas, 300 , 49010-390 Aracaju , Sergipe , Brazil
| | - Leandro R S Barbosa
- Physics Institute , University of São Paulo (USP) , 05508-090 São Paulo , São Paulo , Brazil
| | - Nelson Duran
- Institute of Chemistry , University of Campinas (UNICAMP) , 13083-861 Campinas , São Paulo , Brazil
| | - Eneida de Paula
- Biochemistry and Tissue Biology Department, Institute of Biology , University of Campinas (UNICAMP) , 13083-862 Campinas , São Paulo , Brazil
| |
Collapse
|
33
|
Development of bupivacaine decorated reduced graphene oxide and its local anesthetic effect-In vivo study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:72-76. [PMID: 29413704 DOI: 10.1016/j.jphotobiol.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/10/2017] [Accepted: 01/12/2018] [Indexed: 11/21/2022]
Abstract
The present works aims to develop bupivacaine modified reduced graphene oxide (BPV/RGO), and comparative evaluation of their anesthetic effect with free bupivacaine (BPV). The prepared BPV/RGO was studied by using various spectroscopic and microscopic characterization studies. In vitro drug release from BPV/RGO was studied using HPLC analysis. The cytotoxicity of BPV/RGO was studied against fibroblast (3T3) cells. In vivo evaluation of anesthetic effects was performed on animal models. BPV/RGO showed a prolonged in vitro release and lower cytotoxicity when compared to free BPV. Also, BPV/RGO showed a significantly prolonged analgesic effect when compared to free BPV. Further, the prepared BPV/RGO drug delivery system demonstrated to function as gifted to overcome the drawbacks of free BPV and other available drug delivery systems by prolonging the anesthetic effect with poor cytotoxicity.
Collapse
|
34
|
Kukawka R, Czerwoniec P, Lewandowski P, Pospieszny H, Smiglak M. New ionic liquids based on systemic acquired resistance inducers combined with the phytotoxicity reducing cholinium cation. NEW J CHEM 2018. [DOI: 10.1039/c8nj00778k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systemic acquired resistance (SAR) is one of the most promising ways to support plants in the fight against viruses.
Collapse
Affiliation(s)
- R. Kukawka
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
- Faculty of Chemistry
| | - P. Czerwoniec
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
- Faculty of Chemistry
| | - P. Lewandowski
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
- Faculty of Chemistry
| | - H. Pospieszny
- Institute of Plant Protection – National Research Institute
- 60-318 Poznan
- Poland
| | - M. Smiglak
- Poznan Science and Technology Park
- Adam Mickiewicz University Foundation
- 61-612 Poznan
- Poland
- Faculty of Chemistry
| |
Collapse
|
35
|
Virador GM, de Marcos L, Virador VM. Skin Wound Healing: Refractory Wounds and Novel Solutions. Methods Mol Biol 2018; 1879:221-241. [PMID: 29797010 DOI: 10.1007/7651_2018_161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This overview of the current state of skin wound healing includes in vitro and in vivo approaches along with some recent clinical trials. From an introduction to wound healing, to tissue engineering as applied to the skin, we cover the basis for the current wound care techniques as well as novel and promising approaches. Special emphasis is given to refractory wounds which include wounds in diabetic patients. Natural compounds have been ever present in wound healing, and so we devote a section to highlighting current attempts to understand their mechanisms and to use them in novel ways.
Collapse
Affiliation(s)
- Gabriel M Virador
- Biology Department, Montgomery College, Rockville, MD, USA.,University of Navarra, Pamplona, Navarra, Spain
| | | | - Victoria M Virador
- Biology Department, Montgomery College, Rockville, MD, USA. .,Virador and Associates, Bethesda, MD, USA.
