1
|
Zhou Q, Ye F, Ye Z, Gao N, Kong Q, Hu X, Qian J, Wu B. The effect of icotinib or apatinib on the pharmacokinetic profile of oxycodone in rats and the underlying mechanism. PeerJ 2023; 11:e16601. [PMID: 38089912 PMCID: PMC10712305 DOI: 10.7717/peerj.16601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
This study aimed to investigate the interactions between icotinib/apatinib and oxycodone in rats and to unveil the underlying mechanism. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to determine oxycodone and its demethylated metabolite simultaneously. In vivo, Sprague-Dawley (SD) male rats were administered oxycodone with or without icotinib or apatinib. Blood samples were collected and subjected to UPLC-MS/MS analysis. An enzyme incubation assay was performed to investigate the mechanism of drug-drug interaction using both rat and human liver microsomes (RLM and HLM). The results showed that icotinib markedly increased the AUC(0-t) and AUC(0-∞) of oxycodone but decreased the CLz/F. The Cmax of oxycodone increased significantly upon co-administration of apatinib. In vitro, the Km value of oxycodone metabolism was 101.7 ± 5.40 μM and 529.6 ± 19.60 μM in RLMs and HLMs, respectively. Icotinib and apatinib inhibited the disposition of oxycodone, with a mixed mechanism in RLM (IC50 = 3.29 ± 0.090 μM and 0.95 ± 0.88 μM, respectively) and a competitive and mixed mechanism in HLM (IC50 = 22.34 ± 0.81 μM and 0.48 ± 0.05 μM, respectively). In conclusion, both icotinib and apatinib inhibit the metabolism of oxycodone in vitro and in vivo. Therefore, the dose of oxycodone should be reconsidered when co-administered with icotinib or apatinib.
Collapse
Affiliation(s)
- Qi Zhou
- Wenzhou Medical University, Wenzhou, China
| | - Feng Ye
- Wenzhou Medical University, Wenzhou, China
| | - Zhize Ye
- Shaoxing People’s Hospital, Shaoxing, China
| | | | - Qihui Kong
- Wenzhou Medical University, Wenzhou, China
| | - Xiaoqin Hu
- Wenzhou Medical University, Wenzhou, China
| | | | - Bin Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Wang X, Chen F, Guo N, Gu Z, Lin H, Xiang X, Shi Y, Han B. Application of physiologically based pharmacokinetics modeling in the research of small-molecule targeted anti-cancer drugs. Cancer Chemother Pharmacol 2023; 92:253-270. [PMID: 37466731 DOI: 10.1007/s00280-023-04566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION Physiologically based pharmacokinetics (PBPK) models are increasingly used in the drug research and development, especially in anti-cancer drugs. Between 2001 and 2020, a total of 89 small-molecule targeted antitumor drugs were approved in China and the United States, some of which already included PBPK modeling in their application or approval packages. This article intended to review the prevalence and application of PBPK model in these drugs. METHOD Article search was performed in the PubMed to collect English research articles on small-molecule targeted anti-cancer drugs using PBPK modeling. The selected articles were classified into nine categorizes according to the application areas and further analyzed. RESULT From 2001 to 2020, more than 60% of small-molecule targeted anti-cancer drugs (54/89) were studied using PBPK model with a wide range of application. Ninety research articles were included, of which 48 involved enzyme-mediated drug-drug interaction (DDI). Of these retrieved articles, Simcyp, GastroPlus, and PK-Sim were the most widely model building platforms, which account for 63.8%, 15.2%, and 8.6%, respectively. CONCLUSION PBPK modeling is commonly and widely used to research small-molecule targeted anti-cancer drugs.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Fang Chen
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China
| | - Zhichun Gu
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Houwen Lin
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Yufei Shi
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China.
