1
|
Lu EH, Rusyn I, Chiu WA. Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now! JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:28-62. [PMID: 39390665 PMCID: PMC11614695 DOI: 10.1080/10937404.2024.2412571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Regulatory dose-response assessments traditionally rely on in vivo data and default assumptions. New Approach Methods (NAMs) present considerable opportunities to both augment traditional dose-response assessments and accelerate the evaluation of new/data-poor chemicals. This review aimed to determine the potential utilization of NAMs through a unified conceptual framework that compartmentalizes derivation of toxicity values into five sequential Key Dose-response Modules (KDMs): (1) point-of-departure (POD) determination, (2) test system-to-human (e.g. inter-species) toxicokinetics and (3) toxicodynamics, (4) human population (intra-species) variability in toxicodynamics, and (5) toxicokinetics. After using several "traditional" dose-response assessments to illustrate this framework, a review is presented where existing NAMs, including in silico, in vitro, and in vivo approaches, might be applied across KDMs. Further, the false dichotomy between "traditional" and NAMs-derived data sources is broken down by organizing dose-response assessments into a matrix where each KDM has Tiers of increasing precision and confidence: Tier 0: Default/generic values, Tier 1: Computational predictions, Tier 2: Surrogate measurements, and Tier 3: Direct measurements. These findings demonstrated that although many publications promote the use of NAMs in KDMs (1) for POD determination and (5) for human population toxicokinetics, the proposed matrix of KDMs and Tiers reveals additional immediate opportunities for NAMs to be integrated across other KDMs. Further, critical needs were identified for developing NAMs to improve in vitro dosimetry and quantify test system and human population toxicodynamics. Overall, broadening the integration of NAMs across the steps of dose-response assessment promises to yield higher throughput, less animal-dependent, and more science-based toxicity values for protecting human health.
Collapse
Affiliation(s)
- En-Hsuan Lu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
2
|
Attwa MW, Abdelhameed AS, Kadi AA. An Ultra-Fast Validated Green UPLC-MS/MS Approach for Assessing Revumenib in Human Liver Microsomes: In Vitro Absorption, Distribution, Metabolism, and Excretion and Metabolic Stability Evaluation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1914. [PMID: 39768795 PMCID: PMC11679331 DOI: 10.3390/medicina60121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025]
Abstract
Background and Objectives: Revumenib (SNDX-5613) is a powerful and specific inhibitor of the menin-KMT2A binding interaction. It is a small molecule that is currently being researched to treat KMT2A-rearranged (KMT2Ar) acute leukemias. Revumenib (RVB) has received Orphan Drug Designation from the US FDA for treating patients with AML. It has also been granted Fast Track designation by the FDA for treating pediatric and adult patients with R/R acute leukemias that have a KMT2Ar or NPM1 mutation. Materials and Methods: The target of this research was to create a fast, precise, green, and extremely sensitive UPLC-MS/MS technique for the estimation of the RVB level in human liver microsomes (HLMs), employing an ESI source. The validation procedures were carried out in accordance with the bioanalytical technique validation requirements established by the US Food and Drug Administration that involve linearity, selectivity, precision, accuracy, stability, matrix effect, and extraction recovery. The outcome data of the validation features of the UPLC-MS/MS approach were acceptable according to FDA guidelines. RVB parent ions were formed in the positive ESI source and its two fragment ions were estimated employing multiple reaction monitoring (MRM) mode. The separation of RVB and encorafenib was achieved using a C8 column (2.1 mm, 50 mm, and 3.5 µm) and isocratic mobile phase. Results: The RVB calibration curve linearity ranged from 1 to 3000 ng/mL (y = 0.6515x - 0.5459 and R2 = 0.9945). The inter-day precision and accuracy spanned from -0.23% to 11.33%, while the intra-day precision and accuracy spanned from -0.88% to 11.67%, verifying the reproducibility of the UPLC-MS/MS analytical technique. The sensitivity of the developed methodology demonstrated its capability to quantify RVB levels at an LOQ of 0.96 ng/mL. The AGREE score was 0.77, confirming the greenness of the current method. The low in vitro t1/2 (14.93 min) and high intrinsic clearance (54.31 mL/min/kg) of RVB revealed that RVB shares similarities with medications that have a high extraction ratio. Conclusions: The present LC-MS/MS approach is considered the first analytical approach with the application of metabolic stability assessment for RVB estimation in HLMs. These methods are essential for advancing the development of new pharmaceuticals, particularly in enhancing metabolic stability.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (A.A.K.)
| | | | | |
Collapse
|
3
|
Attwa MW, Abdelhameed AS, Kadi AA. An Ultra-Fast Green UHPLC-MS/MS Method for Assessing the In Vitro Metabolic Stability of Dovitinib: In Silico Study for Absorption, Distribution, Metabolism, Excretion, Metabolic Lability, and DEREK Alerts. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1626. [PMID: 39459413 PMCID: PMC11509458 DOI: 10.3390/medicina60101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Dovitinib (DVB) is a pan-tyrosine kinase inhibitor (TKI) that can be administered orally. In September 2023, the FDA granted Oncoheroes approval to proceed with an Investigational New Drug (IND) application for dovitinib. This application is intended for the treatment of relapsed or advanced juvenile solid tumors, namely, osteosarcoma. Materials and Methods: The target of the present study was to develop a rapid, green, accurate, and sensitive UHPLC-MS/MS method for measuring DVB levels in human liver microsomes (HLMs). The validations of the HLMs were performed via the established UHPLC-MS/MS approach, as stated in the US FDA reported guidelines for the standards of bioanalytical method validation protocol. The StarDrop in silico software package (version 6.6), which involves the DEREK and WhichP450 in silico modules, was used to check the DVB structure for hazardous alerts and metabolic instability. The DVB and encorafenib (EFB), internal standard, and chromatographic peaks were successfully separated using a reversed phase column (an Eclipse Plus Agilent C8 column) and an isocratic mobile phase. The production of DVB parent ions was accomplished by utilizing the positive ionization mode of an ESI source. The identification and measurement of DVB daughter ions were conducted using the MRM mode. Results: The inter-day accuracy and precision exhibited a spectrum of values in the range of -0.56% to 9.33%, while the intra-day accuracy and precision showcased a range of scores between 0.28% and 7.28%. The DVB calibration curve showed a linear relationship that ranged from 1 to 3000 ng/mL. The usefulness of the currently validated UHPLC-MS/MS method was approved by the lower limit of quantification (LLOQ) of 1 ng/mL. The AGREE findings demonstrate that the UHPLC-MS/MS method had a noteworthy degree of ecological greenness. The in vitro half-life (t1/2) and intrinsic clearance (Clint) of DVB were calculated to be 15.48 min and 52.39 mL/min/kg, respectively, which aligned with the findings from the WhichP450 software (version 6.6). Conclusions: Via the usage of in silico software, it has been observed that making small changes to the structure of the aryl piperazine ring and quinolinone moieties, or replacing these groups in the drug design process, shows potential for enhancing the metabolic safety and stability of newly developed derivatives compared to DVB.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (A.A.K.)
