1
|
Guareschi F, Fonseca C, Silva S, Pescina S, Nicoli S, Buttini F, Sonvico F, Fortuna A. Therapeutic effect of cyclosporine A-loading TPGS micelles on a mouse model of LPS-induced neuroinflammation. Eur J Pharm Sci 2025; 205:106994. [PMID: 39701548 DOI: 10.1016/j.ejps.2024.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Neuroinflammation is an undoubted hallmark of neurodegenerative processes characterized by memory impairment, loss of coordination and muscle strength in diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis as well as depressive disorders. Cyclosporine A (CSA) has already been identified as a promising neuroprotective peptide, due to its well-known anti-inflammatory properties. Herein, CSA was encapsulated into α-tocopherol polyethylene glycol 1000 succinate (TPGS) micelles and intranasally administered to a lipopolysaccharide (LPS) induced mouse model of neuroinflammation. After the treatment, mice were subjected to behavioral tests to assess cognitive and motor skills, while the biodistribution of CSA in plasma and olfactory bulb was studied by a new HPLC method validated for precision and accuracy. The results highlighted that in comparison to the classic oral CSA suspension, the intranasal (IN) administration showed significatively better safety and efficiency profiles. Notably, IN administration of CSA micelles showed relevant antidepressive effects and a certain ability to revert LPS-induced motor impairment. This work pointed out that the innovative and noninvasive IN administration of TPGS micelles could represent a safe and effective alternative to the classic oral route to deliver CSA at the Central Nervous System level, where its beneficial activity against neuroinflammation can be exploited.
Collapse
Affiliation(s)
- Fabiola Guareschi
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug Science, University of Parma, Parma, Italy
| | - Carla Fonseca
- Laboratory of Pharmacology, Department of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Soraia Silva
- Laboratory of Pharmacology, Department of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Silvia Pescina
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug Science, University of Parma, Parma, Italy
| | - Sara Nicoli
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug Science, University of Parma, Parma, Italy
| | - Francesca Buttini
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug Science, University of Parma, Parma, Italy; University Research Centre for the Innovation of Health Products, Biopharmanet-TEC, University of Parma, Parma, Italy
| | - Fabio Sonvico
- Advanced Drug Delivery Research Laboratory, Department of Food and Drug Science, University of Parma, Parma, Italy; University Research Centre for the Innovation of Health Products, Biopharmanet-TEC, University of Parma, Parma, Italy.
| | - Ana Fortuna
- Laboratory of Pharmacology, Department of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Ferreira NN, Leite CM, Moreno N, Miranda RR, Pincela Lins PM, Rodero CF, de Oliveira Junior E, Lima EM, Reis RM, Zucolotto V. Nose-to-Brain Delivery of Biomimetic Nanoparticles for Glioblastoma Targeted Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:484-499. [PMID: 39692595 PMCID: PMC11783514 DOI: 10.1021/acsami.4c16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Glioblastoma (GBM) is an extremely aggressive form of brain cancer that remains challenging to treat, especially owing to the lack of effective targeting and drug delivery concerns. Due to its anatomical advantages, the nose-to-brain strategy is an interesting route for drug delivery. Nanoengineering has provided technological tools and innovative strategies to overcome biotechnological limitations, which is promising for improving the effectiveness of conventional therapies. Herein, we designed a biomimetic multifunctional nanostructure produced by polymeric poly(d,l-lactic-co-glycolic) acid (PLGA) core loaded with Temozolomide (TMZ) coated with cell membrane isolated from glioma cancer cells. The developed nanostructures (NP-MB) were fully characterized, and their biological performance was investigated extensively. The results indicate that NP-MB could control TMZ release and promote TMZ permeation in the ex vivo nasal porcine mucosa. The higher cytotoxicity of NP-MB in different glioma cell lines, particularly against U251 cells, reinforces their potential for homotypic targeting. The chicken chorioallantoic membrane assay revealed a tumor size reduction and antiangiogenic activity. In vivo biodistribution studies showed that NP-MB effectively reaches the brain following nasal administration. These findings suggest that NP-MB holds promise as a biomimetic nanoplatform for effective targeting and homotypic recognition in GBM therapy with high potential for clinical translation.
Collapse
Affiliation(s)
- Natália Noronha Ferreira
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Celisnolia Morais Leite
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Natália
Sanchez Moreno
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Renata Rank Miranda
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Paula Maria Pincela Lins
- Hasselt
University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Agoralaan, 3590 Diepenbeek, Belgium
| | - Camila Fernanda Rodero
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| | - Edilson de Oliveira Junior
- Laboratório
de Nanotecnologia Farmacêutica e Sistemas de Liberação
de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade
Federal de Goiás − UFG, 5a Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Eliana Martins Lima
- Laboratório
de Nanotecnologia Farmacêutica e Sistemas de Liberação
de Fármacos, FarmaTec, Faculdade de Farmácia, Universidade
Federal de Goiás − UFG, 5a Avenida c/Rua 240 s/n, Praça Universitária, Goiânia, GO 74605-170, Brazil
| | - Rui M. Reis
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, Rua Antenor Duarte Villela, 1331, Barretos, SP 14784-400, Brazil
- Life and
Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Valtencir Zucolotto
- Nanomedicine
and Nanotoxicology Group, Physics Institute of São Carlos, São Paulo University, Avenida Trabalhador São Carlense,
400, São Carlos, SP 13560-970, Brazil
| |
Collapse
|
3
|
Ghosh M, Roy D, Thakur S, Singh A. Exploring the Potential of Nasal Drug Delivery for Brain Targeted Therapy: A Detailed Analysis. Biopharm Drug Dispos 2024; 45:161-189. [PMID: 39665188 DOI: 10.1002/bdd.2400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
The brain is a sensitive organ with numerous essential functions and complex mechanisms. It is secluded and safeguarded from the external environment as part of the central nervous system (CNS), serving as a sanctuary. By regulating their selective and specific absorption, efflux, and metabolism in the brain, the CNS controls brain homeostasis and the transit of endogenous and foreign substances. The mechanism which protects the brain from environmental chemicals, also prevent the entry of therapeutic chemicals to it. The delivery of molecules to the brain is hindered by several major barriers, such as the blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and blood-tumor barrier. BBB is formed by the combination of cerebral endothelial cells, astrocytes, neurons, pericytes and microglia. It is a tight junction of capillary endothelial cells, preventing the diffusion of solute into the brain. BCSFB is the second barrier, located at the choroid plexus, separating the blood from cerebrospinal fluid (CSF). It is comparatively more permeable than BBB. An uneven distribution of microvasculature across the tumor interstitial compromises drug delivery to neoplastic cells of a solid tumor, resulting in spatially inconsistent drug administration. Nasal drug delivery to the brain is a method of drug delivery that tries to deliver therapeutic substances directly from the nasal cavity to the central nervous system including the brain. In this review, besides the role of barriers we have discussed in detail about approaches adapted to deliver drugs to the brain along with mechanisms through nasal route. Further, different commercial formulations, clinical trials and patents have been thoroughly elaborated to date. The findings suggest that the nose-to-brain drug delivery method holds promise as an evolving approach, potentially contributing to the specific and targeted delivery of drugs into the brain.
Collapse
Affiliation(s)
| | - Debajyoti Roy
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| |
Collapse
|
4
|
Botan MVG, da Silva JB, Bruschi ML. Technological Strategies Applied to Pharmaceutical Systems for Intranasal Administration of Drugs Intended for Neurological Treatments: A Review. AAPS PharmSciTech 2024; 25:258. [PMID: 39487374 DOI: 10.1208/s12249-024-02974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
The complexity of treating neurological diseases has meant that new strategies have had to be developed to deliver drugs to the brain more efficiently and safely. Intranasal drug delivery is characterized by its ease of administration, safety, and rapid delivery directly from the nose to the brain. Several strategies have been developed to improve the delivery of drugs to the brain via nasal administration. These include the use of mucoadhesive and thermoresponsive polymers and their combination into polymer blends, as well as the use of liposomes, niosomes, and nano- and microemulsions. Therefore, this review focuses on technologies for developing pharmaceutical systems aimed at delivery via the nose to the brain, contributing to new treatments for difficult neurological disorders. Some of the most common and difficult-to-treat neurological conditions, the intranasal route of administration, and the anatomy of the nasal cavity have been discussed, as well as factors that may influence the absorption of drugs administered into the nose. The types of intranasal formulations and the devices that can be used to administer these products are also discussed in this review. Strategies for improving the transport of bioactive agents and increasing bioavailability are highlighted. The technologies discussed in this review can facilitate the development of formulations with improved properties, such as drug release and mucoadhesiveness, which have several advantages for patients requiring complex neurological treatments.
