1
|
Liu H, Chen H, Yang Z, Wen Z, Gao Z, Liu Z, Liu L, Chen Y. Precision Nanovaccines for Potent Vaccination. JACS AU 2024; 4:2792-2810. [PMID: 39211600 PMCID: PMC11350730 DOI: 10.1021/jacsau.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Compared with traditional vaccines, nanoparticulate vaccines are especially suitable for delivering antigens of proteins, peptides, and nucleic acids and facilitating lymph node targeting. Moreover, apart from improving pharmacokinetics and safety, nanoparticulate vaccines assist antigens and molecular adjuvants in crossing biological barriers, targeting immune organs and antigen-presenting cells (APC), controlled release, and cross-presentation. However, the process that stimulates and orchestrates the immune response is complicated, involving spatiotemporal interactions of multiple cell types, including APCs, B cells, T cells, and macrophages. The performance of nanoparticulate vaccines also depends on the microenvironments of the target organs or tissues in different populations. Therefore, it is necessary to develop precise nanoparticulate vaccines that accurately regulate vaccine immune response beyond simply improving pharmacokinetics. This Perspective summarizes and highlights the role of nanoparticulate vaccines with precise size, shape, surface charge, and spatial management of antigen or adjuvant for a precision vaccination in regulating the distribution, targeting, and immune response. It also discusses the importance of the rational design of nanoparticulate vaccines based on the anatomical and immunological microstructure of the target tissues. Moreover, the target delivery and controlled release of nanovaccines should be taken into consideration in designing vaccines for achieving precise immune responses. Additionally, it shows that the nanovaccines remodel the suppressed tumor environment and modulate various immune cell responses which are also essential.
Collapse
Affiliation(s)
- Hong Liu
- College
of Chemistry and Molecular Science, Henan
University, Zhengzhou 450046, China
- Translational
Medical Center of Huaihe Hospital, Henan
University, Kaifeng 475004, China
| | - Haolin Chen
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zeyu Yang
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenfu Wen
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhan Gao
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijia Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- College
of Chemistry and Molecular Science, Henan
University, Zhengzhou 450046, China
- State
Key Laboratory of Antiviral Drugs, Henan
University, Zhengzhou 450046, China
- School
of Materials Science and Engineering, Key Laboratory for Polymeric
Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Marrapu S, Kumar R. Intestinal lymphangiectasia: Understanding the bigger picture. World J Clin Cases 2024; 12:3298-3303. [PMID: 38983414 PMCID: PMC11229932 DOI: 10.12998/wjcc.v12.i18.3298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 06/13/2024] Open
Abstract
Intestinal lymphangiectasia (IL) is characterized by the dilation of intestinal lymphatic vessels, which can rupture and cause loss of lymph into the intestine. Due to the high content of proteins, lipoproteins, and lymphocytes in the intestinal lymph, loss of lymph might result in hypoproteinemia, hypoalbuminemia, hypogammaglobulinemia, and lymphocytopenia. In addition, there may be a depletion of minerals, lipids, and fat-soluble vitamins. IL can be primary due to inherent malfunctioning of the lymphatic system, or secondly, a result of various factors that may hinder lymphatic drainage either directly or indirectly. This condition has emerged as a subject of significant clinical interest. Given that the intestinal lymphatic system plays an important role in the body's fluid homeostasis, adaptive immunity, nutrient and drug absorption, intestinal transport, and systemic metabolism, its dysfunction may have wider implications. Although primary IL is rare, with varied clinical features, complications, treatment response, and outcomes, secondary IL is more common than previously believed. The definitive diagnosis of IL requires endoscopic demonstration of whitish villi (which frequently resemble snowflakes) and histological confirmation of dilated lacteals in the small intestinal mucosa. Treatment of IL is challenging and involves dietary modifications, managing underlying medical conditions, and using medications such as sirolimus and octreotide. Recognizing its prevalence and diverse etiology is crucial for targeted management of this challenging medical condition. This article provides a comprehensive exploration of the clinical implications associated with IL. In addition, it offers valuable insights into critical knowledge gaps in the existing diagnostic and management landscape.
Collapse
Affiliation(s)
- Sudheer Marrapu
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, India
| | - Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, India
| |
Collapse
|
3
|
Nagar N, Naidu G, Mishra A, Poluri KM. Protein-Based Nanocarriers and Nanotherapeutics for Infection and Inflammation. J Pharmacol Exp Ther 2024; 388:91-109. [PMID: 37699711 DOI: 10.1124/jpet.123.001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Infectious and inflammatory diseases are one of the leading causes of death globally. The status quo has become more prominent with the onset of the coronavirus disease 2019 (COVID-19) pandemic. To combat these potential crises, proteins have been proven as highly efficacious drugs, drug targets, and biomarkers. On the other hand, advancements in nanotechnology have aided efficient and sustained drug delivery due to their nano-dimension-acquired advantages. Combining both strategies together, the protein nanoplatforms are equipped with the advantageous intrinsic properties of proteins as well as nanoformulations, eloquently changing the field of nanomedicine. Proteins can act as carriers, therapeutics, diagnostics, and theranostics in their nanoform as fusion proteins or as composites with other organic/inorganic materials. Protein-based nanoplatforms have been extensively explored to target the major infectious and inflammatory diseases of clinical concern. The current review comprehensively deliberated proteins as nanocarriers for drugs and nanotherapeutics for inflammatory and infectious agents, with special emphasis on cancer and viral diseases. A plethora of proteins from diverse organisms have aided in the synthesis of protein-based nanoformulations. The current study specifically presented the proteins of human and pathogenic origin to dwell upon the field of protein nanotechnology, emphasizing their pharmacological advantages. Further, the successful clinical translation and current bottlenecks of the protein-based nanoformulations associated with the infection-inflammation paradigm have also been discussed comprehensively. SIGNIFICANCE STATEMENT: This review discusses the plethora of promising protein-based nanocarriers and nanotherapeutics explored for infectious and inflammatory ailments, with particular emphasis on protein nanoparticles of human and pathogenic origin with reference to the advantages, ADME (absorption, distribution, metabolism, and excretion parameters), and current bottlenecks in development of protein-based nanotherapeutic interventions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Goutami Naidu
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Amit Mishra
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| |
Collapse
|
4
|
Rolon M, Hanna E, Vega C, Coronel C, Dea-Ayuela MA, Serrano DR, Lalatsa A. Solid Nanomedicines of Nifurtimox and Benznidazole for the Oral Treatment of Chagas Disease. Pharmaceutics 2022; 14:pharmaceutics14091822. [PMID: 36145570 PMCID: PMC9504116 DOI: 10.3390/pharmaceutics14091822] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD) is a parasitic zoonosis endemic in Central and South America affecting nearly 10 million people, with 100 million people at high risk of contracting the disease. Treatment is only effective when received at the early stages of the disease and it involved two drugs (nifurtimox (NFX) and benznidazole (BNZ)). Both treatments require multiple daily administrations of high doses, suffer from variable efficacy and insufficient efficacy in chronic CD, many side effects, and a very long duration of treatment that results in poor compliance, while combined available therapies that lead to reduced duration of treatment are not available and polypharmacy reduces compliance and increases the cost further. Here we present self-nanoemulsified drug delivery systems (SNEDDS) able to produce easily scalable combined formulations of NFX and BNZ that can allow for tailoring of the dose and can be easily converted to oral solid dosage form by impregnation on mesoporous silica particles. SNEDDS demonstrated an enhanced solubilisation capacity for both drugs as demonstrated by flow-through studies and in vitro lipolysis studies. High loading of SNEDDS to Syloid 244 and 3050 silicas (2:1 w/w) allowed clinically translatable amounts of both NFX and BNZ to be loaded. Tablets prepared from NFX-BNZ combined SNEDDS loaded on Syloid 3050 silicas demonstration near complete dissolution in the flow through cell apparatus compared to NFX and BNZ commercial tablets respectively (Lampit® and Rochagan®). NFX-BNZ-SNEDDS demonstrated nanomolar efficacy in epimastigotes and amastigotes of T. cruzi with acceptable selectivity indexes and demonstrated enhanced survival and reduced parasitaemia in acute murine experimental models of CD. Thus, the results presented here illustrate the ability for an easily scalable and personalised combination oral therapy prepared from GRAS excipients, enabling treatment access worldwide for the treatment of CD.