| | | | | |
Collapse
|
4
|
Attwa MW, AlRabiah H, Abdelhameed AS, Kadi AA. Assessment of the in vitro metabolic stability of CEP-37440, a selective FAK/ALK inhibitor, in HLMs using fast UPLC-MS/MS method: in silico metabolic lability and DEREK alerts screening. Front Chem 2024; 12:1323738. [PMID: 39391832 PMCID: PMC11464430 DOI: 10.3389/fchem.2024.1323738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction CEP-37440 was synthesized and supplied by the research and development division of Teva Branded Pharmaceutical Products (West Chester, PA, United States). CEP-37440 represents a newly developed compound that exhibits selectivity inhibition of Focal Adhesion Kinase and Anaplastic Lymphoma Kinase FAK/ALK receptors, demonstrating novel characteristics as an orally active inhibitor. The simultaneous inhibition of ALK and FAK can effectively address resistance and enhance the therapeutic efficacy against tumors through a synergistic mechanism. Methods The objective of this research was to create an LC-MS/MS method that is precise, efficient, environmentally friendly, and possesses a high level of sensitivity for the quantification of CEP-37440 in human liver microsomes (HLMs). The aforementioned approach was subsequently employed to evaluate the metabolic stability of CEP-37440 in HLMs in an in vitro setting. The validation procedures for the LC-MS/MS analytical method in the HLMs were performed following the bio-analytical method validation guidelines set out by the US-FDA. The AGREE program was utilized to assess the ecological impacts of the current LC-MS/MS methodology. Results and Discussion The calibration curve linearity was seen in the range of 1-3000 ng/mL. The inter-day accuracy (% RE) exhibited a range of -2.33% to 3.22%, whilst the intra-day accuracy demonstrated a range of -4.33% to 1.39%. The inter-day precision (% RSD) exhibited a range of 0.38% to 3.60%, whilst the intra-day precision demonstrated a range of 0.16% to 6.28%. The determination of the in vitro half-life (t1/2) and moderate intrinsic clearance (Clint) of CEP-37440 yielded values of 23.24 min and 34.74 mL/min/kg, respectively. The current manuscript is considered the first analytical study for CEP-37440 quantification with the application to metabolic stability assessment. These results suggest that CEP-37440 can be categorized as a pharmaceutical agent with a moderate extraction ratio. Consequently, it is postulated that the administration of CEP-37440 to patients may not lead to the accrual of dosages within the human organs. According to in silico P450 metabolic and DEREK software, minor structural alterations to the ethanolamine moiety or substitution of the group in drug design have the potential to enhance the metabolic stability and safety profile of novel derivatives in comparison to CEP-37440.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
5
|
Attwa MW, Abdelhameed AS, Kadi AA. An ultra-fast ultra-high-performance liquid chromatography-tandem mass spectrometry method for estimating the in vitro metabolic stability of palbociclib in human liver microsomes: In silico study for metabolic lability, absorption, distribution, metabolism, and excretion features, and DEREK alerts screening. J Sep Sci 2024; 47:e2400346. [PMID: 39087624 DOI: 10.1002/jssc.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Palbociclib (Ibrance; Pfizer) was approved for the management of metastatic breast cancer characterized by hormone receptor-positive/human epidermal growth factor receptor 2 negative status. The objective of this study was to create a fast, precise, environmentally friendly, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry approach for quantifying palbociclib (PAB) in human liver microsomes with the application for assessing metabolic stability. The validation features were performed in agreement with the bioanalytical method validation standards outlined by the US Food and Drug Administration. The StarDrop software (WhichP450 and DEREK modules) was used in screening the metabolic lability and structural alerts of PAB. The separation of PAB and encorafenib (as an internal standard) was achieved on a C8 column, employing an isocratic mobile phase. The inter-day and intra-day accuracy and precision ranged from -6.00% to 4.64% and from -2.33% to 3.13%, respectively. The constructed calibration curve displayed a linearity in the range of 1-3000 ng/mL. The sensitivity of the established approach was proven by the lower limit of quantification of 0.73 ng/mL. The Analytical GREEness calculator results revealed the high level of greenness of the developed method. The PAB's metabolic stability (t1/2 of 18.5 min and a moderate clearance (Clint) of 44.8 mL/min/kg) suggests a high extraction ratio medication that matched the WhichP450 software results.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Attwa MW, Abdelhameed AS, Kadi AA. An ultra-fast green ultra-high-performance liquid chromatography-tandem mass spectrometry method for estimating the in vitro metabolic stability of zotizalkib in human liver microsomes. J Sep Sci 2024; 47:e2400393. [PMID: 39087620 DOI: 10.1002/jssc.202400393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Zotizalkib (ZTK, TPX-0131) is a fourth-generation highly effective inhibitor of wild-type anaplastic lymphoma kinase (ALK) and ALK-resistant mutations that can penetrate the central nervous system. It exhibited greater potency compared to all five officially approved ALK inhibitors. The aim of this study was to develop a rapid, accurate, eco-friendly, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for measuring the concentration of ZTK in human liver microsomes (HLMs). The validation aspects of the current UHPLC-MS/MS methodology in the HLMs were conducted in accordance with the bioanalytical method validation standards specified by the US Food and Drug Administration. ZTK and encorafenib were separated using an Agilent C8 column (Eclipse Plus) and an isocratic mobile phase. The calibration curve for the developed ZTK exhibited a linear relationship within the concentration range of 1-3000 ng/mL. The results from the Analytical Green-ness Metric Approach program (0.76) suggested that the created method demonstrated a significant degree of environmental sustainability. The in vitro half-life (t1/2) and intrinsic clearance (Clint) of ZTK were determined to be 15.79 min and 51.35 mL/min/kg, respectively that suggests the ZTK exhibits characteristics similar to those of a medication with a high extraction ratio. These approaches are crucial for the progress of novel pharmaceutical development, especially in improving metabolic stability.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Attwa MW, Abdelhameed AS, Kadi AA. Characterization of the in vitro metabolic profile of nazartinib in HLMs using UPLC-MS/MS method: In silico metabolic lability and DEREK structural alerts screening using StarDrop software. Heliyon 2024; 10:e34109. [PMID: 39091946 PMCID: PMC11292529 DOI: 10.1016/j.heliyon.2024.e34109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
The orally given, irreversible, third-generation inhibitor of the epidermal growth factor receptor (EGFR), known as Nazartinib (EGF816), is now undergoing investigation in Phase II clinical trials conducted by Novartis for Non-Small Cell Lung Cancer. The primary aim of the current research was to establish a rapid, specific, environmentally friendly, and highly versatile UPLC-MS/MS methodology for the determination of nazartinib (NZT) levels in human liver microsomes (HLMs). Subsequently, same approach was used to examine the metabolic stability of NZT. The UPLC-MS/MS method employed in HLMs was validated as stated in the bioanalytical method validation criteria outlined by the US- FDA. The evaluation of the metabolic stability of NZT and the identification of potentially structural alarms were performed using the StarDrop software package that includes the P450 and DEREK software. The calibration curve for NZT showed a linearity in the range from 1 to 3000 ng/mL. The inter-day accuracy and precision exhibited a range of values between -4.33 % and 4.43 %, whereas the intra-day accuracy and precision shown a range of values between -2.78 % and 7.10 %. The sensitivity of the developed approach was verified through the determination of a LLOQ of 0.39 ng/mL. The intrinsic clearance and in vitro half-life of NZT were assessed to be 46.48 mL/min/kg and 17.44 min, respectively. In our preceding inquiry, we have effectively discerned the bioactivation center, denoted by the carbon atom between the unsaturated conjugated system and aliphatic linear tertiary amine. In the context of computational software, making minor adjustments or substituting the dimethylamino-butenoyl moiety throughout the drug design process may increase the metabolic stability and safety properties of new synthesized derivatives. The efficiency of utilizing different in silico software approaches to conserve resources and reduce effort was proved by the outcomes attained from in vitro incubation experiments and the use of NZT in silico software.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Attwa MW, Abdelhameed AS, Kadi AA. Ultra-fast UPLC-MS/MS approach for estimating X-376 in human liver microsomes: Evaluation of metabolic stability via in silico software and in vitro analysis. J Pharmacol Toxicol Methods 2024; 128:107540. [PMID: 38996943 DOI: 10.1016/j.vascn.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
X-376 is a novel anaplastic lymphoma kinase (ALK) inhibitor that is capable of penetrating the blood brain barrier. This makes it suitable for use in patients with ALK-positive non-small cell lung cancer (NSCLC) who have metastases in the central nervous system. This study developed a highly sensitive, fast, eco-friendly, and reliable UPLC-MS/MS approach to quantify X-376 in human liver microsomes (HLMs). This approach was used to evaluate X-376's metabolic stability in HLMs in vitro. The UPLC-MS/MS analytical technique validation followed US-FDA bio-analytical method validation guidelines. StarDrop software, containing P450 metabolic and DEREK modules, was utilized to scan X-376's chemical structure for metabolic lability and hazardous warnings. X-376 and Encorafenib (ENF as internal standard) were resoluted on the Eclipse Plus C18 column utilizing an isocratic mobile phase method. The X-376 calibration curve was linear from 1 to 3000 ng/mL. The precision and accuracy of this study's UPLC-MS/MS approach were tested for intra- and inter-day measurements. Inter-day accuracy was -1.32% to 9.36% while intra-day accuracy was -1.5% to 10.00%. The intrinsic clearance (Clint) and in vitro half-life (t1/2) of X-376 were 59.77 mL/min/kg and 13.56 min. The high extraction ratio of X-376 supports the 50 mg twice-daily dose for ALK-positive NSCLC and CNS metastases patients. In silico software suggests that simple structural changes to the piperazine ring or group substitution in drug design may improve metabolic stability and safety compared to X-376.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia..
