1
|
Kosicka-Noworzyń K, Romaniuk-Drapała A, Sheng YH, Yohn C, Brunetti L, Kagan L. Obesity-related drug transporter expression alterations in human liver and kidneys. Pharmacol Rep 2024; 76:1429-1442. [PMID: 39412582 PMCID: PMC11582170 DOI: 10.1007/s43440-024-00665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Pathophysiological changes associated with obesity might impact various drug pharmacokinetics (PK) parameters. The liver and kidneys are the primary organs involved in drug clearance, and the function of hepatic and renal transporters is critical to efficient drug elimination (or reabsorption). Considering the impact of an increased BMI on the drug's PK is crucial in directing dosing decisions. Given the critical role of transporters in drug biodisposition, this study investigated how overweight and obesity affect the gene expression of renal and hepatic drug transporters. METHODS Human liver and kidney samples were collected post-mortem from 32 to 28 individuals, respectively, which were divided into the control group (lean subjects; 18.5 ≤ BMI < 25 kg/m2) and the study group (overweight/obese subjects; BMI ≥ 25 kg/m2). Real-time quantitative PCR was performed for the analysis of 84 drug transporters. RESULTS Our results show significant changes in the expression of genes involved in human transporters, both renal and hepatic. In liver tissue, we found that ABCC4 was up-regulated in overweight/obese subjects. In kidney tissue, up-regulation was only observed for ABCC10, while the other differentially expressed genes were down-regulated: ABCA1, ABCC3, and SLC15A1. CONCLUSIONS The observed alterations may be reflected by the differences in drug PK between lean and obese populations. However, these findings need further evaluation through the proteomic and functional study of these transporters in this patient population.
Collapse
Affiliation(s)
- Katarzyna Kosicka-Noworzyń
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, Poznań, 60-806, Poland.
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, Poznań, 60-806, Poland
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Yi-Hua Sheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Christine Yohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
2
|
Kölz C, Gaugaz FZ, Handin N, Schaeffeler E, Tremmel R, Winter S, Klein K, Zanger UM, Artursson P, Schwab M, Nies AT. In silico and biological analyses of missense variants of the human biliary efflux transporter ABCC2: effects of novel rare missense variants. Br J Pharmacol 2024; 181:4593-4609. [PMID: 39096023 DOI: 10.1111/bph.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE The ATP-dependent biliary efflux transporter ABCC2, also known as multidrug resistance protein 2 (MRP2), is essential for the cellular disposition and detoxification of various xenobiotics including drugs as well as endogenous metabolites. Common functionally relevant ABCC2 genetic variants significantly alter drug responses and contribute to side effects. The aim of this study was to determine functional consequences of rare variants identified in subjects with European ancestry using in silico tools and in vitro analyses. EXPERIMENTAL APPROACH Targeted next-generation sequencing of the ABCC2 gene was used to identify novel variants in European subjects (n = 143). Twenty-six in silico tools were used to predict functional consequences. For biological validation, transport assays were carried out with membrane vesicles prepared from cell lines overexpressing the newly identified ABCC2 variants and estradiol β-glucuronide and carboxydichlorofluorescein as the substrates. KEY RESULTS Three novel rare ABCC2 missense variants were identified (W227R, K402T, V489F). Twenty-five in silico tools predicted W227R as damaging and one as potentially damaging. Prediction of functional consequences was not possible for K402T and V489F and for the common linked variants V1188E/C1515Y. Characterisation in vitro showed increased function of W227R, V489F and V1188E/C1515Y for both substrates, whereas K402T function was only increased for carboxydichlorofluorescein. CONCLUSION AND IMPLICATIONS In silico tools were unable to accurately predict the substrate-dependent increase in function of ABCC2 missense variants. In vitro biological studies are required to accurately determine functional activity to avoid misleading consequences for drug therapy.
Collapse
Affiliation(s)
- Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Romaldini A, Spanò R, Veronesi M, Grimaldi B, Bandiera T, Sabella S. Human Multi-Lineage Liver Organoid Model Reveals Impairment of CYP3A4 Expression upon Repeated Exposure to Graphene Oxide. Cells 2024; 13:1542. [PMID: 39329726 PMCID: PMC11429598 DOI: 10.3390/cells13181542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Three-dimensional hepatic cell cultures can provide an important advancement in the toxicity assessment of nanomaterials with respect to 2D models. Here, we describe liver organoids (LOs) obtained by assembling multiple cell lineages in a fixed ratio 1:1:0.2. These are upcyte® human hepatocytes, UHHs, upcyte® liver sinusoidal endothelial cells, LSECs, and human bone marrow-derived mesenchymal stromal cells, hbmMSCs. The structural and functional analyses indicated that LOs reached size stability upon ca. 10 days of cultivation (organoid maturation), showing a surface area of approximately 10 mm2 and the hepatic cellular lineages, UHHs and LSECs, arranged to form both primitive biliary networks and sinusoid structures, alike in vivo. LOs did not show signs of cellular apoptosis, senescence, or alteration of hepatocellular functions (e.g., dis-regulation of CYP3A4 or aberrant production of Albumin) for the entire culture period (19 days since organoid maturation). After that, LOs were repeatedly exposed for 19 days to a single or repeated dose of graphene oxide (GO: 2-40 µg/mL). We observed that the treatment did not induce any macroscopic signs of tissue damage, apoptosis activation, and alteration of cell viability. However, in the repeated dose regimen, we observed a down-regulation of CYP3A4 gene expression. Notably, these findings are in line with recent in vivo data, which report a similar impact on CYP3A4 when mice were repeatedly exposed to GO. Taken together, these findings warn of the potential detrimental effects of GO in real-life exposure (e.g., occupational scenario), where its progressive accumulation is likely expected. More in general, this study highlights that LOs formed by many cell lineages can enable repeated exposure regimens (suitable to mimic accumulation); thus, they can be suitably considered alternative or complementary in vitro systems to animal models.
Collapse
Affiliation(s)
- Alessio Romaldini
- Nanoregulatory Group, D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Raffaele Spanò
- Nanoregulatory Group, D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marina Veronesi
- Structural Biophysics Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Benedetto Grimaldi
- Molecular Medicine, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Tiziano Bandiera
- Nanoregulatory Group, D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Stefania Sabella
- Nanoregulatory Group, D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
4
|
Monti CE, Hong SK, Audi SH, Lee W, Joshi A, Terhune SS, Kim J, Dash RK. Assessing the degree of hepatic ischemia-reperfusion injury using physiologically based pharmacokinetic modeling of sodium fluorescein disposition in ex vivo machine-perfused livers. Am J Physiol Gastrointest Liver Physiol 2024; 327:G424-G437. [PMID: 38917324 PMCID: PMC11427087 DOI: 10.1152/ajpgi.00048.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Ischemia-reperfusion injury (IRI) is an intrinsic risk associated with liver transplantation. Ex vivo hepatic machine perfusion (MP) is an emerging organ preservation technique that can mitigate IRI, especially in livers subjected to prolonged warm ischemia time (WIT). However, a method to quantify the biological response to WIT during MP has not been established. Previous studies used physiologically based pharmacokinetic (PBPK) modeling to demonstrate that a decrease in hepatic transport and biliary excretion of the tracer molecule sodium fluorescein (SF) could correlate with increasing WIT in situ. Furthermore, these studies proposed intracellular sequestration of the hepatocyte canalicular membrane transporter multidrug resistance-associated protein 2 (MRP2) leading to decreased MRP2 activity (maximal transport velocity; Vmax) as the potential mechanism for decreased biliary SF excretion. We adapted an extant PBPK model to account for ex vivo hepatic MP and fit a six-parameter version of this model to control time-course measurements of SF in MP perfusate and bile. We then identified parameters whose values were likely insensitive to changes in WIT and fixed them to generate a reduced model with only three unknown parameters. Finally, we fit the reduced model to each individual biological replicate SF time course with differing WIT, found the mean estimated value for each parameter, and compared them using a one-way ANOVA. We demonstrated that there was a significant decrease in the estimated value of Vmax for MRP2 at the 30-min WIT. These studies provide the foundation for future studies investigating real-time assessment of liver viability during ex vivo MP.NEW & NOTEWORTHY We developed a computational model of sodium fluorescein (SF) biliary excretion in ex vivo machine perfusion and used this model to assess changes in model parameters associated with the activity of MRP2, a hepatocyte membrane transporter, in response to increasing warm ischemia time. We found a significant decrease in the parameter value describing MRP2 activity, consistent with a role of decreased MRP2 function in ischemia-reperfusion injury leading to decreased secretion of SF into bile.
Collapse
Affiliation(s)
- Christopher E Monti
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Seung-Keun Hong
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Said H Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States
| | - Whayoung Lee
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Scott S Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joohyun Kim
- Division of Transplant Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
5
|
Shang S, Li W, Zhou F, Zhao Y, Yu M, Tong L, Xin H, Yu A. Cyclosporine-A induced cytotoxicity within HepG2 cells by inhibiting PXR mediated CYP3A4/CYP3A5/MRP2 pathway. Drug Chem Toxicol 2024; 47:739-747. [PMID: 38166548 DOI: 10.1080/01480545.2023.2276084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/16/2023] [Accepted: 10/13/2023] [Indexed: 01/04/2024]
Abstract
Cyclosporine-A (CsA) is currently used to treat immune rejection after organ transplantation as a commonly used immunosuppressant. Liver injury is one of the most common adverse effects of CsA, whose precise mechanism has not been fully elucidated. Pregnane X receptor (PXR) plays a critical role in mediating drug-induced liver injury as a key regulator of drug and xenobiotic clearance. As a nuclear receptor, PXR transcriptionally upregulates the expression of drug-metabolizing enzymes and drug transporters, including cytochrome P4503A (CPY3A) and multidrug resistance-associated protein 2 (MRP2). Our study established CsA-induced cytotoxic hepatocytes in an in vitro model, demonstrating that CsA dose-dependently increased the aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) level secreted in the HepG2 cell supernatant, as well as viability and oxidative stress of HepG2 cells. CsA also dose-dependently decreased the PXR, CYP3A4, CPY3A5, and MRP2 levels of HepG2 cells. Mechanistically, altering the expression of PXR, CYP3A4, CYP3A5, and MRP2 affected the impact of CsA on AST and LDH levels. Moreover, altering the expression of PXR also changed the level of CYP3A4, CPY3A5, and MRP2 of HepG2 cells treated by CsA. Our presented findings provide experimental evidence that CsA-induced liver injury is PXR tightly related. We suggest that PXR represents an attractive target for therapy of liver injury due to its central role in the regulation of the metabolizing enzymes CYP3A and MRP2-mediated bile acid transport and detoxification.
