1
|
Meneses-Valdés R, Gallero S, Henríquez-Olguín C, Jensen TE. Exploring NADPH oxidases 2 and 4 in cardiac and skeletal muscle adaptations - A cross-tissue comparison. Free Radic Biol Med 2024; 223:296-305. [PMID: 39069268 DOI: 10.1016/j.freeradbiomed.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Striated muscle cells, encompassing cardiac myocytes and skeletal muscle fibers, are fundamental to athletic performance, facilitating blood circulation and coordinated movement through contraction. Despite their distinct functional roles, these muscle types exhibit similarities in cytoarchitecture, protein expression, and excitation-contraction coupling. Both muscle types also undergo molecular remodeling in energy metabolism and cell size in response to acute and repeated exercise stimuli to enhance exercise performance. Reactive oxygen species (ROS) produced by NADPH oxidase (NOX) isoforms 2 and 4 have emerged as signaling molecules that regulate exercise adaptations. This review systematically compares NOX2 and NOX4 expression, regulation, and roles in cardiac and skeletal muscle responses across exercise modalities. We highlight the many gaps in our knowledge and opportunities to let future skeletal muscle research into NOX-dependent mechanisms be inspired by cardiac muscle studies and vice versa. Understanding these processes could enhance the development of exercise routines to optimize human performance and health strategies that capitalize on the advantages of physical activity.
Collapse
Affiliation(s)
- Roberto Meneses-Valdés
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark
| | - Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Advanced Center for Chronic Diseases (ACCDiS) and Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| | - Thomas E Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark.
| |
Collapse
|
2
|
Nuzzo JL, Pinto MD, Kirk BJC, Nosaka K. Resistance Exercise Minimal Dose Strategies for Increasing Muscle Strength in the General Population: an Overview. Sports Med 2024; 54:1139-1162. [PMID: 38509414 PMCID: PMC11127831 DOI: 10.1007/s40279-024-02009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Many individuals do not participate in resistance exercise, with perceived lack of time being a key barrier. Minimal dose strategies, which generally reduce weekly exercise volumes to less than recommended guidelines, might improve muscle strength with minimal time investment. However, minimal dose strategies and their effects on muscle strength are still unclear. Here our aims are to define and characterize minimal dose resistance exercise strategies and summarize their effects on muscle strength in individuals who are not currently engaged in resistance exercise. The minimal dose strategies overviewed were: "Weekend Warrior," single-set resistance exercise, resistance exercise "snacking," practicing the strength test, and eccentric minimal doses. "Weekend Warrior," which minimizes training frequency, is resistance exercise performed in one weekly session. Single-set resistance exercise, which minimizes set number and session duration, is one set of multiple exercises performed multiple times per week. "Snacks," which minimize exercise number and session duration, are brief bouts (few minutes) of resistance exercise performed once or more daily. Practicing the strength test, which minimizes repetition number and session duration, is one maximal repetition performed in one or more sets, multiple days per week. Eccentric minimal doses, which eliminate or minimize concentric phase muscle actions, are low weekly volumes of submaximal or maximal eccentric-only repetitions. All approaches increase muscle strength, and some approaches improve other outcomes of health and fitness. "Weekend Warrior" and single-set resistance exercise are the approaches most strongly supported by current research, while snacking and eccentric minimal doses are emerging concepts with promising results. Public health programs can promote small volumes of resistance exercise as being better for muscle strength than no resistance exercise at all.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Benjamin J C Kirk
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
3
|
Vigouroux L, Devise M. Pull-Up Performance Is Affected Differently by the Muscle Contraction Regimens Practiced during Training among Climbers. Bioengineering (Basel) 2024; 11:85. [PMID: 38247962 PMCID: PMC10813506 DOI: 10.3390/bioengineering11010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Sport climbing performance is highly related to upper limb strength and endurance. Although finger-specific methods are widely analyzed in the literature, no study has yet quantified the effects of arm-specific training. This study aims to compare the effects of three types of training involving different muscle contraction regimens on climbers' pull-up capabilities. Thirty advanced to high-elite climbers were randomly divided into four groups: eccentric (ECC; n = 8), isometric (ISO; n = 7), plyometric (PLYO; n = 6), and no specific training (CTRL; n = 9), and they participated in a 5-week training, twice a week, focusing on pull-ups on hangboard. Pre- and post-training assessments were conducted using a force-sensing hangboard, analyzing force, velocity, power, and muscle work during three pull-up exercises: pull-ups at body weight under different conditions, incremental weighted pull-ups, and an exhaustion test. The CTRL group showed no change. Maximum strength improved in all three training groups (from +2.2 ± 3.6% to +5.0 ± 2.4%; p < 0.001); velocity variables enhanced in the ECC and PLYO groups (from +5.7 ± 7.4 to +28.7 ± 42%; p < 0.05), resulting in greater power; amplitude increased in the ECC group; and muscle work increased in the PLYO group (+21.9 ± 16.6%; p = 0.015). A 5-week training period effectively enhanced arm performance, but outcomes were influenced by the chosen muscle contraction regimens and initial individual characteristics.
Collapse
Affiliation(s)
- Laurent Vigouroux
- ISM (Institute of Movement Sciences), CNRS, Aix-Marseille University, 13288 Marseille, France;
| | | |
Collapse
|
4
|
Mcleod JC, Currier BS, Lowisz CV, Phillips SM. The influence of resistance exercise training prescription variables on skeletal muscle mass, strength, and physical function in healthy adults: An umbrella review. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:47-60. [PMID: 37385345 PMCID: PMC10818109 DOI: 10.1016/j.jshs.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE The aim of this umbrella review was to determine the impact of resistance training (RT) and individual RT prescription variables on muscle mass, strength, and physical function in healthy adults. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass (or its proxies), strength, and/or physical function in healthy adults aged >18 years. RESULTS We identified 44 systematic reviews that met our inclusion criteria. The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews; standardized effectiveness statements were generated. We found that RT was consistently a potent stimulus for increasing skeletal muscle mass (4/4 reviews provide some or sufficient evidence), strength (4/6 reviews provided some or sufficient evidence), and physical function (1/1 review provided some evidence). RT load (6/8 reviews provided some or sufficient evidence), weekly frequency (2/4 reviews provided some or sufficient evidence), volume (3/7 reviews provided some or sufficient evidence), and exercise order (1/1 review provided some evidence) impacted RT-induced increases in muscular strength. We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass, while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass. There was insufficient evidence to conclude that time of day, periodization, inter-set rest, set configuration, set end point, contraction velocity/time under tension, or exercise order (only pertaining to hypertrophy) influenced skeletal muscle adaptations. A paucity of data limited insights into the impact of RT prescription variables on physical function. CONCLUSION Overall, RT increased muscle mass, strength, and physical function compared to no exercise. RT intensity (load) and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy. RT volume (number of sets) influenced muscular strength and hypertrophy.
