1
|
El-Zahaby SA, Abdelhady SA, Ali MA, Younis SE, Elnaggar YSR. Limosomes versus hyalurolimosomes loaded with piperine for management of skin cancer. Int J Pharm 2024; 650:123730. [PMID: 38142014 DOI: 10.1016/j.ijpharm.2023.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/12/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Skin cancer is considered the fifth most commonly occurring cancer worldwide hampering both health and economy. Piperine had proven efficacy in fighting skin cancer cells. Unfortunately, this natural agent had limited ability to penetrate the skin. The aim of the current study was to formulate piperine-loaded limosomes and hyalurolimosomes incorporating limonene as an edge activator and hyaluronic acid as bioactive gelling agent for managing skin cancer. Titration method followed by homogenization was adopted to prepare the nanoliposomal formulations. Characterization involved size, & zeta potential measurements, examination using transmission electron microscope (TEM) and stability study. Biological evaluation of the antitumor activity of piperine nanoliposomal formulations against Ehrlich's (EAC) solid tumor was also performed. Drug loaded limosomes and hyalurolimosomes had particle size; 346.55 ± 8.55 & 372.70 ± 10.83 nm, respectively. Zeta potential was high enough to ensure their stability. TEM micrographs detected the surrounding layer of Hyaluronic acid formed around the spherical limosomal nano-carrier ensuring the formation of Hyalurolimosomes. All stored formulations showed non-significant differences compared with freshly prepared ones at p < 0.05. In addition, A DAD-HPLC method was developed and validated for Piperine analysis in the skin. Upon application of this method, it was found that hyalurolimosomes deliver double the concentration delivered by limosomes. The piperine hyalurolimosome group showed a significant reduction in tumor size with a smaller AUC compared to piperine gel, which was confirmed by in vivo studies. Consequently, hyalurolimosomes loaded with piperine is considered a promising nanocarrier system and a step forward better management of skin cancer introducing new hope in beating this deadly disease.
Collapse
Affiliation(s)
- Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | - Sherien A Abdelhady
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Sameh E Younis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of international publishing & nanotechnology consultation center INCC, Faculty of Pharmacy, Pharos university, Alexandria, Egypt.
| |
Collapse
|
2
|
Melrose J. Hyaluronan hydrates and compartmentalises the CNS/PNS extracellular matrix and provides niche environments conducive to the optimisation of neuronal activity. J Neurochem 2023; 166:637-653. [PMID: 37492973 DOI: 10.1111/jnc.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system/peripheral nervous system (CNS/PNS) extracellular matrix is a dynamic and highly interactive space-filling, cell-supportive, matrix-stabilising, hydrating entity that creates and maintains tissue compartments to facilitate regional ionic micro-environments and micro-gradients that promote optimal neural cellular activity. The CNS/PNS does not contain large supportive collagenous and elastic fibrillar networks but is dominated by a high glycosaminoglycan content, predominantly hyaluronan (HA) and collagen is restricted to the brain microvasculature, blood-brain barrier, neuromuscular junction and meninges dura, arachnoid and pia mater. Chondroitin sulphate-rich proteoglycans (lecticans) interactive with HA have stabilising roles in perineuronal nets and contribute to neural plasticity, memory and cognitive processes. Hyaluronan also interacts with sialoproteoglycan associated with cones and rods (SPACRCAN) to stabilise the interphotoreceptor matrix and has protective properties that ensure photoreceptor viability and function is maintained. HA also regulates myelination/re-myelination in neural networks. HA fragmentation has been observed in white matter injury, multiple sclerosis, and traumatic brain injury. HA fragments (2 × 105 Da) regulate oligodendrocyte precursor cell maturation, myelination/remyelination, and interact with TLR4 to initiate signalling cascades that mediate myelin basic protein transcription. HA and its fragments have regulatory roles over myelination which ensure high axonal neurotransduction rates are maintained in neural networks. Glioma is a particularly invasive brain tumour with extremely high mortality rates. HA, CD44 and RHAMM (receptor for HA-mediated motility) HA receptors are highly expressed in this tumour. Conventional anti-glioma drug treatments have been largely ineffective and surgical removal is normally not an option. CD44 and RHAMM glioma HA receptors can potentially be used to target gliomas with PEP-1, a cell-penetrating HA-binding peptide. PEP-1 can be conjugated to a therapeutic drug; such drug conjugates have successfully treated dense non-operative tumours in other tissues, therefore similar applications warrant exploration as potential anti-glioma treatments.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
3
|
Luo Y, Tan J, Zhou Y, Guo Y, Liao X, He L, Li D, Li X, Liu Y. From crosslinking strategies to biomedical applications of hyaluronic acid-based hydrogels: A review. Int J Biol Macromol 2023; 231:123308. [PMID: 36669634 DOI: 10.1016/j.ijbiomac.2023.123308] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is not only a natural anionic polysaccharide with excellent biocompatibility, biodegradability, and moisturizing effect, but also an essential factor that can affect angiogenesis, inflammation, cell behavior, which has a wide range of applications in the biomedical field. Among them, HA-based hydrogels formed by various physical or chemical crosslinking strategies are particularly striking. They not only retain the physiological function of HA, but also have the skeleton function of hydrogel, which further expands the application of HA. However, HA-based natural hydrogels generally have problems such as insufficient mechanical strength and susceptibility to degradation by hyaluronidase, which limits their application to a certain extent. To solve such problems, researchers have prepared a variety of HA-based multifunctional hydrogels with remarkable properties in recent years by adopting various structural modification methods or novel crosslinking strategies, as well as introducing functionally reactive molecules or moieties, which have extended the application scope. This manuscript systematically introduced common crosslinking strategies of HA-based hydrogels and highlighted the development of novel HA-based hydrogels in anticancer drug delivery, cartilage repair, three-dimensional cell culture, skin dressing and other fields. We hope to provide some references for the subsequent development of HA-based hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Yuning Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Junyan Tan
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Zhou
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuqiong Guo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinying Liao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Li He
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dingxilei Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinxin Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Liu K, McCue WM, Yang CW, Finzel BC, Huang X. Combinatorial synthesis of a hyaluronan based polysaccharide library for enhanced CD44 binding. Carbohydr Polym 2023; 300:120255. [PMID: 36372512 PMCID: PMC10322327 DOI: 10.1016/j.carbpol.2022.120255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
Abstract
Hyaluronan (HA) plays important roles in a wide range of biological events. The principal receptor of HA in the human body is the Cluster of Differentiation 44 (CD44). To enhance the binding between HA and CD44, a new approach was designed to take advantage of the four-component Ugi reaction. By modifying the carboxyl group on HA with various amine, aldehyde, and isocyanide moieties through the Ugi reaction, 36 HA like polysaccharides were generated. Two lead compounds were identified with enhanced CD44 binding compared to unmodified HA, which was confirmed by surface plasmon resonance (SPR), cellular studies and an in vivo mouse tumor model. Ski-learn as a machine learning tool was applied to analyze library data and yield predictions with an accuracy over 80 %. In conclusion, modification of HA via the Ugi reaction can be a promising strategy to develop novel binders toward HA receptors such as CD44.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - William M McCue
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chia-Wei Yang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Barry C Finzel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res 2023; 13:135-163. [PMID: 35727533 DOI: 10.1007/s13346-022-01197-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Since the beginning of pharmaceutical research, drug delivery methods have been an integral part of it. Polymeric micelles (PMs) have emerged as multifunctional nanoparticles in the current technological era of nanocarriers, and they have shown promise in a range of scientific fields. They can alter the release profile of integrated pharmacological substances and concentrate them in the target zone due to their improved permeability and retention, making them more suitable for poorly soluble medicines. With their ability to deliver poorly soluble chemotherapeutic drugs, PMs have garnered considerable interest in cancer. As a result of their remarkable biocompatibility, improved permeability, and minimal toxicity to healthy cells, while also their capacity to solubilize a wide range of drugs in their micellar core, PMs are expected to be a successful treatment option for cancer therapy in the future. Their nano-size enables them to accumulate in the tumor microenvironment (TME) via the enhanced permeability and retention (EPR) effect. In this review, our major aim is to focus primarily on the stellar applications of PMs in the field of cancer therapeutics along with its mechanism of action and its latest advancements in drug and gene delivery (DNA/siRNA) for cancer, using various therapeutic strategies such as crossing blood-brain barrier, gene therapy, photothermal therapy (PTT), and immunotherapy. Furthermore, PMs can be employed as "smart drug carriers," allowing them to target specific cancer sites using a variety of stimuli (endogenous and exogenous), which improve the specificity and efficacy of micelle-based targeted drug delivery. All the many types of stimulants, as well as how the complex of PM and various anticancer drugs react to it, and their pharmacodynamics are also reviewed here. In conclusion, commercializing engineered micelle nanoparticles (MNPs) for application in therapy and imaging can be considered as a potential approach to improve the therapeutic index of anticancer drugs. Furthermore, PM has stimulated intense interest in research and clinical practice, and in light of this, we have also highlighted a few PMs that have previously been approved for therapeutic use, while the majority are still being studied in clinical trials for various cancer therapies.