Collapse
Affiliation(s)
- Miriam Rolon
- Centro para el Desarrollo de la Investigacion Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O’Leary, Asuncion 1255, Paraguay
| | - Eustine Hanna
- Biomaterials, Bio-Engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
| | - Celeste Vega
- Centro para el Desarrollo de la Investigacion Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O’Leary, Asuncion 1255, Paraguay
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigacion Científica (CEDIC), Manduvirá 635 entre 15 de Agosto y O’Leary, Asuncion 1255, Paraguay
| | - Maria Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Edificio Seminario s/n, Moncada, 46113 Valencia, Spain
| | - Dolores R. Serrano
- Department of Pharmaceutics and Food Technology, Instituto Universitario de Farmacia Industrial (IUFI), School of Pharmacy, University Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| | - Aikaterini Lalatsa
- Biomaterials, Bio-Engineering and Nanomedicines (BioN) Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK
- School of Pharmacy and Biomedical Sciences, John Arbuthnot Building, Robertson Wing, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
- Correspondence: (D.R.S.); (A.L.); Tel.: +44-141-548-2675 (A.L.)
| |
Collapse
|
5
|
Liu X, Ge W. The Emerging Role of Ultrasonic Nanotechnology for Diagnosing and Treatment of Diseases. Front Med (Lausanne) 2022; 9:814986. [PMID: 35273976 PMCID: PMC8901503 DOI: 10.3389/fmed.2022.814986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology has been commonly used in a variety of applications in recent years. Nanomedicine has also gotten a lot of attention in the medical and treatment fields. Ultrasonic technology is already being used in research as a powerful tool for manufacturing nonmaterial and in the decoration of catalyst supports for energy applications and material processing. For the development of nanoparticles and the decoration of catalytic assisted powders with nanoparticles, low or high-frequency Ultrasonic are used. The Ultrasonic is frequently used in joint venture with the nanotechnology from the past few years and bring tremendous success in various diseases diagnosing and treatment. Numerous kinds of nanoparticles are fabricated with desired capabilities and targeted toward different targets. This review first highlights the Ultrasonic Treatment and processing of Nanoparticles for Pharmaceuticals. Next, we explain various nanoparticles with ultrasonic technology for different diagnosing and treatment of various diseases. Finally, we explain the challenges face by current approaches for their translation in clinics.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| | - Weidong Ge
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Medical College, Hangzhou, China
| |
Collapse
|
6
|
Landh E, Wang R, Moir LM, Traini D, Young PM, Ong HX. Prospective nanoparticle treatments for lymphangioleiomyomatosis. Expert Opin Drug Deliv 2022; 19:75-86. [DOI: 10.1080/17425247.2022.2029401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emelie Landh
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Roger Wang
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Lyn M. Moir
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Paul M. Young
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
- Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
7
|
Punjabi MS, Naha A, Shetty D, Nayak UY. Lymphatic Drug Transport and Associated Drug Delivery Technologies: A Comprehensive Review. Curr Pharm Des 2021; 27:1992-1998. [PMID: 33272166 DOI: 10.2174/1381612826999201203214247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Lymphatic system is the secondary circulation system of the human body after the systemic circulation. Various problems, including the first-pass metabolism through oral administration of medicines, can be resolved by lymphatic targeting. Lymphatic absorption has been explored in detail, and studies reveal the improved bioavailability of medicines. In the case of cancer, AIDS, and various other health problems, lymphatic targeting has been focused on due to the fact that lymph nodes are involved greatly in tumor metastasis. This article reviews lymphatic absorption and its exploration in the treatment of various health problems. The physiology of the lymphatic system, the mechanisms of absorption, and the various formulation systems suitable for lymphatic absorption have been discussed. Some recent novel approaches like hydrodynamically driven device (HDD) and carbon nanotubes for lymphatic delivery have also been appraised.
Collapse
Affiliation(s)
| | - Anup Naha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Disha Shetty
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| |
Collapse
|
8
|
Pandya P, Giram P, Bhole RP, Chang HI, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharm Sin B 2021; 11:2306-2325. [PMID: 34522589 PMCID: PMC8424230 DOI: 10.1016/j.apsb.2020.11.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Blood–brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.
Collapse
Key Words
- AD, Alzheimer's disease
- AMT, alpha-methyl-l-tryptophan
- Aβ, amyloid beta
- BACE1, β-secretase 1
- BBB, blood–brain barrier
- BDNF, brain derived neurotrophic factor
- BTB, blood–brain tumor barrier
- Blood–brain barrier
- Brain diseases
- Brain-targeting
- CMT, carrier-mediated transportation
- DTPA-Gd, Gd-diethyltriaminepentaacetic acid
- Drug delivery systems
- EPR, enhanced permeability and retention
- GLUT1, glucose transporter-1
- Gd, gadolinium
- ICAM-1, intercellular adhesion molecule-1
- KATP, ATP-sensitive potassium channels
- KCa, calcium-dependent potassium channels
- LAT1, L-type amino acid transporter 1
- LDL, low density lipoprotein
- LDLR, LDL receptor
- LFA-1, lymphocyte function associated antigen-1
- LRP1, LDLR-related protein 1
- MFSD2A, major facilitator superfamily domain-containing protein 2a
- MMP9, metalloproteinase-9
- MRI, magnetic resonance imaging
- NPs, nanoparticles
- Nanoparticles
- P-gp, P-glycoprotein
- PD, Parkinson's disease
- PEG, polyethyleneglycol
- PEG-PLGA, polyethyleneglycol-poly(lactic-co-glycolic acid)
- PLGA, poly(lactic-co-glycolic acid)
- PSMA, prostate-specific membrane antigen
- RAGE, receptor for advanced glycosylation end products
- RBC, red blood cell
- RMT, receptor-mediated transcytosis
- ROS, reactive oxygen species
- TBI, traumatic brain injury
- TJ, tight junction
- TfR, transferrin receptor
- VEGF, vascular endothelial growth factor
- ZO1, zona occludens 1
- siRNA, short interfering RNA
- tPA, tissue plasminogen activator
Collapse
Affiliation(s)
- Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Corresponding author. Tel./fax: +86 512 65882089.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Zhang L, Sun H, Zhao J, Lee J, Ee Low L, Gong L, Chen Y, Wang N, Zhu C, Lin P, Liang Z, Wei M, Ling D, Li F. Dynamic nanoassemblies for imaging and therapy of neurological disorders. Adv Drug Deliv Rev 2021; 175:113832. [PMID: 34146626 DOI: 10.1016/j.addr.2021.113832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
The past decades have witnessed an increased incidence of neurological disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, ischemic stroke, and epilepsy, which significantly lower patients' life quality and increase the economic and social burden. Recently, nanomedicines composed of imaging and/or therapeutic agents have been explored to diagnose and/or treat NDs due to their enhanced bioavailability, blood-brain barrier (BBB) permeability, and targeting capacity. Intriguingly, dynamic nanoassemblies self-assembled from functional nanoparticles to simultaneously interfere with multiple pathogenic substances and pathological changes, have been regarded as one of the foremost candidates to improve the diagnostic and therapeutic efficacy of NDs. To help readers better understand this emerging field, in this review, the pathogenic mechanism of different types of NDs is briefly introduced, then the functional nanoparticles used as building blocks in the construction of dynamic nanoassemblies for NDs theranostics are summarized. Furthermore, dynamic nanoassemblies that can actively cross the BBB to target brain lesions, sensitively and efficiently diagnose or treat NDs, and effectively promote neuroregeneration are highlighted. Finally, we conclude with our perspectives on the future development in this field.
