1
|
Rajabalinia S, Lotfian H, Hoford S, Wang M, Siegler MA, Lectka T, Dudding T. FON: An Innovative Fluorinated Group via Hydroetherification-Type Reactivity. Org Lett 2024. [PMID: 39690433 DOI: 10.1021/acs.orglett.4c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
An efficient strategy for preparing the novel O-difluoroalkylhydroxylamine fluorinated functional group, coined FON, is reported. This analogue of medicinally important β-phenethyl ether scaffolds in uniting gem-difluoro and N-O moieties is synthesized in one step via chemo- and regioselectivity metal-free hydroetherification-type additions. As shown, this unique mode of reactivity is realized for a diverse substrate scope and applied to gram-scale synthesis and site-selective deuterium incorporation. Lastly, a mechanistic understanding with implications in Brønsted acid catalysis is offered.
Collapse
Affiliation(s)
- Sanaz Rajabalinia
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Hedieh Lotfian
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Sabrina Hoford
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Muyuan Wang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street,Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street,Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street,Baltimore, Maryland 21218, United States
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
2
|
Sun Y, Pan Y, Chen X, Yu H, Han Y, Sun Q, Hou H, Zhu S. Visible-Light Photoredox-Catalyzed Radical-Polar Crossover 1,4-Hydrofluoromethylation of 1,3-Enynes. Org Lett 2024; 26:10399-10403. [PMID: 39565637 DOI: 10.1021/acs.orglett.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We report herein a visible-light photoredox-catalyzed 1,4-hydrofluoromethylation of terminal-alkene-derived 1,3-enynes with sodium fluoromethylsulfinate, providing an effective protocol to access a diversity of di- and trisubstituted allenes under mild conditions. The synthetic utility of the present protocol was demonstrated by a large-scale reaction as well as the synthetic derivatization of the allene product.
Collapse
Affiliation(s)
- Yuejie Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qiu Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Vandeputte MM, Glatfelter GC, Walther D, Layle NK, St Germaine DM, Ujváry I, Iula DM, Baumann MH, Stove CP. Characterization of novel nitazene recreational drugs: Insights into their risk potential from in vitro µ-opioid receptor assays and in vivo behavioral studies in mice. Pharmacol Res 2024; 210:107503. [PMID: 39521025 DOI: 10.1016/j.phrs.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
2-Benzylbenzimidazole derivatives or 'nitazenes' are increasingly present on the recreational drug market. Here, we report the synthesis and pharmacological characterization of 15 structurally diverse nitazenes that might be predicted to emerge or grow in popularity. This work expands the existing knowledge about 2-benzylbenzimidazole structure-activity relationships (SARs), while also helping stakeholders (e.g., forensic toxicologists, clinicians, policymakers) in their risk assessment and preparedness for the potential next generation of nitazenes. In vitro µ-opioid receptor (MOR) affinity was determined via competition radioligand (3[H]DAMGO) binding assays in rat brain tissue. MOR activation (potency and efficacy) was studied by means of a cell-based β-arrestin 2 recruitment assay. For seven nitazenes, including etonitazene, opioid-like pharmacodynamic effects (antinociception, locomotor activity, body temperature changes) were evaluated after subcutaneous administration in male C57BL/6 J mice. The results showed that all nitazenes bound to MOR with nanomolar affinities, and the functional potency of several of them was comparable to or exceeded that of fentanyl. In vivo, dose-dependent effects were observed for antinociception, locomotor activity, and body temperature changes in mice. SAR insights included the high opioid-like activity of methionitazene, iso-butonitazene, sec-butonitazene, and the etonitazene analogues 1-ethyl-pyrrolidinylmethyl N-desalkyl etonitazene and ethylene etonitazene. The most potent analogue of the panel across all functional assays was α'-methyl etonitazene. Taken together, through critical pharmacological evaluation, this work provides a framework for strengthened preparedness and risk assessments of current and future nitazenes that have the potential to cause harm to users.
Collapse
Affiliation(s)
- Marthe M Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| | - Grant C Glatfelter
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Donna Walther
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Nathan K Layle
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI 48108, USA.
| | | | | | - Donna M Iula
- Forensic Chemistry Division, Cayman Chemical Company, Ann Arbor, MI 48108, USA.
| | - Michael H Baumann
- Designer Drug Research Unit (DDRU), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
4
|
Troshkova N, Politanskaya L, Bagryanskaya I, Chuikov I, Wang J, Ilyina P, Mikhalski M, Esaulkova I, Volobueva A, Zarubaev V. Fluorinated 2-arylchroman-4-ones and their derivatives: synthesis, structure and antiviral activity. Mol Divers 2024; 28:3635-3660. [PMID: 38153637 DOI: 10.1007/s11030-023-10769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023]
Abstract
A number of new biologically interesting fluorinated 2-arylchroman-4-ones and their 3-arylidene derivatives were synthesized based on the p-toluenesulfonic acid-catalyzed one-pot reaction of 2-hydroxyacetophenones with benzaldehydes. It was found that obtained (E)-3-arylidene-2-aryl-chroman-4-ones reacted with malononitrile under base conditions to form 4,5-diaryl-4H,5H-pyrano[3,2-c]chromenes. The structures of the synthesized fluorinated compounds were confirmed by 1H, 19F, and 13C NMR spectral data, and for some representatives of heterocycles also using NOESY spectra and X-ray diffraction analysis. A large series of obtained flavanone derivatives as well as products of their modification (35 examples) containing from 1 to 12 fluorine atoms in the structure was tested in vitro for cytotoxicity in MDCK cell line and for antiviral activity against influenza A virus. Among the studied heterocycles 6,8-difluoro-2-(4-(trifluoromethyl)phenyl)chroman-4-one (IC50 = 6 μM, SI = 150) exhibited the greatest activity against influenza A/Puerto Rico/8/34 (H1N1) virus. Moreover, this compound appeared active against phylogenetically distinct influenza viruses, A(H5N2) and influenza B (SI's of 53 and 42, correspondingly). The data obtained suggest that the fluorinated derivatives of 2-arylchroman-4-ones are prospective scaffolds for further development of potent anti-influenza antivirals.
Collapse
Affiliation(s)
- Nadezhda Troshkova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Larisa Politanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090.
| | - Irina Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Igor Chuikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Jiaying Wang
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk, Russian Federation, 630090
| | - Polina Ilyina
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Mikhail Mikhalski
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Iana Esaulkova
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Alexandrina Volobueva
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Vladimir Zarubaev
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| |
Collapse
|
5
|
Liu R, Yang R, Jiang Q, Shao B. Fluorinated liquid-crystal monomers in infant formulas and implication for health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124502. [PMID: 38964644 DOI: 10.1016/j.envpol.2024.124502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Fluorinated liquid-crystal monomers (FLCMs), a new class of potential persistent, bioaccumulative and toxic (PBT) emerging pollutants, are extensively utilized in the display panel of various electronic devices. These compounds have been found in various environmental matrixes and dietary. Our previous studies have documented their ubiquitous occurrence in high fat foodstuffs. Infants, a vulnerable group, are more susceptible to the impacts of these pollutants compared to adults. Herein, we provided an assessment of the health risks posed by FLCMs to infants, focusing on their exposure through infant formula. The presence of FLCMs was detected in all infant formulas, with median concentration of 16.5 ng/g dry weight (dw) and the 95th percentile concentration of 65.7 ng/g dw. The most prevalent pollutant in these formulas was 2-fluoro-4-[4'-propyl-1,1'-bi(cyclohexyl)-4-yl] phenyl trifluoromethyl ether (FPrBP), with median and a 95th percentile concentration of 12.2 ng/g dw and 23.8 ng/g dw, accounting for 55.2% to the total FLCMs. Infants aged 0-6 months had the highest estimated daily intakes (EDIs) of FLCMs, with the EDImedian of 267 ng/kg bw/day. FPrBP and 4-[trans-4-(trans-4-Propylcyclohexyl) cyclohexyl]-1-trifluoromethoxybenzene (PCTB) together made up 83.3% of the total EDIs in median exposure scenario of 0-6 months infant. The highest EDI value was 1.30 × 103 ng/kg bw/day, 77.1% of which was attributed to a combination of FPrBP, 4″-ethyl-2'-fluoro-4-propyl-1,1':4',1″-terphenyl (EFPT), 2-[4'-[difluoro(3,4,5-trifluoro-2-methyl-phenoxy)methyl]-3',5'-difluoro-[1,1'-biphenyl]-4-yl]-5-ethyl-tetrahydro-pyran (DTMPMDP), 4-[Difluoro-(3,4,5-trifluoro-2-methyl-phenoxy)-methyl]-3,5-difluoro-4'-propyl-1,1-biphenyl (DTMPMDB), 2,3-difluoro-1-methyl-4-[(trans, trans)-4'-pentyl[1,1'-bicyclohexyl]-4-yl]benzene (DMPBB) and PCTB. It's worth noting that FLCMs have higher exposure risk. Based on the threshold of toxicological concern (TTC) method, the EDImedian of FPrBP (183 ng/kg bw/day) and FPCB (3.27 ng/kg bw/day) were beyond their TTC values (2.5 ng/kg bw/day) in 0-6 months infant, implying their prospective health risk.