Collapse
Affiliation(s)
- Sharath Kumar Hari
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ankita Gauba
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201303, India.
| | - Sudhir Kumar Jain
- School of Studies in Microbiology, Vikram University, Ujjain, Madhya Pradesh, 456010, India
| | - Akhilesh Kumar Pandey
- Department of Biological Sciences, Rani Durgavati University, Jabalpur, M.P, 482001, India.,Vikram University, Ujjain, Madhya Pradesh, 456010, India
| |
Collapse
|
6
|
Lee WH, Rho JG, Yang Y, Lee S, Kweon S, Kim HM, Yoon J, Choi H, Lee E, Kim SH, You S, Song Y, Oh YS, Kim H, Han HS, Han JH, Jung M, Park YH, Choi YS, Han S, Lee J, Choi S, Kim JW, Park JH, Lee EK, Song WK, Kim E, Kim W. Hyaluronic Acid Nanoparticles as a Topical Agent for Treating Psoriasis. ACS NANO 2022; 16:20057-20074. [PMID: 36373736 DOI: 10.1021/acsnano.2c07843] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although conventional topical approaches for treating psoriasis have been offered as an alternative, there are still unmet medical needs such as low skin-penetrating efficacy and off-target adverse effects. A hyaluronic acid nanoparticle (HA-NP) formed by self-assembly of HA-hydrophobic moiety conjugates has been broadly studied as a nanocarrier for long-term and target-specific delivery of drugs, owing to their excellent physicochemical and biological characteristics. Here, we identify HA-NPs as topical therapeutics for treating psoriasis using in vivo skin penetration studies and psoriasis animal models. Transcutaneously administered HA-NPs were found to be accumulated and associated with pro-inflammatory macrophages in the inflamed dermis of a psoriasis mouse model. Importantly, HA-NP exerted potent therapeutic efficacy against psoriasis-like skin dermatitis in a size-dependent manner by suppressing innate immune responses and restoring skin barrier function without overt toxicity signs. The therapeutic efficacy of HA-NPs on psoriasis-like skin dermatitis was due to the outermost hydrophilic HA shell layer of HA-NPs, independent of the molecular weight of HA and hydrophobic moiety, and comparable with that of other conventional psoriasis therapeutics widely used in the clinical settings. Overall, HA-NPs have the potential as a topical nanomedicine for treating psoriasis effectively and safely.
Collapse
Affiliation(s)
- Wang Hee Lee
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Jun Gi Rho
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
- Pharmaceutical Institute, FromBIO, Suwon16681, Republic of Korea
| | - Yeyoung Yang
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Seulbi Lee
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Sohui Kweon
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Hyung-Mo Kim
- KIURI Research Center, Ajou University, Suwon16499, Republic of Korea
| | - Juhwan Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Hongseo Choi
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Eunyoung Lee
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Su Ha Kim
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Sohee You
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Yujin Song
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Young Soo Oh
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Hwan Kim
- GIST Central Research Facilities, Bio Imaging Laboratory, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Hwa Seung Han
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung25451, Republic of Korea
| | - Ji Hye Han
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Myeongwoo Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Young Hwan Park
- KIURI Research Center, Ajou University, Suwon16499, Republic of Korea
| | - Yang Seon Choi
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Sukyoung Han
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Junho Lee
- Pharmaceutical Institute, FromBIO, Suwon16681, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul06974, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Woo Keun Song
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Eunha Kim
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| |
Collapse
|
7
|
Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065-6086. [PMID: 35770998 PMCID: PMC9289890 DOI: 10.1039/d0cs01414a] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/25/2022]
Abstract
The application of metal-organic frameworks (MOFs) in drug delivery has advanced rapidly over the past decade, showing huge progress in the development of novel systems. Although a large number of versatile MOFs that can carry and release multiple compounds have been designed and tested, one of the main limitations to their translation to the clinic is the limited biological understanding of their interaction with cells and the way they penetrate them. This is a crucial aspect of drug delivery, as MOFs need to be able not only to enter into cells but also to release their cargo in the correct intracellular location. While small molecules can enter cells by passive diffusion, nanoparticles (NPs) usually require an energy-dependent process known as endocytosis. Importantly, the fate of NPs after being taken up by cells is dependent on the endocytic pathways they enter through. However, no general guidelines for MOF particle internalization have been established due to the inherent complexity of endocytosis as a mechanism, with several factors affecting cellular uptake, namely NP size and surface chemistry. In this review, we cover recent advances regarding the understanding of the mechanisms of uptake of nano-sized MOFs (nanoMOFs)s, their journey inside the cell, and the importance of biological context in their final fate. We examine critically the impact of MOF physicochemical properties on intracellular trafficking and successful cargo delivery. Finally, we highlight key unanswered questions on the topic and discuss the future of the field and the next steps for nanoMOFs as drug delivery systems.
Collapse
Affiliation(s)
- Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Salame Haddad
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Zihan Mei
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| |
Collapse
|
8
|
Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev 2022; 182:114113. [PMID: 35063535 DOI: 10.1016/j.addr.2022.114113] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, non-coding RNA-based therapeutics have proven as a great potential for the development of targeted therapies for cancer and other diseases. The discovery of the critical function of microRNAs (miRNAs) has generated great excitement in developing miRNA-based therapies. The dysregulation of miRNAs contributes to the pathogenesis of various human diseases and cancers by modulating genes that are involved in critical cellular processes, including cell proliferation, differentiation, apoptosis, angiogenesis, metastasis, drug resistance, and tumorigenesis. miRNA (miRNA mimic, anti-miRNA/antagomir) and small interfering RNA (siRNA) can inhibit the expression of any cancer-related genes/mRNAs with high specificity through RNA interference (RNAi), thus representing a remarkable therapeutic tool for targeted therapies and precision medicine. siRNA and miRNA-based therapies have entered clinical trials and recently three novel siRNA-based therapeutics were approved by the Food and Drug Administration (FDA), indicating the beginning of a new era of targeted therapeutics. The successful clinical applications of miRNA and siRNA therapeutics rely on safe and effective nanodelivery strategies for targeting tumor cells or tumor microenvironment. For this purpose, promising nanodelivery/nanoparticle-based approaches have been developed using a variety of molecules for systemic administration and improved tumor targeted delivery with reduced side effects. In this review, we present an overview of RNAi-based therapeutics, the major pharmaceutical challenges, and the perspectives for the development of promising delivery systems for clinical translation. We also highlight the passive and active tumor targeting nanodelivery strategies and primarily focus on the current applications of nanoparticle-based delivery formulations for tumor targeted RNAi molecules and their recent advances in clinical trials in human cancers.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chemistry, Biochemistry Division, Ordu University, Ordu, Turkey
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Liu K, Huang X. Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy. Carbohydr Res 2022; 511:108500. [PMID: 35026559 PMCID: PMC8792315 DOI: 10.1016/j.carres.2022.108500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a polysaccharide consisting of repeating disaccharides of N-acetyl-d-glucosamine and d-glucuronic acid. There are increasing interests in utilizing self-assembled HA nanoparticles (HA-NPs) for targeted imaging and therapy. The principal endogenous receptor of HA, cluster of differentiation 44 (CD44), is overexpressed on many types of tumor cells as well as inflammatory cells in human bodies. Active targeting from HA-CD44 mediated interaction and passive targeting due to the enhanced permeability retention (EPR) effect could lead to selective accumulation of HA-NPs at targeted disease sites. This review focuses on the synthesis strategies of self-assembled HA-NPs, as well as their applications in therapy and biomedical imaging.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
Le TN, Lin CJ, Shen YC, Lin KY, Lee CK, Huang CC, Rao NV. Hyaluronic Acid Derived Hypoxia-Sensitive Nanocarrier for Tumor Targeted Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:8325-8332. [PMID: 35005953 DOI: 10.1021/acsabm.1c00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) is conjugated with BHQ3 moiety with azo bonds to prepare hypoxia-responsive polymer conjugate. Because of the amphiphilic nature, the polymer conjugate self-assembles to HA-BHQ3 nanoparticles (NPs). The anticancer drug doxorubicin (DOX) is loaded into the NPs. In the physiological environment, DOX is released slowly. In contrast, under hypoxic conditions, the azo bond in BHQ3 is cleaved, thus significantly enhancing the DOX release rate. For instance, after 24 h, 25% of DOX is released under normal conditions, while 74% of DOX is released under hypoxic conditions. In vitro cytotoxicity demonstrates higher toxicity in the hypoxic conditions. DOX@HA-BHQ3 NPs exhibit greater toxicity levels against 4T1 cells in hypoxic conditions. The fluorescent microscope images confirm the oxygen-dependent intracellular DOX release from the NPs. The in vivo biodistribution results suggest the tumor targetability of HA-BHQ3 NPs in 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Trong-Nghia Le
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yen Chen Shen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Kuan-Yu Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - N Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| |
Collapse
|
11
|
Grixti JM, Ayers D, Day PJR. An Analysis of Mechanisms for Cellular Uptake of miRNAs to Enhance Drug Delivery and Efficacy in Cancer Chemoresistance. Noncoding RNA 2021; 7:27. [PMID: 33923485 PMCID: PMC8167612 DOI: 10.3390/ncrna7020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Up until recently, it was believed that pharmaceutical drugs and their metabolites enter into the cell to gain access to their targets via simple diffusion across the hydrophobic lipid cellular membrane, at a rate which is based on their lipophilicity. An increasing amount of evidence indicates that the phospholipid bilayer-mediated drug diffusion is in fact negligible, and that drugs pass through cell membranes via proteinaceous membrane transporters or carriers which are normally used for the transportation of nutrients and intermediate metabolites. Drugs can be targeted to specific cells and tissues which express the relevant transporters, leading to the design of safe and efficacious treatments. Furthermore, transporter expression levels can be manipulated, systematically and in a high-throughput manner, allowing for considerable progress in determining which transporters are used by specific drugs. The ever-expanding field of miRNA therapeutics is not without its challenges, with the most notable one being the safe and effective delivery of the miRNA mimic/antagonist safely to the target cell cytoplasm for attaining the desired clinical outcome, particularly in miRNA-based cancer therapeutics, due to the poor efficiency of neo-vascular systems revolting around the tumour site, brought about by tumour-induced angiogenesis. This acquisition of resistance to several types of anticancer drugs can be as a result of an upregulation of efflux transporters expression, which eject drugs from cells, hence lowering drug efficacy, resulting in multidrug resistance. In this article, the latest available data on human microRNAs has been reviewed, together with the most recently described mechanisms for miRNA uptake in cells, for future therapeutic enhancements against cancer chemoresistance.