Collapse
|
11
|
Chen L, Qin H, Zhao R, Zhao X, Lin L, Chen Y, Lin Y, Li Y, Qin Y, Li Y, Liu S, Cheng K, Chen H, Shi J, Anderson GJ, Wu Y, Zhao Y, Nie G. Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Sci Transl Med 2021; 13:13/601/eabc2816. [PMID: 34233949 DOI: 10.1126/scitranslmed.abc2816] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 01/14/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
Cancer vaccines based on resected tumors from patients have gained great interest as an individualized cancer treatment strategy. However, eliciting a robust therapeutic effect with personalized vaccines remains a challenge because of the weak immunogenicity of autologous tumor antigens. Utilizing exogenous prokaryotic constituents that act as adjuvants to enhance immunogenicity is a promising strategy to overcome this limitation. However, nonspecific stimulation of the immune system may elicit an undesirable immunopathological state. To specifically trigger sufficient antitumor reactivity without notable adverse effects, we developed an antigen and adjuvant codelivery nanoparticle vaccine based on Escherichia coli cytoplasmic membranes (EMs) and tumor cell membranes (TMs) from resected autologous tumor tissue. Introduction of the EM into the hybrid membrane nanoparticle vaccines (HM-NPs) induced dendritic cell maturation, thus activating splenic T cells. HM-NPs showed efficacy in immunogenic CT26 colon and 4T1 breast tumor mouse models and also efficiently induced tumor regression in B16-F10 melanoma and EMT6 breast tumor mouse models. Furthermore, HM-NPs provoked a strong tumor-specific immune response, which not only extended postoperative animal survival but also conferred long-term protection (up to 3 months) against tumor rechallenge in a CT26 colon tumor mouse model. Specific depletion of different immune cell populations revealed that CD8+ T and NK cells were crucial to the vaccine-elicited tumor regression. Individualized autologous tumor antigen vaccines based on effective activation of the innate immune system by bacterial cytoplasmic membranes hold great potential for personalized treatment of postoperative patients with cancer.
Collapse
Affiliation(s)
- Long Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,GBA National Institute for Nanotechnology Innovation, Guangdong 510700, P. R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liangru Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Jilin University, Changchun, Jilin 130012, P. R. China
| | - Yang Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yixuan Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yuting Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hanqing Chen
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong, P. R. China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Queensland 4029, Australia
| | - Yan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,GBA National Institute for Nanotechnology Innovation, Guangdong 510700, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,GBA National Institute for Nanotechnology Innovation, Guangdong 510700, P. R. China
| |
Collapse
|
12
|
Peng X, Wang J, Zhou F, Liu Q, Zhang Z. Nanoparticle-based approaches to target the lymphatic system for antitumor treatment. Cell Mol Life Sci 2021; 78:5139-5161. [PMID: 33963442 PMCID: PMC11072902 DOI: 10.1007/s00018-021-03842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapies have been established as safe and efficient modalities for numerous tumor treatments. The lymphatic system, which is an important system, can modulate the immune system via a complex network, which includes lymph nodes, vessels, and lymphocytes. With the deepening understanding of tumor immunology, a plethora of immunotherapies, which include vaccines, photothermal therapy, and photodynamic therapy, have been established for antitumor treatments. However, the deleterious off-target effects and nonspecific targeting of therapeutic agents result in low efficacy of immunotherapy. Fortunately, nanoparticle-based approaches for targeting the lymphatic system afford a unique opportunity to manufacture drugs that can simultaneously tackle both aspects, thereby improving tumor treatments. Over the past decades, great strides have been made in the development of DC vaccines and nanomedicine as antitumor treatments in the field of lymphatic therapeutics and diagnosis. In this review, we summarize the current strategies through which nanoparticle technology has been designed to target the lymphatic system and describe applications of lymphatic imaging for the diagnosis and image-guided surgery of tumor metastasis. Moreover, improvements in the tumor specificity of nanovaccines and medicines, which have been realized through targeting or stimulating the lymphatic system, can provide amplified antitumor immune responses and reduce side effects, thereby promoting the paradigm of antitumor treatment into the clinic to benefit patients.
Collapse
Affiliation(s)
- Xingzhou Peng
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Feifan Zhou
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China
| | - Qian Liu
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
| | - Zhihong Zhang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, Hainan, China.
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
13
|
Rahmanian M, Seyfoori A, Ghasemi M, Shamsi M, Kolahchi AR, Modarres HP, Sanati-Nezhad A, Majidzadeh-A K. In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies. J Control Release 2021; 334:164-177. [PMID: 33895200 DOI: 10.1016/j.jconrel.2021.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
The complexity and heterogeneity of the three-dimensional (3D) tumor microenvironment have brought challenges to tumor studies and cancer treatment. The complex functions and interactions of cells involved in tumor microenvironment have led to various multidrug resistance (MDR) and raised challenges for cancer treatment. Traditional tumor models are limited in their ability to simulate the resistance mechanisms and not conducive to the discovery of multidrug resistance and delivery processes. New technologies for making 3D tissue models have shown the potential to simulate the 3D tumor microenvironment and identify mechanisms underlying the MDR. This review overviews the main barriers against multidrug delivery in the tumor microenvironment and highlights the advances in microfluidic-based tumor models with the success in simulating several drug delivery barriers. It also presents the progress in modeling various genetic and epigenetic factors involved in regulating the tumor microenvironment as a noticeable insight in 3D microfluidic tumor models for recognizing multidrug resistance and delivery mechanisms. Further correlation between the results obtained from microfluidic drug resistance tumor models and the clinical MDR data would open up avenues to gain insight into the performance of different multidrug delivery treatment strategies.