Collapse
Affiliation(s)
- Maria Vitoria Gouveia Botan
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, PR, Brazil.
| |
Collapse
|
5
|
Cimino C, Bonaccorso A, Tomasello B, Alberghina GA, Musumeci T, Puglia C, Pignatello R, Marrazzo A, Carbone C. W/O/W Microemulsions for Nasal Delivery of Hydrophilic Compounds: A Preliminary Study. J Pharm Sci 2024; 113:1636-1644. [PMID: 38281664 DOI: 10.1016/j.xphs.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The administration of hydrophilic therapeutics has always been a great challenge because of their low bioavailability after administration. For this purpose, W/O/W microemulsion resulted to be a potential successful strategy for the delivery of hydrophilic compounds, interesting for the nasal mucosal therapy. Herein, an optimized biphasic W/O microemulsion was designed, through a preliminary screening, and it was inverted in a triphasic W/O/W microemulsion, intended for the nasal administration. In order to enhance the mucosal retention, surface modification of the biphasic W/O microemulsion was performed adding didodecyldimethylammonium bromide, and then converting the system into a cationic triphasic W/O/W microemulsion. The developed samples were characterized in terms of droplet size, polydispersity, zeta potential, pH and osmolality. The physical long-term stability was analyzed storing samples at accelerated conditions (40 ± 2 °C and 75 ± 5 % RH) for 6 months in a constant climate chamber, following ICH guidelines Q1A (R2). In order to verify the potential retention on the nasal mucosa, the two triphasic systems were analyzed in terms of mucoadhesive properties, measuring the in vitro interaction with mucin over time. Furthermore, fluorescein sodium salt was selected as a model hydrophilic drug to be encapsulated into the inner core of the two triphasic W/O/W microemulsions, and its release was analyzed compared to the free probe solution. The cytocompatibility of the two platforms was assessed on two cell lines, human fibroblasts HFF1 and Calu-3 cell lines, chosen as pre-clinical models for nasal and bronchial/tracheal airway epithelium.
Collapse
Affiliation(s)
- Cinzia Cimino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Barbara Tomasello
- Section of Biochemistry, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Giovanni Anfuso Alberghina
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Carmelo Puglia
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Agostino Marrazzo
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy.
| |
Collapse
|
6
|
Wang J, Wang Q, Fu Y, Lu M, Chen L, Liu Z, Fu X, Du X, Yu B, Lu H, Cui W. Swimming short fibrous nasal drops achieving intraventricular administration. Sci Bull (Beijing) 2024; 69:1249-1262. [PMID: 38522998 DOI: 10.1016/j.scib.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Adequate drug delivery across the blood-brain barrier (BBB) is a critical factor in treating central nervous system (CNS) disorders. Inspired by swimming fish and the microstructure of the nasal cavity, this study is the first to develop swimming short fibrous nasal drops that can directly target the nasal mucosa and swim in the nasal cavity, which can effectively deliver drugs to the brain. Briefly, swimming short fibrous nasal drops with charged controlled drug release were fabricated by electrospinning, homogenization, the π-π conjugation between indole group of fibers, the benzene ring of leucine-rich repeat kinase 2 (LRRK2) inhibitor along with charge-dipole interaction between positively charged poly-lysine (PLL) and negatively charged surface of fibers; this enabled these fibers to stick to nasal mucosa, prolonged the residence time on mucosa, and prevented rapid mucociliary clearance. In vitro, swimming short fibrous nasal drops were biocompatible and inhibited microglial activation by releasing an LRRK2 inhibitor. In vivo, luciferase-labelled swimming short fibrous nasal drops delivered an LRRK2 inhibitor to the brain through the nasal mucosa, alleviating cognitive dysfunction caused by sepsis-associated encephalopathy by inhibiting microglial inflammation and improving synaptic plasticity. Thus, swimming short fibrous nasal drops is a promising strategy for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiuyun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Xiaohan Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiyu Du
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
7
|
Bustamante R, Canfrán S, Gómez de Segura IA. Clinical evaluation of the sedative, antinociceptive and cardiorespiratory effects of intranasal dexmedetomidine combined with methadone in healthy dogs. Vet J 2024; 303:106065. [PMID: 38228282 DOI: 10.1016/j.tvjl.2024.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
In this prospective, randomised, blinded clinical study, we compared the sedative, antinociceptive and cardiorespiratory effects of intranasal (IN) dexmedetomidine at 5 μg/kg (diluted with 0.03 mL/kg NaCl 0.9%, DEX) with or without methadone (0.3 mg/kg; DEXMET), through a mucosal atomization device to one nostril in twenty healthy client-owned dogs. At 5-min intervals over 45 min, sedation score, onset, cardiopulmonary variables, mechanical nociceptive thresholds (MNTs) were assessed, also ease of administration, adverse effects, and response to IV catheterization. Statistical analysis employed t-test, the Mann-Whitney U, repeated measures ANOVA and Chi-square tests as appropriate (P < 0.05). Higher sedation ocurred in DEXMET (7 [5-10]) compared to DEX (5 [2-7]) from 15 to 30 min (P < 0.01, median [interquartile range]). Heart rate was lower in DEXMET (P < 0.01; 65% reduction vs. 41% in DEX, P = 0.001). The MNTs were higher in DEXMET than DEX from 15 to 45 min (P < 0.01), peaking at T30 (17.1 ± 3.8, DEXMET and 8.5 ± 5.4 N, DEX). No differences were observed in mean arterial blood pressure and respiratory rate. Intranasal administration was considered easy for 8 dogs per group. Reverse sneezing (8 dogs; P < 0.001), sialorrhea and retching (4 and 2 dogs, respectively) occurred in DEXMET. Response to catheterisation was lower in DEXMET than DEX (P = 0.039; 2 and 7 dogs, respectively). In conclusion, intranasal methadone (0.3 mg/kg) increased the sedative and antinociceptive effects produced by dexmedetomidine (5 μg/kg) in healthy dogs and resulted in lower heart rate.
Collapse
Affiliation(s)
- R Bustamante
- Anaesthesiology Service, Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
| | - S Canfrán
- Anaesthesiology Service, Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - I A Gómez de Segura
- Anaesthesiology Service, Department of Animal Medicine and Surgery, Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
8
|
Qin B, Hu XM, Huang YX, Yang RH, Xiong K. A New Paradigm in Spinal Cord Injury Therapy: from Cell-free Treatment to Engineering Modifications. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:656-673. [PMID: 37076458 DOI: 10.2174/1871527322666230418090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 04/21/2023]
Abstract
Spinal cord injury (SCI) is an intractable and poorly prognostic neurological disease, and current treatments are still unable to cure it completely and avoid sequelae. Extracellular vesicles (EVs), as important carriers of intercellular communication and pharmacological effects, are considered to be the most promising candidates for SCI therapy because of their low toxicity and immunogenicity, their ability to encapsulate endogenous bioactive molecules (e.g., proteins, lipids, and nucleic acids), and their ability to cross the blood-brain/cerebrospinal barriers. However, poor targeting, low retention rate, and limited therapeutic efficacy of natural EVs have bottlenecked EVs-based SCI therapy. A new paradigm for SCI treatment will be provided by engineering modified EVs. Furthermore, our limited understanding of the role of EVs in SCI pathology hinders the rational design of novel EVbased therapeutic approaches. In this study, we review the pathophysiology after SCI, especially the multicellular EVs-mediated crosstalk; briefly describe the shift from cellular to cell-free therapies for SCI treatment; discuss and analyze the issues related to the route and dose of EVs administration; summarize and present the common strategies for EVs drug loading in the treatment of SCI and point out the shortcomings of these drug loading methods; finally, we analyze and highlight the feasibility and advantages of bio-scaffold-encapsulated EVs for SCI treatment, providing scalable insights into cell-free therapy for SCI.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan-Xia Huang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
9
|
Kumar N, Khurana B, Arora D. Nose-to-brain drug delivery for the treatment of glioblastoma multiforme: nanotechnological interventions. Pharm Dev Technol 2023; 28:1032-1047. [PMID: 37975846 DOI: 10.1080/10837450.2023.2285506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor with a short survival rate. Extensive research is underway for the last two decades to find an effective treatment for GBM but the tortuous pathophysiology, development of chemoresistance, and presence of BBB are the major challenges, prompting scientists to look for alternative targets and delivery strategies. Therefore, the nose to brain delivery emerged as an unorthodox and non-invasive route, which delivers the drug directly to the brain via the olfactory and trigeminal pathways and also bypasses the BBB and hepatic metabolism of the drug. However, mucociliary clearance, low administration volume, and less permeability of nasal mucosa are the obstacles retrenching the brain drug concentration. Thus, nanocarrier delivery through this route may conquer these limitations because of their unique surface characteristics and smaller size. In this review, we have emphasized the advantages and limitations of nanocarrier technologies such as polymeric, lipidic, inorganic, and miscellaneous nanoparticles used for nose-to-brain drug delivery against GBM in the past 10 years. Furthermore, recent advances, patents, and clinical trials are highlighted. However, most of these studies are in the early stages, so translating their outcomes into a marketed formulation would be a milestone in the better progression and survival of glioma patients.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Bharat Khurana
- Department of Pharmaceutics, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
| | - Daisy Arora
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
10
|
Liu Y, Wu D. Bi-directional nasal drug delivery systems: A scoping review of nasal particle deposition patterns and clinical application. Laryngoscope Investig Otolaryngol 2023; 8:1484-1499. [PMID: 38130248 PMCID: PMC10731484 DOI: 10.1002/lio2.1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives To compare the deposition patterns within the nasal cavity between the bi-directional and unilateral nasal delivery systems. And to summarize the clinical application of the bi-directional nasal drug delivery devices. Data source PubMed, Cochrane Library, Embase, and Web of Science databases. Methods A scoping review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). We included studies exploring patterns and influencing factors of particle depositions within the nasal cavity among patients, healthy controls, and nose cast models using the bi-directional and unilateral nasal delivery system. The clinical application of the bi-directional delivery devices was also summarized. Results A total of 24 studies were included in this review. Bi-directional nasal delivery systems utilize forced exhalation to power the delivery of drugs to deeper areas of the nasal cavity and paranasal sinuses. Unilateral nasal delivery systems included traditional liquid spray pumps, the aerosol mask system, nebulization, and conventional nasal inhalation. Compared with unilateral delivery systems, the bi-directional nasal delivery system provided a more extensive and efficient nasal deposition in the nasal cavity, especially in the olfactory cleft, without lung deposition. Several parameters, including particle size, pulsatile flow, and nasal geometry, could significantly influence nasal deposition. The bi-directional nasal delivery system enables better delivery of steroids or sumatriptan to the sinonasal cavity's high and deep target sites. This bi-directional delivery device demonstrated an effective and well-tolerated treatment that produced high drug utilization, rapid absorption, and sustained symptom improvement among patients with chronic rhinosinusitis (CRS) or migraine. Conclusion The bi-directional nasal drug delivery systems demonstrated significantly higher drug deposition in superior and posterior regions of the nasal cavity than unilateral nasal delivery systems. Further studies should explore its potential role in delivering drugs to the olfactory cleft among patients with olfactory disorders and central nervous system diseases. Level of evidence N/A.