Collapse
Affiliation(s)
- Justine M. Grixti
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD 2080, Malta
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| | - Philip J. R. Day
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| |
Collapse
|
12
|
Catarata R, Azim N, Bhattacharya S, Zhai L. Controlled drug release from polyelectrolyte-drug conjugate nanoparticles. J Mater Chem B 2021; 8:2887-2894. [PMID: 32191246 DOI: 10.1039/d0tb00012d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Encapsulating drugs in functional nanoparticles provides controlled and targeted release of drugs. In this study, a general approach for encapsulating hydrophobic drugs in polyelectrolyte nanoparticles was developed for a controlled drug release. Gemcitabine (GEM), an anticancer drug for pancreatic ductal adenocarcinoma (PDAC), was used as a model drug to produce poly(acrylic acid) (PAA)-GEM conjugate nanoparticles to achieve a controlled release of GEM in cells. The PAA-GEM conjugate nanoparticles were fabricated by coupling GEM onto PAA through the formation of amide bonds. The hydrophobic interactions of GEM molecules induced the formation of the nanoparticles with the GEM core and PAA shell. Fabrication conditions such as the PAA/GEM ratio and pH were optimized to achieve high structure stability and drug loading efficiency. The size and surface charge of the nanoparticles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurement. The optimized PAA-GEM nanoparticles had a size around 12 nm, 30 nm and 60 nm in dry state, water, and phosphate buffered saline (PBS), respectively. The encapsulation efficiency was 29.29 ± 1.7%, and the loading capacity was 9.44 ± 0.46%. Less than 7% GEM was released from the PAA-GEM nanoparticles after 96 hour incubation in phosphate buffered saline. The cytotoxic efficacy of the PAA-GEM nanoparticles in cancer cells was investigated through viability studies of PANC-1, a human pancreatic cancer cell line. It was found that the PAA-GEM nanoparticles had more than a 48 hour delay of releasing GEM and had the same cytotoxic efficacy in PANC-1 cells as free GEM. The uptake of the PAA-GEM nanoparticles by PANC-1 cells was investigated using PAA-GEM labeled by rhodamine G6. Fluorescence and bright field overlay images indicated that the PAA-GEM nanoparticles were taken up by PANC-1 cells within 2 hours. It is believed that the PAA-GEM nanoparticles were decomposed in PANC-1 cells and GEM was released from the nanoparticles.
Collapse
Affiliation(s)
- Ruginn Catarata
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA.
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA. and Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, USA.
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA. and Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA and Department of Material Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
13
|
Paswan SK, Saini TR, Jahan S, Ganesh N. Designing and Formulation Optimization of Hyaluronic Acid Conjugated PLGA Nanoparticles of Tamoxifen for Tumor Targeting. Pharm Nanotechnol 2021; 9:217-235. [PMID: 33745427 DOI: 10.2174/2211738509666210310155807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 02/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Tamoxifen is widely used for the treatment of estrogen receptor-positive breast cancer. However, it is associated with severe side effects of cancerous proliferation on the uterus endometrium. The tumor-targeting formulation strategies can effectively overcome drug side effects of tamoxifen and provide safer drug treatment. OBJECTIVE This study aimed to design tumor-targeted PLGA nanoparticles of tamoxifen by attaching hyaluronic acid (HA) as a ligand to actively target the CD44 receptors present at breast cancer cells surface. METHODS PLGA-PEG-HA conjugate was synthesized in the laboratory, and its tamoxifen-loaded nanoparticles were fabricated and characterized by FTIR, NMR, DSC, and XRD analysis. Formulation optimization was done by Box-Behnken design using Design-Expert software. The formulations were evaluated for in vitro drug release and cytotoxic effect on MCF-7 cell lines. RESULTS The particle size, PDI, and drug encapsulation efficiency of optimized nanoparticles were 294.8, 0.626, and 65.16%, respectively. Optimized formulation showed 9.56% burst release and sustained drug release for 8h. The drug release was affected by non-Fickian diffusion process and supplemented further by the erosion of polymeric matrix which followed the Korsmeyer-Peppas model. MTT cell line assay showed 47.48% cell mortality when treated with tamoxifen-loaded PLGA- PEG-HA nanoparticles. CONCLUSION Hyaluronic acid conjugated PLGA-PEG nanoparticles of tamoxifen were designed for active targeting to cancerous breast cells. The results of the MTT assay showed that tamoxifen nanoparticles formulation was more cytotoxic than tamoxifen drug alone, which is attributed to their preferential uptake by cell lines by the affinity of CD44 receptors of cell lines to HA ligand present in nanoparticles.
Collapse
Affiliation(s)
- Suresh K Paswan
- Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G.S. Institute of Technology and Science, Indore (M.P.), India
| | - Tulsi R Saini
- Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G.S. Institute of Technology and Science, Indore (M.P.), India
| | - Sarwar Jahan
- Department of Research, Clinical Cytogenetics Laboratory, Jawaharlal Nehru Cancer Hospital & Research Centre (JNCHRC), Bhopal, Madhya Pradesh, India
| | - Narayanan Ganesh
- Department of Research, Clinical Cytogenetics Laboratory, Jawaharlal Nehru Cancer Hospital & Research Centre (JNCHRC), Bhopal, Madhya Pradesh, India
| |
Collapse
|
14
|
Wang H, Li Y, Min Y, Zhang H, Hao L, Zhang R, Jiang Y, Song Y. Preparation and properties of Pue-loaded HA-ADH-PS nanomicelles. Des Monomers Polym 2021; 24:1-12. [PMID: 33536833 PMCID: PMC7832032 DOI: 10.1080/15685551.2020.1860481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Puerarin (Pue) is the most abundant isoflavonoid in kudzu root. It has been widely used as a therapeutic agent for the treatment of cardiovascular diseases. However, poor-bioavailability of puerarin is the main obstacle to its widespread clinical applications. In this paper, HA-ADH-PS nanomicelles were prepared by chemical modification, noncovalent modification and etc, and characterized by means of FT-IR, ultraviolet (UV) and thermogravimetric analysis (TG). The encapsulation efficiency and drug loading of Pue-loaded HA-ADH-PS nanomicelles were 45.1% and 19.89% by UV, respectively. It could be observed from the transmission electron microscopy (TEM) images that HA-ADH-PS micelles appeared obvious spherical structure in the water. The particle size of HA-ADH-PS nanomicelles and Pue-loaded HA-ADH-PS nanomicelles were about 136.8 nm and 119.5 nm with a PDI of 0.237 and 0.272, respectively. The fluorescence probe method was used to characterize the critical micelle concentration, the critical micelle concentration (CMC) value of the nanomicells was 0.002 g/L and the results met the requirements and ensured the stability of micelles after dilution. DPPH assay suggested that Pue-loaded HA-ADH-PS nanomicelles had an obvious radical scavenging effect in vitro. MTT test showed that Pue-loaded HA-ADH-PS nanomicelles was non-toxic and had good biocompatibility. Thus, Pue-loaded HA-ADH-PS nanomicelles could be used as a potential drug carrier for puerarin.
Collapse
Affiliation(s)
- Huiru Wang
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao P.R. China
| | - Yuanyuan Li
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao P.R. China
| | - Yunpeng Min
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao P.R. China
| | - Hang Zhang
- College of Marines Life Science, Ocean University of China, Qingdao, P.R., China
| | - Linkun Hao
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao P.R. China.,College of Marines Life Science, Ocean University of China, Qingdao, P.R., China
| | - Ru Zhang
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao P.R. China.,College of Marines Life Science, Ocean University of China, Qingdao, P.R., China
| | - Yunying Jiang
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao P.R. China.,College of Marines Life Science, Ocean University of China, Qingdao, P.R., China
| | - Yimin Song
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao P.R. China
| |
Collapse
|
15
|
Jeevanandam J, Sabbih G, Tan KX, Danquah MK. Oncological Ligand-Target Binding Systems and Developmental Approaches for Cancer Theranostics. Mol Biotechnol 2021; 63:167-183. [PMID: 33423212 DOI: 10.1007/s12033-020-00296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Targeted treatment of cancer hinges on the identification of specific intracellular molecular receptors on cancer cells to stimulate apoptosis for eventually inhibiting growth; the development of novel ligands to target biomarkers expressed by the cancer cells; and the creation of novel multifunctional carrier systems for targeted delivery of anticancer drugs to specific malignant sites. There are numerous receptors, antigens, and biomarkers that have been discovered as oncological targets (oncotargets) for cancer diagnosis and treatment applications. Oncotargets are critically important to navigate active anticancer drug ingredients to specific disease sites with no/minimal effect on surrounding normal cells. In silico techniques relating to genomics, proteomics, and bioinformatics have catalyzed the discovery of oncotargets for various cancer types. Effective oncotargeting requires high-affinity probes engineered for specific binding of receptors associated with the malignancy. Computational methods such as structural modeling and molecular dynamic (MD) simulations offer opportunities to structurally design novel ligands and optimize binding affinity for specific oncotargets. This article proposes a streamlined approach for the development of ligand-oncotarget bioaffinity systems via integrated structural modeling and MD simulations, making use of proteomics, genomic, and X-ray crystallographic resources, to support targeted diagnosis and treatment of cancers and tumors.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Kei X Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, USA.