Collapse
Affiliation(s)
- Jonathan C Mcleod
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton L8S4L8, Canada
| | - Brad S Currier
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton L8S4L8, Canada
| | - Caroline V Lowisz
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton L8S4L8, Canada
| | - Stuart M Phillips
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton L8S4L8, Canada.
| |
Collapse
|
5
|
Nuzzo JL, Nosaka K. Eccentric Muscle Actions Add Complexity to an Already Inconsistent Resistance Exercise Nomenclature. SPORTS MEDICINE - OPEN 2023; 9:118. [PMID: 38112984 PMCID: PMC10730477 DOI: 10.1186/s40798-023-00667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
An eccentric muscle action (or contraction) is defined as active muscle lengthening against resistance, which occurs when the force generated by the muscle is smaller than the resistance placed upon it. Eccentric resistance exercise, which involves multiple sessions of repeated eccentric muscle actions, improves muscle strength and other health outcomes. In response to this evidence, new exercise technologies have been developed to permit feasible completion of eccentric muscle actions outside of the laboratory. Consequently, participation in eccentric resistance exercise is projected to increase in the future, and communications about eccentric resistance exercise are likely to reach a wide audience, including students in the classroom, athletes in the weightroom, patients who receive telehealth services, and journalists who report on study findings. Previous research has documented inconsistencies in how resistance exercises are named, but the role of eccentric resistance exercises has not been considered. Here, we explain how eccentric resistance exercises add further complexity to an already inconsistent resistance exercise nomenclature. Specifically, action words in exercise names typically describe the movement that occurs in the concentric phase (e.g., "press", "raise", "curl", "pull", "row"). This naming bias likely stems from the fact that traditional resistance exercise equipment, such as free weights and weight stack machines, does not typically accommodate for greater eccentric than concentric strength and thus emphasizes the concentric over eccentric phase. This naming bias is likely to hinder communications about eccentric resistance exercise. Thus, we encourage researchers and practitioners to discuss ways in which resistance exercises can be named more clearly and consistently.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
6
|
Pakosz P, Konieczny M, Domaszewski P, Dybek T, Gnoiński M, Skorupska E. Comparison of concentric and eccentric resistance training in terms of changes in the muscle contractile properties. J Electromyogr Kinesiol 2023; 73:102824. [PMID: 37696055 DOI: 10.1016/j.jelekin.2023.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The habitual use of resistance exercises involving concentric and eccentric contractions can increase muscle strength, speed and endurance. However, current knowledge has limited potential to fully understand the application of such resistance training and the muscle changes that occur to differentiate these two types of training. The aim of this study was to compare the effects of concentric contraction (CON) and eccentric contraction (ECC) during an acute bout of resistance training on the hamstring contractile properties. A group of 20 female recreational athletes were divided into two equal groups, CON training and ECC training. The contractile properties of the muscles on both sides of the body were assessed using tensiomyography (TMG): biceps femoris (BF) and semitendinosus (ST). The muscles were assessed twice, before and after 10 maximal repetitions of either concentric or eccentric isotonic contractions. The results indicate a greater change in TMG parameters with ECC training, with p < 0.001 (Td and Tc). An acute bout of resistance training induces changes in the muscle hamstrings contractile properties in both CON and ECC training. Eccentric training causes greater changes than concentric training, shortening contraction time (Td, Tc), increase radial displacement velocity (Vrd) and affecting changes in muscle belly displacement (Dm), so may be more effective in training.
Collapse
Affiliation(s)
- Paweł Pakosz
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland.
| | - Mariusz Konieczny
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
| | - Przemysław Domaszewski
- Department of Health Sciences, Institute of Health Sciences, University of Opole, Opole, Poland
| | - Tomasz Dybek
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Opole, Poland
| | | | - Elżbieta Skorupska
- Department of Physiotherapy, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
7
|
Lin TY, Chueh TY, Hung TM. Preferred Reporting Items for Resistance Exercise Studies (PRIRES): A Checklist Developed Using an Umbrella Review of Systematic Reviews. SPORTS MEDICINE - OPEN 2023; 9:114. [PMID: 38040927 PMCID: PMC10692055 DOI: 10.1186/s40798-023-00640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 09/26/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The issues of replication and scientific transparency have been raised in exercise and sports science research. A potential means to address the replication crisis and enhance research reliability is to improve reporting quality and transparency. This study aims to formulate a reporting checklist as a supplement to the existing reporting guidelines, specifically for resistance exercise studies. METHODS PubMed (which covers Medline) and Scopus (which covers Medline, EMBASE, Ei Compendex, World Textile Index, Fluidex, Geobase, Biobase, and most journals in Web of Science) were searched for systematic reviews that comprised the primary studies directly comparing different resistance training methods. Basic data on the selected reviews, including on authors, publication years, and objectives, were summarized. The reporting items for the checklist were identified based on the objective of the reviews. Additional items from an existing checklist, namely the Consensus on Exercise Reporting Template, a National Strength and Conditioning Association handbook, and an article from the EQUATOR library were incorporated into the final reporting checklist. RESULTS Our database search retrieved 3595 relevant records. After automatic duplicate removal, the titles and abstracts of the remaining 2254 records were screened. The full texts of 137 records were then reviewed, and 88 systematic reviews that met the criteria were included in the umbrella review. CONCLUSION Developed primarily by an umbrella review method, this checklist covers the research questions which have been systematically studied and is expected to improve the reporting completeness of future resistance exercise studies. The PRIRES checklist comprises 26 reporting items (39 subitems) that cover four major topics in resistance exercise intervention: 1) exercise selection, performance, and training parameters, 2) training program and progression, 3) exercise setting, and 4) planned vs actual training. The PRIRES checklist was designed specifically for reporting resistance exercise intervention. It is expected to be used with other reporting guidelines such as Consolidated Standards of Reporting Trials and Standard Protocol Items: Recommendations for Interventional Trials. This article presents only the development process and resulting items of the checklist. An accompanying article detailing the rationale for, the importance of, and examples of each item is being prepared. REGISTRATION This study is registered with the EQUATOR Network under the title "Preferred Reporting Items for Resistance Exercise Studies (PRIRES)." PROSPERO registration number: CRD42021235259.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Da'an District, Taipei City, 106, Taiwan
| | - Ting-Yu Chueh
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Da'an District, Taipei City, 106, Taiwan
| | - Tsung-Min Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, No. 162, Section 1, Heping East Road, Da'an District, Taipei City, 106, Taiwan.
| |
Collapse
|
8
|
Nuzzo JL, Pinto MD, Nosaka K. Overview of muscle fatigue differences between maximal eccentric and concentric resistance exercise. Scand J Med Sci Sports 2023; 33:1901-1915. [PMID: 37269142 DOI: 10.1111/sms.14419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Since the 1970s, researchers have studied a potential difference in muscle fatigue (acute strength loss) between maximal eccentric (ECCmax ) and concentric (CONmax ) resistance exercise. However, a clear answer to whether such a difference exists has not been established. Therefore, the aim of our paper was to overview methods and results of studies that compared acute changes in muscle strength after bouts of ECCmax and CONmax resistance exercise. We identified 30 relevant studies. Participants were typically healthy men aged 20-40 years. Exercise usually consisted of 40-100 isokinetic ECCmax and CONmax repetitions of the knee extensors or elbow flexors. Both ECCmax and CONmax exercise caused significant strength loss, which plateaued and rarely exceeded 60% of baseline, suggesting strength preservation. In upper-body muscles, strength loss at the end of ECCmax (31.4 ± 20.4%) and CONmax (33.6 ± 17.5%) exercise was similar, whereas in lower-body muscles, strength loss was less after ECCmax (13.3 ± 12.2%) than CONmax (39.7 ± 13.3%) exercise. Muscle architecture and daily use of lower-body muscles likely protects lower-body muscles from strength loss during ECCmax exercise. We also reviewed seven studies on muscle fatigue during coupled ECCmax -CONmax exercise and found similar strength loss in the ECC and CON phases. We also found evidence from three studies that more ECC than CON repetitions can be completed at equal relative loads. These results indicate that muscle fatigue may manifest differently between ECCmax and CONmax resistance exercise. An implication of the results is that prescriptions of ECC resistance exercise for lower-body muscles should account for greater fatigue resilience of these muscles compared to upper-body muscles.