Collapse
Affiliation(s)
- Yuxing Liu
- Department of Otolaryngology‐Head and Neck SurgeryPeking University Third HospitalBeijingPR China
- Department of MedicinePeking UniversityBeijingPR China
| | - Dawei Wu
- Department of Otolaryngology‐Head and Neck SurgeryPeking University Third HospitalBeijingPR China
| |
Collapse
|
11
|
Waqar M, Zaman M, Hameed H, Jamshaid M, Irfan A, Shazly GA, Paiva-Santos AC, Bin Jardan YA. Formulation, Characterization, and Evaluation of β-Cyclodextrin Functionalized Hypericin Loaded Nanocarriers. ACS OMEGA 2023; 8:38191-38203. [PMID: 37867680 PMCID: PMC10586443 DOI: 10.1021/acsomega.3c04444] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
St. John's wort in western Europe has been extensively utilized for the treatment of mild to moderate depression. Hypericin, a red pigment, is found to be responsible for its antidepressant activity. The aim of the current study was to prepare a nanoemulsion (O/W) of hypericin designed for immediate delivery of the drug to the brain for the treatment of depression. The nanoemulsion was prepared by means of a homogenization technique, and that was followed by its physicochemical evaluation. Tween-80, Span-80, β-cyclodextrin, ethanol, and eucalyptus oil were utilized for the manufacturing of the nanoemulsion. Morphological studies have revealed globular structures of nanosize that were confirmed by the zeta analysis. The consistency of particles was revealed by the low polydispersity values. pH values of all formulations lay within the range of nasal pH. The viscosity of the prepared formulations was affected by the increase in concentrations of β-cyclodextrin. After passing from the centrifugation and freeze-thaw studies, the prepared formulations showed good stability. Formulation F2 having a composition of oil phase (0.125 mL), aqueous phase (1.25 mL), and β-cyclodextrin (8%) showed the best results out of all the formulations, and F2 had a pH of 5.7, 5.35 cP viscosity, 1.332 refractive index, 148.8 globule size, and -10.8 zeta potential. The mean percentage drug release and in vitro and ex vivo percentage drug permeations were observed to be 71.75, 76, and 75.07%, respectively. Meanwhile, formulation F2 showed the maximum drug release and permeation. In vivo behavior studies including the open field test, elevated plus maze test, and tail suspension test were conducted to see the antidepressant effect of hypericin along with comparison with a commercially available treatment. In conclusion, the prepared formulation shows good efficacy as an antidepressant and can be considered as a natural alternative over synthetic drugs.
Collapse
Affiliation(s)
- Muhammad
Ahsan Waqar
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Zaman
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty
of Pharmaceutical Sciences, University of
Central Punjab, Lahore 54000, Pakistan
| | - Ali Irfan
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Gamal A. Shazly
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department
of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Coimbra 3000-548, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty of Pharmacy of the University
of Coimbra, University of Coimbra, Coimbra 3000-548, Portugal
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Raslan MA, Raslan SA, Shehata EM, Mahmoud AS, Sabri NA. Advances in the Applications of Bioinformatics and Chemoinformatics. Pharmaceuticals (Basel) 2023; 16:1050. [PMID: 37513961 PMCID: PMC10384252 DOI: 10.3390/ph16071050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chemoinformatics involves integrating the principles of physical chemistry with computer-based and information science methodologies, commonly referred to as "in silico techniques", in order to address a wide range of descriptive and prescriptive chemistry issues, including applications to biology, drug discovery, and related molecular areas. On the other hand, the incorporation of machine learning has been considered of high importance in the field of drug design, enabling the extraction of chemical data from enormous compound databases to develop drugs endowed with significant biological features. The present review discusses the field of cheminformatics and proposes the use of virtual chemical libraries in virtual screening methods to increase the probability of discovering novel hit chemicals. The virtual libraries address the need to increase the quality of the compounds as well as discover promising ones. On the other hand, various applications of bioinformatics in disease classification, diagnosis, and identification of multidrug-resistant organisms were discussed. The use of ensemble models and brute-force feature selection methodology has resulted in high accuracy rates for heart disease and COVID-19 diagnosis, along with the role of special formulations for targeting meningitis and Alzheimer's disease. Additionally, the correlation between genomic variations and disease states such as obesity and chronic progressive external ophthalmoplegia, the investigation of the antibacterial activity of pyrazole and benzimidazole-based compounds against resistant microorganisms, and its applications in chemoinformatics for the prediction of drug properties and toxicity-all the previously mentioned-were presented in the current review.
Collapse
Affiliation(s)
| | | | | | - Amr S Mahmoud
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo P.O. Box 11566, Egypt
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo P.O. Box 11566, Egypt
| |
Collapse
|
13
|
Du L, Chen L, Liu F, Wang W, Huang H. Nose-to-brain drug delivery for the treatment of CNS disease: New development and strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:255-297. [PMID: 37783558 DOI: 10.1016/bs.irn.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Delivering drugs to the brain has always been a challenging task due to the restrictive properties of the blood-brain barrier (BBB). Intranasal delivery is therefore emerging as an efficient method of administration, making it easy to self-administration and thus provides a non-invasive and painless alternative to oral and parenteral administration for delivering therapeutics to the central nervous system (CNS). Recently, drug formulations have been developed to further enhance this nose-to-brain transport, primarily using nanoparticles (NPs). Therefore, the purposes of this review are to highlight and describe the anatomical basis of nasal-brain pathway and provide an overview of drug formulations and current drugs for intranasal administration in CNS disease.
Collapse
Affiliation(s)
- Li Du
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Fangfang Liu
- Department of Neurology, Jilin City Central Hospital, Jilin, China
| | - Wenya Wang
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China,.
| | - Hongyun Huang
- Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, P.R. China; Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| |
Collapse
|
14
|
Shrewsbury SB. The Upper Nasal Space: Option for Systemic Drug Delivery, Mucosal Vaccines and "Nose-to-Brain". Pharmaceutics 2023; 15:1720. [PMID: 37376168 PMCID: PMC10303426 DOI: 10.3390/pharmaceutics15061720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Sino-nasal disease is appropriately treated with topical treatment, where the nasal mucosa acts as a barrier to systemic absorption. Non-invasive nasal delivery of drugs has produced some small molecule products with good bioavailability. With the recent COVID pandemic and the need for nasal mucosal immunity becoming more appreciated, more interest has become focused on the nasal cavity for vaccine delivery. In parallel, it has been recognized that drug delivery to different parts of the nose can have different results and for "nose-to-brain" delivery, deposition on the olfactory epithelium of the upper nasal space is desirable. Here the non-motile cilia and reduced mucociliary clearance lead to longer residence time that permits enhanced absorption, either into the systemic circulation or directly into the CNS. Many of the developments in nasal delivery have been to add bioadhesives and absorption/permeation enhancers, creating more complicated formulations and development pathways, but other projects have shown that the delivery device itself may allow more differential targeting of the upper nasal space without these additions and that could allow faster and more efficient programs to bring a wider range of drugs-and vaccines-to market.
Collapse
|
15
|
Haasbroek-Pheiffer A, Viljoen A, Steenekamp J, Chen W, Hamman J. Permeation of Phytochemicals of Selected Psychoactive Medicinal Plants across Excised Sheep Respiratory and Olfactory Epithelial Tissues. Pharmaceutics 2023; 15:pharmaceutics15051423. [PMID: 37242666 DOI: 10.3390/pharmaceutics15051423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
The intranasal route of drug administration offers an opportunity to bypass the blood-brain barrier and deliver compounds directly into the brain. Scientific evidence exists for medicinal plants (e.g., Centella asiatica and Mesembryanthemum tortuosum) to treat central nervous system conditions such as anxiety and depression. The ex vivo permeation of selected phytochemicals (i.e., asiaticoside and mesembrine) has been measured across excised sheep nasal respiratory and olfactory tissue. Permeation studies were conducted on individual phytochemicals and C. asiatica and M. tortuosum crude extracts. Asiaticoside exhibited statistically significantly higher permeation across both tissues when applied alone as compared to the C. asiatica crude extract, while mesembrine permeation was similar when applied alone or as M. tortuosum crude extract. Permeation of all the phytocompounds was similar or slightly higher than that of the drug atenolol across the respiratory tissue. Permeation of all the phytocompounds was similar to or slightly lower than that of atenolol across the olfactory tissue. In general, the permeation was higher across the olfactory epithelial tissue than across the respiratory epithelial tissue and therefore showed potential for direct nose-to-brain delivery of the selected psychoactive phytochemicals.