Collapse
Affiliation(s)
- Mehdi Rahmanian
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Amir Seyfoori
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mohsen Ghasemi
- Genetics Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Milad Shamsi
- Center for BioEngineering Research and Education (CBRE), University of Calgary, Calgary, Alberta T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ahmad Rezaei Kolahchi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati-Nezhad
- Center for BioEngineering Research and Education (CBRE), University of Calgary, Calgary, Alberta T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Keivan Majidzadeh-A
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran; Genetics Department, Breast Cancer Research Center (BCRC), Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran.
| |
Collapse
|
14
|
Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021; 11:871-885. [PMID: 33996404 PMCID: PMC8105777 DOI: 10.1016/j.apsb.2021.02.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The use of lipid nanocarriers for drug delivery applications is an active research area, and a great interest has particularly been shown in the past two decades. Among different lipid nanocarriers, ISAsomes (Internally self-assembled somes or particles), including cubosomes and hexosomes, and solid lipid nanoparticles (SLNs) have unique structural features, making them attractive as nanocarriers for drug delivery. In this contribution, we focus exclusively on recent advances in formation and characterization of ISAsomes, mainly cubosomes and hexosomes, and their use as versatile nanocarriers for different drug delivery applications. Additionally, the advantages of SLNs and their application in oral and pulmonary drug delivery are discussed with focus on the biological fates of these lipid nanocarriers in vivo. Despite the demonstrated advantages in in vitro and in vivo evaluations including preclinical studies, further investigations on improved understanding of the interactions of these nanoparticles with biological fluids and tissues of the target sites is necessary for efficient designing of drug nanocarriers and exploring potential clinical applications.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| |
Collapse
|
15
|
Wen J, Gao X, Zhang Q, Sahito B, Si H, Li G, Ding Q, Wu W, Nepovimova E, Jiang S, Wang L, Kuca K, Guo D. Optimization of Tilmicosin-Loaded Nanostructured Lipid Carriers Using Orthogonal Design for Overcoming Oral Administration Obstacle. Pharmaceutics 2021; 13:303. [PMID: 33669090 PMCID: PMC7996536 DOI: 10.3390/pharmaceutics13030303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Tilmicosin (TMS) is widely used to treat bacterial infections in veterinary medicine, but the clinical effect is limited by its poor solubility, bitterness, gastric instability, and intestinal efflux transport. Nanostructured lipid carriers (NLCs) are nowadays considered to be a promising vector of therapeutic drugs for oral administration. In this study, an orthogonal experimental design was applied for optimizing TMS-loaded NLCs (TMS-NLCs). The ratios of emulsifier to mixed lipids, stearic acid to oleic acid, drugs to mixed lipids, and cold water to hot emulsion were selected as the independent variables, while the hydrodynamic diameter (HD), drug loading (DL), and entrapment efficiency (EE) were the chosen responses. The optimized TMS-NLCs had a small HD, high DL, and EE of 276.85 ± 2.62 nm, 9.14 ± 0.04%, and 92.92 ± 0.42%, respectively. In addition, a low polydispersity index (0.231 ± 0.001) and high negative zeta potential (-31.10 ± 0.00 mV) indicated the excellent stability, which was further demonstrated by uniformly dispersed spherical nanoparticles under transmission electron microscopy. TMS-NLCs exhibited a slow and sustained release behavior in both simulated gastric juice and intestinal fluid. Furthermore, MDCK-chAbcg2/Abcb1 cell monolayers were successfully established to evaluate their absorption efficiency and potential mechanism. The results of biodirectional transport showed that TMS-NLCs could enhance the cellular uptake and inhibit the efflux function of drug transporters against TMS in MDCK-chAbcg2/Abcb1 cells. Moreover, the data revealed that TMS-NLCs could enter the cells mainly via the caveolae/lipid raft-mediated endocytosis and partially via macropinocytosis. Furthermore, TMS-NLCs showed the same antibacterial activity as free TMS. Taken together, the optimized NLCs were the promising oral delivery carrier for overcoming oral administration obstacle of TMS.
Collapse
Affiliation(s)
- Jia Wen
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Xiuge Gao
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Qian Zhang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Benazir Sahito
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China; (H.S.); (G.L.)
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China; (H.S.); (G.L.)
| | - Qi Ding
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China;
| | - Wenda Wu
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Shanxiang Jiang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Liping Wang
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Dawei Guo
- Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (J.W.); (X.G.); (Q.Z.); (B.S.); (S.J.); (L.W.)
| |
Collapse
|
16
|
Chokshi NV, Rawal S, Solanki D, Gajjar S, Bora V, Patel BM, Patel MM. Fabrication and Characterization of Surface Engineered Rifampicin Loaded Lipid Nanoparticulate Systems for the Potential Treatment of Tuberculosis: An In Vitro and In Vivo Evaluation. J Pharm Sci 2021; 110:2221-2232. [PMID: 33610570 DOI: 10.1016/j.xphs.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
The main aim of the present investigation highlights the development of mannose appended rifampicin containing solid lipid nanoparticles (Mn-RIF-SLNs) for the management of pulmonary TB. The developed Mn-RIF-SLNs showed particle size of Mn-RIF-SLNs (479 ± 13 nm) which was found to be greater than that of unconjugated SLNs (456 ± 11 nm), with marginal reduction in percentage entrapment efficiency (79.41 ± 2.42%). The in vitro dissolution studies depicted an initial burst release followed by sustained release profile indicating biphasic release pattern, close-fitting Weibull model having least F-value. The cytotoxicity studies using J774A.1 cell line represented that the developed SLNs were non-toxic and safe as compared to free drug. Fluorescence imaging and flow cytometric (FACS) analysis depicted significant (1.79-folds) intracellular uptake of coumarin-6 (fluorescent marker) loaded Mn-C6-SLNs. The in vivo pharmacokinetic studies in sprague-dawley rats were performed and Mn-RIF-SLNs showed remarkable enhancement in terms of relative bioavailability (~17-folds) as compared to its drug solution via oral administration. The biodistribution studies revealed higher lung accumulation (1.8-folds) of Mn-RIF-SLNs as compared to the Un-RIF-SLNs. In conclusion, the developed Mn-RIF-SLNs could serve as a promising tool for delivering the drug cargo to the site of infection (lungs) in the treatment of TB.
Collapse
Affiliation(s)
- Nimitt V Chokshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Dhruvi Solanki
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Saumitra Gajjar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Vivek Bora
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Bhoomika M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
17
|
In vivo fate of liposomes after subconjunctival ocular delivery. J Control Release 2021; 329:162-174. [PMID: 33271203 DOI: 10.1016/j.jconrel.2020.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Subconjunctival administration of nanocarriers presents an alternative drug delivery strategy to overcome blood-ocular barriers to enhance drug bioavailability to specific parts of the eye. Using fiberoptic Confocal Laser Microendoscopy (CLM) and radiotracing, we describe the effects of charge, size, cholesterol content and lipid saturation on the ocular and corporal distribution of liposome nanocarriers in live mouse models. Positively charged or large (>250 nm) liposomes exhibit sustained ocular residence times in and around the injection site; cholesterol loading slows down this clearance, whereas lipid saturation accelerates clearance. Neutral, negatively charged, or smaller sized liposomes distribute to the limbus, rich in stem cells and blood capillaries. Differential lymphatic and systemic clearance from the eye to corporeal tissues was also observed across formulations. These results demonstrate the need to optimize liposome design for control over temporal and spatial nanocarrier bioavailability and clearance from the eye for improved efficacy and safety of ocular therapeutics.
Collapse
|
18
|
Landh E, M Moir L, Bradbury P, Traini D, M Young P, Ong HX. Properties of rapamycin solid lipid nanoparticles for lymphatic access through the lungs & part I: the effect of size. Nanomedicine (Lond) 2020; 15:1927-1945. [PMID: 32820673 DOI: 10.2217/nnm-2020-0077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Lymphangioleiomyomatosis (LAM) is characterized by growth of smooth muscle-like cells in the lungs that spread to other organs via lymphatic vessels. Current oral rapamycin treatment is limited by low bioavailability of approximately 15%. Aim: The effect of inhaled rapamycin solid lipid nanoparticles (Rapa-SLNs) size on its penetration through the lymphatics. Method: Three Rapa-SLN formulations (200-1000 nm) were produced and assessed for particle characteristics and further for toxicity and performance in vitro. Results: Rapa-SLNs of 200 nm inhibited proliferation in TSC2-negative mouse embryonic fibroblast cells and penetrated the respiratory epithelium and lymphatic endothelium significantly faster compared with free rapamycin and larger Rapa-SLNs. Conclusion: Rapa-SLN approximately 200 nm allows efficient entry of rapamycin into the lymphatic system and is therefore a promising treatment for LAM patients.