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, China.
| |
Collapse
|
3
|
Abourehab MAS, Alqahtani AM, Youssif BGM, Gouda AM. Globally Approved EGFR Inhibitors: Insights into Their Syntheses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules 2021; 26:6677. [PMID: 34771085 PMCID: PMC8587155 DOI: 10.3390/molecules26216677] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Targeting the EGFR with small-molecule inhibitors is a confirmed valid strategy in cancer therapy. Since the FDA approval of the first EGFR-TKI, erlotinib, great efforts have been devoted to the discovery of new potent inhibitors. Until now, fourteen EGFR small-molecule inhibitors have been globally approved for the treatment of different types of cancers. Although these drugs showed high efficacy in cancer therapy, EGFR mutations have emerged as a big challenge for these drugs. In this review, we focus on the EGFR small-molecule inhibitors that have been approved for clinical uses in cancer therapy. These drugs are classified based on their chemical structures, target kinases, and pharmacological uses. The synthetic routes of these drugs are also discussed. The crystal structures of these drugs with their target kinases are also summarized and their bonding modes and interactions are visualized. Based on their binding interactions with the EGFR, these drugs are also classified into reversible and irreversible inhibitors. The cytotoxicity of these drugs against different types of cancer cell lines is also summarized. In addition, the proposed metabolic pathways and metabolites of the fourteen drugs are discussed, with a primary focus on the active and reactive metabolites. Taken together, this review highlights the syntheses, target kinases, crystal structures, binding interactions, cytotoxicity, and metabolism of the fourteen globally approved EGFR inhibitors. These data should greatly help in the design of new EGFR inhibitors.
Collapse
Affiliation(s)
- Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Ahmed M. Gouda
- Department of Medicinal Chemistry, Faculty of pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
4
|
Sun C, Zhao H, Li W, Jia Y, Yang Y, Peng Y, Zheng J. Icotinib induces mechanism-based inactivation of r hCYP3A4/5 possibly via heme destruction by ketene intermediate. Drug Metab Dispos 2021; 49:892-901. [PMID: 34312304 DOI: 10.1124/dmd.121.000369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Icotinib (ICT) is an anti-tumor drug approved by China National Medical Products Administration and is found to be effective to conquer non-small cell lung cancer. The present study aimed at the interaction of ICT with CYP3A. ICT exhibited time-, concentration- and NADPH-dependent inhibitory effect on recombinant human CYP3A4/5 (rhCYP3A4/5). About 60% of CYP3A activity was suppressed by ICT at 50 μM after 30 min. The observed enzyme inhibition could not be recovered by dialysis. Nifedipine protected CYP3A from the inactivation by ICT. The inhibitory effects of ICT on CYP3A were neither influenced by GSH/NAL nor by SOD/catalase. Incubation of ICT with human hepatic microsomes produced a ketene reactive intermediate trapped by 4-bromobenzylamine. CYP3A4 dominated the metabolic activation of ICT to the ketene intermediate. Ethyl and vinyl analogs of ICT did not induce inactivation of rhCYP3A4/5, which indicates that acetylenic bioactivation of ICT contributed to the enzyme inactivation. Moreover, the metabolic activation of ICT resulted in heme destruction. In conclusion, this study demonstrated that ICT was a mechanism-based inactivator of rhCYP3A4/5, and heme destruction by the ketene metabolite may be responsible for the observed CYP3A inactivation. Significance Statement Cytochrome P450 enzymes play an important role in drug-drug interactions. The present study demonstrated icotinib (ICT), an inhibitor of epidermal growth factor receptor (EGFR) for the treatment of non-small cell lung cancer, is a mechanism-based inactivator of rhCYP3A4/5. The study provided solid evidence for the involvement of acetylene moiety in the metabolic activation as well as the inactivation of the enzyme. Furthermore, the resulting ketene intermediate was found to destruct heme, which is possibly responsible for the observed enzyme inactivation.
