1
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
2
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Hu C, Yang W. Alternatives to animal models to study bacterial infections. Folia Microbiol (Praha) 2023; 68:703-739. [PMID: 37632640 DOI: 10.1007/s12223-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Animal testing has made a significant and unequalled contribution to important discoveries and advancements in the fields of research, medicine, vaccine development, and drug discovery. Each year, millions of animals are sacrificed for various experiments, and this is an ongoing process. However, the debate on the ethical and sensible usage of animals in in vivo experimentation is equally important. The need to explore and adopt newer alternatives to animals so as to comply with the goal of reduce, refine, and replace needs attention. Besides the ever-increasing debate on ethical issues, animal research has additional drawbacks (need of trained labour, requirement of breeding area, lengthy protocols, high expenses, transport barriers, difficulty to extrapolate data from animals to humans, etc.). With this scenario, the present review has been framed to give a comprehensive insight into the possible alternative options worth exploring in this direction especially targeting replacements for animal models of bacterial infections. There have been some excellent reviews discussing on the alternate methods for replacing and reducing animals in drug research. However, reviews that discuss the replacements in the field of medical bacteriology with emphasis on animal bacterial infection models are purely limited. The present review discusses on the use of (a) non-mammalian models and (b) alternative systems such as microfluidic chip-based models and microdosing aiming to give a detailed insight into the prospects of these alternative platforms to reduce the number of animals being used in infection studies. This would enlighten the scientific community working in this direction to be well acquainted with the available new approaches and alternatives so that the 3R strategy can be successfully implemented in the field of antibacterial drug research and testing.
Collapse
Affiliation(s)
- Chengming Hu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Aissa A, Panda SK, hu H, Kameli A, Luyten W. Phytochemical Screening, Antibacterial, Antifungal, and Anthelmintic Activity Against Plant Pathogens of two Algerian Plants: Pergularia tomentosa L. and Forsskaolea tenacissima L. from Oued Mzab (Northern Algerian Sahara). CURRENT BIOACTIVE COMPOUNDS 2022; 18. [DOI: 10.2174/1573407218666211223113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 07/15/2023]
Abstract
Background:
Plants are an abundant natural source of potential chemical compounds;
they have been widely used in various industries, such as pharmaceuticals, cosmetics, and food.
This work aims to study two Saharan medicinal plants by evaluating the activity of plant extract
against bacterial and fungal plant pathogens as well as against the model nematode Caenorhabditis
(C.) elegans.
Methods:
The antimicrobial activity of plant extracts against plants pathogen was assessed in a 96-
well plate assay by calculating the percentage of inhibition of bacteria. The antifungal activity
against plant pathogenic fungi was evaluated by the agar diffusion method, and inhibition was calculated
by measuring the diameter of the inhibition zone. Anthelmintic activity was evaluated by
calculating the average movement of C. elegans worms. Preliminary phytochemical screening was
realized with HPTLC.
Results:
Hexane and ethyl acetate extract of Pergularia tomentosa showed broad-spectrum antimicrobial
activity. This plant has the potential to act as a broad-spectrum antibacterial biopesticide.
Hexane extract of Forsskaolea tenacissima exhibited good activity against one fungus. The extracts
of Pergularia tomentosa showed good activity against Caenorhabditis elegans, and the extracts
of Forsskaolea tenacissima exhibited a low activity. Preliminary phytochemical screening
with HPTLC shows that both plants are rich in steroids and flavonoids.
Conclusion:
Our study shows that the studied plants may possess a broad-spectrum antibacterial effect
with narrow-spectrum antifungal properties which can offer more sustainable crop protection
with a much safer environmental and human health impact. Plant extracts that inhibited C. elegans
could provide a starting point for the development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Abdallah Aissa
- Laboratoire Ethnobotanique et Substances Naturelles (ESN) Département des Sciences Naturelles, ENS Kouba, Algiers,
Algeria
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59,
box 2465, 3000Leuven, Belgium
- Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques
(CRAPC), BP384, Bou-Ismail, RP 42004, Tipaza, Algeria
| | - Sujogya Kumar Panda
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59,
box 2465, 3000Leuven, Belgium
- Center of Environment, Climate Change and Public
Health, Utkal University, Vani Vihar, Bhubaneswar-751004, Odisha, India
| | - Haibo hu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59,
box 2465, 3000Leuven, Belgium
- National Engineering Research Center
for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan
Medical University, Ganzhou 341000, China
| | - Abdelkrim Kameli
- Laboratoire Ethnobotanique et Substances Naturelles (ESN) Département des Sciences Naturelles, ENS Kouba, Algiers,
Algeria
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59,
box 2465, 3000Leuven, Belgium
| |
Collapse
|
5
|
Kim SM, Zou G, Kim H, Kang M, Ahn S, Heo HY, Kim JS, Lim KM, Ausubel FM, Mylonakis E, Gao H, Kim W. Antimicrobial activity of the membrane-active compound nTZDpa is enhanced at low pH. Biomed Pharmacother 2022; 150:112977. [PMID: 35447554 DOI: 10.1016/j.biopha.2022.112977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
The opportunistic human pathogen Staphylococcus aureus can evade antibiotics by acquiring antibiotic resistance genes or by entering into a non-growing dormant state. Moreover, the particular circumstances of a specific infection site, such as acidity or anaerobicity, often weaken antibiotic potency. Decreased bacterial susceptibility combined with diminished antibiotic potency is responsible for high failure rates when treating S. aureus infections. Here, we report that the membrane-active antimicrobial agent nTZDpa does not only exhibit enhanced antibiotic activity against multidrug-resistant Gram-positive pathogens in acidic pH, but also retains antimicrobial potency under anaerobic conditions. This agent completely eradicated highly antibiotic-tolerant cells and biofilms formed by methicillin-resistant S. aureus at pH 5.5 at concentrations at which it was not potent at pH 7.4. Furthermore, nTZDpa was more potent at synergistically potentiating gentamicin killing against antibiotic-tolerant MRSA cells at low pH than at high pH. All-atom molecular dynamics simulations combined with membrane-permeabilization assays revealed that the neutral form of nTZDpa, which contains carboxylic acid, is more effective than the deprotonated form at penetrating the bacterial membrane and plays an essential role in membrane activity. An acidic pH increases the proportion of the neutrally charged nTZDpa, which results in antimicrobial enhancement. Our results provide key insights into rational design of pH-sensitive membrane-active antimicrobials and antibiotic adjuvants that are effective in an infection environment. These findings demonstrate that nTZDpa is a promising lead compound for developing new therapeutics against hard-to-cure infections caused by drug-resistant and -tolerant S. aureus.