| |
Collapse
|
36
|
You P, Yuan R, Chen C. Design and evaluation of lidocaine- and prilocaine-coloaded nanoparticulate drug delivery systems for topical anesthetic analgesic therapy: a comparison between solid lipid nanoparticles and nanostructured lipid carriers. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2743-2752. [PMID: 29075099 PMCID: PMC5609786 DOI: 10.2147/dddt.s141031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose Topical anesthesia analgesic therapy has diverse applicability in solving the barrier properties of skin and unfavorable physicochemical properties of drugs. Lidocaine (LID) combined with prilocaine (PRI) has been used as a topical preparation for dermal anesthesia for treatment of conditions such as paresthesia. Materials and methods In this study, for combination anesthesia and overcoming the drawbacks of LID and PRI, respectively, LID- and PRI-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were prepared and characterized by determination of their particle size, drug loading capacity, stability, in vitro drug release behavior and in vitro cellular viability. Ex vivo skin permeation and in vivo anesthesia analgesic efficiency of these two systems were also evaluated and compared. Results Results revealed that combination delivery of the dual drugs exhibited more remarkable efficiency than signal drug-loaded systems. SLN systems have better ex vivo skin permeation ability than NLCs. NLC systems revealed a stronger in vivo anesthesia analgesic effect than SLN systems. Conclusion It can be concluded that SLNs and NLCs have different advantages, and that both carriers are promising dual drug delivery systems for topical anesthetic analgesic therapy.
Collapse
Affiliation(s)
- Peijun You
- Department of Anesthesiology, Shandong Jining No 1 People's Hospital, Shandong, People's Republic of China
| | - Ran Yuan
- Department of Anesthesiology, Affiliated Hospital of Jining Medical College, Jining, Shandong, People's Republic of China
| | - Chuanyu Chen
- Department of Anesthesiology, Shandong Jining No 1 People's Hospital, Shandong, People's Republic of China
| |
Collapse
|
37
|
Chen C, You P. A novel local anesthetic system: transcriptional transactivator peptide-decorated nanocarriers for skin delivery of ropivacaine. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1941-1949. [PMID: 28721013 PMCID: PMC5500491 DOI: 10.2147/dddt.s135916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose Barrier properties of the skin and physicochemical properties of drugs are the main factors for the delivery of local anesthetic molecules. The present work evaluates the anesthetic efficacy of drug-loaded nanocarrier (NC) systems for the delivery of local anesthetic drug, ropivacaine (RVC). Methods In this study, transcriptional transactivator peptide (TAT)-decorated RVC-loaded NCs (TAT-RVC/NCs) were successfully fabricated. Physicochemical properties of NCs were determined in terms of particle size, zeta potential, drug encapsulation efficiency, drug-loading capacity, stability, and in vitro drug release. The skin permeation of NCs was examined using a Franz diffusion cell mounted with depilated mouse skin in vitro, and in vivo anesthetic effect was evaluated in mice. Results The results showed that TAT-RVC/NCs have a mean diameter of 133.2 nm and high drug-loading capacity of 81.7%. From the in vitro skin permeation results, it was observed that transdermal flux of TAT-RVC/NCs was higher than that of RVC-loaded NCs (RVC/NCs) and RVC injection. The evaluation of in vivo anesthetic effect illustrated that TAT-RVC/NCs can enhance the transdermal delivery of RVC by reducing the pain threshold in mice. Conclusion These results indicate that TAT-decorated NCs systems are useful for overcoming the barrier function of the skin, decreasing the dosage of RVC and enhancing the anesthetic effect. Therefore, TAT-decorated NCs can be used as an effective transdermal delivery system for local anesthesia.