| |
Collapse
|
16
|
Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Adv Drug Deliv Rev 2020; 160:199-211. [PMID: 33137364 DOI: 10.1016/j.addr.2020.10.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicines based on synthetic polypeptides are among the most versatile and advanced platforms for tumor therapy. Notably, several polypeptide-based nanodrugs are currently under human clinical assessments. The previous (pre)clinical studies clearly show that dynamic stability (i.e. stable in circulation while destabilized in tumor) of nanomedicines plays a vital role in their anti-tumor performance. Various strategies have recently been developed to design dynamically stabilized polypeptide-based nanomedicines by e.g. crosslinking the nanovehicles with acid, reactive oxygen species (ROS), glutathione (GSH), or photo-sensitive linkers, inter-crosslinking between vehicles and drugs, introducing π-π stacking or lipid-lipid interactions in the nanovehicles, chemically conjugating drugs to vehicles, and forming unimolecular micelles. Interestingly, these robust and smart nanodrugs have demonstrated improved tumor targetability, anti-tumor efficacy, as well as safety profiles in different tumor models. In this review, representative strategies to robust and smart polypeptide-based nanomedicines for targeted treatment of varying malignancies are highlighted. The exciting development of dynamic nanomedicines will foresee further increasing clinical translation in the future.
Collapse
|
17
|
Ringer J, Morrison B, Kingsley K. Evaluation of Hyaluronic Acid to Modulate Oral Squamous Cell Carcinoma Growth In Vitro. J Funct Biomater 2020; 11:jfb11040072. [PMID: 33019572 PMCID: PMC7711867 DOI: 10.3390/jfb11040072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Previous studies have demonstrated that glycosaminoglycan hyaluronic acid (HA) is capable of mediating oral tumor growth. Some clinical evidence has suggested reduced HA expression predicts poor cancer prognosis and that HA-chemotherapy conjugates may function synergistically to inhibit oral tumor growth. Other studies have found conflicting results that suggest enhanced CD44-HA-mediated growth and proliferation. Due to the lack of clarity regarding HA function, the primary goal of this study was to investigate the effects of HA using well-characterized oral cancer cell lines. Methods: Using several commercially available oral squamous cell carcinoma lines (and a normal non-cancerous control), 96-well growth and viability assays were conducted using HA (alone and in combination with chemotherapeutic agents paclitaxel and PD98059). Results: Different results were observed in each of the cell lines evaluated. HA induced small, non-significant changes in cellular viability among each of the cell lines within a narrow range (1–8%), p = 0.207. However, HA induced differing effects on growth, with minimal, non-significant changes among some cell lines, such as SCC4 (+1.7%), CCL-30 (−2.8%), and SCC15 (−2.5%), p = 0.211 and more robust inhibition among other cell lines, SCC9 (−24.4%), SCC25 (−36.6%), and CAL27 (−47.8%), p = 0.0001. Differing effects were also observed with growth and viability under concomitant administration of HA with PD98059 or paclitaxel. Further analysis of these data revealed strong inverse (Pearson’s) correlations between initial baseline growth rate and responsiveness to HA administration, ranging from R = −0.27 to R = −0.883. Conclusion: The results of this study revealed differing responses to HA, which may be inversely correlated with intrinsic characteristics, such as the baseline growth rate. This may suggest that the more rapidly growing cell lines are more responsive to combination therapy with hyaluronic acid; an important finding that may provide insights into the mechanisms responsible for these observations.
Collapse
Affiliation(s)
- Jordan Ringer
- Department of Clinical Sciences, University of Nevada, Las Vegas—School of Dental Medicine, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Bryan Morrison
- Department of Biomedical Sciences and Director of Student Research, University of Nevada, Las Vegas—School of Dental Medicine, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Karl Kingsley
- Department of Biomedical Sciences and Director of Student Research, University of Nevada, Las Vegas—School of Dental Medicine, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
- Correspondence: ; Tel.: +1-702-774-2623
| |
Collapse
|
18
|
Rao N, Rho JG, Um W, EK PK, Nguyen VQ, Oh BH, Kim W, Park JH. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics 2020; 12:E931. [PMID: 33003609 PMCID: PMC7600604 DOI: 10.3390/pharmaceutics12100931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to their unique biological functions, hyaluronic acid (HA) and its derivatives have been explored extensively for biomedical applications such as tissue engineering, drug delivery, and molecular imaging. In particular, self-assembled HA nanoparticles (HA-NPs) have been used widely as target-specific and long-acting nanocarriers for the delivery of a wide range of therapeutic or diagnostic agents. Recently, it has been demonstrated that empty HA-NPs without bearing any therapeutic agent can be used therapeutically for the treatment of inflammatory diseases via modulating inflammatory responses. In this review, we aim to provide an overview of the significant achievements in this field and highlight the potential of HA-NPs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- N.Vijayakameswara Rao
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Jun Gi Rho
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea;
| | - Wooram Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Pramod Kumar EK
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Van Quy Nguyen
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Byeong Hoon Oh
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea;
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
- Department Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
19
|
Jugl A, Pekař M. Hyaluronan-Arginine Interactions-An Ultrasound and ITC Study. Polymers (Basel) 2020; 12:polym12092069. [PMID: 32932626 PMCID: PMC7570013 DOI: 10.3390/polym12092069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
High-resolution ultrasound spectroscopy and isothermal titration calorimetry were used to characterize interactions between hyaluronan and arginine oligomers. The molecular weight of arginine oligomer plays an important role in interactions with hyaluronan. Interactions were observable for arginine oligomers with eight monomer units and longer chains. The effect of the ionic strength and molecular weight of hyaluronan on interactions was tested. In an environment with increased ionic strength, the length of the arginine oligomer was crucial. Generally, sufficiently high ionic strength suppresses interactions between hyaluronan and arginine oligomers, which demonstrated interactions in water. From the point of view of the molecular weight of hyaluronan, the transition between the rod conformation and the random coil conformation appeared to be important.
Collapse
|
20
|
Li X, Cui T, Zhang W, Zhai Z, Wu F, Zhang Y, Yang M, Zhong W, Yue W. Dopamine-functionalized hyaluronic acid microspheres for effective capture of CD44-overexpressing circulating tumor cells. Colloids Surf B Biointerfaces 2020; 196:111281. [PMID: 32768983 DOI: 10.1016/j.colsurfb.2020.111281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/19/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
As one of the biomarkers of liquid biopsy, circulating tumor cells (CTCs) provides important clinical information for cancer diagnosis. However, accurate separation and identification of CTCs remains a great deal of challenge. In present work, we developed novel dopamine-functionalized hyaluronic acid microspheres (HA-DA microspheres) to capture CD44-overexpressing CTCs. The dopamine was grafted onto the hyaluronic acid chain, which was polymerized and cross-linked by oxidation of the catechol groups. Afterwards, a facile microfluidic chip was designed and developed to fabricate the HA-DA microspheres with a diameter of about 45 μm. Our results showed that the CD44+ cells (i.e., HeLa, HepG2, A549, MCF-7 and DU-145 cells) could be selectively captured. Then a double-layer microfluidic filter (DLMF) was fabricated for dynamic isolation and detection of CTCs in blood samples. Many slit openings with 15 μm in height were designed to allow white blood cells to clear away, while the microspheres with CTCs were intercepted in the DLMF, which achieved effective separation of CTCs from blood cells. The approach exhibited high capture efficiency even at the cell density as low as 10 cells/mL. We believe the DLMF integrated with HA-DA microspheres could be a promising approach for isolation and detection of CD44-overexpressing CTCs, which is useful for prognosis and early metastasis of cancer patients.
Collapse
Affiliation(s)
- Xiuping Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tianyu Cui
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenxian Zhang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ziran Zhai
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Feixuan Wu
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuwei Zhang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Wenying Zhong
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, People's Republic of China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, People's Republic of China.
| |
Collapse
|
21
|
Liu C, Zhang T, Chen L, Chen Y. The choice of anti-tumor strategies based on micromolecules or drug loading function of biomaterials. Cancer Lett 2020; 487:45-52. [PMID: 32474154 DOI: 10.1016/j.canlet.2020.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 01/22/2023]
Abstract
With advances in modern medicine, diverse tumor therapies have been developed. However, because of a lack of effective methods, the delivery of drugs or micromolecules in the human body has many limitations. Biomaterials are natural or synthetic functional materials that are prone to contact or interact with living systems. Therefore, the application of biomaterials provides innovative anti-tumor strategies, especially in tumor targeting, chemotherapy sensitization, tumor immunotherapy. The combination of biomaterials and drugs provides a promising strategy to overcome the biological barriers of drug delivery. Nanomaterials can target specific tumor sites to enhance the efficiency of tumor therapies and decrease the toxicity of drug through passive targeting, active targeting and direct targeting. Additionally, biomaterials can be used to enhance the sensitivity of tumor cells to chemotherapy drugs. Furthermore, modifiable biomaterials can induce effective anti-tumor immune response. Currently, the developmental trend of biomaterial for drug delivery is motivated by the combination and diversification of different therapies. With interdisciplinary development, a variety of anti-tumor strategies will emerge in an endless stream to bring great hope for tumor therapy. In this review, we will discuss the anti-tumor strategies based on nanoparticles and injectable scaffolds.