Collapse
Affiliation(s)
- Emelie Landh
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, 2006, Australia
| | - Lyn M Moir
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, 2006, Australia
| | - Peta Bradbury
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, 2006, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, 2006, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, 2006, Australia
| |
Collapse
|
19
|
Landh E, Moir LM, Traini D, Young PM, Ong HX. Properties of rapamycin solid lipid nanoparticles for lymphatic access through the lungs & part II: the effect of nanoparticle charge. Nanomedicine (Lond) 2020; 15:1947-1963. [PMID: 32812483 DOI: 10.2217/nnm-2020-0192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: Lymphangioleiomyomatosis is characterized by smooth muscle-like cells in the lungs that spread to other organs via lymphatic vessels. Oral rapamycin is restricted by low bioavailability approximately 15%. The aim of the present study is to systematically investigate the effect of inhaled rapamycin solid lipid nanoparticles (Rapa-SLN) surface charge on efficacy and penetration into the lymphatics. Materials & methods: Rapa-SLN formulations with different charge: neutral, positive and negative, were produced and assessed for their physicochemical particle characteristics and efficacy in vitro. Results: Negative Rapa-SLNs were significantly faster at entering the lymphatic endothelium and more potent at inhibiting lymphanigiogenesis compared with neutral and positive Rapa-SLNs. Conclusion: Negative Rapa-SLNs showed efficient lymphatic access and should therefore be investigated further as a treatment for targeting extrapulmonary lymphangioleiomyomatosis.
Collapse
Affiliation(s)
- Emelie Landh
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| | - Lyn M Moir
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| | - Hui X Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, 2037, Australia.,Discipline of Pharmacology, Faculty of Medicine & Health, Sydney, NSW, 2006, Australia
| |
Collapse
|
20
|
Shrivastava S, Gupta A, Kaur CD. The Epitome of Novel Techniques and Targeting Approaches in Drug Delivery for Treating Lymphatic Filariasis. Curr Drug Targets 2020; 21:1250-1263. [PMID: 32603280 DOI: 10.2174/1389450121666200630111250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lymphatic filariasis is a pervasive and life-threatening disease for human beings. Currently, 893 million people in 49 countries worldwide affected by lymphatic filariasis as per WHO statistics. The concealed aspects of lymphatic diseases such as delayed disease detection, inappropriate disease imaging, the geographical outbreak of infection, and lack of preventive chemotherapy have brought this epidemic to the edge of Neglected Tropical Diseases. Many medications and natural bioactive substances have seen to promote filaricidal activity against the target parasitic species. However, the majority of failures have occurred in pharmaceutical and pharmacokinetic issues. OBJECTIVE The purpose of the study is to focus on the challenges and therapeutic issues in the treatment of filariasis. The review brings novel techniques and therapeutic approaches for combating lymphatic filariasis. It also offers significant developments and opportunities for such therapeutic interventions. CONCLUSION Through this review, an attempt has made to critically evaluate the avenues of innovative pharmaceuticals and molecular targeting approaches to bring an integrated solution to combat lymphatic filariasis.
Collapse
Affiliation(s)
- Saurabh Shrivastava
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, 490042, India
| | - Anshita Gupta
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, 490042, India
| | - Chanchal Deep Kaur
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, 490042, India
| |
Collapse
|
21
|
Shrivastava S, Gidwani B, Kaur CD. Development of mebendazole loaded nanostructured lipid carriers for lymphatic targeting: Optimization, characterization, in-vitro and in-vivo evaluation. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2020.1750515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saurabh Shrivastava
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
| | - Bina Gidwani
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
- Columbia Institute of Pharmacy, Tekari, Raipur, India
| | - Chanchal Deep Kaur
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
| |
Collapse
|
22
|
Agarwal S, Murthy RSR, Harikumar SL, Garg R. Quality by Design Approach for Development and Characterisation of Solid Lipid Nanoparticles of Quetiapine Fumarate. Curr Comput Aided Drug Des 2020; 16:73-91. [PMID: 31429691 PMCID: PMC6967136 DOI: 10.2174/1573409915666190722122827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Quetiapine fumarate, a 2nd generation anti-psychotic drug has oral bioavailability of 9% because of hepatic first pass metabolism. Reports suggest that co-administration of drugs with lipids affects their absorption pathways, enhances lymphatic transport thus bypassing hepatic first-pass metabolism resulting in enhanced bioavailability. OBJECTIVE The present work aimed at developing, and characterising potentially lymphatic absorbable Solid Lipid Nanoparticles (SLN) of quetiapine fumarate by Quality by Design approach. METHODS Hot emulsification followed by ultrasonication was used as a method of preparation. Precirol ATO5, Phospholipon 90G and Poloxamer 188 were used as a lipid, stabilizer and surfactant respectively. A32 Central Composite design optimised the 2 independent variables, lipid concentration and stabilizer concentration and assessed their effect on percent Entrapment Efficiency (%EE: Y1). The lyophilized SLNs were studied for stability at 5 ±3οC and 25 ± 2οC/60 ± 5% RH for 3 months. RESULTS The optimised formula derived for SLN had 270mg Precirol ATO5 and 107mg of Phospholipon 90G giving %EE of 76.53%. Mean particle size was 159.8nm with polydispersity index 0.273 and zeta potential -6.6mV. In-vitro drug release followed Korsmeyer-Peppas kinetics (R2=0.917) with release exponent n=0.722 indicating non-Fickian diffusion. Transmission electron microscopy images exhibited particles to be spherical and smooth. Fourier-transform infrared spectroscopy, differential scanning calorimetry and X-ray diffraction studies ascertained drug-excipient compatibility. Stability studies suggested 5οC as appropriate temperature for storage and preserving important characteristics within acceptable limits. CONCLUSION Development and optimisation by Quality by Design were justified as it yielded SLN having acceptable characteristics and potential application for intestinal lymphatic transport.
Collapse
Affiliation(s)
- Shweta Agarwal
- Address correspondence to this author at the IKG Punjab Technical University, Jalandhar-kapurthala highway Kapurthala-144603 Punjab, India; Tel: 9882032426; E-mail:
| | | | | | | |
Collapse
|
23
|
Inhaled rapamycin solid lipid nano particles for the treatment of Lymphangioleiomyomatosis. Eur J Pharm Sci 2020; 142:105098. [DOI: 10.1016/j.ejps.2019.105098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023]
|
24
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
25
|
Jang JH, Jeong SH, Lee YB. Preparation and In Vitro/In Vivo Characterization of Polymeric Nanoparticles Containing Methotrexate to Improve Lymphatic Delivery. Int J Mol Sci 2019; 20:E3312. [PMID: 31284483 PMCID: PMC6651109 DOI: 10.3390/ijms20133312] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/04/2023] Open
Abstract
Methotrexate (MTX) is a folic acid antagonist used as an effective drug to treat various kinds of cancers. However, MTX has limited use in cancer chemotherapy due to its adverse effects such as poor bioavailability, low specificity, drug resistance, and dose-dependent side effects. To improve lymphatic delivery and reduce toxicity of MTX, MTX-loaded nanoparticles (NPs) were prepared in the present study. NPs were prepared with double emulsion solvent evaporation method using poly(lactide-co-glycolide) (PLGA). NPs were assessed for size, encapsulation efficiency, morphology, Fourier-transform infrared spectroscopy, X-ray diffraction, and thermal characterization. In vitro release profiles and cytotoxicity of these NPs were also evaluated. Prepared NPs and free MTX were administered orally or intravenously (5 mg/kg as MTX) to rats to evaluate their pharmacokinetic characteristics and lymphatic delivery effects. Mean particle size and encapsulation efficiency of NPs were 163.7 ± 10.25 nm and 93.3 ± 0.5%, respectively. Prepared NPs showed a sustained release profile of MTX in vitro and may be effective to cancer cells. Area under the blood concentration-time curve, total clearance, half-life, and lymphatic targeting efficiency were significantly different (p < 0.05) between prepared NPs and free MTX. These results demonstrate that MTX-loaded PLGA NPs are good candidates for targeted delivery of MTX to the lymphatic system.