Collapse
Affiliation(s)
- Chen Sun
- Shenyang Pharmaceutical University, China
| | | | - Wei Li
- Shenyang Pharmaceutical University, China
| | - Yudi Jia
- Shenyang Pharmaceutical University, China
| | - Yi Yang
- Shenyang Pharmaceutical University, China
| | - Ying Peng
- Shenyang Pharmaceutical University, China
| | - Jiang Zheng
- Center for Developmental Pharmacol & Toxicol, Shenyang Pharmaceutical University, China
| |
Collapse
|
5
|
Xu ZY, Li JL. Comparative review of drug-drug interactions with epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small-cell lung cancer. Onco Targets Ther 2019; 12:5467-5484. [PMID: 31371986 PMCID: PMC6636179 DOI: 10.2147/ott.s194870] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
The development of small-molecule tyrosine kinase inhibitors (TKIs) that target the epidermal growth factor receptor (EGFR) has revolutionized the management of non-small-cell lung cancer (NSCLC). Because these drugs are commonly used in combination with other types of medication, the risk of clinically significant drug–drug interactions (DDIs) is an important consideration, especially for patients using multiple drugs for coexisting medical conditions. Clinicians need to be aware of the potential for clinically important DDIs when considering therapeutic options for individual patients. In this article, we describe the main mechanisms underlying DDIs with the EGFR-TKIs that are currently approved for the treatment of NSCLC, and, specifically, the potential for interactions mediated via effects on gastrointestinal pH, cytochrome P450-dependent metabolism, uridine diphosphate-glucuronosyltransferase, and transporter proteins. We review evidence of such DDIs with the currently approved EGFR-TKIs (gefitinib, erlotinib, afatinib, osimertinib, and icotinib) and discuss several information sources that are available online to aid clinical decision-making. We conclude by summarizing the most clinically relevant DDIs with these EFGR-TKIs and provide recommendations for managing, minimizing, or avoiding DDIs with the different agents.
Collapse
Affiliation(s)
- Zi-Yi Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jun-Ling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
6
|
Zhang X, Cheng X, Wu Y, Feng D, Qian Y, Chen L, Yang B, Gu M. In Vitro and In Situ Characterization of the Intestinal Absorption of Capilliposide B and Capilliposide C from Lysimachia capillipes Hemsl. Molecules 2019; 24:molecules24071227. [PMID: 30925820 PMCID: PMC6479817 DOI: 10.3390/molecules24071227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
The goal of this investigation was to determine the processes and mechanism of intestinal absorption for capilliposide B (CAPB) and capilliposide C (CAPC) from the Chinese herb, Lysimachia capillipes Hemsl. An analysis of basic parameters, such as drug concentrations, time, and behavior in different intestinal segments was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS). The susceptibility of CAPB and CAPC to various inhibitors such as P-glycoprotein (P-gp) inhibitor (verapamil); multidrug resistance-associated protein 2 (MRP2) inhibitor (indomethacin); cytochrome P450 protein 3A4 (CYP3A4) inhibitor (ketoconazole); and the co-inhibitor of P-gp, MRP2 and CYP3A4 (cyclosporine A) were assessed using both caco-2 cell monolayer and single-pass intestinal perfusion (SPIP) models. As a result, CAPB and CAPC are both poorly absorbed in the intestines and exhibited segment-dependent permeability. The intestinal permeability of CAPB and CAPC were significantly increased by the co-treatment of verapamil, indomethacin. In addition, the intestinal permeability of CAPB was also enhanced by ketoconazole and cyclosporine A. It can be concluded that the intestinal absorption mechanisms of CAPB and CAPC involve processes such as facilitated passive diffusion, efflux transporters, and enzyme-mediated metabolism. Both CAPB and CAPC are suggested to be substrates of P-gp and MRP2. However, CAPB may interact with the CYP3A4 system.
Collapse
Affiliation(s)
- Xu Zhang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| | - Xiao Cheng
- Huzhou Institute for Food and Drug Control, Huzhou, Zhejiang 313000, China.
| | - Yali Wu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| | - Di Feng
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| | - Yifan Qian
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| | - Liping Chen
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| | - Bo Yang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| | - Mancang Gu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China.
| |
Collapse
|
7
|
Li Y, Fan Y, Su H, Wang Q, Li GF, Hu Y, Jiang J, Tan B, Qiu F. Metabolic characteristics of Tanshinone I in human liver microsomes and S9 subcellular fractions. Xenobiotica 2018; 49:152-160. [PMID: 29357726 DOI: 10.1080/00498254.2018.1432087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tanshinone I (TSI) is a lipophilic diterpene in Salvia miltiorrhiza with versatile pharmacological activities. However, metabolic pathway of TSI in human is unknown. In this study, we determined major metabolites of TSI using a preparation of human liver microsomes (HLMs) by HPLC-UV and Q-Trap mass spectrometer. A total of 6 metabolites were detected, which indicated the presence of hydroxylation, reduction as well as glucuronidation. Selective chemical inhibition and purified cytochrome P450 (CYP450) isoform screening experiments revealed that CYP2A6 was primarily responsible for TSI Phase I metabolism. Part of generated hydroxylated TSI was glucuronidated via several glucuronosyltransferase (UGT) isoforms including UGT1A1, UGT1A3, UGT1A7, UGT1A9, as well as extrahepatic expressed isoforms UGT1A8 and UGT1A10. TSI could be reduced to a relatively unstable hydroquinone intermediate by NAD(P)H: quinone oxidoreductase 1 (NQO1), and then immediately conjugated with glucuronic acid by a panel of UGTs, especially UGT1A9, UGT1A1 and UGT1A8. Additionally, NQO1 could also reduce hydroxylated TSI to a hydroquinone intermediate, which was immediately glucuronidated by UGT1A1. The study demonstrated that hydroxylation, reduction as well as glucuronidation were the major pathways for TSI biotransformation, and six metabolites generated by CYPs, NQO1 and UGTs were found in HLMs and S9 subcellular fractions.