Collapse
Affiliation(s)
- Runqing Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Runhui Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Qian Jiang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
6
|
Wang Y, Li SJ, Jiang F, Lan Y, Wang X. Making Full Use of TMSCF 3: Deoxygenative Trifluoromethylation/Silylation of Amides. J Am Chem Soc 2024; 146:19286-19294. [PMID: 38956888 DOI: 10.1021/jacs.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As one of the most powerful trifluoromethylation reagents, (trifluoromethyl)trimethylsilane (TMSCF3) has been widely used for the synthesis of fluorine-containing molecules. However, to the best of our knowledge, the simultaneous incorporation of both TMS- and CF3- groups of this reagent onto the same carbon of the products has not been realized. Herein, we report an unprecedented SmI2/Sm promoted deoxygenative difunctionalization of amides with TMSCF3, in which both silyl and trifluoromethyl groups are incorporated into the final product, yielding α-silyl-α-trifluoromethyl amines with high efficiency. Notably, the silyl group could be further transformed into other functional groups, providing a new method for the synthesis of α-quaternary α-CF3-amines.
Collapse
Affiliation(s)
- Yuxiao Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shi-Jun Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Feng Jiang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Lan
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Khan MF, Hof C, Niemcova P, Murphy CD. Biotransformation of fluorinated drugs and xenobiotics by the model fungus Cunninghamella elegans. Methods Enzymol 2024; 696:251-285. [PMID: 38658083 DOI: 10.1016/bs.mie.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Some species of the genus Cunninghamella (C. elegans, C. echinulata and C. blaskesleeana) produce the same phase I and phase II metabolites when incubated with xenobiotics as mammals, and thus are considered microbial models of mammalian metabolism. This had made these fungi attractive for metabolism studies with drugs, pesticides and environmental pollutants. As a substantial proportion of pharmaceuticals and agrochemicals are fluorinated, their biotransformation has been studied in Cunninghamella fungi and C. elegans in particular. This article details the methods employed for cultivating the fungi in planktonic and biofilm cultures, and extraction and analysis of fluorinated metabolites. Furthermore, protocols for the heterologous expression of Cunninghamella cytochromes P450 (CYPs), which are the enzymes associated with phase I metabolism, are described.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Carina Hof
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Patricie Niemcova
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
He W, Cui Y, Yang H, Gao J, Zhao Y, Hao N, Li Y, Zhang M. Aquatic toxicity, ecological effects, human exposure pathways and health risk assessment of liquid crystal monomers. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132681. [PMID: 37801980 DOI: 10.1016/j.jhazmat.2023.132681] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Liquid crystal monomers (LCMs), one of the key materials for liquid crystal displays, have been considered as emerging pollutants in recent years. However, the environmental behaviors of LCMs have not yet been well investigated. The toxicity data of 1173 LCMs were calculated by integrated computational simulation methods in this study. It showed that 64.6% LCMs exhibited PBT (persistent, bioaccumulative, and toxic) properties. Based on the results, 1173 LCMs were identified as molecules possessing the highest level of acute toxicity to aquatic organisms. Among which, and a human health risk priority control list about LCMs was generated in this study, among which 435 were classified as requiring priority control LCMs. It was confirmed that LCMs could eventually accumulate in the human body along the aquatic food chain or penetrate the bloodstream through the dermis, thereby causing harm to health by identifying the exposure pathways of LCMs in humans. Additionally, the electronegativity of the side chain group of LCMs is the main factor causing toxicity differences; therefore, the LCMs containing halogens presented significant acute and chronic toxic effects. This study provided a more comprehensive understanding of LCMs for the public and scientific strategies for controlling LCMs.
Collapse
Affiliation(s)
- Wei He
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuhan Cui
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Jiaxuan Gao
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yu Li
- MOE Key Laboratory of Resources Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Meng Zhang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
9
|
Shim SY. Late-Stage C-H Activation of Drug (Derivative) Molecules with Pd(ll) Catalysis. Chemistry 2023; 29:e202302620. [PMID: 37846586 DOI: 10.1002/chem.202302620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
This review comprehensively analyses representative examples of Pd(II)-catalyzed late-stage C-H activation reactions and demonstrates their efficacy in converting C-H bonds at multiple positions within drug (derivative) molecules into diverse functional groups. These transformative reactions hold immense potential in medicinal chemistry, enabling the efficient and selective functionalization of specific sites within drug molecules, thereby enhancing their pharmacological activity and expanding the scope of potential drug candidates. Although notable articles have focused on late-stage C-H functionalization reactions of drug-like molecules using transition-metal catalysts, reviews specifically focusing on late-stage C-H functionalization reactions of drug (derivative) molecules using Pd(II) catalysts are required owing to their prominence as the most widely utilized metal catalysts for C-H activation and their ability to introduce a myriad of functional groups at specific C-H bonds. The utilization of Pd-catalyzed C-H activation methodologies demonstrates impressive success in introducing various functional groups, such as cyano (CN), fluorine (F), chlorine (Cl), aromatic rings, olefin, alkyl, alkyne, and hydroxyl groups, to drug (derivative) molecules with high regioselectivity and functional-group tolerance. These breakthroughs in late-stage C-H activation reactions serve as invaluable tools for drug discovery and development, thereby offering strategic options to optimize drug candidates and drive the exploration of innovative therapeutic solutions.
Collapse
Affiliation(s)
- Su Yong Shim
- Infectious Diseases Therapeutic Research Center Division of Medicinal Chemistry and Pharmacology Korea Research Institute of Chemical Technology (KRICT) KRICT School, University of Science and Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
10
|
Chiodi D, Ishihara Y. "Magic Chloro": Profound Effects of the Chlorine Atom in Drug Discovery. J Med Chem 2023; 66:5305-5331. [PMID: 37014977 DOI: 10.1021/acs.jmedchem.2c02015] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chlorine is one of the most common atoms present in small-molecule drugs beyond carbon, hydrogen, nitrogen, and oxygen. There are currently more than 250 FDA-approved chlorine-containing drugs, yet the beneficial effect of the chloro substituent has not yet been reviewed. The seemingly simple substitution of a hydrogen atom (R = H) with a chlorine atom (R = Cl) can result in remarkable improvements in potency of up to 100,000-fold and can lead to profound effects on pharmacokinetic parameters including clearance, half-life, and drug exposure in vivo. Following the literature terminology of the "magic methyl effect" in drugs, the term "magic chloro effect" has been coined herein. Although reports of 500-fold or 1000-fold potency improvements are often serendipitous discoveries that can be considered "magical" rather than planned, hypotheses made to explain the magic chloro effect can lead to lessons that accelerate the cycle of drug discovery.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, California 92121, United States
| |
Collapse
|
11
|
Popov AV, Kobelevskaya VA, Borodin NI, Zinchenko SV. α,β-Unsaturated CF3-ketones via secondary amine salts-catalyzed aldol condensation of 1,1,1-trufluoroacetone with aromatic and heteroaromatic aldehydes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
12
|
Yadav T, Vishwkarma A, Mandal M, Karmakar I, Pathak A, Brahmachari G, Tripathi P, Maddheshiya A, Yadav N, Mahapatra C. Molecular modeling, vibrational dynamics and NBO analysis of a synthetic bio-relevant warfarin analog. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
13
|
Messara A, Panossian A, Mikami K, Hanquet G, Leroux FR. Direct Deprotonative Functionalization of α,α-Difluoromethyl Ketones using a Catalytic Organosuperbase. Angew Chem Int Ed Engl 2023; 62:e202215899. [PMID: 36602033 DOI: 10.1002/anie.202215899] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
The deprotonative functionalization of α,α-difluoromethyl ketones is described herein. Using a catalytic organosuperbase and a silane additive, the corresponding difluoroenolate could be generated and trapped with aldehydes to deliver various α,α-difluoro-β-hydroxy ketones in high yields. This new strategy tolerates numerous functional groups and represents the access to the difluoroenolate by direct deprotonation of the difluoromethyl unit. The diastereoselective version of the reaction was also investigated with d.r. up to 93 : 7. Several transformations were performed to demonstrate the synthetic potential of these α,α-difluoro-β-hydroxy ketones. In addition, this method has been extended to the use of other electrophiles such as imines and chalcogen derivatives, and a difluoromethyl sulfoxide as nucleophile, thus leading to a diversity of difluoromethylene compounds.