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Attwa MW, Bakheit AH, Abdelhameed AS, Kadi AA. An Ultrafast UPLC-MS/MS Method for Characterizing the In Vitro Metabolic Stability of Acalabrutinib. Molecules 2023; 28:7220. [PMID: 37894699 PMCID: PMC10609012 DOI: 10.3390/molecules28207220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Acalabrutinib, commercially known as Calquence®, is a pharmacological molecule that has robust inhibitory activity against Bruton tyrosine kinase. The medicine in question was carefully developed by the esteemed pharmaceutical company AstraZeneca. The FDA granted authorization on 21 November 2019 for the utilization of acalabrutinib (ACB) in the treatment of small lymphocytic lymphoma (SLL) or chronic lymphocytic leukemia (CLL) in adult patients. The aim of this study was to develop a UPLC-MS/MS method that is effective, accurate, environmentally sustainable, and has a high degree of sensitivity. The methodology was specifically developed with the intention of quantifying ACB in human liver microsomes (HLMs). The methodology described above was subsequently utilized to assess the metabolic stability of ACB in HLMs in an in vitro environment. The validation procedures for the UPLC-MS/MS method in the HLMs were conducted in accordance with the bioanalytical method validation criteria established by the U.S.- DA. The utilization of the StarDrop software (version 6.6), which integrates the P450 metabolic module and DEREK software (KB 2018 1.1), was employed for the purpose of evaluating the metabolic stability and identifying potential hazardous alarms associated with the chemical structure of ACB. The calibration curve, as established by the ACB, demonstrated a linear correlation across the concentration range of 1 to 3000 ng/mL in the matrix of HLMs. The present study conducted an assessment of the accuracy and precision of the UPLC-MS/MS method in quantifying inter-day and intra-day fluctuations. The inter-day accuracy demonstrated a spectrum of values ranging from -1.00% to 8.36%, whilst the intra-day accuracy presented a range of values spanning from -2.87% to 4.11%. The t1/2 and intrinsic clearance (Clint) of ACB were determined through in vitro testing to be 20.45 min and 39.65 mL/min/kg, respectively. The analysis concluded that the extraction ratio of ACB demonstrated a moderate level, thus supporting the recommended dosage of ACB (100 mg) to be administered twice daily for the therapeutic treatment of persons suffering from B-cell malignancies. Several computational tools have suggested that introducing minor structural alterations to the butynoyl group, particularly the alpha, beta-unsaturated amide moiety, or substituting this group during the drug design procedure, could potentially enhance the metabolic stability and safety properties of novel derivatives in comparison to ACB.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.H.B.); (A.S.A.); (A.A.K.)
| | | | | | | |
Collapse
|
10
|
Attwa MW, AlRabiah H, Mostafa GAE, Kadi AA. Evaluation of Alectinib Metabolic Stability in HLMs Using Fast LC-MS/MS Method: In Silico ADME Profile, P450 Metabolic Lability, and Toxic Alerts Screening. Pharmaceutics 2023; 15:2449. [PMID: 37896209 PMCID: PMC10610548 DOI: 10.3390/pharmaceutics15102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alectinib, also known as Alecensa®, is prescribed for the therapeutic treatment of individuals diagnosed with metastatic non-small cell lung cancer (NSCLC) who have a specific genetic mutation referred to as anaplastic lymphoma kinase (ALK) positivity. The Food and Drug Administration granted regular approval to alectinib, a drug developed by Hoffmann-La Roche, Inc. (Basel, Switzerland)/Genentech, Inc. (South San Francisco, CA, USA), on 6 November 2017. The screening of the metabolic stability and identification of hazardous alarms within the chemical structure of ALC was conducted using the StarDrop software package (version 6.6), which incorporates the P450 metabolic module and DEREK software (KB 2018 1.1). The primary aim of this investigation was to develop a high-throughput and accurate LC-MS/MS technique for the quantification of ALC in the metabolic matrix (human liver microsomes; HLMs). The aforementioned methodology was subsequently employed to assess the metabolic stability of ALC in HLMs through in vitro tests, with the obtained results further validated using in silico software. The calibration curve of the ALC showed a linear correlation that exists within the concentration range from 1 to 3000 ng/mL. The LC-MS/MS approach that was recommended exhibited accuracy and precision levels for both inter-day and intra-day measurements. Specifically, the accuracy values ranged from -2.56% to 3.45%, while the precision values ranged from -3.78% to 4.33%. The sensitivity of the established approach was proved by its ability to adhere to an LLOQ of 0.82 ng/mL. The half-life (t1/2) and intrinsic clearance (Clint) of ALC were estimated to be 22.28 min and 36.37 mL/min/kg, correspondingly, using in vitro experiments. The ALC exhibited a moderate extraction ratio. The metabolic stability and safety properties of newly created derivatives can be enhanced by making modest adjustments to the morpholine and piperidine rings or by substituting the substituent, as per computational software. In in silico ADME prediction, ALC was shown to have poor water solubility and high gastrointestinal absorption along with inhibition of some cytochrome P450s (CYP2C19 and CYP2C9) without inhibition of others (CYP1A2, CYP3A4, and CYP2D6) and P-glycoprotein substrate. The study design that involves using both laboratory experiments and different in silico software demonstrates a novel and groundbreaking approach in the establishment and uniformization of LC-MS/MS techniques for the estimation of ALC concentrations, identifying structural alerts and the assessment of its metabolic stability. The utilization of this study strategy has the potential to be employed in the screening and optimization of prospective compounds during the drug creation process. This strategy may also facilitate the development of novel derivatives of the medicine that maintain the same biological action by targeted structural modifications, based on an understanding of the structural alerts included within the chemical structure of ALC.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.A.); (G.A.E.M.); (A.A.K.)