Collapse
Affiliation(s)
- Soo Min Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Guijin Zou
- Institute of High Performance Computing, A⁎STAR, Singapore 138632, Singapore
| | - Hyerim Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soyeon Ahn
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hee Young Heo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Huajian Gao
- Institute of High Performance Computing, A⁎STAR, Singapore 138632, Singapore; School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639789, Singapore
| | - Wooseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
6
|
Idris OA, Wintola OA, Afolayan AJ. Anthelmintic potency of Rumex crispus L. extracts against Caenorhabditis elegans and non-targeted identification of the bioactive compounds. Saudi J Biol Sci 2022; 29:541-549. [PMID: 35002450 PMCID: PMC8716969 DOI: 10.1016/j.sjbs.2021.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
Traditional healers and ethnoveterinary therapists use several medicinal plants, such as Rumex crispus L., to treat endoparasite infections. R. crispus has been established by researchers to be effective agasint a few parasitic worms. In this study, we evaluated the potency of R. crispus extracts on the model organism, Caenorhabditis elegans and the bioactive compounds of the extracts were also identified. The solvent extracts of R. crispus were tested against C. elegans for up to 72 h. The effect of the extracts on C. elegans was examined using light microscopy (LM) and scanning electron microscopy (SEM). LM and SEM analysis showed damage on the body wall, reduced body and slight modifications of the nematode organs. The lethality test reveals a significant reduction in the viability of the nematode with the water extract of leaf (LF-WAE), among others, having the strongest potency against the nematode, with 83% lethality. Anlysis done with Fourier-transform infrared spectroscopy (FTIR) spectra reveals various characteristic vibration bands and fingerprint bands at 3400–600 cm−1, identifying phenols, organic acids, aromatics, amines, among others in the plant. The compounds were identified with liquid chromatography-mass spectrometry (LC-MS), under the categories of flavonoids, steroidal alkaloids and proanthocyanidin. In conclusion, this study confirmed that R. crispus has anthelmintic potential, using standardised C. elegans models as a tool and suggests that there could be novel compounds yet to be explored in the studied plant that could be of great benefit to livestock and humans.
Collapse
Affiliation(s)
- Oladayo Amed Idris
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa.,Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, North West, South Africa
| | - Olubunmi Abosede Wintola
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Jide Afolayan
- Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
7
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
8
|
Zhong L, Liu J, Teng S, Xie Z. Identification of a Novel Cathelicidin from the Deinagkistrodon acutus Genome with Antibacterial Activity by Multiple Mechanisms. Toxins (Basel) 2020; 12:toxins12120771. [PMID: 33291852 PMCID: PMC7762006 DOI: 10.3390/toxins12120771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
The abuse of antibiotics and the consequent increase of drug-resistant bacteria constitute a serious threat to human health, and new antibiotics are urgently needed. Research shows that antimicrobial peptides produced by natural organisms are potential substitutes for antibiotics. Based on Deinagkistrodonacutus (known as five-pacer viper) genome bioinformatics analysis, we discovered a new cathelicidin antibacterial peptide which was called FP-CATH. Circular dichromatic analysis showed a typical helical structure. FP-CATH showed broad-spectrum antibacterial activity. It has antibacterial activity to Gram-negative bacteria and Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA). The results of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that FP-CATH could cause the change of bacterial cell integrity, having a destructive effect on Gram-negative bacteria and inducing Gram-positive bacterial surface formation of vesicular structure. FP-CATH could bind to LPS and showed strong binding ability to bacterial DNA. In vivo, FP-CATH can improve the survival rate of nematodes in bacterial invasion experiments, and has a certain protective effect on nematodes. To sum up, FP-CATH is likely to play a role in multiple mechanisms of antibacterial action by impacting bacterial cell integrity and binding to bacterial biomolecules. It is hoped that the study of FP-CATH antibacterial mechanisms will prove useful for development of novel antibiotics.