Collapse
Affiliation(s)
- Amélia Messara
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Armen Panossian
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Koichi Mikami
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, 152-8552, Tokyo, Japan
| | - Gilles Hanquet
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| |
Collapse
|
14
|
Khan MF, Murphy CD. Fluorotelomer alcohols are efficiently biotransformed by Cunninghamella elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23613-23623. [PMID: 36327087 DOI: 10.1007/s11356-022-23901-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Cunninghamella elegans is a well-studied fungus that biotransforms a range of xenobiotics owing to impressive cytochrome P450 (CYP) activity. In this paper, we report the biotransformation of 6:2 fluorotelomer alcohol (6:2 FTOH) by the fungus, yielding a range of fluorinated products that were detectable by fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Upon incubation with the pre-grown cultures, the substrate (100 mg/L) was completely consumed within 48 h, which is faster biotransformation than other fungi that have hitherto been studied. The main metabolite formed was the 5:3 fluorotelomer carboxylic acid (5:3 FTCA), which accumulated in the culture supernatant. When the cytochrome P450 inhibitor 1-aminobenzotriazole was included in the culture flasks, there was no biotransformation of 6:2 FTOH, indicating that these enzymes are key to the catalysis. Furthermore, when exogenous 5:3 FTCA was added to the fungus, the standard biotransformation of the drug flurbiprofen was inhibited, strongly suggesting that the main fluorotelomer alcohol biotransformation product inhibits CYP activity and accounts for its accumulation.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
15
|
Sun Y, Zhao B, Wang Y, Chen Z, Zhang H, Qu L, Zhao Y, Song J. Optimization of potential non-covalent inhibitors for the SARS-CoV-2 main protease inspected by a descriptor of the subpocket occupancy. Phys Chem Chem Phys 2022; 24:29940-29951. [PMID: 36468652 DOI: 10.1039/d2cp03681a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The main protease is regarded as an essential drug target for treating Coronavirus Disease 2019. In the present study, 13 marketed drugs were investigated to explore the possible binding mechanism, utilizing molecular docking, molecular dynamics simulation, and MM-PB(GB)SA binding energy calculations. Our results suggest that fusidic acid, polydatin, SEN-1269, AZD6482, and UNC-2327 have high binding affinities of more than 23 kcal mol-1. A descriptor was defined for the energetic occupancy of the subpocket, and it was found that S4 had a low occupancy of less than 10% on average. The molecular optimization of ADZ6482 via reinforcement learning algorithms was carried out to screen out three lead compounds, in which slight structural changes give more considerable binding energies and an occupancy of the S4 subpocket of up to 43%. The energetic occupancy could be a useful descriptor for evaluating the local binding affinity for drug design.
Collapse
Affiliation(s)
- Yujia Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.
| | - Bodi Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.
| | - Yuqi Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.
| | - Zitong Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.
| | - Huaiyu Zhang
- Institute of Computational Quantum Chemistry, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China
| | - Lingbo Qu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno - Engineering, Henan University, Kaifeng, Henan, 475000, P. R. China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.
| |
Collapse
|
16
|
Tian X, Suarez D, Thomson D, Li W, King EA, LaFrance L, Boehm J, Barton L, Di Marco C, Martyr C, Thalji R, Medina J, Knight S, Heerding D, Gao E, Nartey E, Cecconie T, Nixon C, Zhang G, Berrodin TJ, Phelps C, Patel A, Bai X, Lind K, Prabhu N, Messer J, Zhu Z, Shewchuk L, Reid R, Graves AP, McHugh C, Mangatt B. Discovery of Proline-Based p300/CBP Inhibitors Using DNA-Encoded Library Technology in Combination with High-Throughput Screening. J Med Chem 2022; 65:14391-14408. [DOI: 10.1021/acs.jmedchem.2c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xinrong Tian
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Dominic Suarez
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Douglas Thomson
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - William Li
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Elizabeth A. King
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Louis LaFrance
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jeffrey Boehm
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Linda Barton
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christina Di Marco
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Cuthbert Martyr
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Reema Thalji
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jesus Medina
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Steven Knight
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Dirk Heerding
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Enoch Gao
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Eldridge Nartey
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ted Cecconie
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christopher Nixon
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Guofeng Zhang
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Thomas J. Berrodin
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christopher Phelps
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Amish Patel
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Xiaopeng Bai
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Ken Lind
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Ninad Prabhu
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jeffrey Messer
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Zhengrong Zhu
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Lisa Shewchuk
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rob Reid
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Alan P. Graves
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Charles McHugh
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Biju Mangatt
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
17
|
Sheng C, Ling Z, Ahmad T, Xie F, Zhang W. Copper‐Catalyzed Regioselective [3+3] Annulations of Alkynyl Ketimines with
α
‐Cyano Ketones: the Synthesis of Polysubstituted 4
H
‐Pyran Derivatives with a CF
3
‐Containing Quaternary Center. Chemistry 2022; 28:e202200128. [DOI: 10.1002/chem.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Cheng Sheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zheng Ling
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tanveer Ahmad
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fang Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- College of Chemistry Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
18
|
Messara A, Vanthuyne N, Diter P, Elhabiri M, Panossian A, Hanquet G, Magnier E, Leroux FR. Aryl Fluoroalkyl Sulfoxides: Optical Stability and p
K
a
Measurement. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amélia Messara
- Université de Strasbourg, Université de Haute-Alsace CNRS, UMR 7042-LIMA, ECPM 25 rue Becquerel Strasbourg 67087 France
| | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, Centrale Marseille, UMR 7313-iSm2 52 Avenue Escadrille Normandie Niemen Marseille 13013 France
| | - Patrick Diter
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles 45 avenue des Etats-Unis Versailles 78035 France
| | - Mourad Elhabiri
- Université de Strasbourg, Université de Haute-Alsace CNRS, UMR 7042-LIMA, ECPM 25 rue Becquerel Strasbourg 67087 France
| | - Armen Panossian
- Université de Strasbourg, Université de Haute-Alsace CNRS, UMR 7042-LIMA, ECPM 25 rue Becquerel Strasbourg 67087 France
| | - Gilles Hanquet
- Université de Strasbourg, Université de Haute-Alsace CNRS, UMR 7042-LIMA, ECPM 25 rue Becquerel Strasbourg 67087 France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles 45 avenue des Etats-Unis Versailles 78035 France
| | - Frédéric R. Leroux
- Université de Strasbourg, Université de Haute-Alsace CNRS, UMR 7042-LIMA, ECPM 25 rue Becquerel Strasbourg 67087 France
| |
Collapse
|
19
|
Khan MF, Murphy CD. Cunninghamella spp. produce mammalian-equivalent metabolites from fluorinated pyrethroid pesticides. AMB Express 2021; 11:101. [PMID: 34236510 PMCID: PMC8266954 DOI: 10.1186/s13568-021-01262-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022] Open
Abstract
Cunninghamella spp. are fungi that are routinely used to model the metabolism of drugs. In this paper we demonstrate that they can be employed to generate mammalian-equivalent metabolites of the pyrethroid pesticides transfluthrin and β-cyfluthrin, both of which are fluorinated. The pesticides were incubated with grown cultures of Cunninghamella elegans, C. blakesleeana and C. echinulata and the biotransformation monitored using fluorine-19 nuclear magnetic resonance spectroscopy. Transfluthrin was initially absorbed in the biomass, but after 72 h a new fluorometabolite appeared in the supernatant; although all three species yielded this compound, it was most prominent in C. blakesleeana. In contrast β-cyfluthrin mostly remained in the fungal biomasss and only minor biotransformation was observed. Gas chromatography-mass spectrometry (GC-MS) analysis of culture supernatant extracts revealed the identity of the fluorinated metabolite of transfluthrin to be tetrafluorobenzyl alcohol, which arose from the cytochrome P450-catalysed cleavage of the ester bond in the pesticide. The other product of this hydrolysis, dichlorovinyl-2,2-dimethylcyclopropane carboxylic acid, was also detected by GC-MS and was a product of β-cyfluthrin metabolism too. Upon incubation with rat liver microsomes the same products were detected, demonstrating that the fungi can be used as models of mammalian metabolism of fluorinated pesticides.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Snoch W, Wnuk D, Witko T, Staroń J, Bojarski AJ, Jarek E, Plou FJ, Guzik M. In Search of Effective Anticancer Agents-Novel Sugar Esters Based on Polyhydroxyalkanoate Monomers. Int J Mol Sci 2021; 22:7238. [PMID: 34281292 PMCID: PMC8268987 DOI: 10.3390/ijms22137238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the deadliest illness globally. Searching for new solutions in cancer treatments is essential because commonly used mixed, targeted and personalized therapies are sometimes not sufficient or are too expensive for common patients. Sugar fatty acid esters (SFAEs) are already well-known as promising candidates for an alternative medical tool. The manuscript brings the reader closer to methods of obtaining various SFAEs using combined biological, chemical and enzymatic methods. It presents how modification of SFAE's hydrophobic chains can influence their cytotoxicity against human skin melanoma and prostate cancer cell lines. The compound's cytotoxicity was determined by an MTT assay, which followed an assessment of SFAEs' potential metastatic properties in concentrations below IC50 values. Despite relatively high IC50 values (63.3-1737.6 μM) of the newly synthesized SFAE, they can compete with other sugar esters already described in the literature. The chosen bioactives caused low polymerization of microtubules and the depolymerization of actin filaments in nontoxic levels, which suggest an apoptotic rather than metastatic process. Altogether, cancer cells showed no propensity for metastasis after treating them with SFAE. They confirmed that lactose-based compounds seem the most promising surfactants among tested sugar esters. This manuscript creates a benchmark for creation of novel anticancer agents based on 3-hydroxylated fatty acids of bacterial origin.