Collapse
Affiliation(s)
- Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Korea
| | - Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Korea.
| |
Collapse
|
26
|
Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. NATURE REVIEWS. MATERIALS 2019; 4:415-428. [PMID: 32523780 PMCID: PMC7286627 DOI: 10.1038/s41578-019-0110-7] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A significant fraction of the total immune cells in the body are located in several hundred lymph nodes, in which lymphocyte accumulation, activation and proliferation are organized. Therefore, targeting lymph nodes provides the possibility to directly deliver drugs to lymphocytes and lymph node-resident cells and thus to modify the adaptive immune response. However, owing to the structure and anatomy of lymph nodes, as well as the distinct localization and migration of the different cell types within the lymph node, it is difficult to access specific cell populations by delivering free drugs. Materials can be used as instructive delivery vehicles to achieve accumulation of drugs in the lymph nodes and to target specific lymph node-resident cell subtypes. In this Review, we describe the compartmental architecture of lymph nodes and the cell and fluid transport mechanisms to and from lymph nodes. We discuss the different entry routes into lymph nodes and how they can be explored for drug delivery, including the lymphatics, blood capillaries, high endothelial venules, cell-mediated pathways, homing of circulating lymphocytes and direct lymph node injection. We examine different nanoscale and microscale materials for the targeting of specific immune cells and highlight their potential for the treatment of immune dysfunction and for cancer immunotherapy. Finally, we give an outlook to the field, exploring how lymph node targeting can be improved by the use of materials.
Collapse
Affiliation(s)
- Alex Schudel
- School of Materials Science and Engineering, Georgia institute of Technology, Atlanta, GA, USA
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Alex Schudel, David M. Francis
| | - David M Francis
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Alex Schudel, David M. Francis
| | - Susan N Thomas
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia institute of Technology and Emory University, Atlanta, GA, USA
- Winship Cancer institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
27
|
Abstract
Most clinically approved drugs (primarily small molecules or antibodies) are rapidly cleared from circulation and distribute throughout the body. As a consequence, only a small portion of the dose accumulates at the target site, leading to low efficacy and adverse side effects. Therefore, new delivery strategies are necessary to increase organ and tissue-specific delivery of therapeutic agents. Nanoparticles provide a promising approach for prolonging the circulation time and improving the biodistribution of drugs. However, nanoparticles display several limitations, such as clearance by the immune systems and impaired diffusion in the tissue microenvironment. To overcome common nanoparticle limitations various functionalization and targeting strategies have been proposed. This review will discuss synthetic nanoparticle and extracellular vesicle delivery strategies that exploit organ-specific features to enhance drug accumulation at the target site.
Collapse
|
28
|
Yu R, Mai Y, Zhao Y, Hou Y, Liu Y, Yang J. Targeting strategies of liposomal subunit vaccine delivery systems to improve vaccine efficacy. J Drug Target 2018; 27:780-789. [PMID: 30589361 DOI: 10.1080/1061186x.2018.1547734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liposomes are versatile delivery systems and immunological adjuvants that not only can load various antigens, such as proteins, peptides, nucleic acids and carbohydrates, but also can combine them with immunostimulators. Liposomes have great potential in the development of new types of vaccines, and much effort has been devoted to enhancing vaccine efficacy in recent years. Different types of immune cells such as macrophages and dendritic cells play an important role in the immune response and in preventing or treating cancer, allergy or many other infectious diseases. Targeting liposome-based delivery systems to certain immune cells and organs is one of the most effective measures in such treatments. Extensive research has shown that liposomes combined with immunostimulators or modified with pattern recognition receptor ligands can target various immune cells and the lymphatic system, thus not only inducing and promoting the desired immune response but also decreasing adverse effects throughout the body and avoiding targeting irrelevant cell types or tissues. Therefore, in this review, we outline some targeting strategies that can be adopted in the design of liposomal vaccines to improve vaccine efficacy, and we summarise the related liposome-based vaccine applications in several diseases. These applications have great potential to treat or prevent some infectious and intractable diseases.
Collapse
Affiliation(s)
- Rui Yu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yaping Mai
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yue Zhao
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yanhui Hou
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Yanhua Liu
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| | - Jianhong Yang
- a Department of Pharmaceutics, School of Pharmacy , Ningxia Medical University , Yinchuan , People's Republic of China
| |
Collapse
|
29
|
Ye T, Wu Y, Shang L, Deng X, Wang S. Improved lymphatic targeting: effect and mechanism of synthetic borneol on lymph node uptake of 7-ethyl-10-hydroxycamptothecin nanoliposomes following subcutaneous administration. Drug Deliv 2018; 25:1461-1471. [PMID: 29902927 PMCID: PMC6058601 DOI: 10.1080/10717544.2018.1482973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Borneol as a penetration enhancer is widely used in guiding other components through the biological barrier into the targeting organs or tissues. This study aimed at studying effect and mechanism of synthetic borneol (S-BO) on improving lymphatic-targeting ability of 7-ethyl-10-hydroxycamptothecin liposomes (SN-38-Lips) via increasing lymph node uptake. At first, SN-38-Lips prepared had appropriate particle distribution, drug loading property and compatible stability with S-BO. Both in vitro cellular uptake and in vivo fluorescence imaging showed that 2 and 5 mg/mL S-BO, especially 2 mg/mL S-BO, enhanced cytoplasmic fluorescence signal of SN-38-Lips in the macrophages based on phagocytosis effect. And high-intensity zone appeared in the paracortex and medulla of popliteal lymph node. SN-38-Lips were subcutaneously (s.c.) injected into the right footpad of KM rats in the dose of 4 mg/kg following s.c. injection of 1, 2 and 5 mg/mL BO suspension. The lymphatic pharmacokinetics were investigated to explore the promotion law of S-BO, and combined with tissue irritation to optimize S-BO concentrations. The results indicated that 2 mg/mL S-BO could reduce injection-site retention, and prolong residence time and increase uptake of lymph nodes, which would not cause inflammatory reaction of injection site. In conclusion, the present study may provide a basic study for improving lymphatic-targeting ability of SN-38-Lips by the S-BO regulation, and to be the helpful guidance for further study in lymphatic targeting of delivery system.