Collapse
Affiliation(s)
- Anja Haasbroek-Pheiffer
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
- SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Jan Steenekamp
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| | - Josias Hamman
- SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
16
|
Lim WQ, Michelle Luk KH, Lee KY, Nurul N, Loh SJ, Yeow ZX, Wong QX, Daniel Looi QH, Chong PP, How CW, Hamzah S, Foo JB. Small Extracellular Vesicles' miRNAs: Biomarkers and Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15041216. [PMID: 37111701 PMCID: PMC10143523 DOI: 10.3390/pharmaceutics15041216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.
Collapse
Affiliation(s)
- Wei Qing Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kie Hoon Michelle Luk
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Nasuha Nurul
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Sin Jade Loh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Zhen Xiong Yeow
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Xuan Wong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Hao Daniel Looi
- My CytoHealth Sdn. Bhd., Lab 6, DMC Level 2, Hive 5, Taman Teknologi MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
17
|
Son S, Lee NR, Gee MS, Song CW, Lee SJ, Lee SK, Lee Y, Kim HJ, Lee JK, Inn KS, Kim NJ. Chemical Knockdown of Phosphorylated p38 Mitogen-Activated Protein Kinase (MAPK) as a Novel Approach for the Treatment of Alzheimer's Disease. ACS CENTRAL SCIENCE 2023; 9:417-426. [PMID: 36968534 PMCID: PMC10037464 DOI: 10.1021/acscentsci.2c01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Indexed: 05/28/2023]
Abstract
Targeted protein degradation (TPD) provides unique advantages over gene knockdown in that it can induce selective degradation of disease-associated proteins attributed to pathological mutations or aberrant post-translational modifications (PTMs). Herein, we report a protein degrader, PRZ-18002, that selectively binds to an active form of p38 MAPK. PRZ-18002 induces degradation of phosphorylated p38 MAPK (p-p38) and a phosphomimetic mutant of p38 MAPK in a proteasome-dependent manner. Given that the activation of p38 MAPK plays pivotal roles in the pathophysiology of Alzheimer's disease (AD), selective degradation of p-p38 may provide an attractive therapeutic option for the treatment of AD. In the 5xFAD transgenic mice model of AD, intranasal treatment of PRZ-18002 reduces p-p38 levels and alleviates microglia activation and amyloid beta (Aβ) deposition, leading to subsequent improvement of spatial learning and memory. Collectively, our findings suggest that PRZ-18002 ameliorates AD pathophysiology via selective degradation of p-p38, highlighting a novel therapeutic TPD modality that targets a specific PTM to induce selective degradation of neurodegenerative disease-associated protein.
Collapse
Affiliation(s)
- Seung
Hwan Son
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Rae Lee
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Min Sung Gee
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chae Won Song
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Soo Jin Lee
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang-Kyung Lee
- Department
of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Yoonji Lee
- College
of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Jin Kim
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Jong Kil Lee
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Kyung-Soo Inn
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| | - Nam-Jung Kim
- College
of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Prazer
Therapeutics Inc., Beobwon-ro
9-gil 26, Songpa-gu, Seoul 05836, Republic of Korea
| |
Collapse
|
18
|
Khan MS, Mohapatra S, Gupta V, Ali A, Naseef PP, Kurunian MS, Alshadidi AAF, Alam MS, Mirza MA, Iqbal Z. Potential of Lipid-Based Nanocarriers against Two Major Barriers to Drug Delivery-Skin and Blood-Brain Barrier. MEMBRANES 2023; 13:343. [PMID: 36984730 PMCID: PMC10058721 DOI: 10.3390/membranes13030343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Over the past few years, pharmaceutical and biomedical areas have made the most astounding accomplishments in the field of medicine, diagnostics and drug delivery. Nanotechnology-based tools have played a major role in this. The implementation of this multifaceted nanotechnology concept encourages the advancement of innovative strategies and materials for improving patient compliance. The plausible usage of nanotechnology in drug delivery prompts an extension of lipid-based nanocarriers with a special reference to barriers such as the skin and blood-brain barrier (BBB) that have been discussed in the given manuscript. The limited permeability of these two intriguing biological barriers restricts the penetration of active moieties through the skin and brain, resulting in futile outcomes in several related ailments. Lipid-based nanocarriers provide a possible solution to this problem by facilitating the penetration of drugs across these obstacles, which leads to improvements in their effectiveness. A special emphasis in this review is placed on the composition, mechanism of penetration and recent applications of these carriers. It also includes recent research and the latest findings in the form of patents and clinical trials in this field. The presented data demonstrate the capability of these carriers as potential drug delivery systems across the skin (referred to as topical, dermal and transdermal delivery) as well as to the brain, which can be exploited further for the development of safe and efficacious products.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Vaibhav Gupta
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Ahsan Ali
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | | | - Mohamed Saheer Kurunian
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulkhaliq Ali F. Alshadidi
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan P.O. Box 114, Saudi Arabia
| | - Mohd. Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
19
|
Gabold B, Adams F, Brameyer S, Jung K, Ried CL, Merdan T, Merkel OM. Transferrin-modified chitosan nanoparticles for targeted nose-to-brain delivery of proteins. Drug Deliv Transl Res 2023; 13:822-838. [PMID: 36207657 PMCID: PMC9892103 DOI: 10.1007/s13346-022-01245-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 02/05/2023]
Abstract
Nose-to-brain delivery presents a promising alternative route compared to classical blood-brain barrier passage, especially for the delivery of high molecular weight drugs. In general, macromolecules are rapidly degraded in physiological environment. Therefore, nanoparticulate systems can be used to protect biomolecules from premature degradation. Furthermore, targeting ligands on the surface of nanoparticles are able to improve bioavailability by enhancing cellular uptake due to specific binding and longer residence time. In this work, transferrin-decorated chitosan nanoparticles are used to evaluate the passage of a model protein through the nasal epithelial barrier in vitro. It was demonstrated that strain-promoted azide-alkyne cycloaddition reaction can be utilized to attach a functional group to both transferrin and chitosan enabling a rapid covalent surface-conjugation under mild reaction conditions after chitosan nanoparticle preparation. The intactness of transferrin and its binding efficiency were confirmed via SDS-PAGE and SPR measurements. Resulting transferrin-decorated nanoparticles exhibited a size of about 110-150 nm with a positive surface potential. Nanoparticles with the highest amount of surface bound targeting ligand also displayed the highest cellular uptake into a human nasal epithelial cell line (RPMI 2650). In an air-liquid interface co-culture model with glioblastoma cells (U87), transferrin-decorated nanoparticles showed a faster passage through the epithelial cell layer as well as increased cellular uptake into glioblastoma cells. These findings demonstrate the beneficial characteristics of a specific targeting ligand. With this chemical and technological formulation concept, a variety of targeting ligands can be attached to the surface after nanoparticle formation while maintaining cargo integrity.
Collapse
Affiliation(s)
- Bettina Gabold
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377, Munich, Germany
| | - Friederike Adams
- Institute of Polymer Chemistry, Chair of Macromolecular Materials and Fiber Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Sophie Brameyer
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Christian L Ried
- Drug Product Development, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Thomas Merdan
- Drug Product Development, AbbVie Deutschland GmbH, Ludwigshafen, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377, Munich, Germany.
| |
Collapse
|
20
|
Goswami N, Aleem M, Manda K. Intranasal (2R, 6R)-hydroxynorketamine for acute pain: Behavioural and neurophysiological safety analysis in mice. Clin Exp Pharmacol Physiol 2023; 50:169-177. [PMID: 36371631 DOI: 10.1111/1440-1681.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Ketamine is known for its antinociceptive effect and is also used for treatment-resistant depression. However, the efficacy and safety of (2R, 6R)-hydroxynorketamine (HNK), a ketamine metabolite has been sparingly investigated for acute pain management. The current study aims at investigating the antinociceptive effect of intranasal (2R, 6R)-HNK using pre-clinical models of acute pain. Additionally, the behavioural and neurophysiological safety analyses were carried out for the effective time window. Antinociceptive efficacy of (2R, 6R)-HNK was evaluated using the hot plate test and Hargreaves' plantar test. The formalin test was carried out in both the acute and tonic phases. The neurophysiological and behavioural safety analyses were carried out separately for the haemodynamic function, cortical electroencephalography (EEG), and spontaneous behavioural functions. Analgesic effect of (2R, 6R)-HNK was evident by a significant increase in paw-withdrawal latency in both Hargreaves' and hot plate tests. Additionally, the (2R, 6R)-HNK showed a significant ameliorative effect on pain-related behaviour in the second phase of the formalin test. (2R, 6R)-HNK exhibited an anxiolytic effect without causing any significant changes in locomotor activity and haemodynamic parameters. Power spectral density (PSD) analysis of electroencephalogram revealed no significant changes except a comparative increase in the gamma band range. Both the locomotor functions in the open field test and the PSD value of delta wave indicated no sedative effect at the given dose of (2R, 6R)-HNK. The results demonstrated the pain-alleviating effect of (2R, 6R)-HNK without compromising the neurophysiological and behavioural function. Therefore, intranasal (2R, 6R)-HNK is suggested as a safe candidate for further clinical study in the management of acute pain.