Collapse
Affiliation(s)
- Yue Li
- a Laboratory of Clinical Pharmacokinetics , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yujuan Fan
- a Laboratory of Clinical Pharmacokinetics , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Huizong Su
- a Laboratory of Clinical Pharmacokinetics , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Qian Wang
- a Laboratory of Clinical Pharmacokinetics , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Guo-Fu Li
- b Center for Drug Clinical Research , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,c Subei People's Hospital, Yangzhou University , Yangzhou , China
| | - Yiyang Hu
- a Laboratory of Clinical Pharmacokinetics , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Jian Jiang
- a Laboratory of Clinical Pharmacokinetics , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Bo Tan
- a Laboratory of Clinical Pharmacokinetics , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Furong Qiu
- a Laboratory of Clinical Pharmacokinetics , Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
8
|
Zhang T, Zhang K, Ma L, Li Z, Wang J, Zhang Y, Lu C, Zhu M, Zhuang X. Metabolic Pathway of Icotinib In Vitro: The Differential Roles of CYP3A4, CYP3A5, and CYP1A2 on Potential Pharmacokinetic Drug-Drug Interaction. J Pharm Sci 2017; 107:979-983. [PMID: 29247736 DOI: 10.1016/j.xphs.2017.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/13/2017] [Accepted: 12/06/2017] [Indexed: 11/15/2022]
Abstract
Icotinib is the first self-developed small molecule drug in China for targeted therapy of non-small cell lung cancer. To date, systematic studies on the pharmacokinetic drug-drug interaction of icotinib were limited. By identifying metabolite generated in human liver microsomes and revealing the contributions of major cytochromes P450 (CYPs) in the formation of major metabolites, the aim of the present work was to understand the mechanisms underlying pharmacokinetic and pharmacological variability in clinic. A liquid chromatography/UV/high-resolution mass spectrometer method was developed to characterize the icotinib metabolites. The formation of 6 major metabolites was studied in recombinant CYP isozymes and human liver microsomes with specific inhibitors to identify the CYPs responsible for icotinib metabolism. The metabolic pathways observed in vitro are consistent with those observed in human. Results demonstrated that the metabolites are predominantly catalyzed by CYP3A4 (77%∼87%), with a moderate contribution from CYP3A5 (5%∼15%) and CYP1A2 (3.7%∼7.5%). The contribution of CYP2C8, 2C9, 2C19, and 2D6 is insignificant. Based on our observations, to minimize drug-drug interaction risk in clinic, coprescription of icotinib with strong CYP3A inhibitors or inducers must be weighed. CYP1A2, a highly inducible enzyme in the smoking population, may also represent a determinant of pharmacokinetic and pharmacological variability of icotinib, especially in lung cancer patients with smoking history.
Collapse
Affiliation(s)
- TianHong Zhang
- Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | - Li Ma
- Pharmacetucial Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey 08540
| | - Zheng Li
- Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Juan Wang
- Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - YunXia Zhang
- Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chuang Lu
- Sanofi Company, Waltham, Massachusetts 02451
| | - Mingshe Zhu
- Pharmacetucial Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey 08540; MassDefect Technologies, Princeton, New Jersey 08540.