Collapse
Affiliation(s)
- James L Nuzzo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Matheus D Pinto
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
9
|
Baxter BA, Baross AW, Ryan DJ, Wright BH, Kay AD. The acute and repeated bout effects of multi-joint eccentric exercise on physical function and balance in older adults. Eur J Appl Physiol 2023; 123:2131-2143. [PMID: 37217609 PMCID: PMC10492690 DOI: 10.1007/s00421-023-05226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Eccentric muscle actions generate high levels of force at a low metabolic cost, making them a suitable training modality to combat age-related neuromuscular decline. The temporary muscle soreness associated with high intensity eccentric contractions may explain their limited use in clinical exercise prescription, however any discomfort is often alleviated after the initial bout (repeated bout effect). Therefore, the aims of the present study were to examine the acute and repeated bout effects of eccentric contractions on neuromuscular factors associated with the risk of falling in older adults. METHODS Balance, functional ability [timed up-and-go and sit-to-stand], and lower-limb maximal and explosive strength were measured in 13 participants (67.6 ± 4.9 year) pre- and post-eccentric exercise (0, 24, 48, and 72 hr) in Bout 1 and 14 days later in Bout 2. The eccentric exercise intervention was performed on an isokinetic unilateral stepper ergometer at 50% of maximal eccentric strength at 18 step‧min-1 per limb for 7 min (126 steps per limb). Two-way repeated measures ANOVAs were conducted to identify any significant effects (P ≤ 0.05). RESULTS Eccentric strength significantly decreased (- 13%) in Bout 1 at 24 hr post-exercise; no significant reduction was observed at any other time-point after Bout 1. No significant reductions occurred in static balance or functional ability at any time-point in either bout. CONCLUSION Submaximal multi-joint eccentric exercise results in minimal disruption to neuromuscular function associated with falls in older adults after the initial bout.
Collapse
Affiliation(s)
- Brett A Baxter
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK.
| | - Anthony W Baross
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK
| | - Declan J Ryan
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK
| | - Ben H Wright
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK
| | - Anthony D Kay
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northampton, NN1 5PH, UK
| |
Collapse
|
10
|
Gómez-Feria J, Martín-Rodríguez JF, Mir P. Corticospinal adaptations following resistance training and its relationship with strength: A systematic review and multivariate meta-analysis. Neurosci Biobehav Rev 2023; 152:105289. [PMID: 37353049 DOI: 10.1016/j.neubiorev.2023.105289] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/21/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Neural adaptations to resistance training (RT) and their correlation with muscle strength remain partially understood. We conducted a systematic review and multivariate meta-analysis to examine the effects of metronome-paced (MP), self-paced (SP), and isometric (IM) training on M1 and corticospinal pathway activity. Following MP RT, a significant increase in corticospinal excitability was observed, correlating with increased strength. Conversely, no significant relationship was found after SP or IM training. RT also reduced the duration of the cortical silent period, but this change did not predict strength changes and was not specific to any training modality. No significant effects were found for short-interval intracortical inhibition. Our findings suggest that changes in corticospinal excitability may contribute to strength gains after RT. Furthermore, the relationship between these adaptations and strength appears dependent on the type of training performed.
Collapse
Affiliation(s)
- José Gómez-Feria
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain.
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
11
|
Gómez EM, Atef H, Elsayed SH, Zakaria HM, Navarro MP, Sulé EM. Effects of high-intensity interval training with an eccentric hamstring exercise program in futsal players: A randomized controlled trial. Medicine (Baltimore) 2023; 102:e34626. [PMID: 37543767 PMCID: PMC10402967 DOI: 10.1097/md.0000000000034626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Physiotherapy protocols based on high-intensity interval training (HIIT) or eccentric hamstring exercises like Nordic Curl (NC) have been scarcely studied in futsal players. The objective of this study was to compare the effectiveness of a HIIT combined with an NC exercise program versus a HIIT-only program in futsal players. METHODS Twenty-one futsal players were divided into (1) HIIT + NC group (n = 11, mean age = 21.55 [4.25]); and (2) HIIT group (n = 10, mean age = 20.90 [1.29]). The HIIT + NC group performed a HIIT circuit combined with 3 sets of 10 NC repetitions for 4 weeks, while the HIIT group performed the same protocol without NC exercise. Body mass index, intermittent work performance, vertical jump performance without and with arms, isometric strength of quadriceps and hamstrings, and the isometric hamstrings/quadriceps (H/Q) ratio, were assessed before and after the interventions. RESULTS The HIIT + NC group and the HIIT group showed a significant improvement in intermittent work performance after the intervention (P = .04 and P = .01, respectively). Also, both groups showed a trend of increasing quadriceps and hamstring isometric strength, although no significant changes were found (P > .05). In addition, neither the HIIT + NC protocol nor the HIIT protocol was sufficient to yield changes in body mass index nor to improve the vertical jump performance (P > .05). CONCLUSION Both an isolated HIIT protocol and HIIT in combination with NC exercise improved intermittent work performance in futsal players. The present study's findings may guide futsal players' physical preparation and injury prevention programs.
Collapse
Affiliation(s)
- Elena Muñoz Gómez
- Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Hady Atef
- School of Allied Health Professions, Keele University, Staffordshire, United Kingdom
- Department of Physical Therapy for Cardiovascular/Respiratory Disorders and Geriatrics, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Shereen Hamed Elsayed
- Department of Rehabilitation Sciences, Faculty of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hoda M Zakaria
- Department of Physical Therapy for Neurology, College of Physical Therapy, Cairo University, Cairo, Egypt
| | - Miguel Pérez Navarro
- Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Elena Marqués Sulé
- Physiotherapy in Motion, Multi-Speciality Research Group (PTinMOTION), University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
Nuzzo JL, Pinto MD, Nosaka K. Muscle fatigue during maximal eccentric-only, concentric-only, and eccentric-concentric bicep curl exercise with automated drop setting. Scand J Med Sci Sports 2023; 33:857-871. [PMID: 36752667 DOI: 10.1111/sms.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Connected adaptive resistance exercise (CARE) machines are new technology purported to adjust resistance exercise loads in response to muscle fatigue. The present study examined muscle fatigue (strength loss, fatigue perceptions) during maximal eccentric-only (ECCmax -only), concentric-only (CONmax -only), and coupled ECC-CON (ECCmax -CONmax ) bicep curl exercise on a CARE machine. Eleven men and nine women completed the three protocols in separate sessions and in random order. All protocols included 4 sets of 20 maximal effort muscle contractions. Strength loss was calculated as Set 4 set end load minus Set 1 highest load. The CARE machine's algorithm adjusted resistances automatically, permitting continued maximal effort repetitions without stopping. Consequently, all protocols caused substantial fatigue. Women were most susceptible to strength loss from exercise that included maximal efforts in the ECC phase, whereas men were most susceptible to strength loss from exercise that included maximal efforts in the CON phase. With ECCmax -only exercise, ECC strength loss (mean ± SD) was similar between men (55.9 ± 14.1%) and women (56.4 ± 10.8%). However, with CONmax -only exercise, men and women experienced 55.6 ± 6.2% and 35.3 ± 8.7% CON strength loss, respectively. With ECCmax -CONmax exercise, men experienced greater ECC (62.9 ± 7.7%) and CON (77.0 ± 5.3%) strength loss than women (ECC: 48.5 ± 15.7%, CON: 66.2 ± 12.1%). Heightened perceptions of fatigue and pain of the exercised limb were reported after all protocols. Women generally reported more biceps pain than men. The results illustrate CARE technology delivers ECC-only and accentuated ECC exercise feasibly. Acute responses to repeated maximal effort bicep curl exercise with such technology might differ between men and women depending on muscle contraction type.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
13
|
Barreto RV, de Lima LCR, Borszcz FK, de Lucas RD, Denadai BS. Chronic Adaptations to Eccentric Cycling Training: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2861. [PMID: 36833557 PMCID: PMC9957439 DOI: 10.3390/ijerph20042861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to investigate the effects of eccentric cycling (ECCCYC) training on performance, physiological, and morphological parameters in comparison to concentric cycling (CONCYC) training. Searches were conducted using PubMed, Embase, and ScienceDirect. Studies comparing the effect of ECCCYC and CONCYC training regimens on performance, physiological, and/or morphological parameters were included. Bayesian multilevel meta-analysis models were used to estimate the population's mean difference between chronic responses from ECCCYC and CONCYC training protocols. Group levels and meta-regression were used to evaluate the specific effects of subjects and study characteristics. Fourteen studies were included in this review. The meta-analyses showed that ECCCYC training was more effective in increasing knee extensor strength, vastus lateralis fiber cross-sectional area, and six-minute walking distance compared to CONCYC. Moreover, ECCCYC was as effective as CONCYC in decreasing body fat percentage. CONCYC was more effective in increasing V˙O2max and peak power output attained during concentric incremental tests. However, group-level analyses revealed that ECCCYC was more effective than CONCYC in improving V˙O2max in patients with cardiopulmonary diseases. ECCCYC is a viable modality for exercise interventions aiming to improve parameters of muscle strength, hypertrophy, functional capacity, aerobic power, and body composition, with more advantages than CONCYC training in improving neuromuscular variables.