Collapse
Affiliation(s)
- Wojciech Snoch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (W.S.); (T.W.); (E.J.)
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
| | - Tomasz Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (W.S.); (T.W.); (E.J.)
| | - Jakub Staroń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.S.); (A.J.B.)
| | - Andrzej J. Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (J.S.); (A.J.B.)
| | - Ewelina Jarek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (W.S.); (T.W.); (E.J.)
| | - Francisco J. Plou
- Instituto de Catalisis y Petroleoquimica, CSIC (Spanish National Research Council), Calle de Marie Curie, 2, 28049 Madrid, Spain;
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (W.S.); (T.W.); (E.J.)
| |
Collapse
|
21
|
Richardson P. Applications of fluorine to the construction of bioisosteric elements for the purposes of novel drug discovery. Expert Opin Drug Discov 2021; 16:1261-1286. [PMID: 34074189 DOI: 10.1080/17460441.2021.1933427] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction There continues to be an exponential rise in the number of small molecule drugs that contain either a fluorine atom or a fluorinated fragment. While the unique properties of fluorine enable the precise modulation of a molecule's physicochemical properties, strategic bioisosteric replacement of fragments with fluorinated moieties represents an area of significant growth.Areas covered This review discusses the strategic employment of fluorine substitution in the design and development of bioisosteres in medicinal chemistry. In addition, the classic exploitation of trifluoroethylamine group as an amide bioisostere is discussed. In each of the case studies presented, emphasis is placed on the context-dependent influence of the fluorinated fragment on the overall properties/binding of the compound of interest.Expert opinion Whereas utilization of bioisosteric replacements to modify molecular structures is commonplace within drug discovery, the overarching lesson to be learned is that the chances of success with this strategy significantly increase as the knowledge of the structure/environment of the biological target grows. Coupled to this, breakthroughs and learnings achieved using bioisosteres within a specific program are context-based, and though may be helpful in guiding future intuition, will not necessarily be directly translated to future programs. Another important point is to bear in mind what implications a structural change based on a bioisosteric replacement will have on the candidate molecule. Finally, the development of new methods and reagents for the controlled regioselective introduction of fluorine and fluorinated moieties into biologically relevant compounds particularly in drug discovery remains a contemporary challenge in organic chemistry.
Collapse
|
22
|
Yu HM, Li CY, Liu SW, Yang CH, Chang Y. Copper-mediated nucleophilic radiofluorination of [ 18 F]β-CFT for positron emission tomography imaging of dopamine transporter. J Labelled Comp Radiopharm 2021; 64:228-236. [PMID: 33570188 DOI: 10.1002/jlcr.3905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/11/2022]
Abstract
[18 F]β-CFT is a positron emission tomography (PET) ligand for imaging of dopamine transporter. It was proved to be a sensitive PET marker to detect presynaptic dopaminergic hypofunction in Parkinson's disease. In recent years, copper-mediated 18 F-fluorination of aryl boronic esters has been successful in some molecules containing aromatic groups. In this study, we describe the novel synthetic strategy of [18 F]β-CFT by copper-mediated nucleophilic radiofluorination with pinacol-derived aryl boronic esters upon reaction with [18 F]KF/K222 and Cu (OTf)2 (py)4 . The radiolabeling protocol was optimized with [18 F]fluoride elution method and amount of copper catalyst used. [18 F]β-CFT is obtained from boronic ester precursors in 2.2% to 10.6% non-isolated radiochemical yield (RCY). Purified [18 F]β-CFT with >99% radiochemical purity (RCP) and high molar activity was obtained in validation runs. The radiolabeling procedure is straightforward and can easily be adapted for clinical use.
Collapse
Affiliation(s)
- Hung-Man Yu
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | - Ching-Yun Li
- Chemistry Division, Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | - Shiu-Wen Liu
- Chemistry Division, Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | - Chun-Hung Yang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| | - Yu Chang
- Chemistry Division, Institute of Nuclear Energy Research, Taoyuan City, Taiwan
| |
Collapse
|
23
|
Wu K, Michalski A, Cortes D, Rozenberg D, Mathur S. Glucocorticoid-induced myopathy in people with asthma: a systematic review. J Asthma 2021; 59:1396-1409. [PMID: 33951991 DOI: 10.1080/02770903.2021.1926488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To review the current literature on the evidence and the underlying characteristics of glucocorticoids (type, dosage, and duration) associated with myopathy in asthma. DATA SOURCES Four electronic databases were searched to October 19, 2020. STUDY SELECTION Inclusion criteria: adults or adolescents with asthma, taking systemic glucocorticoids, and measures of muscle impairments. RESULTS Nine studies met the eligibility criteria. The methodologic quality of most studies was fair or good. Two studies reported significantly lower inspiratory muscle function in outpatients taking daily oral glucocorticoids (≥10 mg), but one study reported no such difference. No differences was found in limb muscle strength in one study. Only 11-36% patients with acute exacerbation taking glucocorticoids intravenously suffered from limb muscle weakness during/after critical care admissions. Two studies reported significant associations between dosage of oral glucocorticoid use and inspiratory and limb muscle function, whereas seven studies did not find any significant correlations among the characteristics of systemic glucocorticoids and myopathy. Two studies comparing people with non-glucocorticoid dependent asthma taking inhaled glucocorticoid and healthy people did not find any significant differences in their inspiratory muscle strength and endurance. CONCLUSIONS There were limited studies and inconsistent results on glucocorticoid-induced myopathy in people with asthma, and its association with the characteristics of glucocorticoids use. We recommended future studies should use a commonly accepted operational definition of myopathy, utilize a cohort study design, measure the cumulative dosage of glucocorticoids, and integrate possible confounding factors in the analysis.