| | | | | | | |
Collapse
|
11
|
Assessment of In Silico and In Vitro Selpercatinib Metabolic Stability in Human Liver Microsomes Using a Validated LC-MS/MS Method. Molecules 2023; 28:molecules28062618. [PMID: 36985590 PMCID: PMC10054762 DOI: 10.3390/molecules28062618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Selpercatinib (SLP; brand name Retevmo®) is a selective and potent RE arranged during transfection (RET) inhibitor. On 21 September 2022, the FDA granted regular approval to SLP (Retevmo, Eli Lilly, and Company). It is considered the only and first RET inhibitor for adults with metastatic or locally advanced solid tumors with RET gene fusion. In the current experiment, a highly specific, sensitive, and fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method for quantifying SLP in human liver microsomes (HLMs) was developed and applied to the metabolic stability evaluation of SLP. The LC-MS/MS method was validated following the bioanalytical methodology validation guidelines outlined by the FDA (linearity, selectivity, matrix effect, accuracy, precision, carryover, and extraction recovery). SLP was detected by a triple quadrupole detector (TQD) using a positive ESI source and multiple reaction monitoring (MRM) mode for mass spectrometric analysis and estimation of analytes ions. The IS-normalized matrix effect and extraction recovery were acceptable according to the FDA guidelines for the bioanalysis of SLP. The SLP calibration standards were linear from 1 to 3000 ng/mL HLMs matrix, with a regression equation (y = 1.7298x + 3.62941) and coefficient of variation (r2 = 0.9949). The intra-batch and inter-batch precision and accuracy of the developed LC-MS/MS method were −6.56–5.22% and 5.08–3.15%, respectively. SLP and filgotinib (FLG) (internal standard; IS) were chromatographically separated using a Luna 3 µm PFP (2) stationary phase (150 × 4.6 mm) with an isocratic mobile phase at 23 ± 1 °C. The limit of quantification (LOQ) was 0.78 ng/mL, revealing the LC-MS/MS method sensitivity. The intrinsic clearance and in vitro t1/2 (metabolic stability) of SLP in the HLMs matrix were 34 mL/min/kg and 23.82 min, respectively, which proposed an intermediate metabolic clearance rate of SLP, confirming the great value of this type of kinetic experiment for more accurate metabolic stability predictions. The literature review approved that the established LC-MS/MS method is the first developed and reported method for quantifying SLP metabolic stability.
Collapse
|
12
|
Development and Validation of a Rapid LC-MS/MS Method for Quantifying Alvocidib: In Silico and In Vitro Metabolic Stability Estimation in Human Liver Microsomes. Molecules 2023; 28:molecules28052368. [PMID: 36903615 PMCID: PMC10004750 DOI: 10.3390/molecules28052368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alvocidib (AVC; flavopiridol) is a potent cyclin-dependent kinase inhibitor used in patients with acute myeloid leukemia (AML). The FDA has approved orphan drug designation to AVC for treating patients with AML. In the current work, the in silico calculation of AVC metabolic lability was done using the P450 metabolism module of the StarDrop software package, that is expressed as a composite site lability (CSL). This was followed by establishing an LC-MS/MS analytical method for AVC estimation in human liver microsomes (HLMs) to assess metabolic stability. AVC and glasdegib (GSB), used as internal standards (IS), were separated utilizing a C18 column (reversed chromatography) with an isocratic mobile phase. The lower limit of quantification (LLOQ) was 5.0 ng/mL, revealing the sensitivity of the established LC-MS/MS analytical method that exhibited a linearity in the range 5-500 ng/mL in the HLMs matrix with correlation coefficient (R2 = 0.9995). The interday and intraday accuracy and precision of the established LC-MS/MS analytical method were -1.4% to 6.7% and -0.8% to 6.4%, respectively, confirming the reproducibility of the LC-MS/MS analytical method. The calculated metabolic stability parameters were intrinsic clearance (CLint) and in vitro half-life (t1/2) of AVC at 26.9 µL/min/mg and 25.8 min, respectively. The in silico results from the P450 metabolism model matched the results generated from in vitro metabolic incubations; therefore, the in silico software can be used to predict the metabolic stability of the drugs, saving time and resources. AVC exhibits a moderate extraction ratio, indicating reasonable in vivo bioavailability. The established chromatographic methodology was the first LC-MS/MS method designed for AVC estimation in HLMs matrix that was applied for AVC metabolic stability estimation.
Collapse
|
13
|
Development of an LC-MS/MS Method for Quantification of Sapitinib in Human Liver Microsomes: In Silico and In Vitro Metabolic Stability Evaluation. Molecules 2023; 28:molecules28052322. [PMID: 36903565 PMCID: PMC10005647 DOI: 10.3390/molecules28052322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Sapitinib (AZD8931, SPT) is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) family (pan-erbB). In multiple tumor cell lines, STP has been shown to be a much more potent inhibitor of EGF-driven cellular proliferation than gefitinib. In the current study, a highly sensitive, rapid, and specific LC-MS/MS analytical method for the estimation of SPT in human liver microsomes (HLMs) was established with application to metabolic stability assessment. The LC-MS/MS analytical method was validated in terms of linearity, selectivity, precision, accuracy, matrix effect, extraction recovery, carryover, and stability following the FDA guidelines for bioanalytical method validation. SPT was detected using electrospray ionization (ESI) as an ionization source under multiple reaction monitoring (MRM) in the positive ion mode. The IS-normalized matrix factor and extraction recovery were acceptable for the bioanalysis of SPT. The SPT calibration curve was linear, from 1 ng/mL to 3000 ng/mL HLM matrix samples, with a linear regression equation of y = 1.7298x + 3.62941 (r2 = 0.9949). The intraday and interday accuracy and precision values of the LC-MS/MS method were -1.45-7.25% and 0.29-6.31%, respectively. SPT and filgotinib (FGT) (internal standard; IS) were separated through the use of an isocratic mobile phase system with a Luna 3 µm PFP(2) column (150 × 4.6 mm) stationary phase column. The limit of quantification (LOQ) was 0.88 ng/mL, confirming the LC-MS/MS method sensitivity. The intrinsic clearance and in vitro half-life of STP were 38.48 mL/min/kg and 21.07 min, respectively. STP exhibited a moderate extraction ratio that revealed good bioavailability. The literature review demonstrated that the current analytical method is the first developed LC-MS/MS method for the quantification of SPT in an HLM matrix with application to SPT metabolic stability evaluation.
Collapse
|
14
|
Attwa MW, Alanazi MM. Rapid LC-MS/MS Bosutinib Quantification with Applications in Metabolic Stability Estimation. Molecules 2023; 28:molecules28041641. [PMID: 36838629 PMCID: PMC9965169 DOI: 10.3390/molecules28041641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Bosutinib (BOS) is FDA approved drug for the treatment of chronic phase (CP) Philadelphia chromosome-positive (Ph+) chronic myelogenous leukemia (CML). We report a fast, sensitive, and simple LC-MS/MS method, validated for the determination of BOS in human liver microsomes, utilizing tofacitinib (TOF) as the internal standard. The separation of BOS and TOF was done using a 1.8 μm C18 column (2.1 × 50 mm) at room temperature using the isocratic elution system of acetonitrile-water (30:70, v/v) containing 0.1 M formic acid at a flow rate of 0.15 mL/min, and a triple-quadrupole tandem mass spectrometer (TQD-MS) with an electrospray ionization (ESI) source that was operated in the positive ion mode. The method was validated according to the European Medicines Agency, and the rapid and specific quantification of BOS in human liver microsomes was achieved in the range of 5-200 ng/mL, with a determination coefficient of 0.999. Intra- and inter-day accuracy and precision values were <4% in all cases. The procedure is rapid, specific, reliable, and can be applied in metabolic stability evaluations since it is the first LC-MS/MS method specific to BOS quantification. The metabolic stability assessment of BOS showed high CLint (34.3 µL/min/mg) and short in vitro t1/2 values of 20.21 min, indicating that BOS may be rapidly eliminated from the blood by the liver.
Collapse
|
15
|
Chang X, Tan YM, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. TOXICS 2022; 10:232. [PMID: 35622645 PMCID: PMC9143724 DOI: 10.3390/toxics10050232] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023]
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance.