Collapse
Affiliation(s)
- Renan Vieira Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro 13506-900, Brazil
| | | | - Fernando Klitzke Borszcz
- Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Benedito Sérgio Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro 13506-900, Brazil
| |
Collapse
|
14
|
Hirono T, Kunugi S, Yoshimura A, Holobar A, Watanabe K. Acute changes in motor unit discharge property after concentric versus eccentric contraction exercise in knee extensor. J Electromyogr Kinesiol 2022; 67:102704. [PMID: 36137408 DOI: 10.1016/j.jelekin.2022.102704] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the motor unit firing property immediately after concentric or eccentric contraction exercise. Eighteen healthy men performed repetitive maximal isokinetic knee extension exercises with only concentric or eccentric contraction until they exerted less than 80% of the baseline strength. Before and after the fatiguing exercise, high-density surface electromyography of the vastus lateralis was recorded during submaximal ramp-up isometric contraction and individual motor units were identified. Only motor units that could be tracked before and after exercise were analyzed. Muscle cross-sectional area of the vastus lateralis was measured using ultrasound, and electrically evoked torque was recorded before and after the exercise. Sixty-five and fifty-three motor units were analyzed before and after the concentric and eccentric contractions, respectively. The results showed that motor units with moderate to high recruitment thresholds significantly decreased recruitment thresholds under both conditions, and the motor unit discharge rates significantly increased after concentric contraction compared to eccentric contraction. A greater muscle cross-sectional area was observed with concentric contraction. The evoked torque was significantly decreased under both conditions, but no difference between the conditions. These results suggest that fatiguing exercise with concentric contraction contributes to greater neural input to muscles and metabolic responses than eccentric contraction.
Collapse
Affiliation(s)
- Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi 470-0393, Japan; Research Fellow of Japan Society for the Promotion of Science, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Shun Kunugi
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi 470-0393, Japan; Center for General Education, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota-shi, Aichi 470-0392, Japan
| | - Akane Yoshimura
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi 470-0393, Japan; Faculty of Education and Integrated Arts and Sciences, Waseda University, 1-6-1, Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Science, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi 470-0393, Japan
| |
Collapse
|
15
|
Coratella G, Beato M, Bertinato L, Milanese C, Venturelli M, Schena F. Including the Eccentric Phase in Resistance Training to Counteract the Effects of Detraining in Women: A Randomized Controlled Trial. J Strength Cond Res 2022; 36:3023-3031. [PMID: 34537804 PMCID: PMC10842669 DOI: 10.1519/jsc.0000000000004039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Coratella, G, Beato, M, Bertinato, L, Milanese, C, Venturelli, M, and Schena, F. Including the eccentric phase in resistance training to counteract the effects of detraining in women: a randomized controlled trial. J Strength Cond Res 36(11): 3023-3031, 2022-The current study compared the effects of concentric-based (CONC), eccentric-based (ECC), and traditional concentric-eccentric (TRAD) resistance training on muscle strength, mass, and architecture and the postdetraining retention of the training-induced effects in women. Sixty women were randomly assigned to unilateral volume-equated CONC, ECC, or TRAD knee extension training or control ( N = 15 per group). Before training, after an 8-week intervention period, and after an 8-week detraining period, isokinetic concentric, eccentric, and isometric torque were measured. In addition, thigh lean mass was assessed by dual X-ray absorptiometry and vastus lateralis thickness, pennation angle, and fascicle length by ultrasound. After training, concentric and isometric torque increased ( p < 0.05) similarly in all groups, whereas eccentric torque increased more in ECC than that in CONC (+13.1%, effect size (ES): 0.71 [0.04-1.38]) and TRAD (+12.6%, ES: 0.60 [0.12-1.08]). Thigh lean mass increased in ECC (+6.1%, ES: 0.47 [0.27-0.67]) and TRAD (+3.1%, ES: 0.33 [0.01-0.65]). Vastus lateralis thickness and pennation angle increased ( p < 0.05) similarly in all groups, whereas fascicle elongation was visible in ECC (+9.7%, ES: 0.92 [0.14-1.65]) and TRAD (+7.1%, ES: 0.64 [0.03-1.25]). After detraining, all groups retained ( p < 0.05) similar concentric torque. ECC and TRAD preserved eccentric torque ( p < 0.05), but ECC more than TRAD (+17.9%, ES: 0.61 [0.21-1.21]). All groups preserved isometric torque ( p < 0.05), but ECC more than CONC (+14.2%, ES: 0.71 [0.04-1.38]) and TRAD (+13.8%, ES: 0.65 [0.10-1.20]). Thigh lean mass and vastus lateralis fascicle length were retained only in ECC ( p < 0.05), pennation angle was preserved in all groups ( p < 0.05), and thickness was retained in CONC and ECC ( p < 0.05). Including the eccentric phase in resistance training is essential to preserve adaptations after detraining.
Collapse
Affiliation(s)
- Giuseppe Coratella
- Department of Biomedical Sciences for Health, University of Milan, Italy
| | - Marco Beato
- School of Health and Sports Sciences, University of Suffolk, Ipswich, United Kingdom;
| | - Luciano Bertinato
- Department of Neurological, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; and
| | - Chiara Milanese
- Department of Neurological, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; and
| | - Massimo Venturelli
- Department of Neurological, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; and
| | - Federico Schena
- Department of Neurological, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; and
- CeRISM Research Center, University of Verona, Rovereto, Italy
| |
Collapse
|
16
|
Križaj L, Kozinc Ž, Löfler S, Šarabon N. The chronic effects of eccentric exercise interventions in different populations: an umbrella review. Eur J Transl Myol 2022; 32:10876. [PMID: 36269123 PMCID: PMC9830406 DOI: 10.4081/ejtm.2022.10876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
The effectiveness of eccentric exercise interventions (EEI) has been extensively explored in different populations. The aim of our umbrella review was to combine all systematic reviews about the chronic efficiency of EEI and to summarize the literature on the chronic effects of different types of eccentric exercise protocols, with or without extra loads and devices (e.g., Flywheel device), compared to other therapeutic interventions, exercise interventions, or no intervention. We screened four major electronic scientific databases (PubMed, Scopus, Web of Science, and PEDro), using one combined string for all included databases (eccentric exercise OR flywheel OR isoinertial exercise OR eccentric training). Included reviews needed to be based on any human population, that executed EEI in comparison with any other type of intervention. The methodological quality of the included reviews was assessed using AMSTAR 2 tool. Considering the inclusion criteria, we included 35 reviews. EEI were found suitable for chronic or long-term pain reduction in patient populations. EEI largely improved muscle performance (muscle strength, and muscle power), muscle architecture (e.g., pennation angle, fascicle length, cross-sectional area, muscle thickness, and muscle mass), decreased risk of injury, incidence, and severity of the injury, and increased range of motion of the joints There is less evidence about the effects of EEI in older adult populations, compared to athletes and younger populations, however, eccentric exercise seems promising for these populations as well.