Collapse
Affiliation(s)
- Chengyi Liu
- Department of Urology, The Second Hospital of TianJin Medical University, TianJin Institute of Urology, Tianjin, 300211, China; Department of Urology, Lu'an Affiliated Hospital of Anhui Medical University, 237000, Anhui, China
| | - Tianke Zhang
- Department of Urology, The Second Hospital of TianJin Medical University, TianJin Institute of Urology, Tianjin, 300211, China; Department of Anorectal Surgery, Tianjin Union Medical Center, 300121, Tianjin, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
| | - Yue Chen
- Department of Urology, The Second Hospital of TianJin Medical University, TianJin Institute of Urology, Tianjin, 300211, China.
| |
Collapse
|
22
|
Harris EN, Baker E. Role of the Hyaluronan Receptor, Stabilin-2/HARE, in Health and Disease. Int J Mol Sci 2020; 21:E3504. [PMID: 32429122 PMCID: PMC7279005 DOI: 10.3390/ijms21103504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Stabilin-2/HARE is the primary clearance receptor for circulating hyaluronan (HA), a polysaccharide found in the extracellular matrix (ECM) of metazoans. HA has many biological functions including joint lubrication, ocular turgor pressure, skin elasticity and hydration, cell motility, and intercellular signaling, among many others. The regulatory system for HA content in the tissues, lymphatics, and circulatory systems is due, in part, to Stabilin-2/HARE. The activity of this receptor was discovered about 40 years ago (early 1980s), cloned in the mid-1990s, and has been characterized since then. Here, we discuss the overall domain organization of this receptor and how it correlates to ligand binding, cellular signaling, and its role in known physiological disorders such as cancer.
Collapse
Affiliation(s)
- Edward N. Harris
- Department of Biochemistry, University of Nebraska, 1901 Vine St., Lincoln, NE 68588, USA;
| | | |
Collapse
|
23
|
Zhang C, Wang X, Cheng R, Zhong Z. A6 Peptide-Tagged Core-Disulfide-Cross-Linked Micelles for Targeted Delivery of Proteasome Inhibitor Carfilzomib to Multiple Myeloma In Vivo. Biomacromolecules 2020; 21:2049-2059. [DOI: 10.1021/acs.biomac.9b01790] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Changjiang Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xiuxiu Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
24
|
Targeting drug delivery system for platinum(Ⅳ)-Based antitumor complexes. Eur J Med Chem 2020; 194:112229. [PMID: 32222677 DOI: 10.1016/j.ejmech.2020.112229] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022]
Abstract
Classical platinum(II) anticancer agents are widely-used chemotherapeutic drugs in the clinic against a range of cancers. However, severe systemic toxicity and drug resistance have become the main obstacles which limit their application and effectiveness. Because divalent cisplatin analogues are easily destroyed in vivo, their bioavailability is low and no selective to tumor tissues. The platinum(IV) prodrugs are attractive compounds for cancer treatment because they have great advantages, e.g., higher stability in biological media, aqueous solubility and no cross-resistance with cisplatin, which may become the next generation of platinum anticancer drugs. In addition, platinum(IV) drugs could be taken orally, which could be more acceptable to cancer patients, breaking the current situation that platinum(II) drugs can only be given by injection. The coupling of platinum(IV) complexes with tumor targeting groups avoids the disadvantages such as instability in blood, irreversible binding to plasma proteins, rapid renal clearance, and non-specific distribution in normal tissues. Because of the above advantages, the combination of platinum complexes and tumor targeting groups has become the hottest field in the research and development of new platinum drugs. These approaches can be roughly categorized into two groups: active and passive targeted strategies. This review concentrates on various targeting and delivery strategies for platinum(IV) complexes to improve the efficacy and reduce the side effects of platinum-based anticancer drugs. We have made a summary of the related articles on platinum(IV) targeted delivery in recent years. We believe the results of the studies described in this review will provide new ideas and strategies for the development of platinum drugs.
Collapse
|
25
|
Huang X, Wu W, Yang W, Qing X, Shao Z. Surface engineering of nanoparticles with ligands for targeted delivery to osteosarcoma. Colloids Surf B Biointerfaces 2020; 190:110891. [PMID: 32114271 DOI: 10.1016/j.colsurfb.2020.110891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors which affect adolescents. Neoadjuvant chemotherapy followed by operation has become recommended for osteosarcoma treatment. Whereas, the effects of conventional chemotherapy are unsatisfactory because of multidrug resistance, fast clearance rate, nontargeted delivery, side effects and so on. Accordingly, Nanoparticle-mediated targeted drug delivery system (NTDDS) is recommended to be a novel treatment strategy for osteosarcoma. NTDDS can overcome the above obstacles by enhanced permeability and retention effect and active targeting. The active targeting of the delivery system is mainly based on ligands. In this study, we investigate and summarize the most common ligands used in the latest NTDDS for osteosarcoma. It might provide new insights into nanomedicine for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
26
|
Li S, Qiu M, Guo J, Zhao X, Zhong Z, Deng C. Coating‐Sheddable CD44‐Targeted Poly(
d
,
l
‐lactide‐
co
‐glycolide) Nanomedicines Fabricated by Using Photoclick‐Crosslinkable Surfactant. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai Li
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Min Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Jiakun Guo
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiaofei Zhao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
27
|
Liang K, Bae KH, Nambu A, Dutta B, Chung JE, Osato M, Kurisawa M. A two-pronged anti-leukemic agent based on a hyaluronic acid–green tea catechin conjugate for inducing targeted cell death and terminal differentiation. Biomater Sci 2020; 8:497-505. [DOI: 10.1039/c9bm01146c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A two-pronged anti-leukemic approach for leukemic cell elimination and differentiation is demonstrated using a hyaluronic acid–green tea catechin conjugate.
Collapse
Affiliation(s)
- Kun Liang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
| | - Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
| | - Akiko Nambu
- Cancer Science Institute of Singapore
- National University of Singapore
- 117599 Singapore
| | - Bibek Dutta
- Cancer Science Institute of Singapore
- National University of Singapore
- 117599 Singapore
| | - Joo Eun Chung
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
| | - Motomi Osato
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Cancer Science Institute of Singapore
- National University of Singapore
- 117599 Singapore
| | | |
Collapse
|
28
|
Yan Y, Dong Y, Yue S, Qiu X, Sun H, Zhong Z. Dually Active Targeting Nanomedicines Based on a Direct Conjugate of Two Purely Natural Ligands for Potent Chemotherapy of Ovarian Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46548-46557. [PMID: 31763810 DOI: 10.1021/acsami.9b17223] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actively targeted nanomedicines have promised to revolutionize cancer treatment; however, their clinical translation has been limited by either low targetability, use of unsafe materials, or tedious fabrication. Here, we developed CD44 and folate receptor (FR) dually targeted nanoparticulate doxorubicin (HA/FA-NP-DOX) based on a direct conjugate of two purely natural ligands, hyaluronic acid and folic acid (FA), for safe, highly specific, and potent treatment of ovarian tumors in vivo. HA/FA-NP-DOX had a small size and high DOX loading, wherein the particle size decreased from 115, 93, to 89 nm with increasing degree of substitution of FA from 6.4, 8.5, to 11.1, while increased from 80, 93, to 103 nm with increasing DOX loading from 15.0, 23.1, to 31.4 wt %. Interestingly, HA/FA-NP-DOX exhibited excellent lyophilization redispersibility and long-term storage stability with negligible drug leakage while it released 91% of DOX in 48 h at pH 5.0. Cellular studies corroborated that HA/FA-NP-DOX possessed high selectivity to both CD44 and FR, resulting in strong killing of CD44- and FR-positive SKOV-3 ovarian cancer cells while low toxicity against CD44- and FR-negative L929 fibroblast cells. In vivo studies revealed a long elimination half-life of 5.6 h, an elevated tumor accumulation of 12.0% ID/g, and an effective inhibition of the SKOV-3 ovarian tumor for HA/FA-NP-DOX, leading to significant survival benefits over free DOX·HCl and phosphate-buffered saline controls. These dually targeted nanomedicines are simple and safe, providing a potentially translatable treatment for CD44- and FR-positive malignancies.