Collapse
Affiliation(s)
- Kenneth Wu
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Respirology, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anna Michalski
- Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Heart, Lung, and Vascular Program, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Daniel Cortes
- Department of Pharmacy, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Dmitry Rozenberg
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sunita Mathur
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Physical Therapy, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chemical Aspects of Human and Environmental Overload with Fluorine. Chem Rev 2021; 121:4678-4742. [PMID: 33723999 PMCID: PMC8945431 DOI: 10.1021/acs.chemrev.0c01263] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/24/2022]
Abstract
Over the last 100-120 years, due to the ever-increasing importance of fluorine-containing compounds in modern technology and daily life, the explosive development of the fluorochemical industry led to an enormous increase of emission of fluoride ions into the biosphere. This made it more and more important to understand the biological activities, metabolism, degradation, and possible environmental hazards of such substances. This comprehensive and critical review focuses on the effects of fluoride ions and organofluorine compounds (mainly pharmaceuticals and agrochemicals) on human health and the environment. To give a better overview, various connected topics are also discussed: reasons and trends of the advance of fluorine-containing pharmaceuticals and agrochemicals, metabolism of fluorinated drugs, withdrawn fluorinated drugs, natural sources of organic and inorganic fluorine compounds in the environment (including the biosphere), sources of fluoride intake, and finally biomarkers of fluoride exposure.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Loránd Kiss
- University
of Szeged, Institute of Pharmaceutical Chemistry
and Interdisciplinary Excellence Centre, Eötvös u. 6, 6720 Szeged, Hungary
| | - Haibo Mei
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Attila Márió Remete
- University
of Szeged, Institute of Pharmaceutical Chemistry
and Interdisciplinary Excellence Centre, Eötvös u. 6, 6720 Szeged, Hungary
| | - Maja Ponikvar-Svet
- Department
of Inorganic Chemistry and Technology, Jožef
Stefan Institute, Jamova
cesta 39, 1000 Ljubljana, Slovenia
| | - Daniel Mark Sedgwick
- Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Burjassot, Valencia Spain
| | - Raquel Roman
- Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Burjassot, Valencia Spain
| | - Santos Fustero
- Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Burjassot, Valencia Spain
| | - Hiroki Moriwaki
- Hamari
Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka 559-0034, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
25
|
Onyeagusi CI, Malcolmson SJ. Strategies for the Catalytic Enantioselective Synthesis of α-Trifluoromethyl Amines. ACS Catal 2020; 10:12507-12536. [PMID: 34306806 PMCID: PMC8302206 DOI: 10.1021/acscatal.0c03569] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The exploitation of the α-trifluoromethylamino group as an amide surrogate in peptidomimetics and drug candidates has been on the rise. In a large number of these cases, this moiety bears stereochemistry with the stereochemical identity having important consequences on numerous molecular properties, such as the potency of the compound. Yet, the majority of stereoselective syntheses of α-CF3 amines rely on diastereoselective couplings with chiral reagents. Concurrent with the rapid expansion of fluorine into pharmaceuticals has been the development of catalytic enantioselective means of preparing α-trifluoromethyl amines. In this work, we outline the strategies that have been employed for accessing these enantioenriched amines, including normal polarity approaches and several recent developments in imine umpolung transformations.
Collapse
Affiliation(s)
- Chibueze I Onyeagusi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
Synthesis, biological evaluation and molecular docking studies of novel thiopyrimidine analogue as apoptotic agent with potential anticancer activity. Bioorg Chem 2020; 104:104249. [DOI: 10.1016/j.bioorg.2020.104249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
|
27
|
Costa PC, Barsottini MR, Vieira ML, Pires BA, Evangelista JS, Zeri AC, Nascimento AF, Silva JS, Carazzolle MF, Pereira GA, Sforça ML, Miranda PC, Rocco SA. N-Phenylbenzamide derivatives as alternative oxidase inhibitors: Synthesis, molecular properties, 1H-STD NMR, and QSAR. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Johnson BM, Shu YZ, Zhuo X, Meanwell NA. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J Med Chem 2020; 63:6315-6386. [PMID: 32182061 DOI: 10.1021/acs.jmedchem.9b01877] [Citation(s) in RCA: 333] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applications of fluorine in drug design continue to expand, facilitated by an improved understanding of its effects on physicochemical properties and the development of synthetic methodologies that are providing access to new fluorinated motifs. In turn, studies of fluorinated molecules are providing deeper insights into the effects of fluorine on metabolic pathways, distribution, and disposition. Despite the high strength of the C-F bond, the departure of fluoride from metabolic intermediates can be facile. This reactivity has been leveraged in the design of mechanism-based enzyme inhibitors and has influenced the metabolic fate of fluorinated compounds. In this Perspective, we summarize the literature associated with the metabolism of fluorinated molecules, focusing on examples where the presence of fluorine influences the metabolic profile. These studies have revealed potentially problematic outcomes with some fluorinated motifs and are enhancing our understanding of how fluorine should be deployed.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yue-Zhong Shu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xiaoliang Zhuo
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Discovery Chemistry Platforms, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
29
|
Synthesis and biological evaluation of new multi-target 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antidepressant effect. Eur J Med Chem 2019; 183:111736. [DOI: 10.1016/j.ejmech.2019.111736] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022]
|
30
|
Koperniku A, Foth PJ, Sammis GM, Schafer LL. Zirconium Hydroaminoalkylation. An Alternative Disconnection for the Catalytic Synthesis of α-Arylated Primary Amines. J Am Chem Soc 2019; 141:18944-18948. [PMID: 31718171 DOI: 10.1021/jacs.9b10465] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Primary amine products have been prepared using zirconium-catalyzed hydroaminoalkylation of alkenes with N-silylated benzylamine substrates. Catalysis using commercially available Zr(NMe2)4 affords an alternative disconnection to access α-arylated primary amines upon aqueous workup. Substrate-dependent regio- and diastereoselectivity of the reaction is observed. Bulky substituents on the terminal alkene exclusively generate the linear regioisomer. This atom-economic catalytic strategy for the synthesis of building blocks that can undergo further synthetic elaboration is highlighted in the preparation of trifluoroethylated α-arylated amines.
Collapse
Affiliation(s)
- Ana Koperniku
- Faculty of Pharmaceutical Sciences , The University of British Columbia , 2405 Wesbrook Mall Vancouver BC V6T 1Z3 , Canada
| | - Paul J Foth
- Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , BC BC V6T 1Z1 , Canada
| | - Glenn M Sammis
- Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , BC BC V6T 1Z1 , Canada
| | - Laurel L Schafer
- Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , BC BC V6T 1Z1 , Canada
| |
Collapse
|
31
|
Jeyaram RA, Radha CA, Gromiha MM, Veluraja K. Design of fluorinated sialic acid analog inhibitor to H5 hemagglutinin of H5N1 influenza virus through molecular dynamics simulation study. J Biomol Struct Dyn 2019; 38:3504-3513. [PMID: 31594458 DOI: 10.1080/07391102.2019.1677500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza epidemics and pandemics are caused by influenza A virus. The cell surface protein of hemagglutinin and neuraminidase is responsible for viral infection and release of progeny virus on the host cell membrane. Now 18 hemagglutinin and 11 neuraminidase subtypes are identified. The avian influenza virus of H5N1 is an emergent threat to public health issues. To control the influenza viral infection it is necessary to develop antiviral inhibitors and vaccination. In the present investigation we carried out 50 ns Molecular Dynamics simulation on H5 hemagglutinin of Influenza A virus H5N1 complexed with fluorinated sialic acid by substituting fluorine atoms at any two hydroxyls of sialic acid by considering combinatorial combination. The binding affinity between the protein-ligand complex system is investigated by calculating pair interaction energy and MM-PBSA binding free energy. All the complex structures are stabilized by hydrogen bonding interactions between the H5 protein and the ligand fluorinated sialic acid. It is concluded from all the analyses that the fluorinated complexes enhance the inhibiting potency against H5 hemagglutinin and the order of inhibiting potency is SIA-F9 ≫ SIA-F2 ≈ SIA-F7 ≈ SIA-F2F4 ≈ SIA-F2F9 ≈ SIA-F7F9 > SIA-F7F8 ≈ SIA-F2F8 ≈ SIA-F8F9 > SIA-F4 ≈ SIA-F4F7 ≈ SIA-F4F8 ≈ SIA-F8 ≈ SIA-F2F7 ≈ SIA > SIA-F4F9. This study suggests that one can design the inhibitor by using the mono fluorinated models SIA-F9, SIA-F2 and SIA-F7 and difluorinated models SIA-F2F4, SIA-F2F9 and SIA-F7F9 to inhibit H5 of H5N1 to avoid Influenza A viral infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R A Jeyaram
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Anu Radha
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - K Veluraja
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
32
|
Herszman JD, Berger M, Waldvogel SR. Fluorocyclization of N-Propargylamides to Oxazoles by Electrochemically Generated ArIF2. Org Lett 2019; 21:7893-7896. [DOI: 10.1021/acs.orglett.9b02884] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John D. Herszman
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Michael Berger
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
33
|
A visible-light-irradiated electron donor-acceptor complex-promoted radical reaction system for the C H perfluoroalkylation of quinolin-4-ols. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Zhao ZQ, Zheng TC, Zhang WJ, Shen XL, Lv L, Li YM. Degradation of 3-fluoroanilne by Rhizobium sp. JF-3. Biodegradation 2019; 30:433-445. [PMID: 31240422 DOI: 10.1007/s10532-019-09885-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
The interest of fluoroanilines in the environment is due to their extensive applications in industry and their low natural biodegradability. A pure bacterial strain capable of degrading 3-fluoroaniline (3-FA) as the sole source of carbon and energy was isolated from a sequencing batch reactor operating for the treatment of 3-FA. The strain (designated as JF-3) was identified by 16S rRNA gene analysis as a member of the genus Rhizobium. When grown in 3-FA medium at concentrations of 100-700 mg/L, strain JF-3 almost completely removed 3-FA within 72 h. However, the obvious cell growth inhibition was observed in cultures treated with 3-FA concentrations greater than 500 mg/L. The degradation kinetics of 3-FA were consistent with Haldane's model with the maximum degradation rate as 67.66 mg/(g dry cell h). The growth kinetics of strain JF-3 followed Andrew's model with the maximum growth rate as 30.87 h-1. Also, strain JF-3 was able to degrade 4-fluoroaniline, aniline, and catechol, but hardly grew on 2-fluoroaniline, 2,4-dfluoroaniline, 2,3,4-trifluoroaniline, 3-fluorocatechol, and 4-fluorocatechol. Additionally, it was able to grow over a wide pH range (pH 6-10), and also showed tolerance to salinity with lower than 1.0%. This result, in combination with the enzyme assays and analysis of metabolite intermediates, indicated an unconventional pathway for 3-fluoroaniline metabolism that involved conversion to 3-aminophenol and resorcinol by monooxygenase, and which was subsequently metabolized via the ortho-cleavage pathway. To our knowledge, this is the first report on the utilization of 3-FA as a growth substrate by Rhizobium sp.