Collapse
Affiliation(s)
- Chuanyu Chen
- Department of Anesthesiology, Shandong Jining No 1 People's Hospital, Jining, Shandong, People's Republic of China
| | - Peijun You
- Department of Anesthesiology, Shandong Jining No 1 People's Hospital, Jining, Shandong, People's Republic of China
| |
Collapse
|
38
|
Mallandrich M, Fernández-Campos F, Clares B, Halbaut L, Alonso C, Coderch L, Garduño-Ramírez ML, Andrade B, Del Pozo A, Lane ME, Calpena AC. Developing Transdermal Applications of Ketorolac Tromethamine Entrapped in Stimuli Sensitive Block Copolymer Hydrogels. Pharm Res 2017; 34:1728-1740. [PMID: 28540502 DOI: 10.1007/s11095-017-2181-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE In order to obtain dermal vehicles of ketorolac tromethamine (KT) for the local treatment of inflammation and restrict undesirable side effects of systemic levels hydrogels (HGs) of poloxamer and carbomer were developed. METHODS KT poloxamer based HG (KT-P407-HG) and KT carbomer based HG (KT-C940-HG) were elaborated and characterized in terms of swelling, degradation, porosity, rheology, stability, in vitro release, ex vivo permeation and distribution skin layers. Finally, in vivo anti-inflammatory efficacy and skin tolerance were also assessed. RESULTS HGs were transparent and kept stable after 3 months exhibiting biocompatible near neutral pH values. Rheological patterns fitted to Herschel-Bulkley for KT-C940-HG and Newton for KT-P407-HG due to its low viscosity at 25°C. Rapid release profiles were observed through first order kinetics. Following the surface the highest concentration of KT from C940-HG was found in the epidermis and the stratum corneum for P407-HG. Relevant anti-inflammatory efficacy of KT-P407-HG revealed enough ability to provide sufficient bioavailability KT to reach easily the site of action. The application of developed formulations in volunteers did not induce any visual skin irritation. CONCLUSIONS KT-P407-HG was proposed as suitable formulation for anti-inflammatory local treatment without theoretical systemic side effect.
Collapse
Affiliation(s)
- Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 27-31 Joan XXIII Av, 08028, Barcelona, Spain
| | - Francisco Fernández-Campos
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain
| | - Beatriz Clares
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 27-31 Joan XXIII Av, 08028, Barcelona, Spain. .,Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja s/n,, 18071, Granada,, Spain.
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 27-31 Joan XXIII Av, 08028, Barcelona, Spain
| | - Cristina Alonso
- Institute of Advanced Chemistry of Catalonia, 18-26 Jordi Girona St, 08034, Barcelona, Spain
| | - Luisa Coderch
- Institute of Advanced Chemistry of Catalonia, 18-26 Jordi Girona St, 08034, Barcelona, Spain
| | - Maria L Garduño-Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001,, 62209, Cuernavaca, Morelos, Mexico
| | - Berenice Andrade
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001,, 62209, Cuernavaca, Morelos, Mexico
| | - Alfonso Del Pozo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square,, London,, WC1N 1AX, UK
| | - Ana C Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 27-31 Joan XXIII Av, 08028, Barcelona, Spain
| |
Collapse
|
39
|
Sharma G, Kamboj S, Thakur K, Negi P, Raza K, Katare OP. Delivery of Thermoresponsive-Tailored Mixed Micellar Nanogel of Lidocaine and Prilocaine with Improved Dermatokinetic Profile and Therapeutic Efficacy in Topical Anaesthesia. AAPS PharmSciTech 2017; 18:790-802. [PMID: 27317572 DOI: 10.1208/s12249-016-0561-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022] Open
Abstract
The topical delivery of local anaesthetics has always been a difficult task due to the limited percutaneous absorption of local anaesthetic drugs across the various barriers of the skin. In this pursuit, a thermoresponsive mixed micellar nanogel (MMNG) system of lidocaine and prilocaine has been attempted in the current piece of work. The system relies on the ability to alter its phase state (sol-to-gel) for feasibility of the topical application in response to change in temperature. The composition of MMNG entails majorly of Pluronic® F127 and Tween 80 in a fixed combination so as to provide the desired thermoreversibility for the skin application. The gels were optimized with respect to phase transition temperature (T sol/gel), turbidity and viscosity. The optimized systems were then characterized for particle size, spreadability, syringeability, bioadhesive strength, ex vivo skin permeation, retention and dermatokinetic studies. The skin compatibility revealed that no histological changes were observed for optimized formulation, while the conventional system showed changes in the skin-tissues. Further, the enhanced intensity of anaesthetic effect was noted in an in vivo rabbit model and tail flick model in mice. The overall results suggest that the prepared MMNG system possesses the potential in providing an efficacious, safe and acceptable alternative therapeutic system for topical anaesthesia.