Collapse
Affiliation(s)
- Xiaoqing Chang
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, 109 T.W. Alexander Drive, Durham, NC 27709, USA;
| | - David G. Allen
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Shannon Bell
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Paul C. Brown
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Lauren Browning
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Patricia Ceger
- Inotiv-RTP, 601 Keystone Park Drive, Suite 200, Morrisville, NC 27560, USA; (X.C.); (D.G.A.); (S.B.); (L.B.); (P.C.)
| | - Jeffery Gearhart
- The Henry M. Jackson Foundation, Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Pertti J. Hakkinen
- National Library of Medicine, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894, USA;
| | - Shruti V. Kabadi
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, 5001 Campus Drive, HFS-275, College Park, MD 20740, USA;
| | - Nicole C. Kleinstreuer
- National Institute of Environmental Health Sciences, National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, P.O. Box 12233, Research Triangle Park, NC 27709, USA;
| | - Annie Lumen
- U.S. Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA;
| | - Joanna Matheson
- U.S. Consumer Product Safety Commission, Division of Toxicology and Risk Assessment, 5 Research Place, Rockville, MD 20850, USA;
| | - Alicia Paini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
| | - Heather A. Pangburn
- Air Force Research Laboratory, 711 Human Performance Wing, 2729 R Street, Area B, Building 837, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Elijah J. Petersen
- U.S. Department of Commerce, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| | - Emily N. Reinke
- U.S. Army Public Health Center, 8252 Blackhawk Rd., Aberdeen Proving Ground, MD 21010, USA;
| | - Alexandre J. S. Ribeiro
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Nisha Sipes
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Lisa M. Sweeney
- UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH 45432, Assigned to Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH 45433, USA;
| | - John F. Wambaugh
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Ronald Wange
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, 10903 New Hampshire Avenue, Silver Spring, MD 20903, USA; (P.C.B.); (A.J.S.R.); (R.W.)
| | - Barbara A. Wetmore
- U.S. Environmental Protection Agency, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC 27711, USA; (N.S.); (J.F.W.); (B.A.W.)
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director for Science, 1600 Clifton Road, S102-2, Atlanta, GA 30333, USA
| |
Collapse
|
16
|
Estimation of Zorifertinib Metabolic Stability in Human Liver Microsomes Using LC–MS/MS. J Pharm Biomed Anal 2022; 211:114626. [DOI: 10.1016/j.jpba.2022.114626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022]
|
17
|
Attwa MW, Abdelhameed AS, Alsaif NA, Kadi AA, AlRabiah H. A validated LC-MS/MS analytical method for the quantification of pemigatinib: metabolic stability evaluation in human liver microsomes. RSC Adv 2022; 12:20387-20394. [PMID: 35919584 PMCID: PMC9277622 DOI: 10.1039/d2ra02885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Pemigatinib (PMB) is a small molecule inhibitor of fibroblast growth factor receptor 1 (FGFR1), FGFR2 and FGFR3. On April 17, 2020, the US Food and Drug Administration granted accelerated approval for PMB for the treatment of adults with previously treated, unresectable metastatic or locally advanced cholangiocarcinoma with a fibroblast growth factor receptor 2 (FGFR2) fusion or other rearrangement. PMB is considered the first targeted treatment for cholangiocarcinoma approved in the US. In this study, in silico prediction of PMB metabolic stability was done using the WhichP450 module of the StarDrop software package. Further, an LC-MS/MS analytical method was developed for PMB quantification in human liver microsomes (HLM) to experimentally assess metabolic stability. PMB and flavopiridol (FVL), used as an internal standard IS, were resolved using an isocratic mobile phase and a C18 stationary phase. The LC-MS/MS method showed linearity in the range of 5 to 500 ng mL−1 in an HLM matrix (R2 = 0.9995). The lower limit of quantification (LLOQ) was 5 ng mL−1, indicating sensitivity. The inter- and intra-day accuracy and precision were within a variability of 10, confirming the reproducibility of the method. The measured in vitro half-life and intrinsic clearance of PMB were 27.29 min and 25.40 μL min−1 mg−1, respectively. PMB showed a moderate extraction ratio suggesting good bioavailability. The developed analytical method is the first LC-MS/MS method specific for PMB quantification with application to metabolic stability assessment. PMB showed a moderate extraction ratio suggesting good bioavailability. The developed analytical method is the first LC-MS/MS method specific for PMB quantification with application to metabolic stability assessment.![]()
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Attwa MW, Abdelhameed AS, Kadi AA. LC-MS/MS Estimation of Rociletinib Levels in Human Liver Microsomes: Application to Metabolic Stability Estimation. Drug Des Devel Ther 2021; 15:3915-3925. [PMID: 34552321 PMCID: PMC8450377 DOI: 10.2147/dddt.s321330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Rociletinib (CO-1686; RLC) is a new, small molecule that is orally administered to inhibit mutant-selective covalent inhibitor of most epidermal growth factor receptor (EGFR)-mutated forms, including T790M, L858R, and exon 19 deletions, but not exon 20 insertions. Non-small-cell lung cancer (NSCLC) with a gene mutation that encodes EGFR is sensitive to approved EGFR inhibitors, but usually resistance develops, which is frequently mediated by T790M EGFR mutation. RLC is an EGFR inhibitor found to be active in preclinical models of EGFR-mutated NSCLC with or without T790M. METHODS In silico drug metabolism prediction of RLC was executed with the aid of the WhichP450 module (StarDrop software package) to verify its metabolic liability. Second, a fast, accurate, and competent LC-MS/MS assay was developed for RLC quantification to determine its metabolic stability. RLC and bosutinib (BOS) (internal standard; IS) were separated using an isocratic elution system with a C18 column (reversed stationary phase). RESULTS The developed LC-MS/MS analytical method showed linearity of 5-500 ng/mL with r2 ≥ 0.9998 in the human liver microsomes (HLMs) matrix. A limit of quantification of 4.6 ng/mL revealed the sensitivity of the analytical method, while the acquired inter- and intra-day accuracy and precision values below 4.63% inferred the method reproducibility. RLC metabolic stability estimation was calculated using intrinsic clearance (20.15 µL/min/mg) and in vitro half-life (34.39 min) values. CONCLUSION RLC exhibited a moderate extraction ratio indicative of good bioavailability. The developed analytical method herein is the first LC-MS/MS assay for RLC metabolic stability.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Mostafa GAE, Kadi AA, AlMasoud N, Attwa MW, Al-Shakliah NS, AlRabiah H. LC-MS/MS method for the quantification of the anti-cancer agent infigratinib: Application for estimation of metabolic stability in human liver microsomes. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122806. [PMID: 34325312 DOI: 10.1016/j.jchromb.2021.122806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022]
Abstract
Infigratinib (INF) is a novel small molecule, administered orally, which acts as a human fibroblast growth factor receptors (FGFRs) inhibitor. FGFRs are a family of receptor tyrosine kinases (RTK) reported to be upregulated in various tumor cell types. In 1 December 2020, BridgeBio Pharma Inc. announced FDA approval of INF as a New Drug Application, granting it Priority Review for the treatment of cholangiocarcinoma (CCA). Thus, the current study aimed to establish a validated LC-MS/MS method to estimate the INF concentration in the HLM matrix. In silico prediction of INF metabolism was done using the StarDrop® WhichP450™ module to verify its metabolic stability. An accurate and efficient LC-MS/MS analytical method was developed for INF metabolic stability evaluation. INF and duvelisib (DVB) (internal standard; IS) were eluted using an isocratic mobile phase with a C18 column as a stationary reversed phase. The established LC-MS/MS method showed a linear range over 5-500 ng/mL (r2 ≥ 0.9998) in human liver microsomes (HLMs). The sensitivity of the method was confirmed at its limit of quantification (4.71 ng/mL), and reproducibility was indicated by inter- and intra-day accuracy and precision (within 7.3%). The evaluation of INF metabolic stability was assessed, which reflected an intrinsic clearance of 23.6 µL/min/mg and in vitro half-life of 29.4 min. The developed approach in the current study is the first LC-MS/MS method for INF metabolic stability assessment. Application of the developed method in HLM in vitro studies suggests that INF has a moderate extraction ratio, indicating relatively good predicted oral bioavailability.