Collapse
Affiliation(s)
- Zhi-Qing Zhao
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China. .,College of Environment & Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | - Tu-Cai Zheng
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Wen-Jing Zhang
- Institute of Environmental Planning, Ministry of Environmental Protection, Beijing, 100012, People's Republic of China
| | - Xiao-Li Shen
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Liang Lv
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Yan-Mei Li
- Engineering Division, Department of Mine, Metallurgy and Geology Engineering, University of Guanajuato, Guanajuato, Gto, 36000, Mexico
| |
Collapse
|
35
|
Batisse C, Céspedes Dávila MF, Castello M, Messara A, Vivet B, Marciniak G, Panossian A, Hanquet G, Leroux FR. Efficient asymmetric synthesis of aryl difluoromethyl sulfoxides and their use to access enantiopure α-difluoromethyl alcohols. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Barsottini MR, Pires BA, Vieira ML, Pereira JG, Costa PC, Sanitá J, Coradini A, Mello F, Marschalk C, Silva EM, Paschoal D, Figueira A, Rodrigues FH, Cordeiro AT, Miranda PC, Oliveira PS, Sforça ML, Carazzolle MF, Rocco SA, Pereira GA. Synthesis and testing of novel alternative oxidase (AOX) inhibitors with antifungal activity against Moniliophthora perniciosa (Stahel), the causal agent of witches' broom disease of cocoa, and other phytopathogens. PEST MANAGEMENT SCIENCE 2019; 75:1295-1303. [PMID: 30350447 DOI: 10.1002/ps.5243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is the causal agent of witches' broom disease (WBD) of cocoa (Theobroma cacao L.) and a threat to the chocolate industry. The membrane-bound enzyme alternative oxidase (AOX) is critical for M. perniciosa virulence and resistance to fungicides, which has also been observed in other phytopathogens. Notably AOX is an escape mechanism from strobilurins and other respiration inhibitors, making AOX a promising target for controlling WBD and other fungal diseases. RESULTS We present the first study aimed at developing novel fungal AOX inhibitors. N-Phenylbenzamide (NPD) derivatives were screened in the model yeast Pichia pastoris through oxygen consumption and growth measurements. The most promising AOX inhibitor (NPD 7j-41) was further characterized and displayed better activity than the classical AOX inhibitor SHAM in vitro against filamentous fugal phytopathogens, such as M. perniciosa, Sclerotinia sclerotiorum and Venturia pirina. We demonstrate that 7j-41 inhibits M. perniciosa spore germination and prevents WBD symptom appearance in infected plants. Finally, a structural model of P. pastoris AOX was created and used in ligand structure-activity relationships analyses. CONCLUSION We present novel fungal AOX inhibitors with antifungal activity against relevant phytopathogens. We envisage the development of novel antifungal agents to secure food production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mario Ro Barsottini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara A Pires
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Maria L Vieira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - José Gc Pereira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cs Costa
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Jaqueline Sanitá
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Alessandro Coradini
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fellipe Mello
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Cidnei Marschalk
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Eder M Silva
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Daniele Paschoal
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Antonio Figueira
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Fábio Hs Rodrigues
- School of Life Sciences, University of Warwick - Gibbet Hill Campus, Coventry, United Kingdom
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Paulo Cml Miranda
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Paulo Sl Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Maurício L Sforça
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marcelo F Carazzolle
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Silvana A Rocco
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo Ag Pereira
- Department of Genetics, Evolution, Microbiology and Imunology, Genomics and bioEnergy Laboratory, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
37
|
Prima DO, Makarov AG, Bagryanskaya IY, Kolesnikov AE, Zargarova LV, Baev DS, Eliseeva TF, Politanskaya LV, Makarov AY, Slizhov YG, Zibarev AV. Fluorine-Containing n-6 and Angular and Linear n-6-n’ (n, n’ = 5, 6, 7) Diaza-Heterocyclic Scaffolds Assembled on Benzene Core in Unified Way. ChemistrySelect 2019. [DOI: 10.1002/slct.201803970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Darya O. Prima
- Institute of Organic Chemistry; Siberian Branch of the Russian Academy of Sciences; 630090 Novosibirsk Russia
- Department of Chemistry; National Research University - Tomsk State University; 634050 Tomsk Russia
| | - Arkady G. Makarov
- Institute of Organic Chemistry; Siberian Branch of the Russian Academy of Sciences; 630090 Novosibirsk Russia
| | - Irina Yu. Bagryanskaya
- Institute of Organic Chemistry; Siberian Branch of the Russian Academy of Sciences; 630090 Novosibirsk Russia
- Department of Natural Sciences; National Research University - Novosibirsk State University; 630090 Novosibirsk Russia
| | - Andrey E. Kolesnikov
- Department of Natural Sciences; National Research University - Novosibirsk State University; 630090 Novosibirsk Russia
| | - Leila V. Zargarova
- Department of Natural Sciences; National Research University - Novosibirsk State University; 630090 Novosibirsk Russia
| | - Dmitry S. Baev
- Institute of Organic Chemistry; Siberian Branch of the Russian Academy of Sciences; 630090 Novosibirsk Russia
- Department of Natural Sciences; National Research University - Novosibirsk State University; 630090 Novosibirsk Russia
| | - Tatiana F. Eliseeva
- Institute of Organic Chemistry; Siberian Branch of the Russian Academy of Sciences; 630090 Novosibirsk Russia
| | - Larisa V. Politanskaya
- Institute of Organic Chemistry; Siberian Branch of the Russian Academy of Sciences; 630090 Novosibirsk Russia
- Department of Natural Sciences; National Research University - Novosibirsk State University; 630090 Novosibirsk Russia
| | - Alexander Yu. Makarov
- Institute of Organic Chemistry; Siberian Branch of the Russian Academy of Sciences; 630090 Novosibirsk Russia
| | - Yuri G. Slizhov
- Department of Chemistry; National Research University - Tomsk State University; 634050 Tomsk Russia
| | - Andrey V. Zibarev
- Institute of Organic Chemistry; Siberian Branch of the Russian Academy of Sciences; 630090 Novosibirsk Russia
- Department of Chemistry; National Research University - Tomsk State University; 634050 Tomsk Russia
| |
Collapse
|
38
|
Haupt JD, Berger M, Waldvogel SR. Electrochemical Fluorocyclization of N-Allylcarboxamides to 2-Oxazolines by Hypervalent Iodine Mediator. Org Lett 2018; 21:242-245. [DOI: 10.1021/acs.orglett.8b03682] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- John D. Haupt
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Michael Berger
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
39
|
Batisse C, Panossian A, Hanquet G, Leroux FR. Access towards enantiopure α,α-difluoromethyl alcohols by means of sulfoxides as traceless chiral auxiliaries. Chem Commun (Camb) 2018; 54:10423-10426. [PMID: 30091753 DOI: 10.1039/c8cc05571h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new methodology to access enantiopure α,α-difluoromethyl alcohols is hereby being described. The strategy relies on the use of an enantiopure aryl α,α-difluoromethyl sulfoxide employed as chiral and removable auxiliary for the stereoselective difluoromethylation of carbonyl derivatives. The obtained α,α-difluoro-β-hydroxysulfoxides displayed unprecedented diastereomeric ratios.