Collapse
|
9
|
Caenorhabditis elegans as a Model System To Assess Candida glabrata, Candida nivariensis, and Candida bracarensis Virulence and Antifungal Efficacy. Antimicrob Agents Chemother 2020; 64:AAC.00824-20. [PMID: 32718968 DOI: 10.1128/aac.00824-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022] Open
Abstract
Although Candida albicans remains the major etiological agent of invasive candidiasis, Candida glabrata and other emerging species of Candida are increasingly isolated. This species is the second most prevalent cause of candidiasis in many regions of the world. However, clinical isolates of Candida nivariensis and Candida bracarensis can be misidentified and are underdiagnosed due to phenotypic traits shared with C. glabrata Little is known about the two cryptic species. Therefore, pathogenesis studies are needed to understand their virulence traits and their susceptibility to antifungal drugs. The susceptibility of Caenorhabditis elegans to different Candida species makes this nematode an excellent model for assessing host-fungus interactions. We evaluated the usefulness of C. elegans as a nonconventional host model to analyze the virulence of C. glabrata, C. nivariensis, and C. bracarensis The three species caused candidiasis, and the highest virulence of C. glabrata was confirmed. Furthermore, we determined the efficacy of current antifungal drugs against the infection caused by these species in the C. elegans model. Amphotericin B and azoles showed the highest activity against C. glabrata and C. bracarensis infections, while echinocandins were more active for treating those caused by C. nivariensis C. elegans proved to be a useful model system for assessing the pathogenicity of these closely related species.
Collapse
|
10
|
Atakan HB, Ayhan F, Gijs MAM. PDMS filter structures for size-dependent larval sorting and on-chip egg extraction of C. elegans. LAB ON A CHIP 2020; 20:155-167. [PMID: 31793616 DOI: 10.1039/c9lc00949c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
C. elegans-based assays require age-synchronized populations prior to experimentation to achieve standardized sets of worm populations, due to which age-induced heterogeneous phenotyping effects can be avoided. There have been several approaches to synchronize populations of C. elegans at certain larval stages; however, many of these methods are tedious, complex and have low throughput. In this work, we demonstrate a polydimethylsiloxane (PDMS) microfluidic filtering device for high-throughput, efficient, and extremely rapid sorting of mixed larval populations of C. elegans. Our device consists of three plasma-activated and bonded PDMS parts and permits sorting of mixed populations of two consecutive larval stages in a matter of minutes. After sorting, we also retain the remaining larval stage of the initially mixed worm population on the chip, thereby enabling collection of the two sorted larval populations from the device. We demonstrated that the target larvae could be collected from a mixed worm population by cascading these devices. Our approach is based on only passive hydrodynamics filter structures, resulting in a user-friendly and reusable tool. In addition, we employed the equivalent of a standard bleaching procedure that is practiced in standard worm culture on agar plates for embryo harvesting on our chip, and we demonstrated rapid egg extraction and subsequent harvesting of a synchronized L1 larvae population.
Collapse
Affiliation(s)
- Huseyin Baris Atakan
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Furkan Ayhan
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Automated Platform for Long-Term Culture and High-Content Phenotyping of Single C. elegans Worms. Sci Rep 2019; 9:14340. [PMID: 31586133 PMCID: PMC6778082 DOI: 10.1038/s41598-019-50920-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/19/2019] [Indexed: 01/01/2023] Open
Abstract
The nematode Caenorhabditis elegans is a suitable model organism in drug screening. Traditionally worms are grown on agar plates, posing many challenges for long-term culture and phenotyping of animals under identical conditions. Microfluidics allows for 'personalized' phenotyping, as microfluidic chips permit collecting individual responses over worms' full life. Here, we present a multiplexed, high-throughput, high-resolution microfluidic approach to culture C. elegans from embryo to the adult stage at single animal resolution. We allocated single embryos to growth chambers, for observing the main embryonic and post-embryonic development stages and phenotypes, while exposing worms to up to 8 different well-controlled chemical conditions. Our approach allowed eliminating bacteria aggregation and biofilm formation-related clogging issues, which enabled us performing up to 80 hours of automated single worm culture studies. Our microfluidic platform is linked with an automated phenotyping code that registers organism-associated phenotypes at high-throughput. We validated our platform with a dose-response study of the anthelmintic drug tetramisole by studying its influence through the life cycle of the nematodes. In parallel, we could observe development effects and variations in single embryo and worm viability due to the bleaching procedure that is standardly used for harvesting the embryos from a worm culture agar plate.
Collapse
|
12
|
Mir DA, Balamurugan K. In vitro and in vivo efficacy of Caenorhabditis elegans recombinant antimicrobial protein against Gram-negative bacteria. BIOFOULING 2019; 35:900-921. [PMID: 31617758 DOI: 10.1080/08927014.2019.1675048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial peptides (AMPs) are short, positively charged host defense peptides, found in various life forms from microorganisms to humans. AMPs are gaining more attention as substitutes for antibiotics in order to combat the risk posed by multi-drug- resistant pathogens. The nematode Caenorhabditis elegans relies solely on its innate immune defense to cope with its challenging life-style. Bacterial infection in C. elegans leads to induction of antimicrobial proteins, defensins, nemapores, cecropins, and neuropeptide-like proteins, which act to limit bacterial proliferation. This study reports how the C. elegans recombinant antibacterial factor (ABF-1) rapidly inhibited bacterial growth (Salmonella Typhi, Klebsiella pneumonia, Shigella sonnei and Vibrio alginolyticus). The ABF-1 exposure on S. Typhi, showed differential regulation in cell-cycle, DNA repair mechanism, membrane stability, and stress related proteins. The exogenous supply of ABF-1 protein has extended C. elegans survival by reducing the bacterial colony forming units on the nematode intestine. Together, these findings indicate the valuable and potential therapeutic applications of ABF-1 protein as antimicrobial agents against intracellular pathogens.