Collapse
Affiliation(s)
- Yu Yan
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Yangyang Dong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
29
|
Multifunctional hyaluronic acid-mediated quantum dots for targeted intracellular protein delivery and real-time fluorescence imaging. Carbohydr Polym 2019; 224:115174. [DOI: 10.1016/j.carbpol.2019.115174] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
|
30
|
Sun H, Gu X, Zhang Q, Xu H, Zhong Z, Deng C. Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules 2019; 20:4299-4311. [DOI: 10.1021/acs.biomac.9b01291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Hao Xu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
31
|
Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109766. [DOI: 10.1016/j.msec.2019.109766] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/09/2019] [Accepted: 05/16/2019] [Indexed: 01/03/2023]
|
32
|
Fang H, Zhao X, Gu X, Sun H, Cheng R, Zhong Z, Deng C. CD44-Targeted Multifunctional Nanomedicines Based on a Single-Component Hyaluronic Acid Conjugate with All-Natural Precursors: Construction and Treatment of Metastatic Breast Tumors in Vivo. Biomacromolecules 2019; 21:104-113. [PMID: 31532629 DOI: 10.1021/acs.biomac.9b01012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metastasis is responsible for >90% of the deaths of breast cancer patients in the clinic. Here, we report on cross-linked multifunctional hyaluronic acid nanoparticles carrying docetaxel (DTX-CMHN) for enhanced suppression of highly metastatic 4T1 breast tumors in vivo. DTX-CMHN was formed from a single and all-natural hyaluronic acid-g-polytyrosine-lipoic acid conjugate (HA-g-PTyr-LA; HA, 20 kDa; PTyr, 2.2 kDa), and the size of DTX-CMHN increased from 69 to 78 to 96 nm as the increasing degree of substitution (DS) of PTyr increased from 4 to 11 to 15, respectively. Robust encapsulation of DTX was obtained when DS ≥ 11. DTX-CMHN while steady in a nonreducing environment was destabilized under 10 mM glutathione releasing ∼90% of the DTX within 24 h. It is noteworthy that DTX-CMHN exhibited better antitumor, antimigration, and anti-invasion activity in CD44-overexpressed 4T1-Luc breast cancer cells than free DTX. Interestingly, DTX-CMHN displayed a long elimination half-life of 5.75 h, in contrast to half-lives of 2.11 and 0.75 h for its non-cross-linked counterpart (DTX-MHN) and free DTX, respectively. In vivo therapeutic studies showed significantly better inhibition of primary 4T1-Luc tumor growth and lung metastasis and lower toxicity of DTX-CMHN compared with that of free DTX. These multifunctional nanoformulations based on a single and all-natural hyaluronic acid conjugate emerge as a potential nanoplatform for targeted treatment of CD44-positive metastatic tumors.
Collapse
Affiliation(s)
- Huimin Fang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Xiaofei Zhao
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Xiaolei Gu
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Huanli Sun
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Ru Cheng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| | - Chao Deng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , China
| |
Collapse
|
33
|
Nanomedicine as a putative approach for active targeting of hepatocellular carcinoma. Semin Cancer Biol 2019; 69:91-99. [PMID: 31421265 DOI: 10.1016/j.semcancer.2019.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
The effectiveness of chemotherapy in hepatocellular carcinoma (HCC) is restricted by chemo-resistance and systemic side effects. To improve the efficacy and safety of chemotherapeutics in HCC management, scientists have attempted to deliver these drugs to malignant tissues using targeted carriers as nanoparticles (NPs). Among the three types of NPs targeting (active, passive, and stimuli-responsive), active targeting is the most commonly investigated in HCC treatment. Despite the observed promising results so far, clinical research on nanomedicine targeting for HCC treatment still faces many challenges.These include batch-to-batch physicochemical properties' variations, limiting large scale production and insufficient data on human and environmental toxicities. This review summarized the characteristics of different nanocarriers, ligands, targeted receptors on HCC cells and provided recommendations to overcome the challenges, facing this novel line of treatment for HCC.
Collapse
|
34
|
Trombino S, Servidio C, Curcio F, Cassano R. Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics 2019; 11:E407. [PMID: 31408954 PMCID: PMC6722772 DOI: 10.3390/pharmaceutics11080407] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid (HA) is a natural, linear, endogenous polysaccharide that plays important physiological and biological roles in the human body. Nowadays, among biopolymers, HA is emerging as an appealing starting material for hydrogels design due to its biocompatibility, native biofunctionality, biodegradability, non-immunogenicity, and versatility. Since HA is not able to form gels alone, chemical modifications, covalent crosslinking, and gelling agents are always needed in order to obtain HA-based hydrogels. Therefore, in the last decade, different strategies for the design of physical and chemical HA hydrogels have been developed, such as click chemistry reactions, enzymatic and disulfide crosslinking, supramolecular assembly via inclusion complexation, and so on. HA-based hydrogels turn out to be versatile platforms, ranging from static to smart and stimuli-responsive systems, and for these reasons, they are widely investigated for biomedical applications like drug delivery, tissue engineering, regenerative medicine, cell therapy, and diagnostics. Furthermore, the overexpression of HA receptors on various tumor cells makes these platforms promising drug delivery systems for targeted cancer therapy. The aim of the present review is to highlight and discuss recent advances made in the last years on the design of chemical and physical HA-based hydrogels and their application for biomedical purposes, in particular, drug delivery. Notable attention is given to HA hydrogel-based drug delivery systems for targeted therapy of cancer and osteoarthritis.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Camilla Servidio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy.
| |
Collapse
|
35
|
Rippe M, Cosenza V, Auzély-Velty R. Design of Soft Nanocarriers Combining Hyaluronic Acid with Another Functional Polymer for Cancer Therapy and Other Biomedical Applications. Pharmaceutics 2019; 11:E338. [PMID: 31311150 PMCID: PMC6681414 DOI: 10.3390/pharmaceutics11070338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
The rapid advancement in medicine requires the search for new drugs, but also for new carrier systems for more efficient and targeted delivery of the bioactive molecules. Among the latter, polymeric nanocarriers have an increasingly growing potential for clinical applications due to their unique physical and chemical characteristics. In this regard, nanosystems based on hyaluronic acid (HA), a polysaccharide which is ubiquitous in the body, have attracted particular interest because of the biocompatibility, biodegradability and nonimmunogenic property provided by HA. Furthermore, the fact that hyaluronic acid can be recognized by cell surface receptors in tumor cells, makes it an ideal candidate for the targeted delivery of anticancer drugs. In this review, we compile a comprehensive overview of the different types of soft nanocarriers based on HA conjugated or complexed with another polymer: micelles, nanoparticles, nanogels and polymersomes. Emphasis is made on the properties of the polymers used as well as the synthetic approaches for obtaining the different HA-polymer systems. Fabrication, characterization and potential biomedical applications of the nanocarriers will also be described.
Collapse
Affiliation(s)
- Marlène Rippe
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France
| | - Vanina Cosenza
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France
| | - Rachel Auzély-Velty
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France.
| |
Collapse
|
36
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
37
|
Parashar P, Tripathi CB, Arya M, Kanoujia J, Singh M, Yadav A, Saraf SA. A facile approach for fabricating CD44-targeted delivery of hyaluronic acid-functionalized PCL nanoparticles in urethane-induced lung cancer: Bcl-2, MMP-9, caspase-9, and BAX as potential markers. Drug Deliv Transl Res 2019; 9:37-52. [PMID: 30178279 DOI: 10.1007/s13346-018-0575-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung carcinoma ranks highest in cancer-related death (about 20% of total cancer deaths) due to poor prognosis and lack of efficient management therapy. Owing to the lack of effective therapeutic approaches, survival rate of less than 5 years persists over the years among non-small cell lung cancer (NSCLC) patients. Capsaicin (CAP) is well reported for its antiproliferative and antioxidant properties in various literature but lacks an appropriate delivery carrier. The present study was aimed to develop CAP-loaded hyaluronic acid (HA) nanoparticles (NPs) utilizing layer by layer technique to achieve enhanced and precise delivery as well as target specificity. The NPs were evaluated for in vitro release, particle size, zeta potential, and cytotoxicity on A549 cells. The optimized NPs exhibited a particle size of 194 ± 2.90 nm, - 27.87 ± 3.21 mV zeta potential, and 80.70 ± 4.29% release, respectively, over a period of 48 h. Flow cytometric analysis revealed superior performance of HA-PCL-CAP in terms of suppressed cell viability in A549 cell lines when compared with CAP and PCL-CAP. Further, HA-anchored NPs were evaluated in vivo for their therapeutic efficacy in urethane-induced lung carcinoma in rat model. The superlative therapeutic potential of HA-PCL-CAP was advocated from the results of reactive oxygen species and mitochondrial membrane-mediated apoptosis. HA-PCL-CAP-administered groups presented greater therapeutic efficacy as revealed through reduced tumor volume and improved animal survival rate. A greater drug accumulation in tumor tissue as revealed from biodistribution studies evidences targeting potential of HA-PCL-CAP in urethane-induced lung carcinoma. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Poonam Parashar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Chandra Bhushan Tripathi
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Malti Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Mahendra Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Abhishek Yadav
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P., 226025, India.
| |
Collapse
|
38
|
Tsou Y, Wang B, Ho W, Hu B, Tang P, Sweet S, Zhang X, Xu X. Nanotechnology-Mediated Drug Delivery for the Treatment of Obesity and Its Related Comorbidities. Adv Healthc Mater 2019; 8:e1801184. [PMID: 30938934 DOI: 10.1002/adhm.201801184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/14/2019] [Indexed: 12/14/2022]
Abstract
Obesity is a serious health issue affecting humanity on a global scale. Recognized by the American Medical Association as a chronic disease, the incidence of obesity continues to grow at an accelerating rate and obesity has become one of the major threats to human health. Excessive weight gain is tied to metabolic syndrome, which is shown to increase the risk of chronic diseases, such as heart disease and type 2 diabetes, taxing an already overburdened healthcare system and increasing mortality worldwide. Available treatments such as bariatric surgery and pharmacotherapy are often accompanied by adverse side effects and poor patient compliance. Nanotechnology, an emerging technology with a wide range of biomedical applications, has provided an unprecedented opportunity to improve the treatment of many diseases, including obesity. This review provides an introduction to obesity and obesity-related comorbidities. The most recent developments of nanotechnology-based drug delivery strategies are highlighted and discussed. Additionally, challenges and consideration for the development of nanoformulations with translational potential are discussed. The overall objective of this review is to enhance the understanding of the design and development of nanomedicine for treatments of obesity and related comorbidities.