Collapse
Affiliation(s)
- Tiantian Ye
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Yue Wu
- b Department of Pharmaceutics, School of Chinese Medicines , Shenyang Pharmaceutical University , Shenyang , China
| | - Lei Shang
- c Shenyang Medical College , Shenyang , China
| | - Xueqing Deng
- b Department of Pharmaceutics, School of Chinese Medicines , Shenyang Pharmaceutical University , Shenyang , China
| | - Shujun Wang
- a Department of Pharmaceutics, School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
30
|
Chokshi NV, Khatri HN, Patel MM. Formulation, optimization, and characterization of rifampicin-loaded solid lipid nanoparticles for the treatment of tuberculosis. Drug Dev Ind Pharm 2018; 44:1975-1989. [DOI: 10.1080/03639045.2018.1506472] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nimitt V. Chokshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, India
| | - Hiren N. Khatri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, India
| | - Mayur M. Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, India
| |
Collapse
|
31
|
Jeong SH, Jang JH, Cho HY, Lee YB. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Arch Pharm Res 2018; 41:797-814. [PMID: 30074202 DOI: 10.1007/s12272-018-1060-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
With the current advance in nanotechnology, the development has accelerated of a number of nanoparticle-type drugs such as nano-emulsions, lipid emulsions, liposomes, and cell therapeutics. With these developments, attempts are being made to apply these new drugs to healing many intractable diseases related to antibody production, autoimmune disorders, cancer, and organ transplantation in both clinical and nonclinical trials. Drug delivery to the lymphatic system is indispensable for treating these diseases, but the core technologies related to the in vivo distribution characteristics and lymphatic delivery evaluation of these particle-type drugs have not yet been established. Additionally, the core technologies for setting up the pharmacotherapeutic aspects such as their usage and dosages in the development of new drugs do not meet the needs of the market. Therefore, it is necessary to consider dividing these particle-type drugs into soft-lipid nanoparticles that can change size in the process of body distribution and hard-lipid nanoparticles whose surfaces are hardened and whose sizes do not easily change in vivo; these soft- and hard-lipid nanoparticles likely possess different biodistribution characteristics including delivery to the lymphatic system. In this review, we summarize the different types, advantages, limitations, possible remedies, and body distribution characteristics of soft- and hard-lipid nanoparticles based on their administration routes. We also emphasize that it will be necessary to fully understand the differences in distribution between these soft- and hard-lipid nanoparticle-type drugs and to establish pharmacokinetic models for their more ideal lymphatic delivery.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
32
|
Kumar S, Narayan R, Ahammed V, Nayak Y, Naha A, Nayak UY. Development of ritonavir solid lipid nanoparticles by Box Behnken design for intestinal lymphatic targeting. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Obinu A, Gavini E, Rassu G, Maestri M, Bonferoni MC, Giunchedi P. Lymph node metastases: importance of detection and treatment strategies. Expert Opin Drug Deliv 2018; 15:459-467. [PMID: 29504430 DOI: 10.1080/17425247.2018.1446937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Lymphatic vessels are the preferential route of most solid tumors to spread their metastases in the body. The onset of metastatic nests in draining lymph nodes (LNs) are a significant indicator of cancer progression and a dismaying sign of worsen staging. Therefore, the individuation and elimination of cancer cells within the lymphatic system (LS) are an important goal. Nevertheless, the targeting of the LS with traditional contrast agents and/or chemotherapeutics is difficult, due to its anatomical structure. For this reason, many studies on new lymphatic delivery systems have been carried out, both to improve lymphatic imaging and to selectively carry chemotherapeutics to LNs, reducing the exposure of healthy tissues to the cytotoxic substances. This is an overview of the present situation in the field of detection and treatment strategies of lymphatic metastases, taking into account the use of nano-drug delivery systems. Nanocarriers, thanks to their small size and other physicochemical characteristics, are suitable vectors for imaging and chemotherapy of the LS. AREAS COVERED The role of the LS in tumor progression and importance of treatment and imaging strategies of lymphatic metastases. EXPERT OPINION The nanoparticles are a promising approach for treatment and detection of lymphatic metastases. However further studies are necessary in order to evaluate their efficacy in human clinical application.
Collapse
Affiliation(s)
- Antonella Obinu
- a PhD in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Paediatric Sciences , University of Pavia , Pavia , Italy
| | - Elisabetta Gavini
- b Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Giovanna Rassu
- b Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Marcello Maestri
- a PhD in Experimental Medicine, Department of Clinical-Surgical, Diagnostic and Paediatric Sciences , University of Pavia , Pavia , Italy.,c Department of Surgery , IRCCS Policlinico San Matteo Foundation , Pavia , Italy
| | | | - Paolo Giunchedi
- b Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| |
Collapse
|
34
|
Wu M, Yang W, Chen S, Yao J, Shao Z, Chen X. Size-controllable dual drug-loaded silk fibroin nanospheres through a facile formation process. J Mater Chem B 2018; 6:1179-1186. [DOI: 10.1039/c7tb03113k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Paclitaxel/doxorubicin-loaded silk fibroin nanospheres were prepared through a facile and green method and showed a synergistic effect on the anti-proliferative activity.
Collapse
Affiliation(s)
- Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Wenhua Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Sheng Chen
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science, Laboratory of Advanced Materials
- Fudan University
- Shanghai
- China
| |
Collapse
|
35
|
Berrocoso E, Rey-Brea R, Fernández-Arévalo M, Micó JA, Martín-Banderas L. Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2623-2632. [DOI: 10.1016/j.nano.2017.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023]
|
36
|
Narmani A, Yavari K, Mohammadnejad J. Imaging, biodistribution and in vitro study of smart 99mTc-PAMAM G4 dendrimer as novel nano-complex. Colloids Surf B Biointerfaces 2017; 159:232-240. [DOI: 10.1016/j.colsurfb.2017.07.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
|
37
|
Truzzi E, Bongio C, Sacchetti F, Maretti E, Montanari M, Iannuccelli V, Vismara E, Leo E. Self-Assembled Lipid Nanoparticles for Oral Delivery of Heparin-Coated Iron Oxide Nanoparticles for Theranostic Purposes. Molecules 2017; 22:molecules22060963. [PMID: 28598368 PMCID: PMC6152759 DOI: 10.3390/molecules22060963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/22/2022] Open
Abstract
Recently, solid lipid nanoparticles (SLNs) have attracted increasing attention owing to their potential as an oral delivery system, promoting intestinal absorption in the lymphatic circulation which plays a role in disseminating metastatic cancer cells and infectious agents throughout the body. SLN features can be exploited for the oral delivery of theranostics. Therefore, the aim of this work was to design and characterise self-assembled lipid nanoparticles (SALNs) to encapsulate and stabilise iron oxide nanoparticles non-covalently coated with heparin (Fe@hepa) as a model of a theranostic tool. SALNs were characterised for physico-chemical properties (particle size, surface charge, encapsulation efficiency, in vitro stability, and heparin leakage), as well as in vitro cytotoxicity by methyl thiazole tetrazolium (MTT) assay and cell internalisation in CaCo-2, a cell line model used as an indirect indication of intestinal lymphatic absorption. SALNs of about 180 nm, which are stable in suspension and have a high encapsulation efficiency (>90%) were obtained. SALNs were able to stabilise the heparin coating of Fe@hepa, which are typically unstable in physiological environments. Moreover, SALNs–Fe@hepa showed no cytotoxicity, although their ability to be internalised into CaCo-2 cells was highlighted by confocal microscopy analysis. Therefore, the results indicated that SALNs can be considered as a promising tool to orally deliver theranostic Fe@hepa into the lymphatic circulation, although further in vivo studies are needed to comprehend further potential applications.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| | - Chiara Bongio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", via Mancinelli 7, Politecnico di Milano, 20131 Milano, Italy.
| | - Francesca Sacchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 287, 41125 Modena, Italy.
| | - Valentina Iannuccelli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| | - Elena Vismara
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", via Mancinelli 7, Politecnico di Milano, 20131 Milano, Italy.