Collapse
Affiliation(s)
- Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Micro-analytical Laboratory, Applied Organic Chemistry Department, National Research Center, Dokki, Cairo, Egypt
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Students' University Hospital, Mansoura University, Mansoura 35516, Egypt
| | - Nasser S Al-Shakliah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haitham AlRabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
20
|
Attwa MW, Darwish HW, Al-Shakliah NS, Kadi AA. A Validated LC-MS/MS Assay for the Simultaneous Quantification of the FDA-Approved Anticancer Mixture (Encorafenib and Binimetinib): Metabolic Stability Estimation. Molecules 2021; 26:2717. [PMID: 34063139 PMCID: PMC8125647 DOI: 10.3390/molecules26092717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
The concurrent use of oral encorafenib (Braftovi, ENF) and binimetinib (Mektovi, BNB) is a combination anticancer therapy approved by the United States Food and Drug Administration (USFDA) for patients with BRAFV600E/V600K mutations suffering from metastatic or unresectable melanoma. Metabolism is considered one of the main pathways of drug elimination from the body (responsible for elimination of about 75% of known drugs), it is important to understand and study drug metabolic stability. Metabolically unstable compounds are not good as they required repetitive dosages during therapy, while very stable drugs may result in increasing the risk of adverse drug reactions. Metabolic stability of compounds could be examined using in vitro or in silico experiments. First, in silico metabolic vulnerability for ENF and BNB was investigated using the StarDrop WhichP450 module to confirm the lability of the drugs under study to liver metabolism. Second, we established an LC-MS/MS method for the simultaneous quantification of ENF and BNB applied to metabolic stability assessment. Third, in silico toxicity assessment of ENF and BNB was performed using the StarDrop DEREK module. Chromatographic separation of ENF, BNB, and avitinib (an internal standard) was achieved using an isocratic mobile phase on a Hypersil BDS C18 column. The linear range for ENF and BNB in the human liver microsome (HLM) matrix was 5-500 ng/mL (R2 ≥ 0.999). The metabolic stabilities were calculated using intrinsic clearance and in vitro half-life. Furthermore, ENF and BNB did not significantly influence each other's metabolic stability or metabolic disposition when used concurrently. These results indicate that ENF and BNB will slowly bioaccumulate after multiple doses.
Collapse
Affiliation(s)
- Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.W.A.); (N.S.A.-S.); (A.A.K.)
- Students’ University Hospital, The Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.W.A.); (N.S.A.-S.); (A.A.K.)
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Nasser S. Al-Shakliah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.W.A.); (N.S.A.-S.); (A.A.K.)
| | - Adnan A. Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.W.A.); (N.S.A.-S.); (A.A.K.)
| |
Collapse
|
21
|
Attwa MW, Abdelhameed AS, Al-Shakliah NS, Kadi AA. LC-MS/MS Estimation of the Anti-Cancer Agent Tandutinib Levels in Human Liver Microsomes: Metabolic Stability Evaluation Assay. Drug Des Devel Ther 2020; 14:4439-4449. [PMID: 33122888 PMCID: PMC7591096 DOI: 10.2147/dddt.s274118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/09/2020] [Indexed: 12/05/2022] Open
Abstract
PURPOSE Tandutinib (MLN518 or CT 53518) (TND) is a novel, oral, small-molecule inhibitor of type III receptor tyrosine kinases utilized for the treatment of acute myeloid leukemia (AML). MATERIALS AND METHODS In silico prediction of hepatic drug metabolism for TND was determined using the StarDrop® WhichP450™ module to confirm its metabolic liability. Second, an efficient and accurate LC-MS/MS method was established for TND quantification to evaluate metabolic stability. TND and entrectinib (ENC) (internal standard; IS) were resolved using an isocratic elution system with a reversed stationary phase (C8 column). RESULTS The established LC-MS/MS method exhibited linearity (5-500 ng/mL) with r2 ≥0.9999 in the human liver microsomes matrix. The method sensitivity was indicated by the limit of quantification (3.8 ng/mL), and reproducibility was revealed by inter- and intraday precision and accuracy (below 10.5%). TND metabolic stability estimation was calculated using intrinsic clearance (22.03 µL/min/mg) and in vitro half-life (29.0 min) values. CONCLUSION TND exhibited a moderate extraction ratio indicative of good bioavailability. According to the literature, the approach developed in the present study is the first established LC-MS/MS method for assessing TND metabolic stability.
Collapse
Affiliation(s)
- Mohamed W Attwa
- 1 Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Abdelhameed
- 1 Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nasser S Al-Shakliah
- 1 Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan A Kadi
- 1 Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Attwa MW, Kadi AA, Darwish HW. Metabolic Stability Assessment of Larotrectinib Using Liquid Chromatography Tandem Mass Spectrometry. Drug Des Devel Ther 2020; 14:111-119. [PMID: 32021096 PMCID: PMC6961173 DOI: 10.2147/dddt.s235934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/20/2019] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Larotrectinib (VITRAKVI) is an orally potent tropomyosin receptor kinase (Trk) inhibitor that acts by competitive inhibition of all corresponding receptor kinases. It demonstrated a marked response rate (75%) and robust anticancer activity in Trk fusion-positive patients. This response is independent of cancer type, age and gender. METHODS In this study, an efficient and accurate LC-MS/MS analytical method was developed for Larotrectinib (LRB) quantification in addition to evaluation of its metabolic stability. LRB and lapatinib (LTP) (which is chosen as an internal standard; IS) were eluted utilizing an isocratic mobile phase with a reversed phase elution system (C18 column). RESULTS AND DISCUSSION The linearity range of the established method was 5-500 ng/mL (r 2 ≥ 0.9999) in the human liver microsomes (HLMs) matrix. Various parameters were calculated to validate the method sensitivity (limit of quantification was 5 ng/mL) and reproducibility (inter and intra-day accuracy and precision were below 3% in all samples) of our methodology. For evaluation of LRB metabolic stability in HLMs matrix, in vitro half-life (48.8 min) and intrinsic clearance (14.19 µL/min/mg) were computed. CONCLUSION Accordingly, we can conclude that LRB is a moderate extraction ratio drug when compared with other tyrosine kinase inhibitors (TKIs). According to our knowledge, the discussed procedure in this study is the first LC-MS/MS analytical method for evaluating LRB metabolic stability.