Collapse
Affiliation(s)
- Shenglan Shang
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Weiliang Li
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Fan Zhou
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Yan Zhao
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Mengchen Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Ling Tong
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Huawen Xin
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| | - Airong Yu
- Department of Clinical Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei Province, PR China
| |
Collapse
|
6
|
Castillo VF, Trpkov K, Saleeb R. Contemporary review of papillary renal cell carcinoma-current state and future directions. Virchows Arch 2024; 485:391-405. [PMID: 38995356 DOI: 10.1007/s00428-024-03865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Historically, papillary renal cell carcinoma (PRCC) was divided into two types, type 1 and type 2, based solely on morphology. However, it is apparent that PRCC is far more complex and represents a histological, clinical, and molecular spectrum. There has been a significant evolution in our understanding of PRCC, highlighted by the recognition of new and molecularly defined entities that were previously included in PRCC type 2. This contemporary review addresses the evolving concepts regarding the PRCC, including why it is no longer needed to subtype PRCC, the current molecular landscape, prognostic parameters, and PRCC variants, including biphasic PRCC, papillary renal neoplasm with reverse polarity, and Warthin-like PRCC. Pathologists should also be aware of the potential mimickers of both low-grade and high-grade PRCCs as well as some new and emerging entities that may show papillary growth that should be excluded in the diagnostic workup. The evolving knowledge of PRCC biomarkers, morphologic patterns, and PRCC variants could also have important implications for clinical management. Lastly, the heterogeneity within the PRCC spectrum needs to be further studied, aiming to better stratify PRCC for appropriate clinical management and systemic therapy.
Collapse
Affiliation(s)
- Vincent Francis Castillo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Alberta Precision Laboratories and University of Calgary, Calgary, Alberta, Canada
| | - Rola Saleeb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- Department of Laboratory Medicine, Unity Health Toronto, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada.
| |
Collapse
|
7
|
Wang Y, Tu MJ, Yu AM. Efflux ABC transporters in drug disposition and their posttranscriptional gene regulation by microRNAs. Front Pharmacol 2024; 15:1423416. [PMID: 39114355 PMCID: PMC11303158 DOI: 10.3389/fphar.2024.1423416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane proteins expressed commonly in metabolic and excretory organs to control xenobiotic or endobiotic disposition and maintain their homeostasis. Changes in ABC transporter expression may directly affect the pharmacokinetics of relevant drugs involving absorption, distribution, metabolism, and excretion (ADME) processes. Indeed, overexpression of efflux ABC transporters in cancer cells or bacteria limits drug exposure and causes therapeutic failure that is known as multidrug resistance (MDR). With the discovery of functional noncoding microRNAs (miRNAs) produced from the genome, many miRNAs have been revealed to govern posttranscriptional gene regulation of ABC transporters, which shall improve our understanding of complex mechanism behind the overexpression of ABC transporters linked to MDR. In this article, we first overview the expression and localization of important ABC transporters in human tissues and their clinical importance regarding ADME as well as MDR. Further, we summarize miRNA-controlled posttranscriptional gene regulation of ABC transporters and effects on ADME and MDR. Additionally, we discuss the development and utilization of novel bioengineered miRNA agents to modulate ABC transporter gene expression and subsequent influence on cellular drug accumulation and chemosensitivity. Findings on posttranscriptional gene regulation of ABC transporters shall not only improve our understanding of mechanisms behind variable ADME but also provide insight into developing new means towards rational and more effective pharmacotherapies.
Collapse
Affiliation(s)
| | | | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA, United States
| |
Collapse
|
8
|
Long J, Qiu B, Su X, Zhang J, Dong Q. Case Report: A case of Dubin-Johnson syndrome in a newborn. Front Pediatr 2024; 12:1417649. [PMID: 39100650 PMCID: PMC11294160 DOI: 10.3389/fped.2024.1417649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Background Dubin-Johnson Syndrome (DJS) is a rare autosomal recessive genetic disorder, with most cases presenting in adolescence, but rare in newborns. Objective To investigate the clinical characteristics and treatment outcomes of DJS in a newborn. Methods We present the clinical features of a newborn diagnosed with DJS through molecular genetic testing. Results The patient was a male newborn who developed jaundice and scleral icterus on the 6th day of life. Both direct and indirect bilirubin levels were elevated. After treatment with phototherapy, indirect bilirubin levels decreased, but direct bilirubin remained unchanged, and the stool color gradually lightened. At 56 days of age, the patient underwent laparoscopic cholecystostomy, which revealed viscous bile plugs in the bile ducts. Following the surgery, the patient received oral ursodeoxycholic acid, compound glycyrrhizin, and methylprednisolone. Follow-up until one year post-surgery showed a gradual reduction in direct bilirubin levels to the normal range. Molecular genetic testing revealed three heterozygous mutations in the ABCC2 gene on chromosome 10, with one pathogenic variant inherited from the father and two from the mother, confirming the diagnosis of DJS. Conclusion DJS is a benign condition with a favorable prognosis. In newborns, it should be differentiated from other causes of cholestasis, and compared to cholestasis, jaundice in newborns with DJS responds more slowly to treatment.
Collapse
Affiliation(s)
| | | | | | | | - Qi Dong
- Department of General Surgery, Hainan Women and Children’s Medical Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| |
Collapse
|
9
|
Rox K, Kühne A, Herrmann J, Jansen R, Hüttel S, Bernecker S, Hagos Y, Brönstrup M, Stadler M, Hesterkamp T, Müller R. Interaction of the Atypical Tetracyclines Chelocardin and Amidochelocardin with Renal Drug Transporters. ACS Pharmacol Transl Sci 2024; 7:2093-2109. [PMID: 39022358 PMCID: PMC11249637 DOI: 10.1021/acsptsci.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Antimicrobial resistance is expected to increase mortality rates by up to several million deaths per year by 2050 without new treatment options at hand. Recently, we characterized the pharmacokinetic (PK) and pharmacodynamic properties of two atypical tetracyclines, chelocardin (CHD) and amidochelocardin (CDCHD) that exhibit no cross-resistance with clinically used antibacterials. Both compounds were preferentially renally cleared and demonstrated pronounced effects in an ascending urinary tract infection model against E. coli. Renal drug transporters are known to influence clearance into the urine. In particular, inhibition of apical transporters in renal tubular epithelial cells can lead to intracellular accumulation and potential cell toxicity, whereas inhibition of basolateral transporters can cause a higher systemic exposure. Here, selected murine and human organic cation (Oct), organic anion (Oat), and efflux transporters were studied to elucidate interactions with CHD and CDCHD underlying their PK behavior. CHD exhibited stronger inhibitory effects on mOat1 and mOat3 and their human homologues hOAT1 and hOAT3 compared to CDCHD. While CHD was a substrate of mOat3 and mOct1, CDCHD was not. By contrast, no inhibitory effect was observed on Octs. CDCHD rather appeared to foster enhanced substrate transport on mOct1. CHD and CDCHD inhibited the efflux transporter hMRP2 on the apical side. In summary, the substrate nature of CHD in conjunction with its autoinhibition toward mOat3 rationalizes the distinct urine concentration profile compared to CDCHD that was previously observed in vivo. Further studies are needed to investigate the accumulation in renal tubular cells and the nephrotoxicity risk.
Collapse
Affiliation(s)
- Katharina Rox
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Annett Kühne
- PortaCellTec
Biosciences GmbH, 37079 Göttingen, Germany
| | - Jennifer Herrmann
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Natural Products, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Department of Pharmacy, Saarland
University, 66123 Saarbrücken, Germany
| | - Rolf Jansen
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Stephan Hüttel
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Steffen Bernecker
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | | | - Mark Brönstrup
- Department
of Chemical Biology, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Marc Stadler
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI), 38124 Braunschweig, Germany
| | - Thomas Hesterkamp
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Translational
Product Management Office, German Center
for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
| | - Rolf Müller
- German
Center for Infection Research (DZIF), partner site Braunschweig-Hannover, 38124 Braunschweig, Germany
- Department
of Microbial Natural Products, Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Department of Pharmacy, Saarland
University, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Prodromou SI, Chatzopoulou F, Saiti A, Giannopoulos-Dimitriou A, Koudoura LA, Pantazaki AA, Chatzidimitriou D, Vasiliou V, Vizirianakis IS. Hepatotoxicity assessment of innovative nutritional supplements based on olive-oil formulations enriched with natural antioxidants. Front Nutr 2024; 11:1388492. [PMID: 38812942 PMCID: PMC11133736 DOI: 10.3389/fnut.2024.1388492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.
Collapse
Affiliation(s)
- Sofia I. Prodromou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Labnet Laboratories, Department of Molecular Biology and Genetics, Thessaloniki, Greece
| | - Aikaterini Saiti
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loukia A. Koudoura
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Health and Life Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
11
|
Nikolov N, Petkova T, Binev R, Milanova A. Low Doses of Deoxynivalenol and Zearalenone Alone or in Combination with a Mycotoxin Binder Affect ABCB1 mRNA and ABCC2 mRNA Expression in the Intestines of Pigs. TOXICS 2024; 12:297. [PMID: 38668520 PMCID: PMC11054541 DOI: 10.3390/toxics12040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Mycotoxin binders, in combination with enzymes degrading some mycotoxins, contribute to feed detoxification. Their use reduces economic losses and the negative impacts of mycotoxins on animal health and productivity in farm animals. The aim of this study was to evaluate the efficacy of a mycotoxin detoxifier on the expression of the ATP-binding cassette efflux transporters ABCB1 mRNA and ABCC2 mRNA, which transport xenobiotics and thus have a barrier function, in the tissues of pigs exposed to low doses of deoxynivalenol (DON, 1 mg/kg feed) and zearalenone (ZEN, 0.4 mg/kg feed) for 37 days. The levels of expression were determined by an RT-PCR, and the effect of the mycotoxin detoxifier (Mycofix Plus3.E) was evaluated by a comparison of results between healthy pigs (n = 6), animals treated with DON and ZEN (n = 6), and a group that received both mycotoxins and the detoxifier (n = 6). A significant downregulation of ABCB1 mRNA and ABCC2 mRNA was observed in the jejunum (p < 0.05). A tendencies toward the downregulation of ABCB1 mRNA and ABCC2 mRNA were found in the ileum and duodenum, respectively. The mycotoxin detoxifier restored the expression of ABCB1 mRNA to the level found in healthy animals but did not restore that of ABCC2 mRNA to the level of healthy animals in the jejunum.