Collapse
|
13
|
Ji J, Yuan J, Guo X, Ji R, Quan Q, Ding M, Li X, Liu Y. Harmine suppresses hyper-activated Ras-MAPK pathway by selectively targeting oncogenic mutated Ras/Raf in Caenorhabditis elegans. Cancer Cell Int 2019; 19:159. [PMID: 31198408 PMCID: PMC6558680 DOI: 10.1186/s12935-019-0880-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mutationally activated Ras proteins are closely linked to a wide variety of human cancers. Hence, there has been an intensive search for anti-Ras therapies for cancer treatment. The sole Ras gene, which encodes LET-60, in Caenorhabditis elegans regulates vulval development. While the loss of let-60 function leads to failure of vulva formation, the let-60(n1046gf) allele, which contains a missense mutation mimicking a Ras codon 13 mutation found in human cancers, results in extra vulval tissue, a phenotype named Muv (multiple vulvas). Methods By taking advantage of the easy-to-score Muv phenotype of let-60(n1046gf), we used a step-by-step screening approach (from crude extract to active fraction to active natural compound) to search for inhibitors of oncogenic Ras. Mutants of other key components in the Ras-mitogen-activated protein kinase (MAPK) pathway were used to identify other candidate targets. Results The natural compound harmine, isolated from the plant Peganum harmala, was found to suppress the Muv phenotype of let-60(n1046gf). In addition, harmine targets the hyper-activation of the Ras/MAPK pathway specifically caused by overexpression or mutated forms of LET-60/Ras and its immediate downstream molecule LIN-45/Raf. Finally, harmine can be absorbed into the worm body and probably functions in its native form, rather than requiring metabolic activation. Conclusion In sum, we have revealed for the first time the anti-Ras activity of harmine in a C. elegans model system. Our results revealed the potential anti-cancer mechanism of harmine, which may be useful for the treatment of specific human cancers that are associated with oncogenic Ras mutations.
Collapse
Affiliation(s)
- Jiaojiao Ji
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Jiang Yuan
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Guo
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Ruifang Ji
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Qinghua Quan
- 1Beijing University of Chinese Medicine, Beijing, China
| | - Mei Ding
- 2State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xia Li
- 2State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yonggang Liu
- 1Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
DiLegge MJ, Manter DK, Vivanco JM. A novel approach to determine generalist nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent against Meloidogyne spp. nematodes. Sci Rep 2019; 9:7521. [PMID: 31101887 PMCID: PMC6525257 DOI: 10.1038/s41598-019-44010-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Root-knot nematodes (RKN) such as Meloidogyne spp. are among the most detrimental pests in agriculture affecting several crops. New methodologies to manage RKN are needed such as efficient discovery of nematophagous microbes. In this study, we developed an in vitro high-throughput method relying on the free-living nematode Caenorhabditis elegans and the infection of those nematodes with a soil slurry containing a microbiome likely to house nematophagous microbes. Nematodes were monitored for presence of infection and sub-cultured repeatedly for the purpose of isolating pure cultures of the microbe responsible for conferring the nematicidal activity. Once soil microbes were confirmed to be antagonistic to C. elegans, they were tested for pathogenicity against Meloidogyne chitwoodi. Using this methodology, the fungal isolate Mortierella globalpina was confirmed to be pathogenic in vitro against M. chitwoodi by nematode trapping via hyphal adhesion to the cuticle layer, penetration of the cuticle layer, and subsequently digestion of its cellular contents. M. globalpina was also observed to reduce disease symptomology of RKNs in vivo via significant reduction of root-galls on tomato (Solanum lycopersicum var. Rutgers).
Collapse
Affiliation(s)
- Michael J DiLegge
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, CO, 80523, USA
| | - Daniel K Manter
- USDA-ARS, Soil Management and Sugar Beet Research, Fort Collins, Colorado, CO, USA
| | - Jorge M Vivanco
- Center for Rhizosphere Biology, Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, CO, 80523, USA.
| |
Collapse
|
15
|
Elkabti AB, Issi L, Rao RP. Caenorhabditis elegans as a Model Host to Monitor the Candida Infection Processes. J Fungi (Basel) 2018; 4:E123. [PMID: 30405043 PMCID: PMC6309157 DOI: 10.3390/jof4040123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023] Open
Abstract
C. elegans has several advantages as an experimental host for the study of infectious diseases. Worms are easily maintained and propagated on bacterial lawns. The worms can be frozen for long term storage and still maintain viability years later. Their short generation time and large brood size of thousands of worms grown on a single petri dish, makes it relatively easy to maintain at a low cost. The typical wild type adult worm grows to approximately 1.5 mm in length and are transparent, allowing for the identification of several internal organs using an affordable dissecting microscope. A large collection of loss of function mutant strains are readily available from the C. elegans genetic stock center, making targeted genetic studies in the nematode possible. Here we describe ways in which this facile model host has been used to study Candida albicans, an opportunistic fungal pathogen that poses a serious public health threat.