Collapse
Affiliation(s)
- Nidhi Goswami
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Mohd Aleem
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Kailash Manda
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| |
Collapse
|
21
|
Lamptey RNL, Sun C, Layek B, Singh J. Neurogenic Hypertension, the Blood-Brain Barrier, and the Potential Role of Targeted Nanotherapeutics. Int J Mol Sci 2023; 24:2213. [PMID: 36768536 PMCID: PMC9916775 DOI: 10.3390/ijms24032213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Hypertension is a major health concern globally. Elevated blood pressure, initiated and maintained by the brain, is defined as neurogenic hypertension (NH), which accounts for nearly half of all hypertension cases. A significant increase in angiotensin II-mediated sympathetic nervous system activity within the brain is known to be the key driving force behind NH. Blood pressure control in NH has been demonstrated through intracerebrovascular injection of agents that reduce the sympathetic influence on cardiac functions. However, traditional antihypertensive agents lack effective brain permeation, making NH management extremely challenging. Therefore, developing strategies that allow brain-targeted delivery of antihypertensives at the therapeutic level is crucial. Targeting nanotherapeutics have become popular in delivering therapeutics to hard-to-reach regions of the body, including the brain. Despite the frequent use of nanotherapeutics in other pathological conditions such as cancer, their use in hypertension has received very little attention. This review discusses the underlying pathophysiology and current management strategies for NH, as well as the potential role of targeted therapeutics in improving current treatment strategies.
Collapse
Affiliation(s)
| | | | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
22
|
Bahadur S, Prakash A. A Comprehensive Review on Nanomedicine: Promising Approach for Treatment of Brain Tumor through Intranasal Administration. Curr Drug Targets 2023; 24:71-88. [PMID: 36278468 DOI: 10.2174/1389450124666221019141044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Brain tumors have become one of the deadliest cancers; however, their treatment is still limited by conventional approaches. Brain tumors, among other CNS diseases, are the most lethal form of cancer due to ineffective diagnosis and profiling. The major limiting factor in treating brain tumors is the blood-brain barrier (BBB), and the required therapeutic concentration is not achieved. Hence, most drugs are prescribed at higher doses, which have several unwanted side effects. Nanotechnology has emerged as an interesting and promising new approach for treating neurological disorders, including brain tumors, with the potential to overcome concerns related to traditional therapeutic approaches. Moreover, biomimetic nanomaterials have been introduced to successfully cross the blood-brain barrier and be consumed by deep skin cancer for imaging brain tumors using multimodal functional nanostructures for more specific and reliable medical assessment. These nanomedicines can address several challenges by enhancing the bioavailability of therapeutics through controlled pharmacokinetics and pharmacodynamics. Further nasal drug delivery has been considered as an alternative approach for the brain's targeting for the treatment of several CNS diseases. A drug can be directly delivered to the brain by bypassing the BBB through intranasal administration. This review discusses intranasal nanomedicine-based therapies for brain tumor targeting, which can be explored from different perspectives.
Collapse
Affiliation(s)
- Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Anubhav Prakash
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
23
|
Yao Y, Jiang Y, Song J, Wang R, Li Z, Yang L, Wu W, Zhang L, Peng Q. Exosomes as Potential Functional Nanomaterials for Tissue Engineering. Adv Healthc Mater 2022:e2201989. [PMID: 36253093 DOI: 10.1002/adhm.202201989] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Indexed: 11/10/2022]
Abstract
Exosomes are cell-derived extracellular vesicles of 40-160 nm diameter, which carry numerous biomolecules and transmit information between cells. They are used as functional nanomaterials with great potential in biomedical areas, such as active agents and delivery systems for advanced drug delivery and disease therapy. In recent years, potential applications of exosomes in tissue engineering have attracted significant attention, and some critical progress has been made. This review gives a complete picture of exosomes and their applications in the regeneration of various tissues, such as the central nervous systems, kidney, bone, cartilage, heart, and endodontium. Approaches employed for modifying exosomes to equip them with excellent targeting capacity are summarized. Furthermore, current concerns and future outlook of exosomes in tissue engineering are discussed.
Collapse
Affiliation(s)
- Yang Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Yuhuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Jialu Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Ruojing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Zhaoping Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Weimin Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Luyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| |
Collapse
|
24
|
Application of Intranasal Administration in the Delivery of Antidepressant Active Ingredients. Pharmaceutics 2022; 14:pharmaceutics14102070. [PMID: 36297505 PMCID: PMC9611373 DOI: 10.3390/pharmaceutics14102070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
As a mental disease in modern society, depression shows an increasing occurrence, with low cure rate and high recurrence rate. It has become the most disabling disease in the world. At present, the treatment of depression is mainly based on drug therapy combined with psychological therapy, physical therapy, and other adjuvant therapy methods. Antidepressants are primarily administered peripherally (oral and intravenous) and have a slow onset of action. Antidepressant active ingredients, such as neuropeptides, natural active ingredients, and some chemical agents, are limited by factors such as the blood–brain barrier (BBB), first-pass metabolism, and extensive adverse effects caused by systemic administration. The potential anatomical link between the non-invasive nose–brain pathway and the lesion site of depression may provide a more attractive option for the delivery of antidepressant active ingredients. The purpose of this article is to describe the specific link between intranasal administration and depression, the challenges of intranasal administration, as well as studies of intranasal administration of antidepressant active ingredients.
Collapse
|
25
|
Comparison of the sedative effects of intranasal or intramuscular dexmedetomidine at low doses in healthy dogs: a randomized clinical trial. Vet Anaesth Analg 2022; 49:572-579. [DOI: 10.1016/j.vaa.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 05/04/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
|
26
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Chen D, Li J, Huang Y, Wei P, Miao W, Yang Y, Gao Y. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation 2022; 19:112. [PMID: 35578342 PMCID: PMC9109418 DOI: 10.1186/s12974-022-02471-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microglia/macrophages are activated after cerebral ischemic stroke and can contribute to either brain injury or recovery by polarizing microglia/macrophage into distinctive functional phenotypes with pro- or anti-inflammatory properties. Interleukin-13 (IL-13) is an anti-inflammatory cytokine that regulates microglia/macrophage polarization toward an anti-inflammatory phenotype. However, it is not clear whether IL-13 is beneficial after ischemic stroke long-term and the underlying molecular mechanism(s) remain unknown. Thus, we examined the effect of IL-13 on long-term recovery and microglia/macrophage polarization in mice with transient middle cerebral artery occlusion model (tMCAO). METHODS tMCAO was induced in adult male C57BL/6J mice. IL-13 (60 μg/kg) was administered intranasally starting 2 h after stroke and continued for seven consecutive days. Sensorimotor function, spatial learning and memory function, as well as brain infarct volume were assessed up to 35 days after stroke. White matter integrity was evaluated by electrophysiology, immunofluorescence staining, and transmission electron microscopy. Microglia/macrophage activation was assessed using immunofluorescence staining and quantitative real-time polymerase chain reaction. Changes in immune cells in the brain and the periphery, and expression of IL-13 receptors in different brain cells were detected by flow cytometry. Primary neuron/microglia co-cultures and a STAT3 inhibitor were used for mechanistic studies. RESULTS Post-treatment with IL-13 improved long-term neurofunctional recovery and decreased brain tissue atrophy after stroke. Intranasal delivery of IL-13 enhanced the structural and functional integrity of white matter after stroke. Furthermore, the neuroprotection afforded by IL-13 administration was not due to a direct effect on neurons, but by indirectly regulating the anti-inflammatory phenotype of microglia/macrophages. IL-13 treatment also had no effect on peripheral immune cells. Mechanistically, IL-13 improved the long-term outcome after ischemic stroke by promoting the polarization of microglia/macrophages toward the anti-inflammatory phenotype at least partially by inhibiting the phosphorylation of STAT3. CONCLUSIONS IL-13 promotes white matter repair and improves neurofunctional outcomes after ischemic stroke by modulating microglia/macrophages via inhibition of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Wanying Miao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Yaomei Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China.
| |
Collapse
|
28
|
Borrajo ML, Alonso MJ. Using nanotechnology to deliver biomolecules from nose to brain - peptides, proteins, monoclonal antibodies and RNA. Drug Deliv Transl Res 2022; 12:862-880. [PMID: 34731414 PMCID: PMC8888512 DOI: 10.1007/s13346-021-01086-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
There is a growing number of biomolecules, including peptides, proteins, monoclonal antibodies and RNA, that could be potentially used for the treatment of central nervous system (CNS) diseases. However, the realization of their potential is being hampered by the extraordinary difficulties these complex biomolecules have to reach the brain in therapeutically meaningful amounts. Nose-to-brain (N-to-B) delivery is now being investigated as a potential option for the direct transport of biomolecules from the nasal cavity to different brain areas. Here, we discuss how different technological approaches enhance this N-to-B transport, with emphasis on those that have shown a potential for clinical translation. We also analyse how the physicochemical properties of nanocarriers and their modification with cell-penetrating peptides (CPPs) and targeting ligands affect their efficacy as N-to-B carriers for biomolecules.
Collapse
Affiliation(s)
- Mireya L Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, 15782, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Av. Barcelona s/n, Campus Vida, 15782, Santiago de Compostela, Spain.
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Dimiou S, Lopes RM, Kubajewska I, Mellor RD, Schlosser CS, Shet MS, Huang H, Akcan O, Whiteside GT, Schätzlein AG, Uchegbu IF. Particulate levodopa nose-to-brain delivery targets dopamine to the brain with no plasma exposure. Int J Pharm 2022; 618:121658. [PMID: 35292396 DOI: 10.1016/j.ijpharm.2022.121658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 11/27/2022]
Abstract
Levodopa (L-DOPA) is an oral Parkinson's Disease drug that generates the active metabolite - dopamine (DA) in vivo. However, oral L-DOPA exhibits low oral bioavailability, limited brain uptake, peripheral DA-mediated side effects and its poor brain bioavailability can lead to long-term complications. Here we show that L-DOPA forms stable (for at least 5 months) 300 nm nanoparticles when encapsulated within N-palmitoyl-N-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan (GCPQ). A nano-in-microparticle GCPQ-L-DOPA formulation (D50 = 7.2 µm), prepared by spray-drying, was stable for one month when stored at room and refrigeration temperatures and was capable of producing the original GCPQ-L-DOPA nanoparticles upon aqueous reconstitution. Nasal administration of reconstituted GCPQ-L-DOPA nanoparticles to rats resulted in significantly higher DA levels in the brain (Cmax of 94 ng g-1 above baseline levels 2 h post-dosing) when compared to nasal administration of L-DOPA alone, with DA being undetectable in the brain with the latter. Furthermore, nasal GCPQ-L-DOPA resulted in higher levels of L-DOPA in the plasma (a 17-fold increase in the Cmax, when compared to L-DOPA alone) with DA undetectable in the plasma from both formulations. These data provide evidence of effective delivery of DA to the brain with the GCPQ-L-DOPA formulation.