Collapse
Affiliation(s)
- Nikolay Nikolov
- Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria; (N.N.); (R.B.)
| | - Tsvetelina Petkova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria;
| | - Rumen Binev
- Department of Internal Non-Infectious Diseases, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria; (N.N.); (R.B.)
| | - Aneliya Milanova
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6015 Stara Zagora, Bulgaria;
| |
Collapse
|
12
|
Rigalli JP, Gagliardi A, Diester K, Bajraktari-Sylejmani G, Blank A, Burhenne J, Lenard A, Werntz L, Huppertz A, Münch L, Wendt JM, Sauter M, Haefeli WE, Weiss J. Extracellular Vesicles as Surrogates for the Regulation of the Drug Transporters ABCC2 (MRP2) and ABCG2 (BCRP). Int J Mol Sci 2024; 25:4118. [PMID: 38612927 PMCID: PMC11012658 DOI: 10.3390/ijms25074118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Drug efflux transporters of the ATP-binding-cassette superfamily play a major role in the availability and concentration of drugs at their site of action. ABCC2 (MRP2) and ABCG2 (BCRP) are among the most important drug transporters that determine the pharmacokinetics of many drugs and whose overexpression is associated with cancer chemoresistance. ABCC2 and ABCG2 expression is frequently altered during treatment, thus influencing efficacy and toxicity. Currently, there are no routine approaches available to closely monitor transporter expression. Here, we developed and validated a UPLC-MS/MS method to quantify ABCC2 and ABCG2 in extracellular vesicles (EVs) from cell culture and plasma. In this way, an association between ABCC2 protein levels and transporter activity in HepG2 cells treated with rifampicin and hypericin and their derived EVs was observed. Although ABCG2 was detected in MCF7 cell-derived EVs, the transporter levels in the vesicles did not reflect the expression in the cells. An analysis of plasma EVs from healthy volunteers confirmed, for the first time at the protein level, the presence of both transporters in more than half of the samples. Our findings support the potential of analyzing ABC transporters, and especially ABCC2, in EVs to estimate the transporter expression in HepG2 cells.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Anna Gagliardi
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Klara Diester
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Gzona Bajraktari-Sylejmani
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Alexander Lenard
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Lars Werntz
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Andrea Huppertz
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
- MVZ Diaverum Remscheid, Rosenhügelstraße 4a, 42859 Remscheid, Germany
| | - Lena Münch
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Janica Margrit Wendt
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Medical Faculty Heidelberg, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany (W.E.H.); (J.W.)
| |
Collapse
|
13
|
Niknafs S, Meijer MMY, Khaskheli AA, Roura E. In ovo delivery of oregano essential oil activated xenobiotic detoxification and lipid metabolism at hatch in broiler chickens. Poult Sci 2024; 103:103321. [PMID: 38100943 PMCID: PMC10762474 DOI: 10.1016/j.psj.2023.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
In ovo interventions are used to improve embryonic development and robustness of chicks. The objective of this study was to identify the optimal dose for in ovo delivery of oregano essential oil (OEO), and to investigate metabolic impacts. Broiler chickens Ross 308 fertile eggs were injected with 7 levels of OEO (0, 5, 10, 20, 30, 40, and 50 µL) into the amniotic fluid at embryonic d 17.5 (E17.5) (n = 48). Chick quality was measured by navel score (P < 0.05) and/or hatchability rates (P < 0.01) were significantly decreased at doses at or above 10 or 20 µL/egg, respectively, indicating potential toxicity. However, no effects were observed at the 5 µL/egg, suggesting that compensatory mechanisms were effective to maintain homeostasis in the developing embryo. To pursue a better understanding of these mechanisms, transcriptomic analyses of the jejunum were performed comparing the control injected with saline and the group injected with 5 µL of OEO. The transcriptomic analyses identified that 167 genes were upregulated and 90 were downregulated in the 5 µL OEO compared to the control group injected with saline (P < 0.01). Functional analyses of the differentially expressed genes (DEG) showed that metabolic pathways related to the epoxygenase cytochrome P450 pathway associated with xenobiotic catabolic processes were significantly upregulated (P < 0.05). In addition, long-chain fatty acid metabolism associated with ATP binding transporters was also upregulated in the OEO treated group (P < 0.05). The results indicated that low doses of OEO in ovo have the potential to increase lipid metabolism in late stages (E17.5) of embryonic development. In conclusion, in ovo delivery of 5 µL OEO did not show any negative impact on hatchability and chick quality. OEO elevated expression of key enzymes and receptors involved in detoxification pathways and lipid metabolism in the jejunum of hatchling broiler chicks.
Collapse
Affiliation(s)
- Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Mila M Y Meijer
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Asad A Khaskheli
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia.
| |
Collapse
|
14
|
Gao Y, Deng H, Zhao Y, Li M, Wang L, Zhang Y. Gene Expression of Abcc2 and Its Regulation by Chicken Xenobiotic Receptor. TOXICS 2024; 12:55. [PMID: 38251011 PMCID: PMC10818656 DOI: 10.3390/toxics12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Membrane transporter multidrug resistance-associated protein 2 (MRP2/Abcc2) exhibits high pharmaco-toxicological relevance because it exports multiple cytotoxic compounds from cells. However, no detailed information about the gene expression and regulation of MRP2 in chickens is yet available. Here, we sought to investigate the expression distribution of Abcc2 in different tissues of chicken and then determine whether Abcc2 expression is induced by chicken xenobiotic receptor (CXR). The bioinformatics analyses showed that MRP2 transporters have three transmembrane structural domains (MSDs) and two highly conserved nucleotide structural domains (NBDs), and a close evolutionary relationship with turkeys. Tissue distribution analysis indicated that Abcc2 was highly expressed in the liver, kidney, duodenum, and jejunum. When exposed to metyrapone (an agonist of CXR) and ketoconazole (an antagonist of CXR), Abcc2 expression was upregulated and downregulated correspondingly. We further confirmed that Abcc2 gene regulation is dependent on CXR, by overexpressing and interfering with CXR, respectively. We also demonstrated the induction of Abcc2 expression and the activity of ivermectin, with CXR being a likely mediator. Animal experiments demonstrated that metyrapone and ivermectin induced Abcc2 in the liver, kidney, and duodenum of chickens. Together, our study identified the gene expression of Abcc2 and its regulation by CXR in chickens, which may provide novel targets for the reasonable usage of veterinary drugs.
Collapse
Affiliation(s)
- Yanhong Gao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Huacheng Deng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Yuying Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Mei Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Liping Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yujuan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| |
Collapse
|
15
|
Castillo VF, Masoomian M, Trpkov K, Downes M, Brimo F, van der Kwast T, Yousef GM, Zakhary A, Rotondo F, Saad G, Nguyen VN, Kidanewold W, Streutker C, Rowsell C, Hamdani M, Saleeb RM. ABCC2 brush-border expression predicts outcome in papillary renal cell carcinoma: a multi-institutional study of 254 cases. Histopathology 2023; 83:949-958. [PMID: 37680023 DOI: 10.1111/his.15042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
AIMS Papillary renal cell carcinoma (PRCC) histologic subtyping is no longer recommended in the 2022 WHO classification. Currently, WHO/ISUP nucleolar grade is the only accepted prognostic histologic parameter for PRCC. ABCC2, a renal drug transporter, has been shown to significantly predict outcomes in PRCC. In this study we evaluated the prognostic significance of ABCC2 IHC staining patterns in a large, multi-institutional PRCC cohort and assessed the association of these patterns with ABCC2 mRNA expression. METHODS AND RESULTS We assessed 254 PRCCs for ABCC2 IHC reactivity patterns that were stratified into negative, cytoplasmic, brush-border <50%, and brush-border ≥50%. RNA in situ hybridization (ISH) was used to determine the transcript level of each group. Survival analysis was performed with SPSS and GraphPad software. RNA-ISH showed that the ABCC2 group with any brush-border staining was associated with a significant increase in the transcript level, when compared to the negative/cytoplasmic group (P = 0.034). Both ABCC2 groups with brush-border <50% (P = 0.024) and brush-border ≥50% (P < 0.001) were also associated with worse disease-free survival (DFS) in univariate analysis. Multivariate analysis showed that only ABCC2 IHC brush-border (<50% and ≥50%) reactivity groups (P = 0.037 and P = 0.003, respectively), and high-stage disease (P < 0.001) had a DFS of prognostic significance. In addition, ABCC2 brush-border showed significantly worse DFS in pT1a (P = 0.014), pT1 (P = 0.013), ≤4 cm tumour (P = 0.041) and high stage (P = 0.014) groups, while a similar analysis with high WHO/ISUP grade in these groups was not significant. CONCLUSION ABCC2 IHC brush-border expression in PRCC correlates with significantly higher gene expression and also independently predicts survival outcomes.
Collapse
Affiliation(s)
- Vincent Francis Castillo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Mehdi Masoomian
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, ON, Canada
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Alberta Precision Laboratories and University of Calgary, Calgary, AB, Canada
| | - Michelle Downes
- Anatomic Pathology, Precision Diagnostics & Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University Health Center, Montreal, QC, Canada
| | - Theodorus van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Pathology, University Health Network, Toronto, ON, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Pathology, University Health Network, Toronto, ON, Canada
| | - Abraam Zakhary
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Fabio Rotondo
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, ON, Canada
| | - Gina Saad
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Vy-Nhan Nguyen
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Wondwossen Kidanewold
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, ON, Canada
| | - Catherine Streutker
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, ON, Canada
| | - Corwyn Rowsell
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, ON, Canada
| | - Malek Hamdani
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, ON, Canada
| | - Rola M Saleeb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Xiang D, Yang J, Liu L, Yu H, Gong X, Liu D. The regulation of tissue-specific farnesoid X receptor on genes and diseases involved in bile acid homeostasis. Biomed Pharmacother 2023; 168:115606. [PMID: 37812893 DOI: 10.1016/j.biopha.2023.115606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Bile acids (BAs) facilitate the absorption of dietary lipids and vitamins and have also been identified as signaling molecules involved in regulating their own metabolism, glucose and lipid metabolism, as well as immunity. Disturbances in BA homeostasis are associated with various enterohepatic and metabolic diseases, such as cholestasis, nonalcoholic steatohepatitis, inflammatory bowel disease, and obesity. As a key regulator, the nuclear orphan receptor farnesoid X receptor (FXR, NR1H4) precisely regulates BA homeostasis by transcriptional regulation of genes involved in BA synthesis, metabolism, and enterohepatic circulation. FXR is widely regarded as the most potential therapeutic target. Obeticholic acid is the only FXR agonist approved to treat patients with primary biliary cholangitis, but its non-specific activation of systemic FXR also causes high-frequency side effects. In recent years, developing tissue-specific FXR-targeting drugs has become a research highlight. This article provides a comprehensive overview of the role of tissue-specific intestine/liver FXR in regulating genes involved in BA homeostasis and briefly discusses tissue-specific FXR as a therapeutic target for treating diseases. These findings provide the basis for the development of tissue-specific FXR modulators for the treatment of enterohepatic and metabolic diseases associated with BA dysfunction.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
18
|
Shi C, Cheng C, Lin X, Qian Y, Du Y, Chen G. Flammulina velutipes polysaccharide-iron(III) complex used to treat iron deficiency anemia after being absorbed via GLUT2 and SGLT1 transporters. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
19
|
Antwi SO, Heckman M, White L, Yan I, Sarangi V, Lauer KP, Reddy J, Ahmed F, Veliginti S, Mejías Febres ED, Hatia RI, Chang P, Izquierdo-Sanchez L, Boix L, Rojas A, Banales JM, Reig M, Stål P, Gómez MR, Singal AG, Li D, Hassan MM, Roberts LR, Patel T. Metabolic liver cancer: associations of rare and common germline variants in one-carbon metabolism and DNA methylation genes. Hum Mol Genet 2023; 32:2646-2655. [PMID: 37369012 PMCID: PMC10407694 DOI: 10.1093/hmg/ddad099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Animal studies implicate one-carbon metabolism and DNA methylation genes in hepatocellular carcinoma (HCC) development in the setting of metabolic perturbations. Using human samples, we investigated the associations between common and rare variants in these closely related biochemical pathways and risk for metabolic HCC development in a multicenter international study. We performed targeted exome sequencing of 64 genes among 556 metabolic HCC cases and 643 cancer-free controls with metabolic conditions. Multivariable logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs), adjusting for multiple comparisons. Gene-burden tests were used for rare variant associations. Analyses were performed in the overall sample and among non-Hispanic whites. The results show that among non-Hispanic whites, presence of rare functional variants in ABCC2 was associated with 7-fold higher risk of metabolic HCC (OR = 6.92, 95% CI: 2.38-20.15, P = 0.0004), and this association remained significant when analyses were restricted to functional rare variants observed in ≥2 participants (cases 3.2% versus controls 0.0%, P = 1.02 × 10-5). In the overall multiethnic sample, presence of rare functional variants in ABCC2 was nominally associated with metabolic HCC (OR = 3.60, 95% CI: 1.52-8.58, P = 0.004), with similar nominal association when analyses were restricted to functional rare variants observed in ≥2 participants (cases 2.9% versus controls 0.2%, P = 0.006). A common variant in PNPLA3 (rs738409[G]) was associated with higher HCC risk in the overall sample (P = 6.36 × 10-6) and in non-Hispanic whites (P = 0.0002). Our findings indicate that rare functional variants in ABCC2 are associated with susceptibility to metabolic HCC in non-Hispanic whites. PNPLA3-rs738409 is also associated with metabolic HCC risk.