Collapse
Affiliation(s)
| | - Luca Issi
- Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| | - Reeta P Rao
- Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
16
|
Panda SK, Padhi L, Leyssen P, Liu M, Neyts J, Luyten W. Antimicrobial, Anthelmintic, and Antiviral Activity of Plants Traditionally Used for Treating Infectious Disease in the Similipal Biosphere Reserve, Odisha, India. Front Pharmacol 2017; 8:658. [PMID: 29109684 PMCID: PMC5660100 DOI: 10.3389/fphar.2017.00658] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022] Open
Abstract
In the present study, we tested in vitro different parts of 35 plants used by tribals of the Similipal Biosphere Reserve (SBR, Mayurbhanj district, India) for the management of infections. From each plant, three extracts were prepared with different solvents (water, ethanol, and acetone) and tested for antimicrobial (E. coli, S. aureus, C. albicans); anthelmintic (C. elegans); and antiviral (enterovirus 71) bioactivity. In total, 35 plant species belonging to 21 families were recorded from tribes of the SBR and periphery. Of the 35 plants, eight plants (23%) showed broad-spectrum in vitro antimicrobial activity (inhibiting all three test strains), while 12 (34%) exhibited narrow spectrum activity against individual pathogens (seven as anti-staphylococcal and five as anti-candidal). Plants such as Alangium salviifolium, Antidesma bunius, Bauhinia racemosa, Careya arborea, Caseria graveolens, Cleistanthus patulus, Colebrookea oppositifolia, Crotalaria pallida, Croton roxburghii, Holarrhena pubescens, Hypericum gaitii, Macaranga peltata, Protium serratum, Rubus ellipticus, and Suregada multiflora showed strong antibacterial effects, whilst Alstonia scholaris, Butea monosperma, C. arborea, C. pallida, Diospyros malbarica, Gmelina arborea, H. pubescens, M. peltata, P. serratum, Pterospermum acerifolium, R. ellipticus, and S. multiflora demonstrated strong antifungal activity. Plants such as A. salviifolium, A. bunius, Aporosa octandra, Barringtonia acutangula, C. graveolens, C. pallida, C. patulus, G. arborea, H. pubescens, H. gaitii, Lannea coromandelica, M. peltata, Melastoma malabathricum, Millettia extensa, Nyctanthes arbor-tristis, P. serratum, P. acerifolium, R. ellipticus, S. multiflora, Symplocos cochinchinensis, Ventilago maderaspatana, and Wrightia arborea inhibit survival of C. elegans and could be a potential source for anthelmintic activity. Additionally, plants such as A. bunius, C. graveolens, C. patulus, C. oppositifolia, H. gaitii, M. extensa, P. serratum, R. ellipticus, and V. maderaspatana showed anti-enteroviral activity. Most of the plants, whose traditional use as anti-infective agents by the tribals was well supported, show in vitro inhibitory activity against an enterovirus, bacteria (E. coil, S. aureus), a fungus (C. albicans), or a nematode (C. elegans).
Collapse
Affiliation(s)
- Sujogya K Panda
- Department of Zoology, North Orissa University, Baripada, India.,Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Pieter Leyssen
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Maoxuan Liu
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
17
|
Ziehm M, Kaur S, Ivanov DK, Ballester PJ, Marcus D, Partridge L, Thornton JM. Drug repurposing for aging research using model organisms. Aging Cell 2017. [PMID: 28620943 PMCID: PMC5595691 DOI: 10.1111/acel.12626] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many increasingly prevalent diseases share a common risk factor: age. However, little is known about pharmaceutical interventions against aging, despite many genes and pathways shown to be important in the aging process and numerous studies demonstrating that genetic interventions can lead to a healthier aging phenotype. An important challenge is to assess the potential to repurpose existing drugs for initial testing on model organisms, where such experiments are possible. To this end, we present a new approach to rank drug-like compounds with known mammalian targets according to their likelihood to modulate aging in the invertebrates Caenorhabditis elegans and Drosophila. Our approach combines information on genetic effects on aging, orthology relationships and sequence conservation, 3D protein structures, drug binding and bioavailability. Overall, we rank 743 different drug-like compounds for their likelihood to modulate aging. We provide various lines of evidence for the successful enrichment of our ranking for compounds modulating aging, despite sparse public data suitable for validation. The top ranked compounds are thus prime candidates for in vivo testing of their effects on lifespan in C. elegans or Drosophila. As such, these compounds are promising as research tools and ultimately a step towards identifying drugs for a healthier human aging.
Collapse
Affiliation(s)
- Matthias Ziehm
- European Molecular Biology Laboratory; European Bioinformatics Institute (EMBL-EBI); The Genome Campus Hinxton, Cambridge CB10 1SD UK
- Department of Genetics, Evolution and Environment; Institute of Healthy Ageing; University College London; Gower Street London WC1E 6BT UK
| | - Satwant Kaur
- European Molecular Biology Laboratory; European Bioinformatics Institute (EMBL-EBI); The Genome Campus Hinxton, Cambridge CB10 1SD UK
| | - Dobril K. Ivanov
- European Molecular Biology Laboratory; European Bioinformatics Institute (EMBL-EBI); The Genome Campus Hinxton, Cambridge CB10 1SD UK
| | - Pedro J. Ballester
- European Molecular Biology Laboratory; European Bioinformatics Institute (EMBL-EBI); The Genome Campus Hinxton, Cambridge CB10 1SD UK
| | - David Marcus
- European Molecular Biology Laboratory; European Bioinformatics Institute (EMBL-EBI); The Genome Campus Hinxton, Cambridge CB10 1SD UK
| | - Linda Partridge
- Department of Genetics, Evolution and Environment; Institute of Healthy Ageing; University College London; Gower Street London WC1E 6BT UK
- Max Planck Institute for Biology of Ageing; Joseph-Stelzmann-Str. 9b 50931 Cologne Germany
| | - Janet M. Thornton
- European Molecular Biology Laboratory; European Bioinformatics Institute (EMBL-EBI); The Genome Campus Hinxton, Cambridge CB10 1SD UK
| |
Collapse
|
18
|
Sharma N, Khurana N, Muthuraman A. Lower vertebrate and invertebrate models of Alzheimer's disease - A review. Eur J Pharmacol 2017; 815:312-323. [PMID: 28943103 DOI: 10.1016/j.ejphar.2017.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/20/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is a common neurodegenerative disorder which is characterized by the presence of beta- amyloid protein and neurofibrillary tangles (NFTs) in the brain. Till now, various higher vertebrate models have been in use to study the pathophysiology of this disease. But, these models possess some limitations like ethical restrictions, high cost, difficult maintenance of large quantity and lesser reproducibility. Besides, various lower chordate animals like Danio rerio, Drosophila melanogaster, Caenorhabditis elegans and Ciona intestinalis have been proved to be an important model for the in vivo determination of targets of drugs with least limitations. In this article, we reviewed different studies conducted on theses models for the better understanding of the pathophysiology of AD and their subsequent application as a potential tool in the preclinical evaluation of new drugs.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology, Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, Punjab, India; Department of Pharmacology, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysuru 570015, Karnataka, India.