Collapse
Affiliation(s)
- Luka Križaj
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Žiga Kozinc
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia, University of Primorska, Andrej Marušič Institute, Koper, Slovenia
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria
| | - Nejc Šarabon
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia,Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria, InnoRenew CoE, Human Health Department, Izola, Slovenia, S2P, Science to Practice, Ltd., Laboratory for Motor Control and Motor Behavior, Ljubljana, Slovenia,University of Primorska Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia ORCID ID: 0000-0003-0747-3735
| |
Collapse
|
17
|
Hanssen B, Peeters N, De Beukelaer N, Vannerom A, Peeters L, Molenaers G, Van Campenhout A, Deschepper E, Van den Broeck C, Desloovere K. Progressive resistance training for children with cerebral palsy: A randomized controlled trial evaluating the effects on muscle strength and morphology. Front Physiol 2022; 13:911162. [PMID: 36267577 PMCID: PMC9577365 DOI: 10.3389/fphys.2022.911162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Children with spastic cerebral palsy often present with muscle weakness, resulting from neural impairments and muscular alterations. While progressive resistance training (PRT) improves muscle weakness, the effects on muscle morphology remain inconclusive. This investigation evaluated the effects of a PRT program on lower limb muscle strength, morphology and gross motor function. Forty-nine children with spastic cerebral palsy were randomized by minimization. The intervention group (nparticipants = 26, age: 8.3 ± 2.0 years, Gross Motor Function Classification System [GMFCS] level I/II/III: 17/5/4, nlegs = 41) received a 12-week PRT program, consisting of 3-4 sessions per week, with exercises performed in 3 sets of 10 repetitions, aiming at 60%-80% of the 1-repetition maximum. Training sessions were performed under supervision with the physiotherapist and at home. The control group (nparticipants = 22, age: 8.5 ± 2.1 year, GMFCS level I/II/III: 14/5/3, nlegs = 36) continued usual care including regular physiotherapy and use of orthotics. We assessed pre- and post-training knee extension, knee flexion and plantar flexion isometric strength, rectus femoris, semitendinosus and medial gastrocnemius muscle morphology, as well as functional strength, gross motor function and walking capacity. Data processing was performed blinded. Linear mixed models were applied to evaluate the difference in evolution over time between the control and intervention group (interaction-effect) and within each group (time-effect). The α-level was set at p = 0.01. Knee flexion strength and unilateral heel raises showed a significant interaction-effect (p ≤ 0.008), with improvements in the intervention group (p ≤ 0.001). Moreover, significant time-effects were seen for knee extension and plantar flexion isometric strength, rectus femoris and medial gastrocnemius MV, sit-to-stand and lateral step-up in the intervention group (p ≤ 0.004). Echo-intensity, muscle lengths and gross motor function showed limited to no changes. PRT improved strength and MV in the intervention group, whereby strength parameters significantly or close to significantly differed from the control group. Although, relative improvements in strength were larger than improvements in MV, important effects were seen on the maintenance of muscle size relative to skeletal growth. In conclusion, this study proved the effectiveness of a home-based, physiotherapy supervised, PRT program to improve isometric and functional muscle strength in children with SCP without negative effects on muscle properties or any serious adverse events. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03863197.
Collapse
Affiliation(s)
- Britta Hanssen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Nicky Peeters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | | | - Astrid Vannerom
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Leen Peeters
- CP Reference Center, University Hospitals Leuven, Leuven, Belgium
| | - Guy Molenaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Pediatric Orthopedics, Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Pediatric Orthopedics, Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Ellen Deschepper
- Biostatistics Unit, Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | | | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium
| |
Collapse
|
18
|
Sato S, Yoshida R, Murakoshi F, Sasaki Y, Yahata K, Kasahara K, Nunes JP, Nosaka K, Nakamura M. Comparison between concentric-only, eccentric-only, and concentric–eccentric resistance training of the elbow flexors for their effects on muscle strength and hypertrophy. Eur J Appl Physiol 2022; 122:2607-2614. [DOI: 10.1007/s00421-022-05035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
|
19
|
Hody S, Warren BE, Votion DM, Rogister B, Lemieux H. Eccentric Exercise Causes Specific Adjustment in Pyruvate Oxidation by Mitochondria. Med Sci Sports Exerc 2022; 54:1300-1308. [PMID: 35320143 DOI: 10.1249/mss.0000000000002920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The impact of eccentric exercise on mitochondrial function has only been poorly investigated and remains unclear. This study aimed to identify the changes in skeletal muscle mitochondrial respiration, specifically triggered by a single bout of eccentric treadmill exercise. METHODS Male adult mice were randomly divided into eccentric (ECC; downhill running), concentric (CON; uphill running), and unexercised control groups ( n = 5/group). Running groups performed 18 bouts of 5 min at 20 cm·s -1 on an inclined treadmill (±15° to 20°). Mice were sacrificed 48 h after exercise for blood and quadriceps muscles collection. Deep proximal (red) and superficial distal (white) muscle portions were used for high-resolution respirometric measurements. RESULTS Plasma creatine kinase activity was significantly higher in the ECC compared with CON group, reflecting exercise-induced muscle damage ( P < 0.01). The ECC exercise induced a significant decrease in oxidative phosphorylation capacity in both quadriceps femoris parts ( P = 0.032 in proximal portion, P = 0.010 in distal portion) in comparison with the CON group. This observation was only made for the nicotinamide adenine dinucleotide (NADH) pathway using pyruvate + malate as substrates. When expressed as a flux control ratio, indicating a change related to mitochondrial quality rather than quantity, this change seemed more prominent in distal compared with proximal portion of quadriceps muscle. No significant difference between groups was found for the NADH pathway with glutamate or glutamate + malate as substrates, for the succinate pathway or for fatty acid oxidation. CONCLUSIONS Our data suggest that ECC exercise specifically affects pyruvate mitochondrial transport and/or oxidation 48 h after exercise, and this alteration mainly concerns the distal white muscle portion. This study provides new perspectives to improve our understanding of the mitochondrial adaptation associated with ECC exercise.
Collapse
Affiliation(s)
- Stéphanie Hody
- Department of Motricity Sciences, University of Liège, Liège, BELGIUM
| | - Blair E Warren
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, CANADA
| | - Dominique-Marie Votion
- Equine Pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Liège, BELGIUM
| | | | | |
Collapse
|
20
|
Coratella G. Appropriate Reporting of Exercise Variables in Resistance Training Protocols: Much more than Load and Number of Repetitions. SPORTS MEDICINE - OPEN 2022; 8:99. [PMID: 35907047 PMCID: PMC9339067 DOI: 10.1186/s40798-022-00492-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022]
Abstract
Manipulating resistance training variables is crucial to plan the induced stimuli correctly. When reporting the exercise variables in resistance training protocols, sports scientists and practitioners often refer to the load lifted and the total number of repetitions. The present conceptual review explores all within-exercise variables that may influence the strength and hypertrophic gains, and the changes in muscle architecture. Together with the (1) load and (2) the number of repetitions, (3) performing repetitions to failure or not to failure, (4) the displacement of the load or the range of movement (full or partial), (5) the portion of the partial movement to identify the muscle length at which the exercise is performed, (6) the total time under tension, the duration of each phase and the position of the two isometric phases, (7) whether the concentric, eccentric or concentric-eccentric phase is performed, (8) the use of internal or external focus and (9) the inter-set rest may all have repercussions on the adaptations induced by each resistance exercise. Manipulating one or more variable allows to increase, equalize or decrease the stimuli related to each exercise. Sports scientists and practitioners are invited to list all aforementioned variables for each exercise when reporting resistance training protocols.