Collapse
Affiliation(s)
- Samuel O Antwi
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Michael Heckman
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Launia White
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Irene Yan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Vivekananda Sarangi
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Kimberly P Lauer
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Joseph Reddy
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida, USA
| | - Fowsiyo Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Swathi Veliginti
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Rikita I Hatia
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, The MD Anderson Cancer Center, Houston, TX, USA
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, San Sebastian, Spain
| | - Loreto Boix
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Angela Rojas
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Maria Reig
- BCLC Group, Liver Unit, ICMDM, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Per Stål
- Department of Gastroenterology and Hepatology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Romero Gómez
- SeLiver Group, UCM Digestive Diseases, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The MD Anderson Cancer Center, Houston, TX, USA
| | - Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
20
|
Impact of single-nucleotide polymorphisms on tacrolimus pharmacokinetics in liver transplant patients after switching to once-daily dosing. Hepatol Int 2023; 17:262-270. [PMID: 35972639 DOI: 10.1007/s12072-022-10401-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The effects of multidrug resistance-1 (MDR1), ABCC2, and P450 oxidoreductase (POR)*28 gene polymorphisms on tacrolimus metabolism following a switch to once-daily dosing have not been elucidated. We investigated the effects of recipient and donor CYP3A5, MDR1, ABCC2, and POR*28 polymorphisms on tacrolimus pharmacokinetics following a switch to once-daily tacrolimus dosing. METHODS Eighty-seven liver transplant recipients who were switched from twice- to once-daily tacrolimus dosing following living-donor liver transplantation and 81 matched donors were genotyped for CYP3A5, MDR1 (1236C>T, 2677G>T/A, and 3435C>T), ABCC2 (-24C>T, 1249G>A, and 3972C>T), and POR*28. Tacrolimus dose-adjusted trough levels (C0/dose) before and after the switch were determined and calculated based on past medical records. Recipients were divided into two groups, one group constituted of 38 patients with a C0/dose decrease of less than 30% following conversion (group 1) and the other constituted of 49 patients with a C0/dose decrease of ≥ 30% (group 2). RESULTS CYP3A5 *1/*3 and *3/*3 were more frequent in recipients in group 1 (60.5% vs. 36.8%), while CYP3A5 *1/*1 was more frequent in group 2 (59.2% vs. 32.7%) (p = 0.016). The proportions of donor ABCC2 1249G>A genotypes AA and AG were higher in group 2 than in group 1 (20.4% vs. 5.3%; p = 0.042). CONCLUSION Recipient CYP3A5 polymorphism and donor ABCC2 1249G>A polymorphism affected tacrolimus pharmacokinetics following the switch to once-daily dosing. Dose adjustment to maintain therapeutic tacrolimus levels following the switch to once-daily dosing should be considered based on polymorphisms in both the recipient and donor.
Collapse
|
21
|
Goldberg FW, Kettle JG, Lamont GM, Buttar D, Ting AKT, McGuire TM, Cook CR, Beattie D, Morentin Gutierrez P, Kavanagh SL, Komen JC, Kawatkar A, Clark R, Hopcroft L, Hughes G, Critchlow SE. Discovery of Clinical Candidate AZD0095, a Selective Inhibitor of Monocarboxylate Transporter 4 (MCT4) for Oncology. J Med Chem 2023; 66:384-397. [PMID: 36525250 DOI: 10.1021/acs.jmedchem.2c01342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to increased reliance on glycolysis, which produces lactate, monocarboxylate transporters (MCTs) are often upregulated in cancer. MCT4 is associated with the export of lactic acid from cancer cells under hypoxia, so inhibition of MCT4 may lead to cytotoxic levels of intracellular lactate. In addition, tumor-derived lactate is known to be immunosuppressive, so MCT4 inhibition may be of interest for immuno-oncology. At the outset, no potent and selective MCT4 inhibitors had been reported, but a screen identified a triazolopyrimidine hit, with no close structural analogues. Minor modifications to the triazolopyrimidine were made, alongside design of a constrained linker and broad SAR exploration of the biaryl tail to improve potency, physical properties, PK, and hERG. The resulting clinical candidate 15 (AZD0095) has excellent potency (1.3 nM), MCT1 selectivity (>1000×), secondary pharmacology, clean mechanism of action, suitable properties for oral administration in the clinic, and good preclinical efficacy in combination with cediranib.
Collapse
Affiliation(s)
| | | | | | - David Buttar
- Pharmaceutical Sciences, AstraZeneca, Macclesfield SK10 2NA, U.K
| | | | | | - Calum R Cook
- Pharmaceutical Sciences, AstraZeneca, Macclesfield SK10 2NA, U.K
| | | | | | - Stefan L Kavanagh
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jasper C Komen
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Aarti Kawatkar
- Discovery Sciences, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Roger Clark
- Discovery Sciences, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | | | | |
Collapse
|
22
|
Feiertag K, Karaca M, Fischer B, Heise T, Bloch D, Opialla T, Tralau T, Kneuer C, Marx-Stoelting P. Mixture effects of co-formulants and two plant protection products in a liver cell line. EXCLI JOURNAL 2023; 22:221-236. [PMID: 36998705 PMCID: PMC10043434 DOI: 10.17179/excli2022-5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 04/01/2023]
Abstract
Plant protection products (PPPs) consist of one or more active substances and several co-formulants. Active substances provide the functionality of the PPP and are consequently evaluated according to standard test methods set by legal data requirements before approval, whereas co-formulants' toxicity is not as comprehensively assessed. However, in some cases mixture effects of active substances and co-formulants might result in increased or different forms of toxicity. In a proof-of-concept study we hence built on previously published results of Zahn et al. (2018[38]) on the mixture toxicity of Priori Xtra® and Adexar® to specifically investigate the influence of co-formulants on the toxicity of these commonly used fungicides. Products, their respective active substances in combination as well as some co-formulants were applied to human hepatoma cell line (HepaRG) in several dilutions. Cell viability analysis, mRNA expression, abundance of xenobiotic metabolizing enzymes and intracellular concentrations of active substances determined by LC-MS/MS analyses demonstrated that the toxicity of the PPPs is influenced by the presence of co-formulants in vitro. PPPs were more cytotoxic than the mix of their active substances. Gene expression profiles of cells treated with the PPPs were similar to those treated with their respective mixture combinations with marked differences. Co-formulants can cause gene expression changes on their own. LC-MS/MS analyses revealed higher intracellular concentrations of active substances in cells treated with PPPs compared to those treated with the respective active substances' mix. Proteomic data showed co-formulants can induce ABC transporters and CYP enzymes. Co-formulants can contribute to the observed increased toxicity of PPPs compared to their active substances in combination due to kinetic interactions, necessitating a more comprehensive evaluation approach.