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy.
| |
Collapse
|
38
|
Abellan-Pose R, Rodríguez-Évora M, Vicente S, Csaba N, Évora C, Alonso MJ, Delgado A. Biodistribution of radiolabeled polyglutamic acid and PEG-polyglutamic acid nanocapsules. Eur J Pharm Biopharm 2017; 112:155-163. [DOI: 10.1016/j.ejpb.2016.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/13/2016] [Indexed: 12/30/2022]
|
39
|
Self-assembly strategy for the design of soft nanocontainers with controlled properties. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Ye T, Zhang H, Chen G, Shang L, Wang S. Fluorescent molecular imaging of metastatic lymph node using near-infrared emitting low molecular weight heparin modified nanoliposome based on enzyme-substrate interaction. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:482-491. [PMID: 27585841 DOI: 10.1002/cmmi.1710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/08/2016] [Accepted: 07/17/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Tiantian Ye
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Hefeng Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Ge Chen
- Department of General Surgery; Peking Union Medical College hospital; Chinese Academy of Medical Sciences; Peking China
| | - Lei Shang
- School of Pharmacy; China Medical University; Shenyang China
| | - Shujun Wang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
41
|
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240:504-526. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The oral route is a preferred method of drug administration, though achieving effective drug delivery and minimizing off-target side effects is often challenging. Formulation into nanoparticles can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. However, the unique and diverse physiology throughout the GI tract, including wide variation in pH, mucus that varies in thickness and structure, numerous cell types, and various physiological functions are both a barrier to effective delivery and an opportunity for nanoparticle design. Here, nanoparticle design aspects to improve delivery to particular sites in the GI tract are discussed. We then review new methods for evaluating oral nanoparticle formulations, including a short commentary on data interpretation and translation. Finally, the state-of-the-art in preclinical targeted nanoparticle design is reviewed.
Collapse
Affiliation(s)
- Abhijit A Date
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
42
|
Kaklotar D, Agrawal P, Abdulla A, Singh RP, Mehata AK, Singh S, Mishra B, Pandey BL, Trigunayat A, Muthu MS. Transition from passive to active targeting of oral insulin nanomedicines: enhancement in bioavailability and glycemic control in diabetes. Nanomedicine (Lond) 2016; 11:1465-86. [DOI: 10.2217/nnm.16.43] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oral insulin nanomedicines are effective tools for therapy and management of both Type I and Type II diabetes. This review summarizes the various nanocarriers developed so far in the literature for oral delivery of insulin. It includes lipid-based (i.e., solid lipid nanoparticles and liposomes) and polymeric-based insulin nanomedicines (i.e., chitosan nanoparticles, alginate nanoparticles, dextran nanoparticles and nanoparticles of synthetic polymers) for sustained, controlled and targeted oral delivery of insulin. Mainly, goblet cell-targeting, vitamin B12 receptor-targeting, folate receptor-targeting and transferrin receptor-targeting aspects were focused. Currently, passive and active targeting approaches of oral insulin nanomedicines have improved the oral absorption of insulin and its bioavailability (up to 14%) that produced effective glycaemic control in in vivo models. These results indicate a promising future of oral insulin nanomedicines for the treatment of diabetes.
Collapse
Affiliation(s)
- Dhansukh Kaklotar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Poornima Agrawal
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Allabakshi Abdulla
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul P Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Abhishesh K Mehata
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sanjay Singh
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Bajarangprasad L Pandey
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anshuman Trigunayat
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
43
|
Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol 2016; 299:78-89. [PMID: 26739622 PMCID: PMC4811709 DOI: 10.1016/j.taap.2015.12.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/24/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure-activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guide safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle-immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15years of research on the immunotoxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, USA.
| | - Michael Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Anna A Shvedova
- Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
44
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
45
|
Torres Andón F, Alonso MJ. Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. J Drug Target 2015; 23:656-71. [DOI: 10.3109/1061186x.2015.1073295] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Basalious EB, Shamma RN. Novel self-assembled nano-tubular mixed micelles of Pluronics P123, Pluronic F127 and phosphatidylcholine for oral delivery of nimodipine: In vitro characterization, ex vivo transport and in vivo pharmacokinetic studies. Int J Pharm 2015; 493:347-56. [DOI: 10.1016/j.ijpharm.2015.07.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
47
|
Swami R, Singh I, Jeengar MK, Naidu V, Khan W, Sistla R. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting. Int J Pharm 2015; 486:287-96. [DOI: 10.1016/j.ijpharm.2015.03.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
|
48
|
Lu Y, Qiu Y, Qi J, Feng M, Ju D, Wu W. Biomimetic reassembled chylomicrons as novel association model for the prediction of lymphatic transportation of highly lipophilic drugs via the oral route. Int J Pharm 2015; 483:69-76. [DOI: 10.1016/j.ijpharm.2015.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/13/2015] [Accepted: 02/10/2015] [Indexed: 11/25/2022]
|
49
|
Singh I, Swami R, Jeengar MK, Khan W, Sistla R. p-Aminophenyl-α-D-mannopyranoside engineered lipidic nanoparticles for effective delivery of docetaxel to brain. Chem Phys Lipids 2015; 188:1-9. [PMID: 25819559 DOI: 10.1016/j.chemphyslip.2015.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 01/29/2023]
Abstract
Lipidic systems are considered to be the most promising carrier for drug delivery to brain. Metabolic substrates like carbohydrates and amino acids are able to traverse the blood-brain barrier (BBB) by specific carrier-mediated transport systems like glucose transporters present on the both luminal and abluminal side of the BBB. With this objective, the docetaxel (DTX) loaded solid lipidic nanoparticles were formulated and surface modified with a mannose derived ligand p-aminophenyl-α-D-mannopyranoside (MAN) to develop MAN conjugated lipidic nanoparticles for targeting DTX to brain. Lipidic nanoparticles were prepared using emulsification and solvent evaporation method using stearic acid as charge modifying lipid and conjugated with MAN using carbodimide coupling. These lipidic nanoparticles were successfully characterized using various techniques like DLS, TEM, DSC and FTIR spectroscopy. Cytotoxicity and cell uptake unveiled enhanced efficacy of conjugated lipidic nanoparticles. Pharmacokinetic and brain distribution studies demonstrated increased DTX concentrations using lipidic nanoparticles in brain and conjugating MAN on surface of lipidic nanoparticles further augmented the inflow of the drug to brain. Present study revealed the prospective of mannose analog, MAN-conjugated lipidic nanoparticles as efficient vehicle for anticancer drug delivery to brain.
Collapse
Affiliation(s)
- Indu Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajan Swami
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| | - Ramakrishna Sistla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India; Medicinal Chemistry and Pharmacology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500607, India.
| |
Collapse
|
50
|
Zhang XY, Lu WY. Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol Med 2015; 11:247-54. [PMID: 25610710 PMCID: PMC4296090 DOI: 10.7497/j.issn.2095-3941.2014.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022] Open
Abstract
The lymphatic system has an important defensive role in the human body. The metastasis of most tumors initially spreads through the surrounding lymphatic tissue and eventually forms lymphatic metastatic tumors; the tumor cells may even transfer to other organs to form other types of tumors. Clinically, lymphatic metastatic tumors develop rapidly. Given the limitations of surgical resection and the low effectiveness of radiotherapy and chemotherapy, the treatment of lymphatic metastatic tumors remains a great challenge. Lymph node metastasis may lead to the further spread of tumors and may be predictive of the endpoint event. Under these circumstances, novel and effective lymphatic targeted drug delivery systems have been explored to improve the specificity of anticancer drugs to tumor cells in lymph nodes. In this review, we summarize the principles of lymphatic targeted drug delivery and discuss recent advances in the development of lymphatic targeted carriers.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- 1 Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China ; 2 Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wei-Yue Lu
- 1 Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China ; 2 Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|