Collapse
Affiliation(s)
- Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy.
| |
Collapse
|
21
|
Trojani MC, Chorin F, Gerus P, Breuil V, Michel C, Guis S, Bendahan D, Roux C. Concentric or eccentric physical activity for patients with symptomatic osteoarthritis of the knee: a randomized prospective study. Ther Adv Musculoskelet Dis 2022; 14:1759720X221102805. [PMID: 35832351 PMCID: PMC9272179 DOI: 10.1177/1759720x221102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Knee osteoarthritis–related pain limits physical function and leads to functional disability. Physical activity is one of the central recommendations for the management of knee osteoarthritis. Although concentric muscle activities are often preferred to eccentric ones, the corresponding rationale remains controversial. Objective: To explore the effect of a 6-week exercise program on function, pain, and performance in patients with symptomatic knee osteoarthritis. Methods: Patients with symptomatic knee osteoarthritis were included in the prospective EX-ART project (Walking performance in osteoARThritic subjects: effect of an ECCentric muscle strengthening program) and randomized in a 6-week rehabilitation program including either eccentric or concentric activities. Metrics of interest chosen as end points measured before and after the rehabilitation were WOMAC score, pain, and muscular performance (quadriceps power PMAX and contraction strength MMAX). MRI was also used to assess muscle volume and fat infiltration changes. Results: 30 patients were included in each group; mean age was 74 (±7.6); 69% were women. At week 6, both groups showed a significant improvement in the WOMAC without difference between the two groups (p = 0.7). No difference between the two groups was identified for the pain reduction (p = 0.7). A significant improvement in the change in PMAX and MMAX at high velocity (p = 0.001 and p = 0.002) was observed in the eccentric group only. A vastus medialis hypertrophy was quantified in the eccentric group only (p = 0.002), whereas fat infiltration in the quadriceps muscles was unchanged. Conclusion: Physical activity, whether eccentric or concentric, has a benefit on function and pain in patients with symptomatic knee osteoarthritis. A few differences have been identified between the two types of rehabilitation. More particularly, a gain in muscle performance and vastus medialis volume was found with eccentric rehabilitation only. Registration: www.ClinicalTrials.gov, registration number NCT03167502.
Collapse
Affiliation(s)
| | - Fréderic Chorin
- LAMHESS Laboratory, HEALTHY Graduate School, Université Côte d'Azur, Nice, France
| | - Pauline Gerus
- LAMHESS Laboratory, HEALTHY Graduate School, Université Côte d'Azur, Nice, France
| | - Véronique Breuil
- Department of Rheumatology, Nice University Hospital, Université Côte d'Azur, Nice, France
| | - Constance Michel
- Center for Biological and Medical Magnetic Resonance, Faculty of Medicine of La Timone, Aix Marseille University, CNRS (UMR 7339), Marseille, France
| | - Sandrine Guis
- Department of Rheumatology, Conception Hospital, Marseille, France
| | - David Bendahan
- Center for Biological and Medical Magnetic Resonance, Faculty of Medicine of La Timone, Aix Marseille University, CNRS (UMR 7339), Marseille, France
| | - Christian Roux
- Department of Rheumatology, Nice University Hospital, Université Côte d'Azur, Nice, France
| |
Collapse
|
22
|
Bernárdez-Vázquez R, Raya-González J, Castillo D, Beato M. Resistance Training Variables for Optimization of Muscle Hypertrophy: An Umbrella Review. Front Sports Act Living 2022; 4:949021. [PMID: 35873210 PMCID: PMC9302196 DOI: 10.3389/fspor.2022.949021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
This umbrella review aimed to analyze the different variables of resistance training and their effect on hypertrophy, and to provide practical recommendations for the prescription of resistance training programs to maximize hypertrophy responses. A systematic research was conducted through of PubMed/MEDLINE, SPORTDiscus and Web of Science following the preferred reporting items for systematic reviews and meta-analyses statement guidelines. A total of 52 meta-analyses were found, of which 14 met the inclusion criteria. These studies were published between 2009 and 2020 and comprised 178 primary studies corresponding to 4,784 participants. Following a methodological quality analysis, nine meta-analyses were categorized as high quality, presenting values of 81–88%. The remaining meta-analyses were rated as moderate quality, with values between 63–75%. Based on this umbrella review, we can state that at least 10 sets per week per muscle group is optimal, that eccentric contractions seem important, very slow repetitions (≥10 s) should be avoided, and that blood flow restriction might be beneficial for some individuals. In addition, other variables as, exercise order, time of the day and type of periodization appear not to directly influence the magnitude of muscle mass gains. These findings provide valuable information for the design and configuration of the resistance training program with the aim of optimizing muscle hypertrophy.
Collapse
Affiliation(s)
| | - Javier Raya-González
- Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain
- *Correspondence: Javier Raya-González
| | - Daniel Castillo
- Valoración del Rendimiento Deportivo, Actividad Física y Salud, y Lesiones Deportivas (REDAFLED), Universidad de Valladolid, Soria, Spain
| | - Marco Beato
- School of Health and Sports Science, University of Suffolk, Ipswich, United Kingdom
- Institute of Health and Wellbeing, University of Suffolk, Ipswich, United Kingdom
| |
Collapse
|
23
|
Häkkinen K, Newton RU, Walker S, Häkkinen A, Krapi S, Rekola R, Koponen P, Kraemer WJ, Haff GG, Blazevich AJ, Nosaka K, Ahtiainen J. Effects of Upper Body Eccentric versus Concentric Strength Training and Detraining on Maximal Force, Muscle Activation, Hypertrophy and Serum Hormones in Women. J Sports Sci Med 2022; 21:200-213. [PMID: 35719226 PMCID: PMC9157521 DOI: 10.52082/jssm.2022.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 05/15/2023]
Abstract
Effects of eccentric (ECC) versus concentric (CON) strength training of the upper body performed twice a week for 10 weeks followed by detraining for five weeks on maximal force, muscle activation, muscle mass and serum hormone concentrations were investigated in young women (n = 11 and n = 12). One-repetition bench press (1RM), maximal isometric force and surface electromyography (EMG) of triceps brachii (TB), anterior deltoid (AD) and pectoralis major (PM), cross-sectional area (CSA) of TB (Long (LoH) and Lateral Head (LaH)) and thickness of PM, as well as serum concentrations of free testosterone, cortisol, follicle-stimulating hormone, estradiol and sex hormone-binding globulin were measured. ECC and CON training led to increases of 17.2 ± 11.3% (p < 0.001) and 13.1 ± 5.7% (p < 0.001) in 1RM followed by decreases of -6.6 ± 3.6% (p < 0.01) and -8.0 ± 4.5% (p < 0.001) during detraining, respectively. Isometric force increased in ECC by 11.4 ± 9.6 % (p < 0.05) from week 5 to 10, while the change in CON by 3.9±6.8% was not significant and a between group difference was noted (p < 0.05). Maximal total integrated EMG of trained muscles increased only in the whole subject group (p < 0.05). CSA of TB (LoH) increased in ECC by 8.7 ± 8.0% (p < 0.001) and in CON by 3.4 ± 1.6% (p < 0.01) and differed between groups (p < 0.05), and CSA of TB (LaH) in ECC by 15.7 ± 8.0% (p < 0.001) and CON by 9.7 ± 6.6% (p < 0.001). PM thickness increased in ECC by 17.7 ± 10.9% (p < 0.001) and CON by 14.0 ± 5.9% (p < 0.001). Total muscle sum value (LoH + LaH + PM) increased in ECC by 12.4 ± 6.9% (p < 0.001) and in CON by 7.1 ± 2.9% (p < 0.001) differing between groups (p < 0.05) and decreased during detraining in ECC by -6.5 ± 4.3% (p < 0.001) and CON by -6.1 ± 2.8% (p < 0.001). The post detraining combined sum value of CSA and thickness was in ECC higher (p < 0.05) than at pre training. No changes were detected in serum hormone concentrations, but baseline free testosterone levels in the ECC and CON group combined correlated with changes in 1RM (r = 0.520, p < 0.016) during training. Large neuromuscular adaptations of the upper body occurred in women during ECC, and CON training in 10 weeks. Isometric force increased only in response to ECC, and total muscle sum value increased more during ECC than CON training. However, no changes occurred in serum hormones, but individual serum-free testosterone baseline concentrations correlated with changes in 1RM during strength training in the entire group. Both groups showed significant decreases in neuromuscular performance and muscle mass during detraining, while post detraining muscle sum value was only in ECC significantly higher than at pre training.