| |
Collapse
|
19
|
Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0290. [PMID: 27160593 PMCID: PMC4874388 DOI: 10.1098/rstb.2015.0290] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 12/30/2022] Open
Abstract
Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus. We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides. The article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’.
Collapse
Affiliation(s)
- Eleftherios Mylonakis
- Division of Infectious Disease, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Lars Podsiadlowski
- Institute of Evolutionary Biology and Zooecology, University of Bonn, Bonn, Germany
| | - Maged Muhammed
- Division of Infectious Disease, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| |
Collapse
|
20
|
Stietz MS, Lopez C, Osifo O, Tolmasky ME, Cardona ST. Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia. Can J Microbiol 2017; 63:857-863. [PMID: 28817787 DOI: 10.1139/cjm-2017-0350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.
Collapse
Affiliation(s)
- Maria S Stietz
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Christina Lopez
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Osasumwen Osifo
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Marcelo E Tolmasky
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Silvia T Cardona
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,c Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
21
|
Kong C, Eng SA, Lim MP, Nathan S. Beyond Traditional Antimicrobials: A Caenorhabditis elegans Model for Discovery of Novel Anti-infectives. Front Microbiol 2016; 7:1956. [PMID: 27994583 PMCID: PMC5133244 DOI: 10.3389/fmicb.2016.01956] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/22/2016] [Indexed: 11/13/2022] Open
Abstract
The spread of antibiotic resistance amongst bacterial pathogens has led to an urgent need for new antimicrobial compounds with novel modes of action that minimize the potential for drug resistance. To date, the development of new antimicrobial drugs is still lagging far behind the rising demand, partly owing to the absence of an effective screening platform. Over the last decade, the nematode Caenorhabditis elegans has been incorporated as a whole animal screening platform for antimicrobials. This development is taking advantage of the vast knowledge on worm physiology and how it interacts with bacterial and fungal pathogens. In addition to allowing for in vivo selection of compounds with promising anti-microbial properties, the whole animal C. elegans screening system has also permitted the discovery of novel compounds targeting infection processes that only manifest during the course of pathogen infection of the host. Another advantage of using C. elegans in the search for new antimicrobials is that the worm itself is a source of potential antimicrobial effectors which constitute part of its immune defense response to thwart infections. This has led to the evaluation of effector molecules, particularly antimicrobial proteins and peptides (APPs), as candidates for further development as therapeutic agents. In this review, we provide an overview on use of the C. elegans model for identification of novel anti-infectives. We highlight some highly potential lead compounds obtained from C. elegans-based screens, particularly those that target bacterial virulence or host defense to eradicate infections, a mechanism distinct from the action of conventional antibiotics. We also review the prospect of using C. elegans APPs as an antimicrobial strategy to treat infections.
Collapse
Affiliation(s)
- Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Su-Anne Eng
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Mei-Perng Lim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia Bangi, Malaysia
| |
Collapse
|
22
|
Utility of Greater Wax Moth Larva (Galleria mellonella) for Evaluating the Toxicity and Efficacy of New Antimicrobial Agents. ADVANCES IN APPLIED MICROBIOLOGY 2016; 78:25-53. [PMID: 22305092 DOI: 10.1016/b978-0-12-394805-2.00002-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There is an urgent need for new antimicrobial agents to combat infections caused by drug-resistant pathogens. Once a compound is shown to be effective in vitro, it is necessary to evaluate its efficacy in an animal infection model. Typically, this is achieved using a mammalian model, but such experiments are costly, time consuming, and require full ethical consideration. Hence, cheaper and ethically more acceptable invertebrate models of infection have been introduced, including the larvae of the greater wax moth Galleria mellonella. Invertebrates have an immune system that is functionally similar to the innate immune system of mammals, and often identical virulence and pathogenicity factors are used by human pathogenic microbes to infect wax moth larvae and mammals. Moreover, the virulence of many human pathogens is comparable in wax moth larvae and mammals. Using key examples from the literature, this chapter highlights the benefits of using the wax moth larva model to provide a rapid, inexpensive, and reliable evaluation of the toxicity and efficacy of new antimicrobial agents in vivo and prior to the use of more expensive mammalian models. This simple insect model can bridge the gap between in vitro studies and mammalian experimentation by screening out compounds with a low likelihood of success, while providing greater justification for further studies in mammalian systems. Thus, broader implementation of the wax moth larva model into anti-infective drug discovery and development programs could reduce the use of mammals during preclinical assessments and the overall cost of drug development.