Collapse
Affiliation(s)
- Savvas Dimiou
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., 6th Floor, 2 London Wall Place, London EC2Y 5AU, UK
| | - Rui M Lopes
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., 6th Floor, 2 London Wall Place, London EC2Y 5AU, UK
| | - Ilona Kubajewska
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., 6th Floor, 2 London Wall Place, London EC2Y 5AU, UK
| | - Ryan D Mellor
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., 6th Floor, 2 London Wall Place, London EC2Y 5AU, UK
| | - Corinna S Schlosser
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., 6th Floor, 2 London Wall Place, London EC2Y 5AU, UK
| | - Manjunath S Shet
- Imbrium Therapeutics, One Stamford Forum, 201 Tresser Blvd., Stamford, CT 06901, USA
| | - Hugh Huang
- Imbrium Therapeutics, One Stamford Forum, 201 Tresser Blvd., Stamford, CT 06901, USA
| | - Ozgur Akcan
- Imbrium Therapeutics, One Stamford Forum, 201 Tresser Blvd., Stamford, CT 06901, USA
| | - Garth T Whiteside
- Imbrium Therapeutics, One Stamford Forum, 201 Tresser Blvd., Stamford, CT 06901, USA
| | - Andreas G Schätzlein
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., 6th Floor, 2 London Wall Place, London EC2Y 5AU, UK
| | - Ijeoma F Uchegbu
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; Nanomerics Ltd., 6th Floor, 2 London Wall Place, London EC2Y 5AU, UK.
| |
Collapse
|
30
|
Crowe TP, Hsu WH. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 2022; 14:629. [PMID: 35336004 PMCID: PMC8950509 DOI: 10.3390/pharmaceutics14030629] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Neurological diseases continue to increase in prevalence worldwide. Combined with the lack of modifiable risk factors or strongly efficacious therapies, these disorders pose a significant and growing burden on healthcare systems and societies. The development of neuroprotective or curative therapies is limited by a variety of factors, but none more than the highly selective blood-brain barrier. Intranasal administration can bypass this barrier completely and allow direct access to brain tissues, enabling a large number of potential new therapies ranging from bioactive peptides to stem cells. Current research indicates that merely administering simple solutions is inefficient and may limit therapeutic success. While many therapies can be delivered to some degree without carrier molecules or significant modification, a growing body of research has indicated several methods of improving the safety and efficacy of this administration route, such as nasal permeability enhancers, gelling agents, or nanocarrier formulations. This review shall discuss promising delivery systems and their role in expanding the clinical efficacy of this novel administration route. Optimization of intranasal administration will be crucial as novel therapies continue to be studied in clinical trials and approved to meet the growing demand for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Tyler P. Crowe
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Walter H. Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
31
|
The Multifaceted Role of Neuroprotective Plants in Alzheimer’s Disease Treatment. Geriatrics (Basel) 2022; 7:geriatrics7020024. [PMID: 35314596 PMCID: PMC8938774 DOI: 10.3390/geriatrics7020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-related, progressive neurodegenerative disorder characterized by impaired cognition, memory loss, and altered personality. Many of the available pharmaceutical treatments do not alter the onset of disease progression. Recently, alternatives to developed drug candidates have been explored including medicinal plants and herbal treatments for the treatment of AD. This article examines the role of herbal plant extracts and the neuroprotective effects as alternative modes of intervention for AD progression. These extracts contain key metabolites that culminate alterations in AD progression. The traditional plant extracts explored in this article induce a variety of beneficial properties, including antioxidants, anti-inflammatory, and enhanced cognition, while also inducing activity on AD drug targets such as Aβ degradation. While these neuroprotective aspects for AD are relatively recent, there is great potential in the drug discovery aspect of these plant extracts for future use in AD treatment.
Collapse
|
32
|
Wolf V, Abdul Y, Ergul A. Novel Targets and Interventions for Cognitive Complications of Diabetes. Front Physiol 2022; 12:815758. [PMID: 35058808 PMCID: PMC8764363 DOI: 10.3389/fphys.2021.815758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 01/16/2023] Open
Abstract
Diabetes and cognitive dysfunction, ranging from mild cognitive impairment to dementia, often coexist in individuals over 65 years of age. Vascular contributions to cognitive impairment/dementia (VCID) are the second leading cause of dementias under the umbrella of Alzheimer's disease and related dementias (ADRD). Over half of dementia patients have VCID either as a single pathology or a mixed dementia with AD. While the prevalence of type 2 diabetes in individuals with dementia can be as high as 39% and diabetes increases the risk of cerebrovascular disease and stroke, VCID remains to be one of the less understood and less studied complications of diabetes. We have identified cerebrovascular dysfunction and compromised endothelial integrity leading to decreased cerebral blood flow and iron deposition into the brain, respectively, as targets for intervention for the prevention of VCID in diabetes. This review will focus on targeted therapies that improve endothelial function or remove iron without systemic effects, such as agents delivered intranasally, that may result in actionable and disease-modifying novel treatments in the high-risk diabetic population.
Collapse
Affiliation(s)
- Victoria Wolf
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yasir Abdul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Yasir Abdul,
| | - Adviye Ergul
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
33
|
Pauwels MJ, Vandendriessche C, Vandenbroucke RE. Special delEVery: Extracellular Vesicles as Promising Delivery Platform to the Brain. Biomedicines 2021; 9:1734. [PMID: 34829963 PMCID: PMC8615927 DOI: 10.3390/biomedicines9111734] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of central nervous system (CNS) pathologies is severely hampered by the presence of tightly regulated CNS barriers that restrict drug delivery to the brain. An increasing amount of data suggests that extracellular vesicles (EVs), i.e., membrane derived vesicles that inherently protect and transfer biological cargoes between cells, naturally cross the CNS barriers. Moreover, EVs can be engineered with targeting ligands to obtain enriched tissue targeting and delivery capacities. In this review, we provide a detailed overview of the literature describing a natural and engineered CNS targeting and therapeutic efficiency of different cell type derived EVs. Hereby, we specifically focus on peripheral administration routes in a broad range of CNS diseases. Furthermore, we underline the potential of research aimed at elucidating the vesicular transport mechanisms across the different CNS barriers. Finally, we elaborate on the practical considerations towards the application of EVs as a brain drug delivery system.
Collapse
Affiliation(s)
- Marie J. Pauwels
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, 9052 Ghent, Belgium; (M.J.P.); (C.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
34
|
Clementino AR, Marchi C, Pozzoli M, Bernini F, Zimetti F, Sonvico F. Anti-Inflammatory Properties of Statin-Loaded Biodegradable Lecithin/Chitosan Nanoparticles: A Step Toward Nose-to-Brain Treatment of Neurodegenerative Diseases. Front Pharmacol 2021; 12:716380. [PMID: 34630094 PMCID: PMC8498028 DOI: 10.3389/fphar.2021.716380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/09/2021] [Indexed: 01/16/2023] Open
Abstract
Nasal delivery has been indicated as one of the most interesting alternative routes for the brain delivery of neuroprotective drugs. Nanocarriers have emerged as a promising strategy for the delivery of neurotherapeutics across the nasal epithelia. In this work, hybrid lecithin/chitosan nanoparticles (LCNs) were proposed as a drug delivery platform for the nasal administration of simvastatin (SVT) for the treatment of neuroinflammatory diseases. The impact of SVT nanoencapsulation on its transport across the nasal epithelium was investigated, as well as the efficacy of SVT-LCNs in suppressing cytokines release in a cellular model of neuroinflammation. Drug release studies were performed in simulated nasal fluids to investigate SVT release from the nanoparticles under conditions mimicking the physiological environment present in the nasal cavity. It was observed that interaction of nanoparticles with a simulated nasal mucus decreased nanoparticle drug release and/or slowed drug diffusion. On the other hand, it was demonstrated that two antibacterial enzymes commonly present in the nasal secretions, lysozyme and phospholipase A2, promoted drug release from the nanocarrier. Indeed, an enzyme-triggered drug release was observed even in the presence of mucus, with a 5-fold increase in drug release from LCNs. Moreover, chitosan-coated nanoparticles enhanced SVT permeation across a human cell model of the nasal epithelium (×11). The nanoformulation pharmacological activity was assessed using an accepted model of microglia, obtained by activating the human macrophage cell line THP-1 with the Escherichia coli–derived lipopolysaccharide (LPS) as the pro-inflammatory stimulus. SVT-LCNs were demonstrated to suppress the pro-inflammatory signaling more efficiently than the simple drug solution (−75% for IL-6 and −27% for TNF-α vs. −47% and −15% at 10 µM concentration for SVT-LCNs and SVT solution, respectively). Moreover, neither cellular toxicity nor pro-inflammatory responses were evidenced for the treatment with the blank nanoparticles even after 36 h of incubation, indicating a good biocompatibility of the nanomedicine components in vitro. Due to their biocompatibility and ability to promote drug release and absorption at the biointerface, hybrid LCNs appear to be an ideal carrier for achieving nose-to-brain delivery of poorly water-soluble drugs such as SVT.