Collapse
Affiliation(s)
- Keijo Häkkinen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Robert U Newton
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Simon Walker
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Arja Häkkinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Sonja Krapi
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Rebekka Rekola
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Päivi Koponen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - William J Kraemer
- Department of Human Sciences, The Ohio State University, Columbus, OH and Exercise Medicine Research Institute, Edith Cowan University, Australia
| | - G Gregory Haff
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Kazunori Nosaka
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Australia
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Juha Ahtiainen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| |
Collapse
|
24
|
Handford MJ, Bright TE, Mundy P, Lake J, Theis N, Hughes JD. The Need for Eccentric Speed: A Narrative Review of the Effects of Accelerated Eccentric Actions During Resistance-Based Training. Sports Med 2022; 52:2061-2083. [PMID: 35536450 DOI: 10.1007/s40279-022-01686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Eccentric training as a method to enhance athletic performance is a topic of increasing interest to both practitioners and researchers. However, data regarding the effects of performing the eccentric actions of an exercise at increased velocities are limited. This narrative review aimed to provide greater clarity for eccentric methods and classification with regard to temporal phases of exercises. Between March and April 2021, we used key terms to search the PubMed, SPORTDiscus, and Google Scholar databases within the years 1950-2021. Search terms included 'fast eccentric', 'fast velocity eccentric', 'dynamic eccentric', 'accentuated eccentric loading', and 'isokinetic eccentric', analysing both the acute and the chronic effects of accelerated eccentric training in human participants. Review of the 26 studies that met the inclusion criteria identified that completing eccentric tempos of < 2 s increased subsequent concentric one repetition maximum performance, velocity, and power compared with > 4 s tempos. Tempos of > 4 s duration increased time under tension (TUT), whereas reduced tempos allowed for greater volume to be completed. Greater TUT led to larger accumulation of blood lactate, growth hormone, and testosterone when volume was matched to that of the reduced tempos. Overall, evidence supports eccentric actions of < 2 s duration to improve subsequent concentric performance. There is no clear difference between using eccentric tempos of 2-6 s if the aim is to increase hypertrophic response and strength. Future research should analyse the performance of eccentric actions at greater velocities or reduced time durations to determine more factors such as strength response. Tempo studies should aim to complete the same TUT for protocols to determine measures for hypertrophic response.
Collapse
Affiliation(s)
- Matthew J Handford
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK.
| | - Thomas E Bright
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
- School of Sport, Health and Wellbeing, Plymouth Marjon University, Plymouth, UK
| | - Peter Mundy
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Jason Lake
- Chichester Institute of Sport, Nursing, and Allied Health, University of Chichester, Chichester, UK
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Nicola Theis
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Jonathan D Hughes
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| |
Collapse
|
25
|
Authors' Response to Comment on "Lower Limb Muscle Size After Anterior Cruciate Ligament Injury: A Systematic Review and Meta‑analysis". Sports Med 2022; 52:1207-1209. [PMID: 34674186 DOI: 10.1007/s40279-021-01577-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 01/12/2023]
|
26
|
Alix-Fages C, Del Vecchio A, Baz-Valle E, Santos-Concejero J, Balsalobre-Fernández C. The role of the neural stimulus in regulating skeletal muscle hypertrophy. Eur J Appl Physiol 2022; 122:1111-1128. [PMID: 35138447 DOI: 10.1007/s00421-022-04906-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
Resistance training is frequently performed with the goal of stimulating muscle hypertrophy. Due to the key roles motor unit recruitment and mechanical tension play to induce muscle growth, when programming, the manipulation of the training variables is oriented to provoke the correct stimulus. Although it is known that the nervous system is responsible for the control of motor units and active muscle force, muscle hypertrophy researchers and trainers tend to only focus on the adaptations of the musculotendinous unit and not in the nervous system behaviour. To better guide resistance exercise prescription for muscle hypertrophy and aiming to delve into the mechanisms that maximize this goal, this review provides evidence-based considerations for possible effects of neural behaviour on muscle growth when programming resistance training, and future neurophysiological measurement that should be tested when training to increase muscle mass. Combined information from the neural and muscular structures will allow to understand the exact adaptations of the muscle in response to a given input (neural drive to the muscle). Changes at different levels of the nervous system will affect the control of motor units and mechanical forces during resistance training, thus impacting the potential hypertrophic adaptations. Additionally, this article addresses how neural adaptations and fatigue accumulation that occur when resistance training may influence the hypertrophic response and propose neurophysiological assessments that may improve our understanding of resistance training variables that impact on muscular adaptations.
Collapse
Affiliation(s)
- Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas y Valiente 3, Cantoblanco, 28049, Madrid, Spain.
| | - Alessandro Del Vecchio
- Neuromuscular Physiology and Neural Interfacing Group, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Eneko Baz-Valle
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carlos Balsalobre-Fernández
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas y Valiente 3, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
27
|
Sabouri M, Taghibeikzadehbadr P, Shabkhiz F, Izanloo Z, Shaghaghi FA. Effect of eccentric and concentric contraction mode on myogenic regulatory factors expression in human vastus lateralis muscle. J Muscle Res Cell Motil 2022; 43:9-20. [PMID: 35018575 DOI: 10.1007/s10974-021-09613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
Skeletal muscle contractions are caused to release myokines by muscle fiber. This study investigated the myogenic regulatory factors, as MHC I, IIA, IIX, Myo-D, MRF4, Murf, Atrogin-1, Decorin, Myonection, and IL-15 mRNA expression in the response of eccentric vs concentric contraction. Eighteen healthy men were randomly divided into two eccentric and concentric groups, each of 9 persons. Isokinetic contraction protocols included maximal single-leg eccentric or concentric knee extension tasks at 60°/s with the dominant leg. Contractions consisted of a maximum of 12 sets of 10 reps, and the rest time between each set was 30 s. The baseline biopsy was performed 4 weeks before the study, and post-test biopsies were taken immediately after exercise protocols from the vastus lateralis muscle. The gene expression levels were evaluated using Real-Time PCR methods. The eccentric group showed a significantly lower RPE score than the concentric group (P ≤ 0.05). A significant difference in MyoD, MRF4, Myonection, and Decorin mRNA, were observed following eccentric or concentric contractions (P ≤ 0.05). The MHC I, MHC IIA, IL-15 mRNA has been changed significantly compared to the pre-exercise in the concentric group (P ≤ 0.05). While only MHC IIX and Atrogin-1 mRNA changed significantly in the eccentric group (P ≤ 0.05). Additionally, the results showed a significant difference in MyoD, MRF4, IL-15, and Decorin at the follow-up values between eccentric or concentric groups (P ≤ 0.05). Our findings highlight the growing importance of elucidating the different responses of muscle growth factors associated with a myogenic activity such as MHC IIA, Decorin, IL-15, Myonectin, Decorin, MuRF1, and MHC IIX mRNA in following various types of exercise.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran.