Collapse
Affiliation(s)
- Chloé Batisse
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, Strasbourg 67087, France.
| | | | | | | |
Collapse
|
40
|
Helal CJ, Bartolozzi A, Goble SD, Mani NS, Guzman-Perez A, Ohri AK, Shi ZC, Subramanyam C. Increased building block access through collaboration. Drug Discov Today 2018; 23:1458-1462. [DOI: 10.1016/j.drudis.2018.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/15/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
|
41
|
Saccomanno M, Hussain S, O'Connor NK, Beier P, Somlyay M, Konrat R, Murphy CD. Biodegradation of pentafluorosulfanyl-substituted aminophenol in Pseudomonas spp. Biodegradation 2018; 29:259-270. [PMID: 29603052 DOI: 10.1007/s10532-018-9827-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/24/2018] [Indexed: 11/30/2022]
Abstract
The pentafluorosulfanyl (SF5-) substituent conveys properties that are beneficial to drugs and agrochemicals. As synthetic methodologies improve the number of compounds containing this group will expand and these chemicals may be viewed as emerging pollutants. As many microorganisms can degrade aromatic xenobiotics, we investigated the catabolism of SF5-substituted aminophenols by bacteria and found that some Pseudomonas spp. can utilise these compounds as sole carbon and energy sources. GC-MS analysis of the culture supernatants from cultures grown in 5-(pentafluorosulfanyl) 2-aminophenol demonstrated the presence of the N-acetylated derivative of the starting substrate and 4-(pentafluorosulfanyl)catechol. Biotransformation experiments with re-suspended cells were also conducted and fluorine-19 NMR analyses of the organic extract and aqueous fraction from suspended cell experiments revealed new resonances of SF5-substituted intermediates. Supplementation of suspended cell cultures with yeast extract dramatically improved the degradation of the substrate as well as the release of fluoride ion. 4-(Pentafluorosulfanyl)catechol was shown to be a shunt metabolite and toxic to some of the bacteria. This is the first study to demonstrate that microorganisms can biodegrade SF5-substituted aromatic compounds releasing fluoride ion, and biotransform them generating a toxic metabolite.
Collapse
Affiliation(s)
- Marta Saccomanno
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sabir Hussain
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.,Dept of Environmental Science & Engineering, Government College University, Faisalabad, Pakistan
| | - Neil K O'Connor
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mate Somlyay
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Robert Konrat
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Cormac D Murphy
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
42
|
Słoczyńska K, Wójcik-Pszczoła K, Canale V, Żmudzki P, Zajdel P, Pękala E. Biotransformation of 4-fluoro-N-(1-{2-[(propan-2-yl)phenoxy]ethyl}-8-azabicyclo[3.2.1]octan-3-yl)-benzenesulfonamide, a novel potent 5-HT 7 receptor antagonist with antidepressant-like and anxiolytic properties: In vitro and in silico approach. J Biochem Mol Toxicol 2018; 32:e22048. [PMID: 29469967 DOI: 10.1002/jbt.22048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022]
Abstract
The aim of the study was to investigate the metabolism of 4-fluoro-N-(1-{2-[(propan-2-yl)phenoxy]ethyl}-8-azabicyclo[3.2.1]octan-3-yl)-benzenesulfonamide (PZ-1150), a novel 5-HT7 receptor antagonist with antidepressant-like and anxiolytic properties, by the following three ways: in vitro with microsomes; in vitro employing Cunninghamella echinulata, and in silico using MetaSite. Biotransformation of PZ-1150 with microsomes resulted in five metabolites, while transformation with C. echinulata afforded two metabolites. In both models, the predominant metabolite occurred due to hydroxylation of benzene ring. In silico data coincide with in vitro experiments, as three MetaSite metabolites matched compounds identified in microsomal samples. In human liver microsomes PZ-1150 exhibited in vitro half-life of 64 min, with microsomal intrinsic clearance of 54.1 μL/min/mg and intrinsic clearance of 48.7 mL/min/kg. Therefore, PZ-1150 is predicted to be a high-clearance agent. The study demonstrated the applicability of using microsomal model coupled with microbial model to elucidate the metabolic pathways of compounds and comparison with in silico metabolite predictions.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Krakow 30-688, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Krakow 30-688, Poland
| | - Vittorio Canale
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Krakow 30-688, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Krakow 30-688, Poland
| | - Paweł Zajdel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Krakow 30-688, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, Krakow 30-688, Poland
| |
Collapse
|
43
|
Meanwell NA. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J Med Chem 2018; 61:5822-5880. [PMID: 29400967 DOI: 10.1021/acs.jmedchem.7b01788] [Citation(s) in RCA: 1417] [Impact Index Per Article: 236.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Discovery Chemistry and Molecular Technologies Bristol-Myers Squibb Research and Development P.O. Box 4000, Princeton , New Jersey 08543-4000 , United States
| |
Collapse
|
44
|
Wang H, Peng Y, Zhang T, Lan Q, Zhao H, Wang W, Zhao Y, Wang X, Pang J, Wang S, Zheng J. Metabolic Epoxidation Is a Critical Step for the Development of Benzbromarone-Induced Hepatotoxicity. Drug Metab Dispos 2017; 45:1354-1363. [PMID: 29021351 DOI: 10.1124/dmd.117.077818] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
Benzbromarone (BBR) is effective in the treatment of gout; however, clinical findings have shown it can also cause fatal hepatic failure. Our early studies demonstrated that CYP3A catalyzed the biotransformation of BBR to epoxide intermediate(s) that reacted with sulfur nucleophiles of protein to form protein covalent binding both in vitro and in vivo. The present study attempted to define the correlation between metabolic epoxidation and hepatotoxicity of BBR by manipulating the structure of BBR. We rationally designed and synthesized three halogenated BBR derivatives, fluorinated BBR (6-F-BBR), chlorinated BBR (6-Cl-BBR), and brominated BBR (6-Br-BBR), to decrease the potential for cytochrome P450-mediated metabolic activation. Both in vitro and in vivo uricosuric activity assays showed that 6-F-BBR achieved favorable uricosuric effect, while 6-Cl-BBR and 6-Br-BBR showed weak uricosuric efficacy. Additionally, 6-F-BBR elicited much lower hepatotoxicity in mice. Fluorination of BBR offered advantage to metabolic stability in liver microsomes, almost completely blocked the formation of epoxide metabolite(s) and protein covalent binding, and attenuated hepatic and plasma glutathione depletion. Moreover, the structural manipulation did not alter the efficacy of BBR. This work provided solid evidence that the formation of the epoxide(s) is a key step in the development of BBR-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Ying Peng
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Tingjian Zhang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Qunsheng Lan
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Huimin Zhao
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Wenbao Wang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Yufei Zhao
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Xu Wang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Jianxin Pang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Shaojie Wang
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| | - Jiang Zheng
- Wuya College of Innovation (H.W., Y.P., H.Z., Y.Z., X.W., J.Z.) and Key Laboratory of Structure-Based Drug Design and Discovery (Ministry of Education) (W.W., S.W.), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China; School of Pharmacy, China Medical University, Shenyang, Liaoning, P.R. China (T.Z.); Guangdong Provincial Key Laboratory of Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China (Q.L., J.P.); and State Key Laboratory of Functions and Applications of Medicinal Plants and Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, P.R. China (J.Z.)
| |
Collapse
|
45
|
Halogenated (F, Cl) 1,3-benzodiazoles, 1,2,3-benzotriazoles, 2,1,3-benzothia(selena)diazoles and 1,4-benzodiazines inducing Hep2 cell apoptosis. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Wang JB, Ilie A, Yuan S, Reetz MT. Investigating Substrate Scope and Enantioselectivity of a Defluorinase by a Stereochemical Probe. J Am Chem Soc 2017; 139:11241-11247. [DOI: 10.1021/jacs.7b06019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian-bo Wang
- Department
of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Adriana Ilie
- Department
of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Shuguang Yuan
- Laboratory
of Physical Chemistry of Polymers and Membranes, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH B3 495 (Bâtiment CH) Station
6, CH-1015 Lausanne, Switzerland
| | - Manfred T. Reetz
- Department
of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| |
Collapse
|
47
|
de Bruyn Kops C, Friedrich NO, Kirchmair J. Alignment-Based Prediction of Sites of Metabolism. J Chem Inf Model 2017; 57:1258-1264. [PMID: 28520411 DOI: 10.1021/acs.jcim.7b00165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prediction of metabolically labile atom positions in a molecule (sites of metabolism) is a key component of the simulation of xenobiotic metabolism as a whole, providing crucial information for the development of safe and effective drugs. In 2008, an exploratory study was published in which sites of metabolism were derived based on molecular shape- and chemical feature-based alignment to a molecule whose site of metabolism (SoM) had been determined by experiments. We present a detailed analysis of the breadth of applicability of alignment-based SoM prediction, including transfer of the approach from a structure- to ligand-based method and extension of the applicability of the models from cytochrome P450 2C9 to all cytochrome P450 isozymes involved in drug metabolism. We evaluate the effect of molecular similarity of the query and reference molecules on the ability of this approach to accurately predict SoMs. In addition, we combine the alignment-based method with a leading chemical reactivity model to take reactivity into account. The combined model yielded superior performance in comparison to the alignment-based approach and the reactivity models with an average area under the receiver operating characteristic curve of 0.85 in cross-validation experiments. In particular, early enrichment was improved, as evidenced by higher BEDROC scores (mean BEDROC = 0.59 for α = 20.0, mean BEDROC = 0.73 for α = 80.5).