Collapse
Affiliation(s)
- Katreece Feiertag
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Mawien Karaca
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Benjamin Fischer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Tanja Heise
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Denise Bloch
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Tobias Opialla
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Carsten Kneuer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
- *To whom correspondence should be addressed: Philip Marx-Stoelting, German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Tel.: +49 30 1841226600, E-mail:
| |
Collapse
|
23
|
Tutty MA, Holmes S, Prina-Mello A. Cancer Cell Culture: The Basics and Two-Dimensional Cultures. Methods Mol Biol 2023; 2645:3-40. [PMID: 37202610 DOI: 10.1007/978-1-0716-3056-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite significant advances in investigative and therapeutic methodologies for cancer, 2D cell culture remains an essential and evolving competency in this fast-paced industry. From basic monolayer cultures and functional assays to more recent and ever-advancing cell-based cancer interventions, 2D cell culture plays a crucial role in cancer diagnosis, prognosis, and treatment. Research and development in this field call for a great deal of optimization, while the heterogenous nature of cancer itself demands personalized precision for its intervention. In this way, 2D cell culture is ideal, providing a highly adaptive and responsive platform, where skills can be honed and techniques modified. Furthermore, it is arguably the most efficient, economical, and sustainable methodology available to researchers and clinicians alike.In this chapter, we discuss the history of cell culture and the varying types of cell and cell lines used today, the techniques used to characterize and authenticate them, the applications of 2D cell culture in cancer diagnosis and prognosis, and more recent developments in the area of cell-based cancer interventions and vaccines.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Sarah Holmes
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Wada M. Role of ABC Transporters in Cancer Development and Malignant Alteration. YAKUGAKU ZASSHI 2022; 142:1201-1225. [DOI: 10.1248/yakushi.22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Duarte D, Nunes M, Ricardo S, Vale N. Combination of Antimalarial and CNS Drugs with Antineoplastic Agents in MCF-7 Breast and HT-29 Colon Cancer Cells: Biosafety Evaluation and Mechanism of Action. Biomolecules 2022; 12:biom12101490. [PMID: 36291699 PMCID: PMC9599492 DOI: 10.3390/biom12101490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 02/05/2023] Open
Abstract
Drug combination and drug repurposing are two strategies that allow to find novel oncological therapies, in a faster and more economical process. In our previous studies, we developed a novel model of drug combination using antineoplastic and different repurposed drugs. We demonstrated the combinations of doxorubicin (DOX) + artesunate, DOX + chloroquine, paclitaxel (PTX) + fluoxetine, PTX + fluphenazine, and PTX + benztropine induce significant cytotoxicity in Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. Furthermore, it was found that 5-FU + thioridazine and 5-fluorouracil (5-FU) + sertraline can synergistically induce a reduction in the viability of human colorectal adenocarcinoma cell line (HT-29). In this study, we aim to (1) evaluate the biosafety profile of these drug combinations for non-tumoral cells and (2) determine their mechanism of action in cancer cells. To do so, human fetal lung fibroblast cells (MRC-5) fibroblast cells were incubated for 48 h with all drugs, alone and in combination in concentrations of 0.25, 0.5, 1, 2, and 4 times their half-maximal inhibitory concentration (IC50). Cell morphology and viability were evaluated. Next, we designed and constructed a cell microarray to perform immunohistochemistry studies for the evaluation of palmitoyl-protein thioesterase 1 (PPT1), Ki67, cleaved-poly (ADP-ribose) polymerase (cleaved-PARP), multidrug resistance-associated protein 2 (MRP2), P-glycoprotein (P-gp), and nuclear factor-kappa-B (NF-kB) p65 expression. We demonstrate that these combinations are cytotoxic for cancer cells and safe for non-tumoral cells at lower concentrations. Furthermore, it is also demonstrated that PPT1 may have an important role in the mechanism of action of these combinations, as demonstrated by their ability to decrease PPT1 expression. These results support the use of antimalarial and central nervous system (CNS) drugs in combination regimens with chemotherapeutic agents; nevertheless, additional studies are recommended to further explore their complete mechanisms of action.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto/Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto/Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, Polytechnic and University Cooperative (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
26
|
He J, Wang Z, Zou T, Wang Y, Li XP, Chen J. The Association Between Genetic Polymorphisms of Transporter Genes and Prognosis of Platinum-Based Chemotherapy in Lung Cancer Patients. Pharmgenomics Pers Med 2022; 15:817-825. [PMID: 36131844 PMCID: PMC9484078 DOI: 10.2147/pgpm.s375284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Platinum-based chemotherapy is the first-line treatment of lung cancer. However, different individual and genetic variation effect therapy for lung cancer. The purpose of this study was to evaluate the association between transport genes genetic polymorphisms and the prognosis of platinum-based chemotherapy in lung cancer patients. Methods A series of 593 patients with treatment of platinum-based chemotherapy were recruited for this study. A total of 21 single-nucleotide polymorphisms in nine transporter genes were selected to investigate their associations with platinum-based chemotherapy prognosis. Results Patients with ABCG2 rs1448784 CC genotype had a significantly shorter PFS than CT or TT genotypes (Additive model: HR = 1.54, 95% CI = 1.02–2.35, P = 0.040). In stratification analysis, SLC22A2 rs316003, SLC2A1 rs4658 were related to PFS and AQP9 rs1867380, SLC2A1 rs3820589, SLC22A2 rs316003 indicated were related to OS of platinum-based chemotherapy prognosis. Conclusion Genetic polymorphisms of rs1448784 in ABCG2 might be potential clinical marker for predicting the prognosis of lung cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jia He
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, 410013, People’s Republic of China
| | - Ting Zou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ying Wang
- Hunan clinical Research Center in Gynecologic Cancer, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, 410013, People’s Republic of China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Correspondence: Juan Chen, Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China, Tel +86-731-89753491, Email
| |
Collapse
|
27
|
Morais MB, Machado MV. Benign inheritable disorders of bilirubin metabolism manifested by conjugated hyperbilirubinemia-A narrative review. United European Gastroenterol J 2022; 10:745-753. [PMID: 35860851 PMCID: PMC9486497 DOI: 10.1002/ueg2.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. Hyperbilirubinemia is an important clinical sign that needs to be investigated under a stepwise evaluation. Inherited non-hemolytic conjugated hyperbilirubinemic conditions include Dubin-Johnson syndrome (caused by mutations affecting ABCC2 gene) and Rotor syndrome (caused by the simultaneous presence of mutations in SLCO1B1 and SLCO1B3 genes). Although classically viewed as benign conditions requiring no treatment, they lately gained an increased interest since recent studies suggested that mutations in the responsible genes leading to hyperbilirubinemia, as well as minor genetic variants, may result in an increased susceptibility to drug toxicity. This article provides a comprehensive review on the pathophysiology of Dubin-Johnson and Rotor syndromes, presenting the current knowledge concerning the molecular details and basis of these conditions.
Collapse
Affiliation(s)
- Mariana B Morais
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Mariana Verdelho Machado
- Gastroenterology Department, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Gastroenterology Department, Hospital de Vila Franca de Xira, Lisbon, Portugal
| |
Collapse
|
28
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
29
|
Nwabufo CK. Relevance of ABC Transporters in Drug Development. Curr Drug Metab 2022; 23:434-446. [PMID: 35726814 DOI: 10.2174/1389200223666220621113524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
ATP-binding cassette (ABC) transporters play a critical role in protecting vital organs such as the brain and placenta against xenobiotics, as well as in modulating the pharmacological and toxicological profile of several drug candidates by restricting their penetration through cellular and tissue barriers. This review paper provides a description of the structure and function of ABC transporters as well as the role of P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein in the disposition of drugs. Furthermore, a review of the in vitro and in vivo techniques for evaluating the interaction between drugs and ABC transporters are provided.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Altered peripheral factors affecting the absorption, distribution, metabolism, and excretion of oral medicines in Alzheimer's disease. Adv Drug Deliv Rev 2022; 185:114282. [PMID: 35421522 DOI: 10.1016/j.addr.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has traditionally been considered solely a neurological condition. Therefore, numerous studies have been conducted to identify the existence of pathophysiological changes affecting the brain and the blood-brain barrier in individuals with AD. Such studies have provided invaluable insight into possible changes to the central nervous system exposure of drugs prescribed to individuals with AD. However, there is now increasing recognition that extra-neurological systems may also be affected in AD, such as the small intestine, liver, and kidneys. Examination of these peripheral pathophysiological changes is now a burgeoning area of scientific research, owing to the potential impact of these changes on the absorption, distribution, metabolism, and excretion (ADME) of drugs used for both AD and other concomitant conditions in this population. The purpose of this review is to identify and summarise available literature reporting alterations to key organs influencing the pharmacokinetics of drugs, with any changes to the small intestine, liver, kidney, and circulatory system on the ADME of drugs described. By assessing studies in both rodent models of AD and samples from humans with AD, this review highlights possible dosage adjustment requirements for both AD and non-AD drugs so as to ensure the achievement of optimum pharmacotherapy in individuals with AD.
Collapse
|
31
|
Wang W, Lokman NA, Noye TM, Macpherson AM, Oehler MK, Ricciardelli C. ABCA1 is associated with the development of acquired chemotherapy resistance and predicts poor ovarian cancer outcome. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:485-502. [PMID: 35582032 PMCID: PMC9019266 DOI: 10.20517/cdr.2020.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Aim: This study investigated the ATP binding cassette (ABC) transporter (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) expression in high grade serous ovarian cancer (HGSOC) tissues, cell lines and primary cells to determine their potential relationship with acquired chemotherapy resistance and patient outcome. Methods: ABC transporter mRNA and protein expression (ABCA1, ABCB1, ABCB3, ABCC2 and ABCG2) was assessed in publicly available datasets and in a tissue microarray (TMA) cohort of HGSOC at diagnosis, respectively. ABC transporter mRNA expression was also assessed in chemosensitive ovarian cancer cell lines (OVCAR-5 and CaOV3) versus matching cell lines with acquired carboplatin resistance and in primary HGSOC cells from patients with chemosensitive disease at diagnosis (n = 10) as well as patients with acquired chemotherapy resistance at relapse (n = 6). The effects of the ABCA1 inhibitor apabetalone in carboplatin-sensitive and -resistant cell lines were also investigated. Results: High ABCA1 mRNA and protein expression was found to be significantly associated with poor patient outcome. ABCA1 mRNA and protein levels were significantly increased in ovarian cancer cell lines (OVCAR-5 CBPR and CaOV3 CBPR) with acquired carboplatin resistance. ABCA1 mRNA was significantly increased in primary HGSOC cells obtained from patients with acquired chemotherapy resistance. Apabetalone treatment reduced ABCA1 protein expression and increased the sensitivity of both parental and carboplatin-resistant ovarian cancer cells to carboplatin. Conclusion: These results suggest that inhibiting ABCA1 transporter may be useful in overcoming acquired chemotherapy resistance and improving outcome for patients with HGSOC.
Collapse
Affiliation(s)
- Wanqi Wang
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Noor A Lokman
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Tannith M Noye
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Anne M Macpherson
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Martin K Oehler
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
32
|
Sharma P, Sharma S. In silico screening and analysis of single-nucleotide polymorphic variants of the ABCC2 gene affecting Dubin-Johnson syndrome. Arab J Gastroenterol 2022; 23:172-187. [PMID: 35477852 DOI: 10.1016/j.ajg.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND STUDY AIMS Dubin-Johnson syndrome (DJS) is a benevolent genetic disorder of the liver with autosomal inheritance. It is a rare disorder characterized by an increase in conjugated bilirubin and anomaly in coproporphyrin clearance. DJS is caused by deleterious mutations in the ABCC2 gene. A polymorphism in the ABCC2 gene causes malfunctions in its ability to regulate the efflux of different organic anions, such as bilirubin, from hepatocytes to the canaliculi. Multidrug resistance protein 2 (MRP2) encoded by the ABCC2 gene is one of the main regulators of the export of bilirubin to respective sites. ABCC2 gene mutations have widely drawn attention in the pathology of DJS in various populations. PATIENTS AND METHODS The ABCC2 gene was subjected to the National Center for Biotechnology Information (NCBI) database in 2020, and non-synonymous single-nucleotide polymorphisms (nsSNPs) and variants in untranslated regions were studied using different computational servers. SIFT, Protein variation effect analyzer, and PolyPhen-2 were used to retrieve the damaging Single-nucleotide polymorphisms (SNPs); PhD-SNP, SNPs&GO, and Protein Analysis Through Evolutionary Relationships were used to predict the association of nsSNPs with DJS; Mutation3D illustrated the location of variants in the protein; SNAP2, MutPred2, ELASPIC, and HOPE were used to predict the structural and functional effects of these mutations on MRP2; and I-mutant 3.0 and MuPro were used to determine the effects of polymorphism on the function of MRP2. RESULTS In this study, 18,947 SNPs were screened from the NCBI database, followed by a series of refinement of variants using online available servers. We concluded that 41 ABCC2 gene variants are vital etiological candidates for DJS in humans. These 41 variants had highly damaging effects on the MRP2 protein, which may lead to deficient transportation capacity, thereby affecting the efflux of bilirubin across the canalicular membrane. CONCLUSION In silico tools are an alternative approach for predicting the target SNPs. Hence, previously unreported variants can be considered strong etiological candidates for diseases related to MRP2.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India.
| |
Collapse
|
33
|
Understanding the genetic basis for cholangiocarcinoma. Adv Cancer Res 2022; 156:137-165. [DOI: 10.1016/bs.acr.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Choudhuri S, Klaassen CD. MOLECULAR REGULATION OF BILE ACID HOMEOSTASIS. Drug Metab Dispos 2021; 50:425-455. [PMID: 34686523 DOI: 10.1124/dmd.121.000643] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Bile acids have been known for decades to aid in the digestion and absorption of dietary fats and fat-soluble vitamins in the intestine. The development of gene knockout mice models and transgenic humanized mouse models have helped us understand other function of bile acids, such as their role in modulating fat, glucose, and energy metabolism, and in the molecular regulation of the synthesis, transport, and homeostasis of bile acids. The G-protein coupled receptor TGR5 regulates the bile acid induced alterations of intermediary metabolism, while the nuclear receptor FXR regulates bile acid synthesis and homeostasis. However, this review indicates that unidentified factors in addition to FXR must exist to aid in the regulation of bile acid synthesis and homeostasis. Significance Statement This review captures the present understanding of bile acid synthesis, the role of bile acid transporters in the enterohepatic circulation of bile acids, the role of the nuclear receptor FXR on the regulation of bile acid synthesis and bile acid transporters, and the importance of bile acids in activating GPCR signaling via TGR5 to modify intermediary metabolism. This information is useful for developing drugs for the treatment of various hepatic and intestinal diseases, as well as the metabolic syndrome.