Collapse
|
40
|
Ma P, Li T, Xing H, Wang S, Sun Y, Sheng X, Wang K. Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: In vitro and in vivo evaluation. Biomed Pharmacother 2017; 89:689-695. [PMID: 28267672 DOI: 10.1016/j.biopha.2017.01.175] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE There is a compelling need for prolonged local anesthetic that would be used for analgesia with a single administration. However, due to the low molecular weight of local anesthetics (LA) (lidocaine, bupivacaine, procaine, dibucaine, etc), they present fast systemic absorption. METHODS The aim of the present study was to develop and evaluate bupivacaine lipid-polymer hybrid nanoparticles (BVC LPNs), and compared with BVC loaded PLGA nanoparticles (BVC NPs). Their morphology, particle size, zeta potential and drug loading capacity were evaluated. In vitro release study, stability and cytotoxicity were studied. In vivo evaluation of anesthetic effects was performed on animal models. RESULTS A facile nanoprecipitation and self-assembly method was optimized to obtain BVC LPNs, composed of PLGA, lecithin and DSPE-PEG2000, of ∼175nm particle size. Compared to BVC NPs, BVC LPNs exhibited prolonged in vitro release in phosphate-buffered saline (pH=7.4). Further, BVC LPNs displayed enhanced in vitro stability in 10% FBS and lower cytotoxicity (the concentration of BVC ranging from 1.0μM to 20μM). In addition, BVC LPNs exhibited significantly prolonged analgesic duration. CONCLUSION These results demonstrate that the LPNs could function as promising drug delivery system for overcoming the drawbacks of poor stability and rapid drug leakage, and prolonging the anesthetic effect with slight toxicity.
Collapse
Affiliation(s)
- Pengju Ma
- Department of Anesthesiology, Anqiu People's Hospital, Anqiu 262100, Shandong Province, China
| | - Ting Li
- Delivery Room, People's Hospital of Anqiu, Anqiu 262100, Shandong Province, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China.
| | - Suzhen Wang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Yingui Sun
- Department of Anesthesiology, Weifang Medical University, Weifang 261042, Shandong Province, China
| | - Xiugui Sheng
- Department of Gynecological Tumor, Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Kaiguo Wang
- Department of Anesthesiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, Shandong Province, China
| |
Collapse
|
41
|
Beiranvand S, Eatemadi A, Karimi A. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles. NANOSCALE RESEARCH LETTERS 2016; 11:307. [PMID: 27342601 PMCID: PMC4920745 DOI: 10.1186/s11671-016-1520-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/07/2016] [Indexed: 05/29/2023]
Abstract
Lipid nanoparticles (liposomes) were first described in 1965, and several work have led to development of important technical advances like triggered release liposomes and drug-loaded liposomes. These advances have led to numerous clinical trials in such diverse areas such as the delivery of anti-cancer, antifungal, and antibiotic drugs; the delivery of gene medicines; and most importantly the delivery of anesthesia drugs. Quite a number of liposomes are on the market, and many more are still in developmental stage. Lipid nanoparticles are the first nano-medicine delivery system to be advanced from laboratory concept to clinical application with high considerable clinical acceptance. Drug delivery systems for local anesthetics (LAs) have caught the interest of many researchers because there are many biomedical advantages connected to their application. There have been several formulation techniques to systemically deliver LA that include encapsulation in liposomes and complexation in cyclodextrins, nanoparticles, and to a little extent gold nanoparticles. The proposed formulations help to decrease the LA concentration utilized, increase its permeability, and most importantly increase the localization of the LA for a long period of time thereby leading to increase in the duration of the LA effect and finally to reduce any local and systemic toxicity. In this review, we will highlight on new updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.
Collapse
Affiliation(s)
- Siavash Beiranvand
- Department of Anesthesiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Ali Eatemadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Karimi
- Department of Anesthesiology, Lorestan University of Medical Sciences, Khoramabad, Iran.