Collapse
Affiliation(s)
- Adryana Rocha Clementino
- Department of Food and Drug, University of Parma, Parma, Italy.,Conselho Nacional do Desenvolvimento Científico e Tecnológico-CNPq, Brasilia, Brazil
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Michele Pozzoli
- The Woolcock Institute for Medical Research, Discipline of Pharmacology, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Franco Bernini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Fabio Sonvico
- Department of Food and Drug, University of Parma, Parma, Italy.,University Research Centre for the Innovation of Health Products (Biopharmanet-TEC), University of Parma, Parma, Italy
| |
Collapse
|
35
|
Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, Zheng Y. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics 2021; 11:8926-8944. [PMID: 34522219 PMCID: PMC8419041 DOI: 10.7150/thno.62330] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
As extracellular vesicles secreted by cells, exosomes are intercellular signalosomes for cell communication and pharmacological effectors. Because of their special properties, including low toxicity and immunogenicity, biodegradability, ability to encapsulate endogenous biologically active molecules and cross the blood-brain barrier (BBB), exosomes have great therapeutic potential in cerebrovascular and neurodegenerative diseases. However, the poor targeting ability of natural exosomes greatly reduces the therapeutic effect. Using engineering technology, exosomes can obtain active targeting ability to accumulate in specific cell types and tissues by attaching targeting units to the membrane surface or loading them into cavities. In this review, we outline the improved targeting functions of bioengineered exosomes, tracing and imaging techniques, administration methods, internalization in the BBB, and therapeutic effects of exosomes in cerebrovascular and neurodegenerative diseases and further evaluate the clinical opportunities and challenges in this research field.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Tao Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Bowen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Fen Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
36
|
Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Porfiryeva NN, Semina II, Salakhov IA, Moustafine RI, Khutoryanskiy VV. Mucoadhesive and mucus-penetrating interpolyelectrolyte complexes for nose-to-brain drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102432. [PMID: 34186258 DOI: 10.1016/j.nano.2021.102432] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/01/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Nasal administration offers a possibility of delivering drugs to the brain. In the present work, nasal drug delivery systems were designed based on cationic Eudragit® EPO (EPO) and anionic Eudragit® L100-55 (L100-55) methacrylate copolymers. Two types of nanocarriers were prepared using interpolyelectrolyte complexation between these polymers. The first type of nanoparticles was prepared by forming interpolyelectrolyte complexes between unmodified EPO and L100-55. The second type of nanoparticles was formed through the complexation between PEGylated L100-55 and EPO. For this purpose, PEGylated L100-55 was synthesized by chemical conjugation of L100-55 with O-(2-aminoethyl)polyethylene glycol. The mucoadhesive properties of these nanoparticles were evaluated ex vivo using sheep nasal mucosa. Nanoparticles based on EPO and L100-55 exhibited mucoadhesive properties towards nasal mucosa, whereas PEGylated nanoparticles were non-mucoadhesive hence displayed mucus-penetrating properties. Both types of nanoparticles were used to formulate haloperidol and their ability to deliver the drug to the brain was evaluated in rats in vivo.
Collapse
Affiliation(s)
- Natalia N Porfiryeva
- Institute of Pharmacy, Kazan State Medical University, Kazan, Russian Federation
| | - Irina I Semina
- Central Research Laboratory, Kazan State Medical University, Kazan, Russian Federation
| | - Ilgiz A Salakhov
- Institute of Pharmacy, Kazan State Medical University, Kazan, Russian Federation
| | - Rouslan I Moustafine
- Institute of Pharmacy, Kazan State Medical University, Kazan, Russian Federation; Central Research Laboratory, Kazan State Medical University, Kazan, Russian Federation.
| | - Vitaliy V Khutoryanskiy
- Institute of Pharmacy, Kazan State Medical University, Kazan, Russian Federation; Reading School of Pharmacy, University of Reading, Whiteknights, United Kingdom.
| |
Collapse
|
38
|
Li S, Guo C, Zhang X, Liu X, Mu J, Liu C, Peng Y, Chang M. Self-assembling modified neuropeptide S enhances nose-to-brain penetration and exerts a prolonged anxiolytic-like effect. Biomater Sci 2021; 9:4765-4777. [PMID: 34037635 DOI: 10.1039/d1bm00380a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Anxiety disorders are the most common mental diseases and can greatly disrupt everyday life. Although there has been substantial research on anxiety disorders, novel therapeutics are needed. Neuropeptide S (NPS) is a potential therapeutic candidate owing to its strong anxiolytic activity; however, some disadvantages, such as its poor metabolic stability and inability to cross the blood-brain barrier (BBB), limit its use in the clinic. Herein, inspired by nose-to-brain drug delivery strategies, an endogenous 20-amino-acid-long mNPS peptide was modified by incorporating palmitic acid into its functional Lys12 side chain (M-3), which was expected to facilitate nose-to-brain penetration and exert a prolonged anxiolytic-like effect compared to mNPS. We found that M-3 assembled into nanofibers that retained the bioactivity of NPS and exhibited obvious improvements in metabolic stability. Notably, as expected, self-assembled M-3 was able to penetrate into the brain and exert anxiolytic effects. The elevated plus-maze (EPM) results further revealed that M-3 could produce prolonged anxiolytic-like effects in mice. In vivo imaging studies revealed that self-assembled M-3 could be efficiently transported from the nasal cavity to the brain. Furthermore, when intranasally administered, this molecule exhibited a significantly prolonged anxiolytic-like effect, which further illustrated that this molecule has a potent nose-to-brain penetration in vivo. Overall, this self-assembled nanofiber showed potent nose-to-brain penetration ability and prolonged bioactivity.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Chen Guo
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Jing Mu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Chunxia Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
39
|
Cassano R, Servidio C, Trombino S. Biomaterials for Drugs Nose-Brain Transport: A New Therapeutic Approach for Neurological Diseases. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1802. [PMID: 33917404 PMCID: PMC8038678 DOI: 10.3390/ma14071802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
In the last years, neurological diseases have resulted in a global health issue, representing the first cause of disability worldwide. Current therapeutic approaches against neurological disorders include oral, topical, or intravenous administration of drugs and more invasive techniques such as surgery and brain implants. Unfortunately, at present, there are no fully effective treatments against neurodegenerative diseases, because they are not associated with a regeneration of the neural tissue but rather act on slowing the neurodegenerative process. The main limitation of central nervous system therapeutics is related to their delivery to the nervous system in therapeutic quantities due to the presence of the blood-brain barrier. In this regard, recently, the intranasal route has emerged as a promising administration site for central nervous system therapeutics since it provides a direct connection to the central nervous system, avoiding the passage through the blood-brain barrier, consequently increasing drug cerebral bioavailability. This review provides an overview of the nose-to-brain route: first, we summarize the anatomy of this route, focusing on the neural mechanisms responsible for the delivery of central nervous system therapeutics to the brain, and then we discuss the recent advances made on the design of intranasal drug delivery systems of central nervous system therapeutics to the brain, focusing in particular on stimuli-responsive hydrogels.
Collapse
Affiliation(s)
| | | | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (C.S.)
| |
Collapse
|
40
|
Fonseca LC, Lopes JA, Vieira J, Viegas C, Oliveira CS, Hartmann RP, Fonte P. Intranasal drug delivery for treatment of Alzheimer's disease. Drug Deliv Transl Res 2021; 11:411-425. [PMID: 33638130 DOI: 10.1007/s13346-021-00940-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
The Alzheimer's disease is a neurodegenerative condition with severe consequences interfering with patient quality of life. It is characterized as a progressive and irreversible brain disorder hampering memory and thinking, affecting the capacity to perform daily tasks leading to physical and cognitive incapacitation. The conventional treatment occurs by the oral route, but it presents relevant drawbacks such as low bioavailability, fast metabolism, limited brain exposure, and undesirable side effects. The intranasal route has been proposed as a promising alternative to deliver drugs and improve the Alzheimer's disease treatment. Still, there is not a clear alternative delivery system available in the market with advantageous bioavailability and safety. The aim of this review is to perform an overview on the strategies for drug intranasal delivery for Alzheimer's disease treatment. The advantages and disadvantages of this delivery route and the delivery systems developed so far are discussed. A special focus is given on the use of permeation enhancers, the types of intranasal drug delivery devices, as well as possible toxicity concerns.
Collapse
Affiliation(s)
- Leonor C Fonseca
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - João A Lopes
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - João Vieira
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Cláudia Viegas
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Cláudia S Oliveira
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Rafael P Hartmann
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal.
| |
Collapse
|
41
|
Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2021; 12:735-757. [PMID: 33491126 PMCID: PMC7829061 DOI: 10.1007/s13346-020-00891-5] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Over the past 10 years, the interest in intranasal drug delivery in pharmaceutical R&D has increased. This review article summarises information on intranasal administration for local and systemic delivery, as well as for CNS indications. Nasal delivery offers many advantages over standard systemic delivery systems, such as its non-invasive character, a fast onset of action and in many cases reduced side effects due to a more targeted delivery. There are still formulation limitations and toxicological aspects to be optimised. Intranasal drug delivery in the field of drug development is an interesting delivery route for the treatment of neurological disorders. Systemic approaches often fail to efficiently supply the CNS with drugs. This review paper describes the anatomical, histological and physiological basis and summarises currently approved drugs for administration via intranasal delivery. Further, the review focuses on toxicological considerations of intranasally applied compounds and discusses formulation aspects that need to be considered for drug development.