Collapse
Affiliation(s)
| | - Curtis D Klaassen
- Environmental & Occupational Health Sciences, Univ Washington, United States
| |
Collapse
|
35
|
Patel H, Wu ZX, Chen Y, Bo L, Chen ZS. Drug resistance: from bacteria to cancer. MOLECULAR BIOMEDICINE 2021; 2:27. [PMID: 35006446 PMCID: PMC8607383 DOI: 10.1186/s43556-021-00041-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
The phenomenon of drug resistance has been a hindrance to therapeutic medicine since the late 1940s. There is a plethora of factors and mechanisms contributing to progression of drug resistance. From prokaryotes to complex cancers, drug resistance is a prevailing issue in clinical medicine. Although there are numerous factors causing and influencing the phenomenon of drug resistance, cellular transporters contribute to a noticeable majority. Efflux transporters form a huge family of proteins and are found in a vast number of species spanning from prokaryotes to complex organisms such as humans. During the last couple of decades, various approaches in analyses of biochemistry and pharmacology of transporters have led us to understand much more about drug resistance. In this review, we have discussed the structure, function, potential causes, and mechanisms of multidrug resistance in bacteria as well as cancers.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY, 11439, USA.
| |
Collapse
|
36
|
Pasquariello KZ, Dey JM, Sprowl JA. Current Understanding of Membrane Transporters as Regulators or Targets for Cisplatin-Induced Hearing Loss. Mol Pharmacol 2021; 100:348-355. [PMID: 34330821 DOI: 10.1124/molpharm.121.000274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022] Open
Abstract
Cisplatin is a platinum-based drug which remains among the most efficacious anticancer treatment options. Unfortunately, use of cisplatin is hindered by dose-limiting toxicities, including irreversible hearing loss, which can grossly affect patient quality of life. Cisplatin-induced ototoxicity is the result of cochlear hair cell damage through a mechanism that is poorly understood. However, cisplatin cytotoxicity is reliant on intracellular accumulation, a process that is largely dependent on the presence of particular membrane transporters. This review will provide an update on our current understanding of the various transporters known to be involved in the disposition and cytotoxicity of platinum drugs or their metabolites, as well as their role in mediating cisplatin-induced hearing loss. We also provide a summary of the successes and opportunities in therapeutically targeting membrane transporters to alleviate platinum-induced hearing loss. Moreover, we describe how this approach could be used to reduce the severity or onset of other adverse events associated with exposure to various forms of platinum drugs, without diminishing anti-tumor efficacy. Significance Statement Cisplatin-induced hearing loss is a dose limiting and irreversible adverse event with no current preventative or curative treatment measures. Pharmacological targeting of membrane transporters that regulate platinum uptake into cochlear hair cells, if conducted appropriately, may alleviate this devastating side effect and could be applied to alleviate other platinum-induced toxicities.
Collapse
Key Words
- Uptake transporters (OATP, OAT, OCT, PEPT, MCT, NTCP, ASBT, etc.)
- cancer chemotherapy
- efflux transporters (P-gp, BCRP, MRP, MATE, BSEP, etc)
- ototoxicity
Collapse
Affiliation(s)
| | | | - Jason A Sprowl
- School of Pharmacy, University of Buffalo, United States
| |
Collapse
|
37
|
Fang X, Zhang S, Wang Z, Zhou J, Qi C, Song J. Cigarette smoke extract combined with LPS down-regulates the expression of MRP2 in chronic pulmonary inflammation may be related to FXR. Mol Immunol 2021; 137:174-186. [PMID: 34273652 DOI: 10.1016/j.molimm.2021.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023]
Abstract
The transporter multidrug resistance protein 2 (MRP2) plays an important role in chronic pulmonary inflammation by transporting cigarette smoke and other related inflammatory mediators. However, it is not completely clear whether pulmonary inflammation caused by cigarette smoke extract (CSE) and lipopolysaccharide (LPS) is related to MRP2 and its signal factors. In this study, CSE combined with LPS was used to establish an inflammation model in vivo and in vitro. We found that compared with the control group, after CSE combined with LPS treatment, the expression of MRP2 in rat lung tissue in vivo and human alveolar cell line in vitro was down-regulated, while the expression of inflammatory factors was up-regulated. Through silencing and overexpression of FXR, it was found that silent FXR could down-regulate MRP2 and up-regulate the expression of inflammatory factors. On the contrary, overexpression of FXR could up-regulate MRP2 and down-regulate the expression of inflammatory factors. Our results show that CSE combined with LPS can down-regulate the expression of MRP2 under inflammatory conditions, and the down-regulation of MRP2 expression may be achieved partly through the FXR signal pathway.
Collapse
Affiliation(s)
- Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jian Zhou
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.
| |
Collapse
|
38
|
Chae YJ, Chang JE, Lee MK, Lim J, Shin KH, Lee KR. Regulation of drug transporters by microRNA and implications in disease treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00538-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Hepatic drug-metabolizing enzymes and drug transporters in Wilson's disease patients with liver failure. Pharmacol Rep 2021; 73:1427-1438. [PMID: 34117631 PMCID: PMC8460590 DOI: 10.1007/s43440-021-00290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
Background Wilson’s disease is a genetic disorder inherited in a recessive manner, caused by mutations in the copper-transporter ATP7B. Although it is a well-known disease, currently available treatments are far from satisfactory and their efficacy varies in individual patients. Due to the lack of information about drug-metabolizing enzymes and drug transporters profile in Wilson’s disease livers, we aimed to evaluate the mRNA expression and protein abundance of selected enzymes and drug transporters in this liver disorder. Methods We analyzed gene expression (qPCR) and protein abundance (LC–MS/MS) of 14 drug-metabolizing enzymes and 16 drug transporters in hepatic tissue from Wilson’s disease patients with liver failure (n = 7, Child–Pugh class B and C) and metastatic control livers (n = 20). Results In presented work, we demonstrated a downregulation of majority of CYP450 and UGT enzymes. Gene expression of analyzed enzymes ranged between 18 and 65% compared to control group and significantly lower protein content of CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP3A4 and CYP3A5 enzymes was observed in Wilson’s disease. Moreover, a general decrease in hepatocellular uptake carriers from SLC superfamily (significant at protein level for NTCP and OATP2B1) was observed. As for ABC transporters, the protein abundance of BSEP and MRP2 was significantly lower, while levels of P-gp and MRP4 transporters were significantly higher in Wilson’s disease. Conclusions Altered hepatic expression of drug‐metabolizing enzymes and drug transporters in Wilson’s disease patients with liver failure may result in changes of drug pharmacokinetics in that group of patients. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00290-8.
Collapse
|
40
|
Gerner B, Scherf-Clavel O. Physiologically Based Pharmacokinetic Modelling of Cabozantinib to Simulate Enterohepatic Recirculation, Drug-Drug Interaction with Rifampin and Liver Impairment. Pharmaceutics 2021; 13:pharmaceutics13060778. [PMID: 34067429 PMCID: PMC8224782 DOI: 10.3390/pharmaceutics13060778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Cabozantinib (CAB) is a receptor tyrosine kinase inhibitor approved for the treatment of several cancer types. Enterohepatic recirculation (EHC) of the substance is assumed but has not been further investigated yet. CAB is mainly metabolized via CYP3A4 and is susceptible for drug-drug interactions (DDI). The goal of this work was to develop a physiologically based pharmacokinetic (PBPK) model to investigate EHC, to simulate DDI with Rifampin and to simulate subjects with hepatic impairment. The model was established using PK-Sim® and six human clinical studies. The inclusion of an EHC process into the model led to the most accurate description of the pharmacokinetic behavior of CAB. The model was able to predict plasma concentrations with low bias and good precision. Ninety-seven percent of all simulated plasma concentrations fell within 2-fold of the corresponding concentration observed. Maximum plasma concentration (Cmax) and area under the curve (AUC) were predicted correctly (predicted/observed ratio of 0.9-1.2 for AUC and 0.8-1.1 for Cmax). DDI with Rifampin led to a reduction in predicted AUC by 77%. Several physiological parameters were adapted to simulate hepatic impairment correctly. This is the first CAB model used to simulate DDI with Rifampin and hepatic impairment including EHC, which can serve as a starting point for further simulations with regard to special populations.
Collapse
|
41
|
Martinez MF, Alveal E, Soto TG, Bustamante EI, Ávila F, Bangdiwala SI, Flores I, Monterrosa C, Morales R, Varela NM, Fohner AE, Quiñones LA. Pharmacogenetics-Based Preliminary Algorithm to Predict the Incidence of Infection in Patients Receiving Cytotoxic Chemotherapy for Hematological Malignancies: A Discovery Cohort. Front Pharmacol 2021; 12:602676. [PMID: 33776761 PMCID: PMC7988592 DOI: 10.3389/fphar.2021.602676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023] Open
Abstract
Introduction: Infections in hematological cancer patients are common and usually life-threatening; avoiding them could decrease morbidity, mortality, and cost. Genes associated with antineoplastics’ pharmacokinetics or with the immune/inflammatory response could explain variability in infection occurrence. Objective: To build a pharmacogenetic-based algorithm to predict the incidence of infections in patients undergoing cytotoxic chemotherapy. Methods: Prospective cohort study in adult patients receiving cytotoxic chemotherapy to treat leukemia, lymphoma, or myeloma in two hospitals in Santiago, Chile. We constructed the predictive model using logistic regression. We assessed thirteen genetic polymorphisms (including nine pharmacokinetic—related genes and four inflammatory response-related genes) and sociodemographic/clinical variables to be incorporated into the model. The model’s calibration and discrimination were used to compare models; they were assessed by the Hosmer-Lemeshow goodness-of-fit test and area under the ROC curve, respectively, in association with Pseudo-R2. Results: We analyzed 203 chemotherapy cycles in 50 patients (47.8 ± 16.1 years; 56% women), including 13 (26%) with acute lymphoblastic and 12 (24%) with myeloblastic leukemia. Pharmacokinetics-related polymorphisms incorporated into the model were CYP3A4 rs2242480C>T and OAT4 rs11231809T>A. Immune/inflammatory response-related polymorphisms were TLR2 rs4696480T>A and IL-6 rs1800796C>G. Clinical/demographic variables incorporated into the model were chemotherapy type and cycle, diagnosis, days in neutropenia, age, and sex. The Pseudo-R2 was 0.56, the p-value of the Hosmer-Lemeshow test was 0.98, showing good goodness-of-fit, and the area under the ROC curve was 0.93, showing good diagnostic accuracy. Conclusions: Genetics can help to predict infections in patients undergoing chemotherapy. This algorithm should be validated and could be used to save lives, decrease economic costs, and optimize limited health resources.