Collapse
Affiliation(s)
- Mohamed W Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
- Students’ University Hospital, Mansoura University, Mansoura35516, Egypt
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh11451, Saudi Arabia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo11562, Egypt
| |
Collapse
|
23
|
Cohen Hubal EA, Wetmore BA, Wambaugh JF, El-Masri H, Sobus JR, Bahadori T. Advancing internal exposure and physiologically-based toxicokinetic modeling for 21st-century risk assessments. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:11-20. [PMID: 30116055 PMCID: PMC6760598 DOI: 10.1038/s41370-018-0046-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 05/22/2023]
Abstract
Scientifically sound, risk-informed evaluation of chemicals is essential to protecting public health. Systematically leveraging information from exposure, toxicology, and epidemiology studies can provide a holistic understanding of how real-world exposure to chemicals may impact the health of populations, including sensitive and vulnerable individuals and life-stages. Increasingly, public health policy makers are employing toxicokinetic (TK) modeling tools to integrate these data streams and predict potential human health impact. Development of a suite of tools for predicting internal exposure, including physiologically-based toxicokinetic (PBTK) models, is being driven by needs to address large numbers of data-poor chemicals efficiently, translate bioactivity, and mechanistic information from new in vitro test systems, and integrate multiple lines of evidence to enable scientifically sound, risk-informed decisions. New modeling approaches are being designed "fit for purpose" to inform specific decision contexts, with applications ranging from rapid screening of hundreds of chemicals, to improved prediction of risks during sensitive stages of development. New data are being generated experimentally and computationally to support these models. Progress to meet the demand for internal exposure and PBTK modeling tools will require transparent publication of models and data to build credibility in results, as well as opportunities to partner with decision makers to evaluate and build confidence in use of these for improved decisions that promote safe use of chemicals.
Collapse
Affiliation(s)
| | - Barbara A Wetmore
- National Exposure Research Laboratory (NERL), US EPA, Washington, USA
| | - John F Wambaugh
- National Center for Computational Toxicology (NCCT), US EPA, Washington, USA
| | - Hisham El-Masri
- National Health and Environmental Effects Laboratory (NHEERL), US EPA, Washington, USA
| | - Jon R Sobus
- National Exposure Research Laboratory (NERL), US EPA, Washington, USA
| | - Tina Bahadori
- National Center for Environmental Assessment (NCEA), US EPA, Washington, USA
| |
Collapse
|
24
|
Andrade EL, Bento AF, Cavalli J, Oliveira SK, Schwanke RC, Siqueira JM, Freitas CS, Marcon R, Calixto JB. Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies. Braz J Med Biol Res 2016; 49:e5646. [PMID: 27982281 PMCID: PMC5188860 DOI: 10.1590/1414-431x20165646] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/23/2016] [Indexed: 11/22/2022] Open
Abstract
The process of drug development involves non-clinical and clinical studies. Non-clinical studies are conducted using different protocols including animal studies, which mostly follow the Good Laboratory Practice (GLP) regulations. During the early pre-clinical development process, also known as Go/No-Go decision, a drug candidate needs to pass through several steps, such as determination of drug availability (studies on pharmacokinetics), absorption, distribution, metabolism and elimination (ADME) and preliminary studies that aim to investigate the candidate safety including genotoxicity, mutagenicity, safety pharmacology and general toxicology. These preliminary studies generally do not need to comply with GLP regulations. These studies aim at investigating the drug safety to obtain the first information about its tolerability in different systems that are relevant for further decisions. There are, however, other studies that should be performed according to GLP standards and are mandatory for the safe exposure to humans, such as repeated dose toxicity, genotoxicity and safety pharmacology. These studies must be conducted before the Investigational New Drug (IND) application. The package of non-clinical studies should cover all information needed for the safe transposition of drugs from animals to humans, generally based on the non-observed adverse effect level (NOAEL) obtained from general toxicity studies. After IND approval, other GLP experiments for the evaluation of chronic toxicity, reproductive and developmental toxicity, carcinogenicity and genotoxicity, are carried out during the clinical phase of development. However, the necessity of performing such studies depends on the new drug clinical application purpose.
Collapse
Affiliation(s)
- E L Andrade
- Centro de Inovação e Ensaios Pré-clínicos, Florianópolis, SC, Brasil
| | - A F Bento
- Centro de Inovação e Ensaios Pré-clínicos, Florianópolis, SC, Brasil
| | - J Cavalli
- Centro de Inovação e Ensaios Pré-clínicos, Florianópolis, SC, Brasil
| | - S K Oliveira
- Centro de Inovação e Ensaios Pré-clínicos, Florianópolis, SC, Brasil
| | - R C Schwanke
- Centro de Inovação e Ensaios Pré-clínicos, Florianópolis, SC, Brasil
| | - J M Siqueira
- Centro de Inovação e Ensaios Pré-clínicos, Florianópolis, SC, Brasil
| | - C S Freitas
- Centro de Inovação e Ensaios Pré-clínicos, Florianópolis, SC, Brasil
| | - R Marcon
- Centro de Inovação e Ensaios Pré-clínicos, Florianópolis, SC, Brasil
| | - J B Calixto
- Centro de Inovação e Ensaios Pré-clínicos, Florianópolis, SC, Brasil
| |
Collapse
|
25
|
Doe JE, Lander DR, Doerrer NG, Heard N, Hines RN, Lowit AB, Pastoor T, Phillips RD, Sargent D, Sherman JH, Young Tanir J, Embry MR. Use of the RISK21 roadmap and matrix: human health risk assessment of the use of a pyrethroid in bed netting. Crit Rev Toxicol 2015; 46:54-73. [PMID: 26517449 PMCID: PMC4732465 DOI: 10.3109/10408444.2015.1082974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The HESI-coordinated RISK21 roadmap and matrix are tools that provide a transparent method to compare exposure and toxicity information and assess whether additional refinement is required to obtain the necessary precision level for a decision regarding safety. A case study of the use of a pyrethroid, "pseudomethrin," in bed netting to control malaria is presented to demonstrate the application of the roadmap and matrix. The evaluation began with a problem formulation step. The first assessment utilized existing information pertaining to the use and the class of chemistry. At each stage of the step-wise approach, the precision of the toxicity and exposure estimates were refined as necessary by obtaining key data which enabled a decision on safety to be made efficiently and with confidence. The evaluation demonstrated the concept of using existing information within the RISK21 matrix to drive the generation of additional data using a value-of-information approach. The use of the matrix highlighted whether exposure or toxicity required further investigation and emphasized the need to address the default uncertainty factor of 100 at the highest tier of the evaluation. It also showed how new methodology such as the use of in vitro studies and assays could be used to answer the specific questions which arise through the use of the matrix. The matrix also serves as a useful means to communicate progress to stakeholders during an assessment of chemical use.
Collapse
Affiliation(s)
- John E Doe
- a Parker Doe Partnership LLP , Frodsham , Cheshire , UK
| | - Deborah R Lander
- b DuPont Haskell Global Centers for Health & Environmental Sciences , Newark , DE , USA
| | - Nancy G Doerrer
- c ILSI Health and Environmental Sciences Institute , Washington, DC , USA
| | - Nina Heard
- d Syngenta Crop Protection LLC , Greensboro , NC , USA
| | - Ronald N Hines
- e US Environmental Protection Agency, NHEERL, Research Triangle Park , USA
| | - Anna B Lowit
- f US Environmental Protection Agency, Office of Pesticide Programs , Washington, DC , USA
| | | | | | - Dana Sargent
- h Arysta LifeScience North America , Cary , NC , USA , and
| | | | | | - Michelle R Embry
- c ILSI Health and Environmental Sciences Institute , Washington, DC , USA
| |
Collapse
|
26
|
Graf JF, Scholz BJ, Zavodszky MI. BioDMET: a physiologically based pharmacokinetic simulation tool for assessing proposed solutions to complex biological problems. J Pharmacokinet Pharmacodyn 2012; 39:37-54. [PMID: 22161221 PMCID: PMC3258408 DOI: 10.1007/s10928-011-9229-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/13/2011] [Indexed: 01/29/2023]
Abstract
We developed a detailed, whole-body physiologically based pharmacokinetic (PBPK) modeling tool for calculating the distribution of pharmaceutical agents in the various tissues and organs of a human or animal as a function of time. Ordinary differential equations (ODEs) represent the circulation of body fluids through organs and tissues at the macroscopic level, and the biological transport mechanisms and biotransformations within cells and their organelles at the molecular scale. Each major organ in the body is modeled as composed of one or more tissues. Tissues are made up of cells and fluid spaces. The model accounts for the circulation of arterial and venous blood as well as lymph. Since its development was fueled by the need to accurately predict the pharmacokinetic properties of imaging agents, BioDMET is more complex than most PBPK models. The anatomical details of the model are important for the imaging simulation endpoints. Model complexity has also been crucial for quickly adapting the tool to different problems without the need to generate a new model for every problem. When simpler models are preferred, the non-critical compartments can be dynamically collapsed to reduce unnecessary complexity. BioDMET has been used for imaging feasibility calculations in oncology, neurology, cardiology, and diabetes. For this purpose, the time concentration data generated by the model is inputted into a physics-based image simulator to establish imageability criteria. These are then used to define agent and physiology property ranges required for successful imaging. BioDMET has lately been adapted to aid the development of antimicrobial therapeutics. Given a range of built-in features and its inherent flexibility to customization, the model can be used to study a variety of pharmacokinetic and pharmacodynamic problems such as the effects of inter-individual differences and disease-states on drug pharmacokinetics and pharmacodynamics, dosing optimization, and inter-species scaling. While developing a tool to aid imaging agent and drug development, we aimed at accelerating the acceptance and broad use of PBPK modeling by providing a free mechanistic PBPK software that is user friendly, easy to adapt to a wide range of problems even by non-programmers, provided with ready-to-use parameterized models and benchmarking data collected from the peer-reviewed literature.