Collapse
|
23
|
Yen CA, Curran SP. Gene-diet interactions and aging in C. elegans. Exp Gerontol 2016; 86:106-112. [PMID: 26924670 DOI: 10.1016/j.exger.2016.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 02/06/2023]
Abstract
Diet is the most variable aspect of life history, as most individuals have a large diversity of food choices, varying in the type and amount that they ingest. In the short-term, diet can affect metabolism and energy levels. However, in the long run, the net deficiency or excess of calories from diet can influence the progression and severity of age-related diseases. An old and yet still debated question is: how do specific dietary choices impact health- and lifespan? It is clear that genetics can play a critical role - perhaps just as important as diet choices. For example, poor diet in combination with genetic susceptibility can lead to metabolic disorders, such as obesity and type 2 diabetes. Recent work in Caenorhabditis elegans has identified the existence of diet-gene pairs, where the consequence of mutating a specific gene is only realized on specific diets. Many core metabolic pathways are conserved from worm to human. Although only a handful of these diet-gene pairs has been characterized, there are potentially hundreds, if not thousands, of such interactions, which may explain the variability in the rates of aging in humans and the incidence and severity of age-related diseases.
Collapse
Affiliation(s)
- Chia An Yen
- University of Southern California, Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, United States
| | - Sean P Curran
- University of Southern California, Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, United States; University of Southern California, Davis School of Gerontology, United States.
| |
Collapse
|
24
|
Muhammed M, Arvanitis M, Mylonakis E. Whole animal HTS of small molecules for antifungal compounds. Expert Opin Drug Discov 2015; 11:177-84. [PMID: 26593386 DOI: 10.1517/17460441.2016.1122591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The high morbidity and mortality among patients with invasive fungal infections and the growing problem of fungal resistance have resulted in an urgent need for new antifungal agents. AREAS COVERED This review covers the importance of antifungal drug discovery with an emphasis on whole-animal high-throughput techniques. More specifically, the authors focus on Caenorhabditis elegans, as a substitute model host and discuss C. elegans as an alternative model host for the study of microbial pathogenesis and the identification of novel antifungal compounds. EXPERT OPINION There are significant advantages from using the substitute model host C. elegans in high-throughput drug discovery. The C. elegans-microbe model provides a whole animal system where host-pathogen interactions can be studied along with the evaluation of antimicrobial efficacy of compounds. This approach allows the study of compound characteristics, such as toxicity and solubility, during the initial screen and compounds discovered using C. elegans are affective in mammalian models.
Collapse
Affiliation(s)
- Maged Muhammed
- a Division of Infectious Diseases , Rhode Island Hospital , Providence , RI , USA.,b Warren Alpert Medical School of Brown University , Providence , RI , USA
| | - Marios Arvanitis
- c Department of Medicine , Boston Medical Center, Boston University , Boston , MA , USA
| | - Eleftherios Mylonakis
- a Division of Infectious Diseases , Rhode Island Hospital , Providence , RI , USA.,b Warren Alpert Medical School of Brown University , Providence , RI , USA
| |
Collapse
|
25
|
Abstract
Pathogenic bacteria produce virulence factors called effectors, which are important components of the infection process. Effectors aid in pathogenesis by facilitating bacterial attachment, pathogen entry into or exit from the host cell, immunoevasion, and immunosuppression. Effectors also have the ability to subvert host cellular processes, such as hijacking cytoskeletal machinery or blocking protein translation. However, host cells possess an evolutionarily conserved innate immune response that can sense the pathogen through the activity of its effectors and mount a robust immune response. This “effector triggered immunity” (ETI) was first discovered in plants but recent evidence suggest that the process is also well conserved in metazoans. We will discuss salient points of the mechanism of ETI in metazoans from recent studies done in mammalian cells and invertebrate model hosts.
Collapse
Affiliation(s)
- Rajmohan Rajamuthiah
- a Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence, RI USA
| | | |
Collapse
|
26
|
Rajamuthiah R, Fuchs BB, Conery AL, Kim W, Jayamani E, Kwon B, Ausubel FM, Mylonakis E. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS One 2015; 10:e0124595. [PMID: 25897961 PMCID: PMC4405337 DOI: 10.1371/journal.pone.0124595] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/16/2015] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.
Collapse
Affiliation(s)
- Rajmohan Rajamuthiah
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Annie L. Conery
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wooseong Kim
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Elamparithi Jayamani
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bumsup Kwon
- Division of Neurology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Frederick M. Ausubel
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
27
|
Desalermos A, Tan X, Rajamuthiah R, Arvanitis M, Wang Y, Li D, Kourkoumpetis TK, Fuchs BB, Mylonakis E. A multi-host approach for the systematic analysis of virulence factors in Cryptococcus neoformans. J Infect Dis 2014; 211:298-305. [PMID: 25114160 DOI: 10.1093/infdis/jiu441] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A multi-host approach was followed to screen a library of 1201 signature-tagged deletion strains of Cryptococcus neoformans mutants to identify previously unknown virulence factors. The primary screen was performed using a Caenorhabditis elegans-C. neoformans infection assay. The hits among these strains were reconfirmed as less virulent than the wild type in the insect Galleria mellonella-C. neoformans infection assay. After this 2-stage screen, and to prioritize hits, we performed serial evaluations of the selected strains, using the C. elegans model. All hit strains identified through these studies were validated in a murine model of systemic cryptococcosis. Twelve strains were identified through a stepwise screening assay. Among them, 4 (CSN1201, SRE1, RDI1, and YLR243W) were previously discovered, providing proof of principle for this approach, while the role of the remaining 8 genes (CKS101, CNC5600, YOL003C, CND1850, MLH3, HAP502, MSL5, and CNA2580) were not previously described in cryptococcal virulence. The multi-host approach is an efficient method of studying the pathogenesis of C. neoformans. We used diverse model hosts, C. elegans, G. mellonella, and mice, with physiological differences and identified 12 genes associated with mammalian infection. Our approach may be suitable for large pathogenesis screens.