Collapse
Affiliation(s)
- Lea-Adriana Keller
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Olivia Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
43
|
Padmakumar S, Jones G, Pawar G, Khorkova O, Hsiao J, Kim J, Amiji MM, Bleier BS. Minimally Invasive Nasal Depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J Control Release 2021; 331:176-186. [PMID: 33484777 DOI: 10.1016/j.jconrel.2021.01.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
The limitations of central nervous system (CNS) drug delivery conferred by the blood-brain barrier (BBB) have been a significant obstacle in the development of large molecule therapeutics for CNS disease. Though significantly safer than direct CNS administration via intrathecal (IT) or intracerebroventricular (ICV) injection, the topical intranasal delivery of CNS therapeutics has failed to become clinically useful due to a variety of practical and physiologic drawbacks leading to high dose variability and poor bioavailability. This study describes the minimally invasive nasal depot (MIND) technique, a novel method of direct trans-nasal CNS drug delivery which overcomes the dosing variability and efficiency challenges of traditional topical trans-nasal, trans-olfactory strategies by delivering the entire therapeutic dose directly to the olfactory submucosal space. We found that the implantation of a depot containing an AntagoNAT (AT) capable of de-repressing brain derived neurotrophic factor (BDNF) expression enabled CNS distribution of ATs with significant and sustained upregulation of BDNF with efficiencies approaching 40% of ICV delivery. As the MIND technique is derived from common outpatient rhinological procedures routinely performed in Ear, Nose and Throat (ENT) clinics, our findings support the significant translational potential of this novel minimally invasive strategy as a reliable therapeutic delivery approach for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | - Gregory Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | - Grishma Pawar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | | | - Jane Hsiao
- Opko Health, Miami, FL, United States of America
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, United States of America
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
44
|
Bahadur S, Pardhi DM, Rautio J, Rosenholm JM, Pathak K. Intranasal Nanoemulsions for Direct Nose-to-Brain Delivery of Actives for CNS Disorders. Pharmaceutics 2020; 12:E1230. [PMID: 33352959 PMCID: PMC7767046 DOI: 10.3390/pharmaceutics12121230] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
The treatment of various central nervous system (CNS) diseases has been challenging, despite the rapid development of several novel treatment approaches. The blood-brain barrier (BBB) is one of the major issues in the treatment of CNS diseases, having major role in the protection of the brain but simultaneously constituting the main limiting hurdle for drugs targeting the brain. Nasal drug delivery has gained significant interest for brain targeting over the past decades, wherein the drug is directly delivered to the brain by the trigeminal and olfactory pathway. Various novel and promising formulation approaches have been explored for drug targeting to the brain by nasal administration. Nanoemulsions have the potential to avoid problems, including low solubility, poor bioavailability, slow onset of action, and enzymatic degradation. The present review highlights research scenarios of nanoemulsions for nose-to-brain delivery for the management of CNS ailments classified on the basis of brain disorders and further identifies the areas that remain unexplored. The significance of the total dose delivered to the target region, biodistribution studies, and long-term toxicity studies have been identified as the key areas of future research.
Collapse
Affiliation(s)
- Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Dinesh M. Pardhi
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (D.M.P.); (J.R.)
| | - Jarkko Rautio
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (D.M.P.); (J.R.)
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
45
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
46
|
Nafee N, Ameen AER, Abdallah OY. Patient-Friendly, Olfactory-Targeted, Stimuli-Responsive Hydrogels for Cerebral Degenerative Disorders Ensured > 400% Brain Targeting Efficiency in Rats. AAPS PharmSciTech 2020; 22:6. [PMID: 33222021 DOI: 10.1208/s12249-020-01872-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023] Open
Abstract
Non-invasive brain therapy for chronic neurological disorders is in high demand. Vinpocetine (VIN) tablets for cerebrovascular degenerative disorders ensued < 7% oral bioavailability. The olfactory pathway (providing direct brain access) can improve VIN pharmacokinetic/pharmacodynamic profile. In this context, VIN hydrogels based on temperature-, pH-, and ion-triggered gelation in physiological milieu were formulated. Poloxamer-chitosan (PLX-CS) and carbopol-HPMC-alginate (CP-HPMC-SA) systems were optimized for appropriate gelation time, temperature, and pH. PLX-CS-hydrogels exhibited strong mucoadhesion for > 8 h, while CP-HPMC-SA hydrogels were mucoadhesive in simulated nasal fluid, owing to pH and ion-activated gelation. Along with prolonged mucosal residence, hydrogels confirmed sustained VIN release (> 24 h), especially from CP-HPMC-SA hydrogels. As proof of concept, brain exposure of intranasal VIN hydrogels was investigated in rats versus VIN-IV bolus. PLX-CS provided 146% increase in AUC0-30 and 3-fold maximum brain concentration (BCmax) relative to IV bolus. BCmax was reached after 4 h versus 1 h (IV bolus). CP-HPMC-SA hydrogel showed superior brain targeting efficiency (460%) and brain direct transport percentage (78.23%). VIN plasma pharmacokinetics confirmed 45-60% reduction in AUCplasma versus IV bolus, while PCmax of CP-HPMC-SA and PLX-CS represented 17 and 28% that of IV bolus, respectively. Olfactory-targeted hydrogels grant effective, sustainable VIN brain level with minimal systemic exposure, thus, assuring lower dose, dose frequency, side effects, and per se better patient compliance.
Collapse
|
47
|
Bahadur S, Sachan N, Harwansh RK, Deshmukh R. Nanoparticlized System: Promising Approach for the Management of Alzheimer's Disease through Intranasal Delivery. Curr Pharm Des 2020; 26:1331-1344. [PMID: 32160843 DOI: 10.2174/1381612826666200311131658] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/03/2020] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain problem and responsible for causing dementia in aged people. AD has become most common neurological disease in the elderly population worldwide and its treatment remains still challengeable. Therefore, there is a need of an efficient drug delivery system which can deliver the drug to the target site. Nasal drug delivery has been used since prehistoric times for the treatment of neurological disorders like Alzheimer's disease (AD). For delivering drug to the brain, blood brain barrier (BBB) is a major rate limiting factor for the drugs. The desired drug concentration could not be achieved through the conventional drug delivery system. Thus, nanocarrier based drug delivery systems are promising for delivering drug to brain. Nasal route is a most convenient for targeting drug to the brain. Several factors and mechanisms need to be considered for an effective delivery of drug to the brain particularly AD. Various nanoparticlized systems such as nanoparticles, liposomes, exosomes, phytosomes, nanoemulsion, nanosphere, etc. have been recognized as an effective drug delivery system for the management of AD. These nanocarriers have been proven with improved permeability as well as bioavailability of the anti-Alzheimer's drugs. Some novel drug delivery systems of anti-Alzheimer drugs are under investigation of different phase of clinical trials. Present article highlights on the nanotechnology based intranasal drug delivery system for the treatment of Alzheimer's disease. Furthermore, consequences of AD, transportation mechanism, clinical updates and recent patents on nose to brain delivery for AD have been discussed.
Collapse
Affiliation(s)
- Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Nidhi Sachan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida - 202301, India
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| |
Collapse
|
48
|
Tailoring Midazolam-Loaded Chitosan Nanoparticulate Formulation for Enhanced Brain Delivery via Intranasal Route. Polymers (Basel) 2020; 12:polym12112589. [PMID: 33158148 PMCID: PMC7694235 DOI: 10.3390/polym12112589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
In the present study, midazolam (MDZ)-loaded chitosan nanoparticle formulation was investigated for enhanced transport to the brain through the intranasal (IN) route. These days, IN MDZ is very much in demand for treating life-threatening seizure emergencies; therefore, its nanoparticle formulation was formulated in the present work because it could substantially improve its brain targeting via the IN route. MDZ-loaded chitosan nanoparticles (MDZ-CSNPs) were formulated and optimized by the ionic gelation method and then evaluated for particle size, particle size distribution (PDI), drug loading (DL), encapsulation efficiency (EE), and in vitro release as well as in vitro permeation. The concentration of MDZ in the brain after the intranasal administration of MDZ-CSNPs (Cmax 423.41 ± 10.23 ng/mL, tmax 2 h, and area under the curve from 0 to 480 min (AUC0-480) of 1920.87 ng.min/mL) was found to be comparatively higher to that achieved following intravenous (IV) administration of MDZ solution (Cmax 245.44 ± 12.83 ng/mL, tmax 1 h, and AUC0-480 1208.94 ng.min/mL) and IN administration of MDZ solution (Cmax 211.67 ± 12.82, tmax 2 h, and AUC0-480 1036.78 ng.min/mL). The brain–blood ratio of MDZ-CSNPs (IN) were significantly greater at all sampling time points when compared to that of MDZ solution (IV) and MDZ (IN), which indicate that direct nose-to-brain delivery by bypassing the blood–brain barrier demonstrates superiority in brain delivery. The drug-targeting efficiency (DTE%) as well as nose-to-brain direct transport percentage (DTP%) of MDZ-CSNPs (IN) was found to be comparatively higher than that for other formulations, suggesting better brain targeting potential. Thus, the obtained results demonstrated that IN MDZ-CSNP has come up as a promising approach, which exhibits tremendous potential to mark a new landscape for the treatment of status epilepticus.
Collapse
|
49
|
Shamarekh KS, Gad HA, Soliman ME, Sammour OA. Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In-vitro and in-vivo assessment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|