| |
Collapse
|
42
|
Peng LH, Wei W, Shan YH, Chong YS, Yu L, Gao JQ. Sustained release of piroxicam from solid lipid nanoparticle as an effective anti-inflammatory therapeutics in vivo. Drug Dev Ind Pharm 2016; 43:55-66. [DOI: 10.1080/03639045.2016.1220563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Wei Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- School of Pharmaceutical Sciences, Jiamushi University, Jiamushi, P.R. China
| | - Ying-Hui Shan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yee-Song Chong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Lian Yu
- School of Pharmaceutical Sciences, Jiamushi University, Jiamushi, P.R. China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- Technology Center for Transdermal Drug Delivery System of Jiangsu Province, Jiangsu, P.R. China
| |
Collapse
|
43
|
Franz-Montan M, Ribeiro LNDM, Volpato MC, Cereda CMS, Groppo FC, Tofoli GR, de Araújo DR, Santi P, Padula C, de Paula E. Recent advances and perspectives in topical oral anesthesia. Expert Opin Drug Deliv 2016; 14:673-684. [DOI: 10.1080/17425247.2016.1227784] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Zhang L, Wang J, Chi H, Wang S. Local anesthetic lidocaine delivery system: chitosan and hyaluronic acid-modified layer-by-layer lipid nanoparticles. Drug Deliv 2016; 23:3529-3537. [PMID: 27340888 DOI: 10.1080/10717544.2016.1204569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
CONTEXT Transdermal local anesthesia is one of the most applied strategies to avoid systemic adverse effects; there is an appealing need for a prolonged local anesthetic that would provide better bioavailability and longer pain relief with a single administration. OBJECTIVE Layer-by-layer (LBL) technique was used in this study to explore a nanosized drug delivery system for local anesthetic therapy. MATERIALS AND METHODS LBL-coated lidocaine-loaded nanostructured lipid nanoparticles (LBL-LA/NLCs) were prepared and characterized in terms of particle size (PS), zeta potential, drug encapsulation efficiency (EE), in vitro skin permeation and in vivo local anesthetic studies. RESULTS Evaluation of the in vitro skin permeation and in vivo anesthesia effect illustrated that LBL-LA/NLCs can enhance and prolong the anesthetic effect of LA. DISCUSSION AND CONCLUSION LBL-LA/NLCs could function as a promising drug delivery strategy for overcoming the barrier function of the skin and could deliver anesthetic through the skin with sustained release behavior for local anesthetic therapy.
Collapse
Affiliation(s)
- Laizhu Zhang
- a Department of Anesthesiology , Affiliated Hospital of Jining Medical University , Jining , Shandong , China and
| | - Jianguo Wang
- a Department of Anesthesiology , Affiliated Hospital of Jining Medical University , Jining , Shandong , China and
| | - Huimin Chi
- a Department of Anesthesiology , Affiliated Hospital of Jining Medical University , Jining , Shandong , China and
| | - Shilei Wang
- b Department of Anesthesiology , Affiliated Hospital of Qingdao University Medical College , Qingdao , Shandong , China
| |
Collapse
|
45
|
Wang J, Zhang L, Chi H, Wang S. An alternative choice of lidocaine-loaded liposomes: lidocaine-loaded lipid–polymer hybrid nanoparticles for local anesthetic therapy. Drug Deliv 2016; 23:1254-60. [PMID: 26881926 DOI: 10.3109/10717544.2016.1141259] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jianguo Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong, China and
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Laizhu Zhang
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Huimin Chi
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Shilei Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong, China and
| |
Collapse
|
46
|
Liberato MS, Kogikoski S, da Silva ER, de Araujo DR, Guha S, Alves WA. Polycaprolactone fibers with self-assembled peptide micro/nanotubes: a practical route towards enhanced mechanical strength and drug delivery applications. J Mater Chem B 2016; 4:1405-1413. [DOI: 10.1039/c5tb02240a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The conjugation between micro/nanotubes of l,l-diphenylalanine and polycaprolactone has led to ductile composite fibers suitable for designing polymer membranes potentially usable as degradable skin patches in drug delivery.