| | - XiaoMei Zhuang
- Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
9
|
Cheng X, Lv X, Qu H, Li D, Hu M, Guo W, Ge G, Dong R. Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1. Acta Pharm Sin B 2017; 7:657-664. [PMID: 29159025 PMCID: PMC5687316 DOI: 10.1016/j.apsb.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/15/2017] [Accepted: 06/30/2017] [Indexed: 01/29/2023] Open
Abstract
UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a key role in detoxification of many potentially harmful compounds and drugs. UGT1A1 inhibition may bring risks of drug–drug interactions (DDIs), hyperbilirubinemia and drug-induced liver injury. This study aimed to investigate and compare the inhibitory effects of icotinib and erlotinib against UGT1A1, as well as to evaluate their potential DDI risks via UGT1A1 inhibition. The results demonstrated that both icotinib and erlotinib are UGT1A1 inhibitors, but the inhibitory effect of icotinib on UGT1A1 is weaker than that of erlotinib. The IC50 values of icotinib and erlotinib against UGT1A1-mediated NCHN-O-glucuronidation in human liver microsomes (HLMs) were 5.15 and 0.68 μmol/L, respectively. Inhibition kinetic analyses demonstrated that both icotinib and erlotinib were non-competitive inhibitors against UGT1A1-mediated glucuronidation of NCHN in HLMs, with the Ki values of 8.55 and 1.23 μmol/L, respectively. Furthermore, their potential DDI risks via UGT1A1 inhibition were quantitatively predicted by the ratio of the areas under the concentration–time curve (AUC) of NCHN. These findings are helpful for the medicinal chemists to design and develop next generation tyrosine kinase inhibitors with improved safety, as well as to guide reasonable applications of icotinib and erlotinib in clinic, especially for avoiding their potential DDI risks via UGT1A1 inhibition.
Collapse
Affiliation(s)
- Xuewei Cheng
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xia Lv
- College of Life Science, Dalian Nationalities University, Dalian 116600, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hengyan Qu
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
| | - Dandan Li
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
| | - Mengmeng Hu
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Guangbo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Medicine, Shanghai 201203, China
- Corresponding authors. Tel.: +86 411 843793171, +86 10 66947482.
| | - Ruihua Dong
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
- Corresponding authors. Tel.: +86 411 843793171, +86 10 66947482.
| |
Collapse
|
10
|
Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res 2017; 40:1356-1379. [DOI: 10.1007/s12272-017-0976-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
|
11
|
Budha NR, Ji T, Musib L, Eppler S, Dresser M, Chen Y, Jin JY. Evaluation of Cytochrome P450 3A4-Mediated Drug-Drug Interaction Potential for Cobimetinib Using Physiologically Based Pharmacokinetic Modeling and Simulation. Clin Pharmacokinet 2017; 55:1435-1445. [PMID: 27225997 DOI: 10.1007/s40262-016-0412-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Cobimetinib is eliminated mainly through cytochrome P450 (CYP) 3A4-mediated hepatic metabolism in humans. A clinical drug-drug interaction (DDI) study with the potent CYP3A4 inhibitor itraconazole resulted in an approximately sevenfold increase in cobimetinib exposure. The DDI risk for cobimetinib with other CYP3A4 inhibitors and inducers needs to be assessed in order to provide dosing instructions. METHODS A physiologically based pharmacokinetic (PBPK) model was developed for cobimetinib using in vitro data. It was then optimized and verified using clinical pharmacokinetic data and itraconazole-cobimetinib DDI data. The contribution of CYP3A4 to the clearance of cobimetinib in humans was confirmed using sensitivity analysis in a retrospective simulation of itraconazole-cobimetinib DDI data. The verified PBPK model was then used to predict the effect of other CYP3A4 inhibitors and inducers on cobimetinib pharmacokinetics. RESULTS The PBPK model described cobimetinib pharmacokinetic profiles after both intravenous and oral administration of cobimetinib well and accurately simulated the itraconazole-cobimetinib DDI. Sensitivity analysis suggested that CYP3A4 contributes ~78 % of the total clearance of cobimetinib. The PBPK model predicted no change in cobimetinib exposure (area under the plasma concentration-time curve, AUC) with the weak CYP3A inhibitor fluvoxamine and a three to fourfold increase with the moderate CYP3A inhibitors, erythromycin and diltiazem. Similarly, cobimetinib exposure in the presence of strong (rifampicin) and moderate (efavirenz) CYP3A inducers was predicted to decrease by 83 and 72 %, respectively. CONCLUSION This study demonstrates the value of using PBPK simulation to assess the clinical DDI risk inorder to provide dosing instructions with other CYP3A4 perpetrators.