Collapse
Affiliation(s)
- Matias F Martinez
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile.,Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile, Chile.,Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Enzo Alveal
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Tomas G Soto
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile.,Departamento De Ciencias Básicas Santiago, Facultad De Ciencias, Universidad Santo Tomás, Santiago, Chile
| | | | - Fernanda Ávila
- Clinical Hospital of the University of Chile, Santiago, Chile
| | - Shrikant I Bangdiwala
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Ivonne Flores
- Cancer Institute Arturo López Pérez Foundation, Santiago, Chile
| | | | - Ricardo Morales
- Cancer Institute Arturo López Pérez Foundation, Santiago, Chile
| | - Nelson M Varela
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Alison E Fohner
- Department of Epidemiology and Institute of Public Health Genetics, University of Washington, Seattle, WA, United States
| | - Luis A Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago, Chile.,Latin American Network for the Implementation and Validation of Pharmacogenomic Clinical Guidelines (RELIVAF-CYTED), Madrid, Spain
| |
Collapse
|
42
|
Khabou B, Hsairi M, Gargouri L, Miled N, Barbu V, Fakhfakh F. Characterization of a novel ABCC2 mutation in infantile Dubin Johnson syndrome. Clin Chim Acta 2021; 518:43-50. [PMID: 33713692 DOI: 10.1016/j.cca.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The Dubin Johnson Syndrome (DJS) occurs mostly in young adults but an early-onset of the disease has been reported in less common forms (Neonatal DJS and Infantile DJS). In this case, the clinical findings are of limit for the DJS diagnosis. Hence, the genetic testing remains the method of choice to provide an accurate diagnosis. In our study, we aimed to perform a genetic analysis for two siblings presented with an intrahepatic cholestasis before the age of 1 year to provide a molecular explanation for the developed phenotype. PATIENTS & METHODS A Tunisian family, having two siblings, manifesting signs of a hepatopathy, was enrolled in our study. A molecular analysis was performed, using a panel-based next generation sequencing, supplying results that were the subject of computational analysis. Then, a clinical follow-up was carried out to assess the evolution of the disease. RESULTS The genetic analysis revealed the presence of a novel missense c.4179G > T, (p.M1393I) mutation in ABCC2 gene associated with a substitution c.2789G > A (R930Q) in ATP8B1 gene. Predictive results consolidated the pathogenic effect of both variants. These results confirmed the DJS diagnosis in the studied patients. The clinical course of both patients fit well with the benign nature of DJS. CONCLUSION We described here a novel ABCC2 mutation associated with a putative ATP8B1 modifier variant. This finding constituted the first report of a complex genotype in DJS. Hence, genetic analysis by a panel-based next generation sequencing permits an accurate diagnosis and the identification of putative variants that could influence the developed phenotype.
Collapse
Affiliation(s)
- Boudour Khabou
- Laboratory of Molecular and Functional Genetics, Faculty of Science, University of Sfax, Tunisia.
| | - Manel Hsairi
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Lamia Gargouri
- Department of Pediatrics, Pediatric Emergency and Intensive Care, Hedi Chaker Hospital, Faculty of Medicine, Sfax, Tunisia
| | - Nabil Miled
- University of Jeddah, College of Science, Department of Biological Sciences, Saudi Arabia; University of Sfax, Higher Institute of Biotechnology, Unit of Plant Physiology and Functional Genomics, Sfax, Tunisia
| | - Véronique Barbu
- LCBGM, Medical Biology and Pathology Department, APHP, HUEP, St Antoine Hospital, & Sorbonne University, 75012 Paris, France
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science, University of Sfax, Tunisia.
| |
Collapse
|
43
|
Juan-Carlos PDM, Perla-Lidia PP, Stephanie-Talia MM, Mónica-Griselda AM, Luz-María TE. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol Biol Rep 2021; 48:1883-1901. [PMID: 33616835 DOI: 10.1007/s11033-021-06155-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
The ATP binding-cassette superfamily corresponds the mostly transmembrane transporters family found in humans. These proteins actively transport endogenous and exogenous substrates through biological membranes in body tissues, so they have an important role in the regulation of many physiological functions necessary for human homeostasis, as well as in response regulation to several pharmacological substrates. The development of multidrug resistance has become one of the main troubles in conventional chemotherapy in different illnesses including cancer, being the increased efflux of antineoplastic drugs the main reason for this multidrug resistance, with a key role of the ABC superfamily. Likely, the interindividual variability in the pharmacological response among patients is well known, and may be due to intrinsically factors of the disease, genetic and environmental ones. Thus, the understanding of this variability, especially the genetic variability associated with the efficacy and toxicity of drugs, can provide a safer and more effective pharmacological treatment, so ABC genes are considered as important regulators due to their relationship with the reduction in pharmacological response. In this review, updated information about transporters belonging to this superfamily was collected, the possible role of these transporters in cancer, the role of genetic variability in their genes, as well as some therapeutic tools that have been tried to raise against main transporters associated with chemoresistance in cancer.
Collapse
Affiliation(s)
- Pérez-De Marcos Juan-Carlos
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, México.,Postgraduate Degree in Pharmacology, National Polytechnic Institute, Mexico City, México
| | | | | | | | | |
Collapse
|
44
|
Popescu RG, Bulgaru C, Untea A, Vlassa M, Filip M, Hermenean A, Marin D, Țăranu I, Georgescu SE, Dinischiotu A. The Effectiveness of Dietary Byproduct Antioxidants on Induced CYP Genes Expression and Histological Alteration in Piglets Liver and Kidney Fed with Aflatoxin B1 and Ochratoxin A. Toxins (Basel) 2021; 13:148. [PMID: 33671978 PMCID: PMC7919288 DOI: 10.3390/toxins13020148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the potential of a byproduct mixture derived from grapeseed and sea buckthorn oil industry to mitigate the harmful damage produced by ochratoxin A and aflatoxin B1 at hepatic and renal level in piglets after weaning. Forty cross-bred TOPIGS-40 hybrid piglets after weaning were assigned to three experimental groups (E1, E2, E3) and one control group (C), and fed with experimental diets for 30 days. The basal diet was served as a control and contained normal compound feed for starter piglets without mycotoxins. The experimental groups were fed as follows: E1-basal diet plus a mixture (1:1) of two byproducts (grapeseed and sea buckthorn meal); E2-the basal diet experimentally contaminated with mycotoxins (479 ppb OTA and 62ppb AFB1); and E3-basal diet containing 5% of the mixture (1:1) of grapeseed and sea buckthorn meal and contaminated with the mix of OTA and AFB1. After 4 weeks, the animals were slaughtered, and tissue samples were taken from liver and kidney in order to perform gene expression and histological analysis. The gene expression analysis showed that when weaned piglets were fed with contaminated diet, the expression of most analyzed genes was downregulated. Among the CYP450 family, CYP1A2 was the gene with the highest downregulation. According to these results, in liver, we found that mycotoxins induced histomorphological alterations in liver and kidney and had an effect on the expression level of CYP1A2, CYP2A19, CYP2E1, and CYP3A29, but we did not detect important changes in the expression level of CY4A24, MRP2 and GSTA1 genes.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| | - Cristina Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Arabela Untea
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeş Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.V.); (M.F.)
| | - Miuta Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania; (M.V.); (M.F.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania;
| | - Daniela Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Ionelia Țăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, 077015 Ilfov, Romania; (C.B.); (A.U.); (D.M.)
| | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei No. 91–95, 050095 Bucharest, Romania; (R.G.P.); (A.D.)