Collapse
Affiliation(s)
- Yung‐Hao Tsou
- Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Bin Wang
- Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Bin Hu
- Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Pei Tang
- Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Sydney Sweet
- Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering New Jersey Institute of Technology Newark NJ 07102 USA
| |
Collapse
|
39
|
Rippe M, Stefanello TF, Kaplum V, Britta EA, Garcia FP, Poirot R, Companhoni MVP, Nakamura CV, Szarpak-Jankowska A, Auzély-Velty R. Heparosan as a potential alternative to hyaluronic acid for the design of biopolymer-based nanovectors for anticancer therapy. Biomater Sci 2019; 7:2850-2860. [PMID: 31070204 DOI: 10.1039/c9bm00443b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosaminoglycans (GAGs) are important components of the extracellular matrix that have attracted great interest for drug delivery and pharmaceutical applications due to their diverse biological functions. Among GAGs, heparosan (Hep), a biosynthetic precursor of heparin, has recently emerged as a promising building block for the design of nanoparticles with stealth properties. Though this non-sulfated polysaccharide has a chemical structure very close to that of hyaluronic acid (HA), it distinguishes from HA in that it is biologically inert in the extracellular spaces in the body. In this study, we designed Hep- and HA-based nanogels (NGs) that differ only in the chemical nature of the hydrophilic shell. The nanogels were prepared in a very straightforward way from Hep and HA modified with a thermoresponsive copolymer properly designed to induce self-assembly below room temperature. This versatile synthetic approach also enabled further shell-crosslinking allowing an increase in the colloidal stability. After careful characterization of the un-crosslinked and crosslinked Hep and HA NGs in terms of size (Z-average diameters of un-crosslinked and crosslinked NGs ∼110 and 150 nm) and morphology, they were injected intravenously into tumor-bearing mice for biodistribution experiments. Interestingly, these show that the liver uptake of Hep nanogels is remarkably reduced and tumor accumulation significantly improved as compared to HA nanogels (intensity ratios of tumor-to-liver of 2.2 and 1.4 for the un-crosslinked and crosslinked Hep NGs versus 0.11 for the un-crosslinked and crosslinked HA ones). These results highlight the key role played by the shell-forming GAGs on the in vivo fate of nanogels, which correlates with the specific biological properties of Hep and HA.
Collapse
Affiliation(s)
- Marlène Rippe
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Talitha F Stefanello
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Vanessa Kaplum
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Elizandra A Britta
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Francielle P Garcia
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Robin Poirot
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Mychelle V P Companhoni
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Celso V Nakamura
- Laboratory of technological innovation in the development of pharmaceuticals and cosmetics, State University of Maringa, Colombo Avenue, 5790, 87020-900, Maringa, Brazil
| | - Anna Szarpak-Jankowska
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | - Rachel Auzély-Velty
- Univ. Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| |
Collapse
|
40
|
Chen J, He H, Deng C, Yin L, Zhong Z. Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo. Int J Pharm 2019; 560:57-64. [PMID: 30699364 DOI: 10.1016/j.ijpharm.2019.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Metastasis poses a long-standing treatment challenge for many cancers including breast cancer. Once spreading out, cell-selective delivery of drug appears especially critical. Here, we report on epidermal growth factor receptor and CD44 dual-targeted hyaluronic acid nanogels (EGFR/CD44-NGs) that afford enhanced targetability and protein therapy for metastatic 4T1 breast cancer in vivo. Flow cytometry in CD44 and EGFR-positive 4T1 metastatic breast cancer cells showed over 6-fold higher cellular uptake of EGFR/CD44-NGs than mono-targeting CD44-NGs. MTT and scratch assays displayed that saporin-loaded EGFR/CD44-NGs (Sap-EGFR/CD44-NGs) was highly potent in inhibiting growth as well as migration of 4T1 cells in vitro, with an IC50 of 5.36 nM, which was 1.7-fold lower than that for Sap-CD44-NGs. In 4T1-luc metastatic breast cancer model in mice, Sap-EGFR/CD44-NGs exhibited significant inhibition of tumor metastasis to lung at a small dose of 3.33 nmol Sap equiv./kg. Increasing the dosage to 13.3 nmol Sap equiv./kg resulted in further reduced lung metastasis without causing notable adverse effects. These dual-targeted nanogels with improved cancer cell selectivity provide a novel platform for combating breast cancer metastasis.
Collapse
Affiliation(s)
- Jing Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Hua He
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
41
|
Kumari L, Badwaik HR. Polysaccharide-based nanogels for drug and gene delivery. POLYSACCHARIDE CARRIERS FOR DRUG DELIVERY 2019:497-557. [DOI: 10.1016/b978-0-08-102553-6.00018-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Di Meo C, Martínez-Martínez M, Coviello T, Bermejo M, Merino V, Gonzalez-Alvarez I, Gonzalez-Alvarez M, Matricardi P. Long-Circulating Hyaluronan-Based Nanohydrogels as Carriers of Hydrophobic Drugs. Pharmaceutics 2018; 10:pharmaceutics10040213. [PMID: 30400294 PMCID: PMC6320896 DOI: 10.3390/pharmaceutics10040213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023] Open
Abstract
Nanohydrogels based on natural polymers, such as polysaccharides, are gaining interest as vehicles for therapeutic agents, as they can modify the pharmacokinetics and pharmacodynamics of the carried drugs. In this work, hyaluronan-riboflavin nanohydrogels were tested in vivo in healthy rats highlighting their lack of toxicity, even at high doses, and their different biodistribution with respect to that of native hyaluronan. They were also exploited as carriers of a hydrophobic model drug, the anti-inflammatory piroxicam, that was physically embedded within the nanohydrogels by an autoclave treatment. The nanoformulation was tested by intravenous administration showing an improvement of the pharmacokinetic parameters of the molecule. The obtained results indicate that hyaluronan-based self-assembled nanohydrogels are suitable systems for low-soluble drug administration, by increasing the dose as well as the circulation time of poorly available therapeutic agents.
Collapse
Affiliation(s)
- Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Mayte Martínez-Martínez
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain.
| | - Tommasina Coviello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Marival Bermejo
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain.
| | - Virginia Merino
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46100 Burjassot, Spain.
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Burjassot, Spain.
| | - Isabel Gonzalez-Alvarez
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain.
| | - Marta Gonzalez-Alvarez
- Department of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain.
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
43
|
Gu Z, Wang X, Cheng R, Cheng L, Zhong Z. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomater 2018; 80:288-295. [PMID: 30240956 DOI: 10.1016/j.actbio.2018.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/21/2022]
Abstract
Bortezomib (BTZ) provides one of the best treatments for multiple myeloma (MM). The efficacy of BTZ is, nevertheless, restricted by its fast clearance, low selectivity, and dose limiting toxicities. Here, we report on targeted BTZ therapy of MM in vivo by hyaluronic acid-shelled and core-disulfide-crosslinked biodegradable micelles (HA-CCMs) encapsulating lipophilized BTZ, bortezomib-pinanediol (BP). HA-CCMs loaded with 7.3 BTZ equiv. wt% exhibited a small size of 78 nm, good stability in 10% FBS, and glutathione-triggered drug release. MTT assays in CD44 positive LP-1 multiple myeloma cells revealed that BP encapsulated in HA-CCMs caused enhanced antiproliferative effect compared with free BP. Flow cytometry, confocal microscopy and MTT assays indicated BP-loaded HA-CCMs (HA-CCMs-BP) could actively target to LP-1 cells and induce high antitumor effect. Proteasome activity assays in vitro showed HA-CCMs-BP had a similar proteasome activity inhibition as compared to free BTZ at 18 h. The fluorescence imaging using Cy5-labeled HA-CCMs showed that HA-CCMs had a long elimination half-life and enhanced tumor accumulation via HA-mediated uptake mechanism. The therapeutic studies in LP-1 MM-bearing mice revealed better treatment efficacy of HA-CCMs-BP compared with free BTZ, in which HA-CCMs-BP at 3 mg BTZ equiv./kg brought about significant tumor growth inhibition and survival benefits. Loading of lipophilized BTZ into HA-shelled multifunctional micelles has emerged as an exciting approach for bortezomib therapy of MM. STATEMENT OF SIGNIFICANCE: Multiple myeloma (MM) is the second most common hematological malignancy. Bortezomib (BTZ), a potent proteasome inhibitor, provides one of the best treatments for MM. The clinical efficacy of BTZ is, however, limited by its quick clearance, poor selectivity, and significant side effects including myelosuppression and peripheral neuropathy. Here, we report on targeted BTZ therapy of MM in vivo by hyaluronic acid-shelled and core-disulfide-crosslinked biodegradable micelles (HA-CCMs) encapsulating lipophilized BTZ, bortezomib-pinanediol (BP). Our results showed that BP-loaded HA-CCMs exhibit markedly enhanced toleration, broadened therapeutic window, and significantly more effective growth suppression of CD44-overexpressed multiple myeloma in nude mice than free bortezomib. Lipophilized BTZ-loaded HA-CCMs has opened a new avenue for targeted bortezomib therapy of multiple myeloma.