Collapse
Affiliation(s)
- John F. Graf
- Computational Biology and Biostatistics Laboratory, General Electric Global Research Center, One Research Circle, Niskayuna, NY 12309 USA
| | - Bernhard J. Scholz
- Pervasive Decisioning Systems Laboratory, General Electric Global Research Center, Niskayuna, NY USA
| | - Maria I. Zavodszky
- Computational Biology and Biostatistics Laboratory, General Electric Global Research Center, One Research Circle, Niskayuna, NY 12309 USA
| |
Collapse
|
27
|
Jones HM, Gardner IB, Collard WT, Stanley PJ, Oxley P, Hosea NA, Plowchalk D, Gernhardt S, Lin J, Dickins M, Rahavendran SR, Jones BC, Watson KJ, Pertinez H, Kumar V, Cole S. Simulation of human intravenous and oral pharmacokinetics of 21 diverse compounds using physiologically based pharmacokinetic modelling. Clin Pharmacokinet 2011; 50:331-47. [PMID: 21456633 DOI: 10.2165/11539680-000000000-00000] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND The importance of predicting human pharmacokinetics during compound selection has been recognized in the pharmaceutical industry. To this end there are many different approaches that are applied. METHODS In this study we compared the accuracy of physiologically based pharmacokinetic (PBPK) methodologies implemented in GastroPlus™ with the one-compartment approach routinely used at Pfizer for human pharmacokinetic plasma concentration-time profile prediction. Twenty-one Pfizer compounds were selected based on the availability of relevant preclinical and clinical data. Intravenous and oral human simulations were performed for each compound. To understand any mispredictions, simulations were also performed using the observed clearance (CL) value as input into the model. RESULTS The simulation results using PBPK were shown to be superior to those obtained via traditional one-compartment analyses. In many cases, this difference was statistically significant. Specifically, the results showed that the PBPK approach was able to accurately predict passive distribution and absorption processes. Some issues and limitations remain with respect to the prediction of CL and active transport processes and these need to be improved to further increase the utility of PBPK modelling. A particular advantage of the PBPK approach is its ability to accurately predict the multiphasic shape of the pharmacokinetic profiles for many of the compounds tested. CONCLUSION The results from this evaluation demonstrate the utility of PBPK methodology for the prediction of human pharmacokinetics. This methodology can be applied at different stages to enhance the understanding of the compounds in a particular chemical series, guide experiments, aid candidate selection and inform clinical trial design.
Collapse
Affiliation(s)
- Hannah M Jones
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide RD, Sandwich, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kinetic modelling of in vitro cell-based assays to characterize non-specific bindings and ADME processes in a static and a perfused fluidic system. Toxicol Lett 2011; 205:310-9. [PMID: 21723928 DOI: 10.1016/j.toxlet.2011.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 11/23/2022]
Abstract
Recently, physiologically based perfusion in vitro systems have been developed to provide cell culture environment close to in vivo cell environment (e.g., fluidic conditions, organ interactions). In this work, we model and compare the fate of a chemical, benzo[a]pyrene (B[a]P), in a perfusion and a standard (static well-plate) system. These in vitro systems are composed of Caco-2 and HepG2 cells so as to mimic absorption across the small intestine and intestinal and hepatic metabolism. Compartmental models were developed and calibrated with B[a]P kinetics data in the culture medium to estimate the apparent permeability of Caco-2 cells, the in vitro biotransformation of B[a]P, as well as the different routes of loss by non-specific adsorption. Our results show that non-specific binding is the main process responsible for the depletion of B[a]P in the culture media: at steady state, only 40% and 24% of the total concentration of B[a]P are bioavailable in the static and perfused systems, respectively. We also showed that Caco-2 permeability in the perfused culture system is closer to in vivo conditions than the one obtained in the static system and that higher cellular metabolic activities are observed in static conditions. Perfused in vitro systems combined with kinetic modelling are promising tools for studying in vitro the different processes involved in the toxicokinetics of xenobiotics.
Collapse
|
29
|
Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 2011; 51:45-73. [PMID: 20854171 DOI: 10.1146/annurev-pharmtox-010510-100540] [Citation(s) in RCA: 428] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of physiologically-based pharmacokinetic (PBPK) modeling is coming of age in drug development and regulation, reflecting significant advances over the past 10 years in the predictability of key pharmacokinetic (PK) parameters from human in vitro data and in the availability of dedicated software platforms and associated databases. Specific advances and contemporary challenges with respect to predicting the processes of drug clearance, distribution, and absorption are reviewed, together with the ability to anticipate the quantitative extent of PK-based drug-drug interactions and the impact of age, genetics, disease, and formulation. The value of this capability in selecting and designing appropriate clinical studies, its implications for resource-sparing techniques, and a more holistic view of the application of PK across the preclinical/clinical divide are considered. Finally, some attention is given to the positioning of PBPK within the drug development and approval paradigm and its future application in truly personalized medicine.
Collapse
Affiliation(s)
- Malcolm Rowland
- Centre for Pharmacokinetic Research, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
30
|
Teitelbaum Z, Lave T, Freijer J, Cohen AF. Risk Assessment in Extrapolation of Pharmacokinetics from Preclinical Data to Humans. Clin Pharmacokinet 2010; 49:619-32. [DOI: 10.2165/11533760-000000000-00000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
31
|
Lavé T, Chapman K, Goldsmith P, Rowland M. Human clearance prediction: shifting the paradigm. Expert Opin Drug Metab Toxicol 2009; 5:1039-48. [DOI: 10.1517/17425250903099649] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Abstract
This review summarizes the most recent developments in and applications of physiologically based pharmacokinetic (PBPK) modeling methodology originating from both the pharmaceutical and environmental toxicology areas. It focuses on works published in the last 5 years, although older seminal papers have also been referenced. After a brief introduction to the field and several essential definitions, the main body of the text is structured to follow the major steps of a typical PBPK modeling exercise. Various applications of the methodology are briefly described. The major future trends and perspectives are outlined. The main conclusion from the review of the available literature is that PBPK modeling, despite its obvious potential and recent incremental developments, has not taken the place it deserves, especially in pharmaceutical and drug development sciences.
Collapse
Affiliation(s)
- Ivan Nestorov
- Zymogenetics Inc., 1201 Eastlake Avenue East, Seattle, Washington 98102, USA.
| |
Collapse
|