| |
Collapse
|
45
|
Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers (Basel) 2021; 13:cancers13040707. [PMID: 33572350 PMCID: PMC7916137 DOI: 10.3390/cancers13040707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent decades, a molecular complex referred to as vault nanoparticle has attracted much attention by the scientific community, due to its unique properties. At the molecular scale, it is a huge assembly consisting of 78 97-kDa polypeptide chains enclosing an internal cavity, wherein enzymes involved in DNA integrity maintenance and some small noncoding RNAs are accommodated. Basically, two reasons justify this interest. On the one hand, this complex represents an ideal tool for the targeted delivery of drugs, provided it is suitably engineered, either chemically or genetically; on the other hand, it has been shown to be involved in several cellular pathways and mechanisms that most often result in multidrug resistance. It is therefore expected that a better understanding of the physiological roles of this ribonucleoproteic complex may help develop new therapeutic strategies capable of coping with cancer progression. Here, we provide a comprehensive review of the current knowledge. Abstract The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
Collapse
|
46
|
Zubiaur P, Soria-Chacartegui P, Koller D, Navares-Gómez M, Ochoa D, Almenara S, Saiz-Rodríguez M, Mejía-Abril G, Villapalos-García G, Román M, Martín-Vílchez S, Abad-Santos F. Impact of polymorphisms in transporter and metabolizing enzyme genes on olanzapine pharmacokinetics and safety in healthy volunteers. Biomed Pharmacother 2020; 133:111087. [PMID: 33378980 DOI: 10.1016/j.biopha.2020.111087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
Olanzapine is an atypical antipsychotic widely used for the treatment of schizophrenia, which often causes serious adverse drug reactions. Currently, there are no clinical guidelines implementing pharmacogenetic information on olanzapine. Moreover, the Dutch Pharmacogenomics Working Group (DPWG) states that CYP2D6 phenotype is not related to olanzapine response or side effects. Thus, the objective of this candidate-gene study was to investigate the effect of 72 polymorphisms in 21 genes on olanzapine pharmacokinetics and safety, including transporters (e.g. ABCB1, ABCC2, SLC22A1), receptors (e.g. DRD2, HTR2C), and enzymes (e.g. UGT, CYP and COMT), in a cohort of healthy volunteers. Polymorphisms in CYP2C9, SLC22A1, ABCB1, ABCC2, and APOC3 were related to olanzapine pharmacokinetic variability. The incidence of adverse reactions was related to several genes: palpitations to ABCB1 and SLC22A1, asthenia to ABCB1, somnolence to DRD2 and ABCB1, and dizziness to CYP2C9. However, further studies in patients are warranted to confirm the influence of these genetic polymorphisms on olanzapine pharmacokinetics and tolerability.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Unidad de Investigación Clínica y Ensayos Clínicos (UICEC), Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Paula Soria-Chacartegui
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Unidad de Investigación Clínica y Ensayos Clínicos (UICEC), Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Susana Almenara
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Research Unit of Hospital Universitario de Burgos (HUBU), Castilla y León, Spain
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Unidad de Investigación Clínica y Ensayos Clínicos (UICEC), Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Unidad de Investigación Clínica y Ensayos Clínicos (UICEC), Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Samuel Martín-Vílchez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Unidad de Investigación Clínica y Ensayos Clínicos (UICEC), Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Unidad de Investigación Clínica y Ensayos Clínicos (UICEC), Hospital Universitario de La Princesa, Plataforma SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
47
|
Maillard M, Chevreau C, Le Louedec F, Cassou M, Delmas C, Gourdain L, Blay JY, Cupissol D, Bompas E, Italiano A, Isambert N, Delcambre-Lair C, Penel N, Bertucci F, Guillemet C, Plenecassagnes J, Foulon S, Chatelut É, Le Cesne A, Thomas F. Pharmacogenetic Study of Trabectedin-Induced Severe Hepatotoxicity in Patients with Advanced Soft Tissue Sarcoma. Cancers (Basel) 2020; 12:E3647. [PMID: 33291741 PMCID: PMC7761985 DOI: 10.3390/cancers12123647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/26/2023] Open
Abstract
Hepatotoxicity is an important concern for nearly 40% of the patients treated with trabectedin for advanced soft tissue sarcoma (ASTS). The mechanisms underlying these liver damages have not yet been elucidated but they have been suggested to be related to the production of reactive metabolites. The aim of this pharmacogenetic study was to identify genetic variants of pharmacokinetic genes such as CYP450 and ABC drug transporters that could impair the trabectedin metabolism in hepatocytes. Sixty-three patients with ASTS from the TSAR clinical trial (NCT02672527) were genotyped by next-generation sequencing for 11 genes, and genotype-toxicity association analyses were performed with R package SNPassoc. Among the results, ABCC2 c.1249A allele (rs2273697) and ABCG2 intron variant c.-15994T (rs7699188) were associated with an increased risk of severe cytolysis, whereas ABCC2 c.3563A allele had a protective effect, as well as ABCB1 variants rs2032582 and rs1128503 (p-value < 0.05). Furthermore, CYP3A5*1 rs776746 (c.6986A > G) increased the risk of severe overall hepatotoxicity (p = 0.012, odds ratio (OR) = 5.75), suggesting the implication of metabolites in the hepatotoxicity. However, these results did not remain significant after multiple analysis correction. These findings need to be validated on larger cohorts of patients, with mechanistic studies potentially being able to validate the functional consequences of these variants.
Collapse
Affiliation(s)
- Maud Maillard
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Christine Chevreau
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Félicien Le Louedec
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Manon Cassou
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Caroline Delmas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Laure Gourdain
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Jean-Yves Blay
- Medical Oncology Department, Centre Léon Bérard, 69008 Lyon, France;
| | - Didier Cupissol
- Medical Oncology Department, Institut Régional du Cancer Val d’Aurelle, 34090 Montpellier, France;
| | - Emmanuelle Bompas
- Medical Oncology Department, Institut de Cancérologie de l’Ouest, 44800 Saint-Herblain, France;
| | - Antoine Italiano
- Medical Oncology Department, Institut Bergonié, 33000 Bordeaux, France;
| | - Nicolas Isambert
- Medical Oncology Department, Centre Georges François Leclerc, 21000 Dijon, France;
| | | | - Nicolas Penel
- Medical Oncology Department, Centre Oscar Lambret—Université de Lille, 59000 Lille, France;
| | - François Bertucci
- Medical Oncology Department, Institut Paoli-Calmettes, 13009 Marseille, France;
| | - Cécile Guillemet
- Medical Oncology Department, Centre Henri Becquerel, 76038 Rouen, France;
| | - Julien Plenecassagnes
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Stéphanie Foulon
- Department of Biostatistics and Epidemiology, Gustave Roussy, University Paris-Saclay, 94805 Villejuif, France;
- Oncostat U1018, Inserm, University Paris-Saclay, Labeled Ligue Contre le Cancer, 94805 Villejuif, France
| | - Étienne Chatelut
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Axel Le Cesne
- Medical Oncology Department, Gustave Roussy, 94805 Villejuif, France;
| | - Fabienne Thomas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| |
Collapse
|
48
|
Brandi G, Rizzo A, Deserti M, Relli V, Indio V, Bin S, Pariali M, Palloni A, De Lorenzo S, Tovoli F, Tavolari S. Wilson disease, ABCC2 c.3972C > T polymorphism and primary liver cancers: suggestions from a familial cluster. BMC MEDICAL GENETICS 2020; 21:225. [PMID: 33208122 PMCID: PMC7673086 DOI: 10.1186/s12881-020-01165-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Polymorphisms in genes modulating xenobiotics metabolism, in particular the ABCC2 c.3972C > T single nucleotide polymorphism (SNP) at exon 28, have been suggested to increase primary liver cancer (PLC) risk. Conversely, the occurrence of PLCs in Wilson disease patients is a rare event, in contrast with the occurrence observed in other chronic liver diseases. Here we report the clinical case of five siblings carrying the ABCC2 c.3972C > T SNP; three of them were affected by Wilson disease and two brothers with Wilson disease also developed PLCs. METHODS The presence of the ABCC2 c.3972C > T SNP was assessed by Sanger sequencing and the exposure of PLC risk factors by standardized questionnaires. RESULTS Notably, PLCs occurred only in the two brothers with the ABCC2 c.3972C > T SNP and Wilson disease who resulted exposed to asbestos and cigarette smoking, but not in the other siblings with the ABCC2 c.3972C > T SNP, alone or in association with Wilson disease, not exposed to these carcinogens and/or to other known risk factors for PLCs. CONCLUSIONS These findings suggest that ABCC2 c.3972C > T SNP and WD, also in association, may not represent a sufficient condition for PLC development, but that co-occurrence of further host/exogenous risk factors are needed to drive this process, reinforcing the notion that liver carcinogenesis is the result of a complex interplay between environmental and host genetic determinants. Due to the sporadic cases of this study and the paucity of data currently available in literature on this issue, future investigations in a larger population are needed to confirm our findings.
Collapse
Affiliation(s)
- Giovanni Brandi
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy.
| | - Alessandro Rizzo
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Marzia Deserti
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valeria Relli
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Sofia Bin
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Milena Pariali
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Andrea Palloni
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Stefania De Lorenzo
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, via Massarenti 9, 40138, Bologna, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Simona Tavolari
- Division of Oncology, Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
49
|
Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol 2020; 180:114147. [PMID: 32653589 PMCID: PMC7347500 DOI: 10.1016/j.bcp.2020.114147] [Citation(s) in RCA: 714] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Owing to the efficacy in reducing pain and inflammation, non-steroidal anti-inflammatory drugs (NSAIDs) are amongst the most popularly used medicines confirming their position in the WHO's Model List of Essential Medicines. With escalating musculoskeletal complications, as evident from 2016 Global Burden of Disease data, NSAID usage is evidently unavoidable. Apart from analgesic, anti-inflammatory and antipyretic efficacies, NSAIDs are further documented to offer protection against diverse critical disorders including cancer and heart attacks. However, data from multiple placebo-controlled trials and meta-analyses studies alarmingly signify the adverse effects of NSAIDs in gastrointestinal, cardiovascular, hepatic, renal, cerebral and pulmonary complications. Although extensive research has elucidated the mechanisms underlying the clinical hazards of NSAIDs, no review has extensively collated the outcomes on various multiorgan toxicities of these drugs together. In this regard, the present review provides a comprehensive insight of the existing knowledge and recent developments on NSAID-induced organ damage. It precisely encompasses the current understanding of structure, classification and mode of action of NSAIDs while reiterating on the emerging instances of NSAID drug repurposing along with pharmacophore modification aimed at safer usage of NSAIDs where toxic effects are tamed without compromising the clinical benefits. The review does not intend to vilify these 'wonder drugs'; rather provides a careful understanding of their side-effects which would be beneficial in evaluating the risk-benefit threshold while rationally using NSAIDs at safer dose and duration.
Collapse
Affiliation(s)
- Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101 India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India; Division of Molecular Medicine, Bose Institute, P-1/12, CIT Rd, Scheme VIIM, Kankurgachi, Kolkata, West Bengal 700054 India.
| |
Collapse
|
50
|
Beaudoin JJ, Brock WJ, Watkins PB, Brouwer KLR. Quantitative Systems Toxicology Modeling Predicts that Reduced Biliary Efflux Contributes to Tolvaptan Hepatotoxicity. Clin Pharmacol Ther 2020; 109:433-442. [PMID: 32748396 DOI: 10.1002/cpt.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
Patients with autosomal dominant polycystic kidney disease (ADPKD) exhibit enhanced susceptibility to tolvaptan hepatotoxicity relative to other patient populations. In a rodent model of ADPKD, the expression and function of the biliary efflux transporter Mrp2 was reduced, and biliary excretion of a major tolvaptan metabolite (DM-4103) was decreased. The current study investigated whether reduced biliary efflux could contribute to increased susceptibility to tolvaptan-associated hepatotoxicity using a quantitative systems toxicology (QST) model (DILIsym). QST simulations revealed that decreased biliary excretion of DM-4103, but not tolvaptan, resulted in substantial hepatic accumulation of bile acids, decreased electron transport chain activity, reduced hepatic adenosine triphosphate concentrations, and an increased incidence of hepatotoxicity. In vitro experiments (C-DILI) with sandwich-cultured human hepatocytes and HepaRG cells were performed to assess tolvaptan-associated hepatotoxic effects when MRP2 was impaired by chemical inhibition (MK571, 50 µM) or genetic knockout, respectively. Tolvaptan (64 µM, 24-hour) treatment of these cells increased cytotoxicity markers up to 27.9-fold and 1.6-fold, respectively, when MRP2 was impaired, indicating that MRP2 dysfunction may be involved in tolvaptan-associated cytotoxicity. In conclusion, QST modeling supported the hypothesis that reduced biliary efflux of tolvaptan and/or DM-4103 could account for increased susceptibility to tolvaptan-associated hepatotoxicity; in vitro experiments implicated MRP2 dysfunction as a key factor in susceptibility. QST simulations revealed that DM-4103 may contribute to hepatotoxicity more than the parent compound. ADPKD progression and gradual reduction in MRP2 activity may explain why acute liver events can occur well after one year of tolvaptan treatment.
Collapse
Affiliation(s)
- James J Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William J Brock
- Brock Scientific Consulting, LLC, Montgomery Village, Maryland, USA
| | - Paul B Watkins
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|