Collapse
Affiliation(s)
- M. S. Liberato
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Santo André
- Brazil
| | - S. Kogikoski
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Santo André
- Brazil
| | - E. R. da Silva
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Santo André
- Brazil
| | - D. R. de Araujo
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Santo André
- Brazil
| | - S. Guha
- Department of Physics and Astronomy
- University of Missouri
- Columbia
- USA
| | - W. A. Alves
- Centro de Ciências Naturais e Humanas
- Universidade Federal do ABC
- Santo André
- Brazil
| |
Collapse
|
47
|
Babaie S, Ghanbarzadeh S, Davaran S, Kouhsoltani M, Hamishehkar H. Nanoethosomes for Dermal Delivery of Lidocaine. Adv Pharm Bull 2015; 5:549-56. [PMID: 26819928 DOI: 10.15171/apb.2015.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 01/12/2023] Open
Abstract
PURPOSE It is necessary for local anesthetics to pass through the stratum corneum to provide rapid pain relief. Many techniques have been reported to enhance intradermal penetration of local anesthetics such as vesicular lipid carriers. Ethosomes are lipid vesicles containing phospholipids, ethanol at relatively high concentration. We hypothesized that synergistic effects of phospholipids and high concentration of ethanol in formulation could accelerate penetration of nanoethosomes in deep layers of skin. METHODS Lidocaine-loaded nanoethosomes were prepared and characterized by size and zeta analyzer, scanning electron microscopy (SEM) and X-ray diffractometer (XRD). Furthermore, encapsulation efficiency (EE), loading capacity (LC), and skin penetration capability were evaluated by in vitro and in vivo experiments. RESULTS results showed that the particle size, zeta potential, EE and LC of optimum formulation were 105.4 ± 7.9 nm, -33.6 ± 2.4 mV, 40.14 ± 2.5 %, and 8.02 ± 0.71 respectively. SEM results confirmed the non-aggregated nano-scale size of prepared nanoethosomes. Particle size of ethosomes and EE of Lidocaine were depended on the phospholipid and ethanol concentrations. XRD results demonstrated the drug encapsulation in amorphous status interpreting the achieved high drug EE and LC values. In vitro and in vivo assays confirmed the appropriate skin penetration of Lidocaine with the aid of nanoethosomes and existence of deposition of nanoethosomes in deep skin layers, respectively. CONCLUSION The developed nanoethosomes are proposed as a suitable carrier for topical delivery of anesthetics such as Lidocaine.
Collapse
Affiliation(s)
- Soraya Babaie
- Biotechnology Research Center and Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghanbarzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soodabeh Davaran
- Research Center for Pharmaceutical Nanotechnology and Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Affiliation(s)
- Han Jung Park
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta GA 30332
- Dept. of Chemistry; University of Tennessee at Chattanooga; Chattanooga TN 37403
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta GA 30332
| |
Collapse
|
49
|
Wang G, Wang J, Wu W, Tony To SS, Zhao H, Wang J. Advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs. Expert Opin Drug Deliv 2015; 12:1475-99. [PMID: 25843160 DOI: 10.1517/17425247.2015.1021681] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Many drug candidates with high therapeutic efficacy have low water solubility, which limits the administration and transport across physiological barriers, for example, the tumor tissue barrier. Therefore, strategies are needed to permeabilize the physiological barriers safely so that hydrophobic drugs may be delivered efficiently. AREAS COVERED This review focuses on prospects for therapeutic application of lipid-based drug delivery carriers that increase hydrophobic drugs to improve their solubility, bioavailability, drug release, targeting and absorption. Moreover, novel techniques to prepare for lipid-based drug delivery to extend pharmaceuticals with poor bioavailability such as surface modifications of lipid-based drug delivery are presented. Industrial developments of several drug candidates employing these strategies are discussed, as well as applications and clinical trials. EXPERT OPINION Overall, hydrophobic drugs can be encapsulated in the lipid-based drug delivery systems, represent a relatively safe and promising strategy to extend drug retention, lengthen the lifetime in the circulation, and allow active targeting to specific tissues and controllable drug release in the desirable sites. However, there are still noticeable gaps that need to be filled before the theoretical advantage of these formulations may truly be realized such as investigation on the use of lipid-based drug delivery for administration routes. This research may provide further interest within the area of lipid-based systems, both in industry and in the clinic.
Collapse
Affiliation(s)
- Gang Wang
- Shanghai Eighth People's Hospital, Department of Pharmaceutics , Shanghai , China
| | | | | | | | | | | |
Collapse
|
50
|
Shi LL, Cao Y, Zhu XY, Cui JH, Cao QR. Optimization of process variables of zanamivir-loaded solid lipid nanoparticles and the prediction of their cellular transport in Caco-2 cell model. Int J Pharm 2015; 478:60-69. [DOI: 10.1016/j.ijpharm.2014.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 11/09/2014] [Indexed: 10/24/2022]
|