Collapse
Affiliation(s)
- Nageshwar R Budha
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Tao Ji
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Luna Musib
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Steve Eppler
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Mark Dresser
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Yuan Chen
- Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Jin Y Jin
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
12
|
Allosteric activation of midazolam CYP3A5 hydroxylase activity by icotinib – Enhancement by ketoconazole. Biochem Pharmacol 2016; 121:67-77. [DOI: 10.1016/j.bcp.2016.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/15/2016] [Indexed: 11/20/2022]
|
13
|
Min JS, Kim D, Park JB, Heo H, Bae SH, Seo JH, Oh E, Bae SK. Application of physiologically based pharmacokinetic modeling in predicting drug-drug interactions for sarpogrelate hydrochloride in humans. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2959-2972. [PMID: 27695293 PMCID: PMC5028085 DOI: 10.2147/dddt.s109141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Evaluating the potential risk of metabolic drug–drug interactions (DDIs) is clinically important. Objective To develop a physiologically based pharmacokinetic (PBPK) model for sarpogrelate hydrochloride and its active metabolite, (R,S)-1-{2-[2-(3-methoxyphenyl)ethyl]-phenoxy}-3-(dimethylamino)-2-propanol (M-1), in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP) 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol, desipramine, imipramine, dextromethorphan, and tolterodine following single and multiple sarpogrelate hydrochloride oral doses were within the range of ≥1.25, but <2-fold, indicating that sarpogrelate hydrochloride is a weak inhibitor of CYP2D6 in vivo. Collectively, the predicted low DDIs suggest that sarpogrelate hydrochloride has limited potential for causing significant DDIs associated with CYP2D6 inhibition. Conclusion This study demonstrated the feasibility of applying the PBPK approach to predicting the DDI potential between sarpogrelate hydrochloride and drugs metabolized by CYP2D6. Therefore, it would be beneficial in designing and optimizing clinical DDI studies using sarpogrelate as an in vivo CYP2D6 inhibitor.
Collapse
Affiliation(s)
- Jee Sun Min
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon
| | - Doyun Kim
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon
| | - Jung Bae Park
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon
| | - Hyunjin Heo
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon
| | - Soo Hyeon Bae
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, South Korea
| | - Jae Hong Seo
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon
| | - Euichaul Oh
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon
| | - Soo Kyung Bae
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon
| |
Collapse
|
14
|
Wang HY, Chen X, Jiang J, Shi J, Hu P. Evaluating a physiologically based pharmacokinetic model for predicting the pharmacokinetics of midazolam in Chinese after oral administration. Acta Pharmacol Sin 2016; 37:276-84. [PMID: 26592516 PMCID: PMC4753367 DOI: 10.1038/aps.2015.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/12/2015] [Indexed: 11/09/2022] Open
Abstract
AIM To evaluate the SimCYP simulator ethnicity-specific population model for predicting the pharmacokinetics of midazolam, a typical CYP3A4/5 substrate, in Chinese after oral administration. METHODS The physiologically based pharmacokinetic (PBPK) model for midazolam was developed using a SimCYP population-based simulator incorporating Chinese population demographic, physiological and enzyme data. A clinical trial was conducted in 40 Chinese subjects (the half was females) receiving a single oral dose of 15 mg midazolam. The subjects were separated into 4 groups based on age (20-50, 51-65, 66-75, and above 76 years), and the pharmacokinetics profiles of each age- and gender-group were determined, and the results were used to verify the PBPK model. RESULTS Following oral administration, the simulated profiles of midazolam plasma concentrations over time in virtual Chinese were in good agreement with the observed profiles, as were AUC and Cmax. Moreover, for subjects of varying ages (20-80 years), the ratios of predicted to observed clearances were between 0.86 and 1.12. CONCLUSION The SimCYP PBPK model accurately predicted the pharmacokinetics of midazolam in Chinese from youth to old age. This study may provide novel insight into the prediction of CYP3A4/5-mediated pharmacokinetics in the Chinese population relative to Caucasians and other ethnic groups, which can support the rational design of bridging clinical trials.
Collapse
Affiliation(s)
- Hong-yun Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Xia Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Ji Jiang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jun Shi
- Clinical Pharmacology Department, Roche pRED China, Shanghai 201203, China
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|