Collapse
Affiliation(s)
- Zhaoxin Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiuxiu Wang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liang Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
44
|
Li B, Xu Q, Li X, Zhang P, Zhao X, Wang Y. Redox-responsive hyaluronic acid nanogels for hyperthermia- assisted chemotherapy to overcome multidrug resistance. Carbohydr Polym 2018; 203:378-385. [PMID: 30318226 DOI: 10.1016/j.carbpol.2018.09.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/14/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
Although chemotherapy has been widely used in the treatment of many kinds of cancer, drug resistance and side effects are the main obstacles in the cancer chemotherapy that result in an inferior therapeutic outcome. For the design of drug delivery system, extracellular stability and intracellular effective release are also a pair of contradictions. In this research, gold nanorods (AuNRs) loaded hyaluronic acid (HA) nanogels with reduction sensitivity were prepared for the efficient intracellular delivery of doxorubicin (DOX). The aforementioned HA-CysNG@AuNR nanogels with cystamine (Cys) as crosslinker could remain stable in the physiological condition and release DOX rapidly in the mimic intracellular glutathione (GSH) condition. Meanwhile, the cellular uptake efficiency by the human breast carcinoma (MCF-7) cells was enhanced because of the highly expressed HA receptor (CD44) on the cytomembrane. However, further cell experiments verified that it was difficult to achieve desired results for drug-resistant human breast cancer (MCF-7 ADR) cells due to the reduced drug uptake and enhanced drug efflux. Interestingly, this multidrug resistance of MCF-7 ADR cells could be reversed after treated with near-infrared (NIR) light. This might ascribe to the hyperthermia generated by AuNRs under NIR, which suspended drug efflux process and led to excellent hyperthermia-assisted chemotherapy outcome. Overall, our studies suggested that AuNRs loaded reduction-sensitive HA nanogels were excellent candidates of drug carriers to reverse the drug-resistance and induce severe apoptosis of drug-resistant MCF-7 ADR cells.
Collapse
Affiliation(s)
- Bangbang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Qinan Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xinfang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiao Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
45
|
Kumari M, Purohit MP, Patnaik S, Shukla Y, Kumar P, Gupta KC. Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor targeted nanoparticles. Eur J Pharm Biopharm 2018; 130:185-199. [DOI: 10.1016/j.ejpb.2018.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/05/2018] [Accepted: 06/30/2018] [Indexed: 12/14/2022]
|
46
|
Rao NV, Ko H, Lee J, Park JH. Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Front Bioeng Biotechnol 2018; 6:110. [PMID: 30159310 PMCID: PMC6104418 DOI: 10.3389/fbioe.2018.00110] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The conventional chemotherapeutic agents, used for cancer chemotherapy, have major limitations including non-specificity, ubiquitous biodistribution, low concentration in tumor tissue, and systemic toxicity. In recent years, owing to their unique features, polymeric nanoparticles have been widely used for the target-specific delivery of drugs in the body. Although polymeric nanoparticles have addressed a number of important issues, the bioavailability of drugs at the disease site, and especially upon cellular internalization, remains a challenge. A polymer nanocarrier system with a stimuli-responsive property (e.g., pH, temperature, or redox potential), for example, would be amenable to address the intracellular delivery barriers by taking advantage of pH, temperature, or redox potentials. With a greater understanding of the difference between normal and pathological tissues, there is a highly promising role of stimuli-responsive nanocarriers for drug delivery in the future. In this review, we highlighted the recent advances in different types of stimuli-responsive polymers for drug delivery.
Collapse
Affiliation(s)
- N. Vijayakameswara Rao
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon, South Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
47
|
Garcia FP, Rippe M, Companhoni MVP, Stefanello TF, Louage B, Van Herck S, Sancey L, Coll JL, De Geest BG, Vataru Nakamura C, Auzély-Velty R. A versatile method for the selective core-crosslinking of hyaluronic acid nanogels via ketone-hydrazide chemistry: from chemical characterization to in vivo biodistribution. Biomater Sci 2018; 6:1754-1763. [PMID: 29901666 DOI: 10.1039/c8bm00396c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The development of biopolymer-based nanogels has gained particular interest to achieve successful delivery of therapeutics for the treatment of various diseases, such as cancer, infection and diabetes. Herein, we report a new and simple methodology for the covalent stabilization of self-assembled gel nanoparticles based on hyaluronic acid (HA) modified with a thermoresponsive ketone-functional copolymer. This relies on the selective formation of hydrazone crosslinks with bishydrazides within the globular domains of the copolymer chains formed above the cloud point temperature. This approach allows tuning of the crosslinking density by varying the dihydrazide crosslinker to ketone molar ratio. The size distributions and morphology of the nanogels were assessed using dynamic light scattering (DLS), cryo-transmission and scanning electron microscopy. In vitro cellular uptake in several cancer cells and in vivo biodistribution of the nanogels in different mouse tumor models were then explored to assess the effectiveness of this crosslinking strategy. The data from these experiments show prolonged blood circulation, longer than 24 hours, for the crosslinked nanogels and high tumor accumulation.
Collapse
Affiliation(s)
- Francielle Pelegrin Garcia
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. CD44 targeted PLGA nanomedicines for cancer chemotherapy. Eur J Pharm Sci 2018; 121:47-58. [PMID: 29777858 DOI: 10.1016/j.ejps.2018.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 12/28/2022]
Abstract
In recent years scientific community has drawn a great deal of attention towards understanding the enigma of cluster of differentiation-44 (CD44) in order to deliver therapeutic agents more selectively towards tumor tissues. Moreover, its over-expression in variety of solid tumors has attracted drug delivery researchers to target this receptor with nanomedicines. Conventional nanomedicines based on biodegradable polymers such as poly(lactide-co-glycolide) (PLGA) are often associated with insufficient cellular uptake by cancer cells, due to lack of active targeting moiety on their surface. Therefore, to address this limitation, CD44 targeted PLGA nanomedicines has gained considerable interest for enhancing the efficacy of chemotherapeutic agents. In this review, we have elaborately discussed the recent progress in the design and synthesis of CD44 targeted PLGA nanomedicines used to improve tumor-targeted drug delivery. We have also discussed strategies based on co-targeting of CD44 with other targeting moieties such as folic acid, human epidermal growth factor 2 (HER2), monoclonal antibodies using PLGA based nanomedicines.
Collapse
Affiliation(s)
- Ankit Saneja
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Divya Arora
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Robin Kumar
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
49
|
Rho JG, Han HS, Han JH, Lee H, Nguyen VQ, Lee WH, Kwon S, Heo S, Yoon J, Shin HH, Lee EY, Kang H, Yang S, Lee EK, Park JH, Kim W. Self-assembled hyaluronic acid nanoparticles: Implications as a nanomedicine for treatment of type 2 diabetes. J Control Release 2018; 279:89-98. [PMID: 29649530 DOI: 10.1016/j.jconrel.2018.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 01/13/2023]
Abstract
Self-assembled hyaluronic acid nanoparticles (HA-NPs) have been extensively investigated for biomedical and pharmaceutical applications owing to their biocompatibility and receptor-binding properties. Here, we report that an empty HA-NP itself not bearing any drug has therapeutic effects on adipose tissue inflammation and insulin resistance. HA-NPs inhibited not only the receptor-mediated internalization of low-molecular-weight (LMW) free HA but also LMW free HA-induced pro-inflammatory gene expression in mouse primary bone marrow-derived macrophages (BMDMs) isolated from wild-type mice, but not in CD44-null (CD44-/-) BMDMs. An in vivo biodistribution study showed the distribution of HA-NPs and their co-localization with CD44 in adipose tissues including epididymal white adipose tissues (eWATs), but these were rarely observed in the eWATs of CD44-/- mice. In addition, CD44 expression and HA-NP accumulation in the eWATs were increased in mice with diet-induced obesity (DIO) compared to lean mice. Interestingly, treatment with HA-NPs in DIO mice suppressed adipose tissue inflammation as indicated by reduced macrophage content, the production of proinflammatory cytokines and NLRP3 inflammasome activity in eWATs, leading to improved insulin sensitivity and normalized blood glucose levels. Collectively, these results suggest that an empty HA-NP itself can be a therapeutic agent for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jun Gi Rho
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hwa Seung Han
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Han
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hansang Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wang Hee Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungeun Heo
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Juhwan Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Han Ho Shin
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Eun-Young Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hoin Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
50
|
Qi B, Crawford AJ, Wojtynek NE, Holmes MB, Souchek JJ, Almeida-Porada G, Ly QP, Cohen SM, Hollingsworth MA, Mohs AM. Indocyanine green loaded hyaluronan-derived nanoparticles for fluorescence-enhanced surgical imaging of pancreatic cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:769-780. [PMID: 29325740 PMCID: PMC5899013 DOI: 10.1016/j.nano.2017.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023]
Abstract
Pancreatic ductal adenocarcinoma is highly lethal and surgical resection is the only potential curative treatment for the disease. In this study, hyaluronic acid derived nanoparticles with physico-chemically entrapped indocyanine green, termed NanoICG, were utilized for intraoperative near infrared fluorescence detection of pancreatic cancer. NanoICG was not cytotoxic to healthy pancreatic epithelial cells and did not induce chemotaxis or phagocytosis, it accumulated significantly within the pancreas in an orthotopic pancreatic ductal adenocarcinoma model, and demonstrated contrast-enhancement for pancreatic lesions relative to non-diseased portions of the pancreas. Fluorescence microscopy showed higher fluorescence intensity in pancreatic lesions and splenic metastases due to NanoICG compared to ICG alone. The in vivo safety profile of NanoICG, including, biochemical, hematological, and pathological analysis of NanoICG-treated healthy mice, indicates negligible toxicity. These results suggest that NanoICG is a promising contrast agent for intraoperative detection of pancreatic tumors.
Collapse
Affiliation(s)
- Bowen Qi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Ayrianne J Crawford
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Nicholas E Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Megan B Holmes
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Joshua J Souchek
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Graca Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Samuel M Cohen
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE; Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|