Collapse
Affiliation(s)
- Christina de Bruyn Kops
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Computer Science, Center for Bioinformatics, Universität Hamburg , Hamburg 20146, Germany
| | - Nils-Ole Friedrich
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Computer Science, Center for Bioinformatics, Universität Hamburg , Hamburg 20146, Germany
| | - Johannes Kirchmair
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Computer Science, Center for Bioinformatics, Universität Hamburg , Hamburg 20146, Germany
| |
Collapse
|
48
|
Hu H, Katyayan KK, Czeskis BA, Perkins EJ, Kulanthaivel P. Comparison between Radioanalysis and 19F Nuclear Magnetic Resonance Spectroscopy in the Determination of Mass Balance, Metabolism, and Distribution of Pefloxacin. Drug Metab Dispos 2017; 45:399-408. [PMID: 28188298 DOI: 10.1124/dmd.116.073809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/03/2017] [Indexed: 01/10/2023] Open
Abstract
Mass balance and metabolism studies using radiolabeled substances are well recognized as an important part of the drug development process. In this study, we directly assessed the use of fluorine nuclear magnetic resonance (19F NMR) to achieve quantitative mass balance, metabolism, and distribution information for fluorinated compounds, without the need for radiolabeled synthesis or study. As a test case, the disposition of pefloxacin, a fluoroquinolone antibiotic, was evaluated in rats using quantitative 19F NMR in parallel with a radiolabeled study. Urine, bile, and feces samples were collected over specific periods after oral administration of either 25 mg/kg [14C]pefloxacin or 25 mg/kg pefloxacin and were subsequently profiled by radioactivity or 19F NMR, respectively. The percentage of dose excreted in each matrix was comparable between the two methods, with the total dose recovered by radioactivity and 19F NMR determined to be 86.8% and 81.8%, respectively. In addition, plasma samples were collected to determine the exposure of pefloxacin and its circulating metabolites. The plasma exposure of pefloxacin determined by 19F NMR was within 5% to that calculated by a validated liquid chromatography-tandem mass spectrometry bioanalytical method. By both methods, pefloxacin was identified as the major circulating entity, with pefloxacin glucuronide as the major circulating metabolite. Quantitative analysis of metabolites in excreta was generally comparable between the two methods. In selected tissues, both methods indicated that the parent drug accounted for most of the drug-related material. In summary, we have demonstrated that 19F NMR can be used as an alternative method to conventional radiolabeled studies for compounds containing fluorine without the need for radiolabeled synthesis/study.
Collapse
Affiliation(s)
- Haitao Hu
- Analytical Technologies (H.H.) and Drug Disposition (K.K., B.A.C., E.J.P., P.K.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Kishore Kumar Katyayan
- Analytical Technologies (H.H.) and Drug Disposition (K.K., B.A.C., E.J.P., P.K.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Boris A Czeskis
- Analytical Technologies (H.H.) and Drug Disposition (K.K., B.A.C., E.J.P., P.K.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Everett J Perkins
- Analytical Technologies (H.H.) and Drug Disposition (K.K., B.A.C., E.J.P., P.K.), Lilly Research Laboratories, Indianapolis, Indiana
| | - Palaniappan Kulanthaivel
- Analytical Technologies (H.H.) and Drug Disposition (K.K., B.A.C., E.J.P., P.K.), Lilly Research Laboratories, Indianapolis, Indiana
| |
Collapse
|
49
|
Bonacorso HG, Dal Forno GM, Wiethan C, Ketzer A, Zanatta N, Frizzo CP, Martins MAP, Stradiotto M. Sequential one-pot three-step synthesis of polysubstituted 4-(5-(trifluoromethyl)-1H-pyrazol-4-yl)-1H-1,2,3-triazole systems. RSC Adv 2017. [DOI: 10.1039/c7ra07960e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sequential one-pot, three-step synthesis of polysubstituted 4-(5-(trifluoromethyl)-1H-pyrazol-4-yl)-1H-1,2,3-triazoles.
Collapse
Affiliation(s)
- Helio G. Bonacorso
- Núcleo de Química de Heterociclos – NUQUIMHE
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria
- Brazil
| | - Gean M. Dal Forno
- Núcleo de Química de Heterociclos – NUQUIMHE
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria
- Brazil
| | - Carson Wiethan
- Núcleo de Química de Heterociclos – NUQUIMHE
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria
- Brazil
| | - Alex Ketzer
- Núcleo de Química de Heterociclos – NUQUIMHE
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria
- Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos – NUQUIMHE
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria
- Brazil
| | - Clarissa P. Frizzo
- Núcleo de Química de Heterociclos – NUQUIMHE
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria
- Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos – NUQUIMHE
- Departamento de Química
- Universidade Federal de Santa Maria
- 97105-900 Santa Maria
- Brazil
| | - Mark Stradiotto
- Department of Chemistry
- Dalhousie University
- Halifax
- B3H 4R2 Canada
| |
Collapse
|
50
|
Sun H, Yeo WL, Lim YH, Chew X, Smith DJ, Xue B, Chan KP, Robinson RC, Robins EG, Zhao H, Ang EL. Directed Evolution of a Fluorinase for Improved Fluorination Efficiency with a Non-native Substrate. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huihua Sun
- Metabolic Engineering Research Laboratory (MERL); Science and Engineering Institutes; Agency for Science, Technology, and Research (A*STAR); 31 Biopolis Way, Nanos #01-01 Singapore 138669 Singapore
| | - Wan Lin Yeo
- Metabolic Engineering Research Laboratory (MERL); Science and Engineering Institutes; Agency for Science, Technology, and Research (A*STAR); 31 Biopolis Way, Nanos #01-01 Singapore 138669 Singapore
| | - Yee Hwee Lim
- Institute of Chemical and Engineering Sciences (ICES); A*STAR; 8 Biomedical Grove, Neuros #07-01/02/03 Singapore 138665 Singapore
| | - Xinying Chew
- Institute of Chemical and Engineering Sciences (ICES); A*STAR; 8 Biomedical Grove, Neuros #07-01/02/03 Singapore 138665 Singapore
| | - Derek John Smith
- Bioinformatics Institute; A*STAR; 30 Biopolis Street, Matrix #07-01 Singapore 138671 Singapore
- Biotransformation Innovation Platform; 61 Biopolis Drive, Proteos #04-14 Singapore 138673 Singapore
| | - Bo Xue
- Institute of Molecular and Cell Biology (IMCB); A*STAR; 61 Biopolis Drive, Proteos #03-15 Singapore 138673 Singapore
| | - Kok Ping Chan
- Institute of Chemical and Engineering Sciences (ICES); A*STAR; 8 Biomedical Grove, Neuros #07-01/02/03 Singapore 138665 Singapore
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology (IMCB); A*STAR; 61 Biopolis Drive, Proteos #03-15 Singapore 138673 Singapore
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore 117597 Singapore
- NTU Institute of Structural Biology; Nanyang Technological University (NTU); 59 Nanyang Drive Singapore 636921 Singapore
- School of Biological Sciences; NTU; 60 Nanyang Drive Singapore 637551 Singapore
- Lee Kong Chian School of Medicine; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Edward G. Robins
- Singapore Bioimaging Consortium (SBIC); A*STAR; 11 Biopolis way, #02-02 Singapore 138667 Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory (MERL); Science and Engineering Institutes; Agency for Science, Technology, and Research (A*STAR); 31 Biopolis Way, Nanos #01-01 Singapore 138669 Singapore
- 215 Roger Adams Laboratory, Box C3; University of Illinois at Urbana-Champaign; 600 South Mathews Avenue Urbana IL 61801 USA
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory (MERL); Science and Engineering Institutes; Agency for Science, Technology, and Research (A*STAR); 31 Biopolis Way, Nanos #01-01 Singapore 138669 Singapore
| |
Collapse
|