Collapse
Affiliation(s)
- Athanasios Desalermos
- Division of Infectious diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Xiaojiang Tan
- Division of Infectious diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Rajmohan Rajamuthiah
- Division of Infectious diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Marios Arvanitis
- Division of Infectious diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Yan Wang
- Division of Infectious diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Dedong Li
- Division of Infectious diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | | - Beth Burgwyn Fuchs
- Division of Infectious diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Eleftherios Mylonakis
- Division of Infectious diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
28
|
Enhancing a search for traditional medicinal plants with anthelmintic action by using wild type and stress reporter Caenorhabditis elegans strains as screening tools. Int J Parasitol 2014; 44:291-8. [DOI: 10.1016/j.ijpara.2014.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/20/2013] [Accepted: 01/09/2014] [Indexed: 11/23/2022]
|
29
|
Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ, Zaragoza O. Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One 2013; 8:e60047. [PMID: 23555877 PMCID: PMC3610750 DOI: 10.1371/journal.pone.0060047] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/20/2013] [Indexed: 12/28/2022] Open
Abstract
The incidence of opportunistic fungal infections has increased in recent decades due to the growing proportion of immunocompromised patients in our society. Candida krusei has been described as a causative agent of disseminated fungal infections in susceptible patients. Although its prevalence remains low among yeast infections (2-5%), its intrinsic resistance to fluconazole makes this yeast important from epidemiologic aspects. Non mammalian organisms are feasible models to study fungal virulence and drug efficacy. In this work we have used the lepidopteran Galleria mellonella and the nematode Caenorhabditis elegans as models to assess antifungal efficacy during infection by C. krusei. This yeast killed G. mellonella at 25, 30 and 37°C and reduced haemocytic density. Infected larvae melanized in a dose-dependent manner. Fluconazole did not protect against C. krusei infection, in contrast to amphotericin B, voriconazole or caspofungin. However, the doses of these antifungals required to obtain larvae protection were always higher during C. krusei infection than during C. albicans infection. Similar results were found in the model host C. elegans. Our work demonstrates that non mammalian models are useful tools to investigate in vivo antifungal efficacy and virulence of C. krusei.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
| | - Maria Pilar de Lucas
- Department of Cellular Biology, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Cecilia Mesa-Arango
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Group of Investigative Dermatology, University of Antioquia, Medellín, Colombia
| | - Ana Marisa Fusco-Almeida
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
| | - Encarnación Lozano
- Department of Cellular Biology, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Jose Mendes-Giannini
- Laboratório de Micologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista de São Paulo, Araraquara, Brazil
- * E-mail: (MJMG); (OZ)
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (MJMG); (OZ)
| |
Collapse
|
30
|
Zheng SQ, Ding AJ, Li GP, Wu GS, Luo HR. Drug absorption efficiency in Caenorhbditis elegans delivered by different methods. PLoS One 2013; 8:e56877. [PMID: 23451103 PMCID: PMC3581574 DOI: 10.1371/journal.pone.0056877] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/15/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Caenorhbditis elegans has being vigorously used as a model organism in many research fields and often accompanied by administrating with various drugs. The methods of delivering drugs to worms are varied from one study to another, which make difficult in comparing results between studies. METHODOLOGY/PRINCIPAL FINDINGS We evaluated the drug absorption efficiency in C. elegans using five frequently used methods with resveratrol with low aqueous solubility and water-soluble 5-Fluoro-2'-deoxyuridine (FUDR) as positive compounds. The drugs were either applied to the LB medium with bacteria OP50, before spreading onto Nematode Growth Medium (NGM) plates (LB medium method), or to the NGM with live (NGM live method) or dead bacteria (NGM dead method), or spotting the drug solution to the surface of plates directly (spot dead method), or growing the worms in liquid medium (liquid growing method). The concentration of resveratrol and FUDR increased gradually within C. elegans and reached the highest during 12 hours to one day and then decreased slowly. At the same time point, the higher the drug concentration, the higher the metabolism rate. The drug concentrations in worms fed with dead bacteria were higher than with live bacteria at the same time point. Consistently, the drug concentration in medium with live bacteria decreased much faster than in medium with dead bacteria, reach to about half of the original concentration within 12 hours. CONCLUSION Resveratrol with low aqueous solubility and water-soluble FUDR have the same absorption and metabolism pattern. The drug metabolism rate in worms was both dosage and time dependent. NGM dead method and liquid growing method achieved the best absorption efficiency in worms. The drug concentration within worms was comparable with that in mice, providing a bridge for dose translation from worms to mammals.
Collapse
Affiliation(s)
- Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guo-Ping Li
- The key laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
| | - Gui-Sheng Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- * E-mail: address:
| |
Collapse
|
31
|
Utility of insects for studying human pathogens and evaluating new antimicrobial agents. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:1-25. [PMID: 23604210 DOI: 10.1007/10_2013_194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Insect models, such as Galleria mellonella and Drosophila melanogaster have significant ethical, logistical, and economic advantages over mammalian models for the studies of infectious diseases. Using these models, various pathogenic microbes have been studied and many novel virulence genes have been identified. Notably, because insects are susceptible to a wide variety of human pathogens and have immune responses similar to those of mammals, they offer the opportunity to understand innate immune responses against human pathogens better. It is important to note that insect pathosystems have also offered a simple strategy to evaluate the efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a rapid, inexpensive, and reliable way as complementary hosts to conventional vertebrate animal models to study pathogenesis and antimicrobial agents.
Collapse
|