| | | | - Fatemeh Shabkhiz
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
| | - Zahra Izanloo
- Department of Sport Science, Faculty of Human Science, University of Bojnord, Bojnord, Iran
| | | |
Collapse
|
28
|
Vigotsky AD, Halperin I, Trajano GS, Vieira TM. Longing for a Longitudinal Proxy: Acutely Measured Surface EMG Amplitude is not a Validated Predictor of Muscle Hypertrophy. Sports Med 2022; 52:193-199. [PMID: 35006527 DOI: 10.1007/s40279-021-01619-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
Surface electromyography amplitudes are commonly measured in acute sports and exercise science studies to make inferences about muscular strength, performance, and hypertrophic adaptations that may result from different exercises or exercise-related variables. Here, we discuss the presumptive logic and assumptions underlying these inferences, focusing on hypertrophic adaptations for simplicity's sake. We present counter-evidence for each of its premises and discuss evidence both for and against the logical conclusion. Given the limited evidence validating the amplitude of surface electromyograms as a predictor of longitudinal hypertrophic adaptations, coupled with its weak mechanistic foundation, we suggest that acute comparative studies that wish to assess stimulus potency be met with scrutiny.
Collapse
Affiliation(s)
- Andrew D Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, IL, USA.
| | - Israel Halperin
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Taian M Vieira
- Laboratory for Engineering of the Neuromuscular System, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| |
Collapse
|
29
|
Dutaillis B, Timmins RG, Lathlean TJH. Quadriceps muscle size changes following exercise in anterior cruciate ligament reconstructed limbs: A systematic review. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin Dutaillis
- Exercise and Sports Science, School of Science and Technology The University of New England Armidale NSW Australia
| | - Ryan G. Timmins
- School of Behavioural and Health Sciences Australian Catholic University Melbourne Vic. Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre Australian Catholic University Fitzroy Vic. Australia
| | - Timothy J. H. Lathlean
- Exercise and Sports Science, School of Science and Technology The University of New England Armidale NSW Australia
- Flinders Health and Medical Research Institute (FMHRI) Flinders University Bedford Park SA Australia
| |
Collapse
|
30
|
The Effectiveness of Aquatic Plyometric Training in Improving Strength, Jumping, and Sprinting: A Systematic Review. J Sport Rehabil 2021; 31:85-98. [PMID: 34564070 DOI: 10.1123/jsr.2020-0432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
CONTEXT Aquatic plyometric training may provide benefits due to reduced joint loading compared with land plyometric training; however, the reduced loading may also limit performance gains. OBJECTIVE To systematically review the effect of aquatic plyometric training on strength, performance outcomes, soreness, and adverse events in healthy individuals. EVIDENCE ACQUISITION Five databases were searched from inception to June 2020. Quality assessment and data extraction were independently completed by 2 investigators. When similar outcome measures were used, standardized mean differences were calculated. EVIDENCE SYNTHESIS A total of 19 randomized controlled trials with 633 participants (mean age, range 14-30 y) were included. Aquatic plyometric training was most commonly performed in waist to chest deep water (12/19 studies), 2 to 3 times per week for 6 to 12 weeks (18/19 studies), with final program foot contacts ranging from 120 to 550. Meta-analyses were not completed due to the clinical and statistical heterogeneity between studies. Compared with land plyometric training, aquatic plyometric training exercises and dosage were replicated (15/16 studies) and showed typically similar performance gains (3/4 knee extensor strength measures, 2/4 leg extensor strength measures, 3/4 knee flexor strength measures, 7/10 vertical jump measures, 3/3 sprint measures). In total, 2 of 3 studies monitoring muscle soreness reported significantly less soreness following training in water compared with on land. Compared with no active training (no exercise control group or passive stretching), most effect sizes demonstrated a mean improvement favoring aquatic plyometric training (23/32 measures). However, these were not significant for the majority of studies measuring isokinetic knee strength, vertical jump, and sprinting. The effect sizes for both studies assessing leg press strength indicated that aquatic plyometric training is significantly more effective than no training. CONCLUSION Aquatic plyometric training appears similarly effective to land plyometric exercise for improving strength, jumping, and sprinting and may be indicated when joint impact loading needs to be minimized. However, the low quality of studies limits the strength of the conclusions.
Collapse
|
31
|
Sato S, Yoshida R, Kiyono R, Yahata K, Yasaka K, Nosaka K, Nakamura M. Cross-education and detraining effects of eccentric vs. concentric resistance training of the elbow flexors. BMC Sports Sci Med Rehabil 2021; 13:105. [PMID: 34488881 PMCID: PMC8419922 DOI: 10.1186/s13102-021-00298-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Background Unilateral resistance training increases the strength of the contralateral non-trained homologous muscles known as the cross-education effect. We tested the hypothesis that unilateral eccentric resistance training (ET) would induce greater and longer-lasting cross-education effect when compared with concentric resistance training (CT). Methods Young (20–23 y) participants were allocated to ET (5 males, 4 females) or CT (5 males, 4 females) group that performed unilateral progressive ET or CT of the elbow flexors, twice a week for 5 weeks (10 sessions) followed by a 5-week detraining, and control group (7 males, 6 females) that did not perform any training. Maximum voluntary isometric contraction torque of the elbow flexors (MVIC), one-repetition maximum of concentric dumbbell curl (1-RM), and biceps brachii and brachialis muscle thickness (MT) were measured from the trained and non-trained arms before, several days after the last training session, and 5 weeks later. A ratio between the trained and non-trained arms for the change in MVIC or 1-RM from pre- to post-training (cross-body transfer ratio) was compared between ET and CT groups. Results The control group did not show significant changes in any variables. Both ET and CT increased (P < 0.05) MVIC (22.5 ± 12.3 % vs. 26.0 ± 11.9 %) and 1-RM (28.8 ± 6.6 % vs. 35.4 ± 12.9 %) of the trained arm without a significant difference between groups. MVIC was maintained after detraining for ET but returned to the baseline for CT, and 1-RM was maintained after detraining for both ET and CT. For the non-trained arm, MVIC (22.7 ± 17.9 % vs. 12.2 ± 10.2 %) and 1-RM (19.9 ± 14.6 % vs. 24.0 ± 10.6 %) increased similarly (P > 0.05) after ET and CT, and MVIC returned to the baseline after detraining, but 1-RM was maintained for both groups. An increase (P < 0.05) in MT was found only after ET for the trained arm (7.1 ± 6.1 %). The cross-body transfer ratio for MVIC was greater (P < 0.05) for ET (90.9 ± 46.7 %) than CT (49.0 ± 30.0 %). Conclusions These results did not support the hypothesis and showed similar changes in the most of the variables between ET and CT for the trained and non-trained arms, and strong cross-education effects on MVIC and 1-RM, but less detraining effect after ET than CT on MVIC of the trained arm. Trial registration University Hospital Medical Information Network Clinical Trials Registry (UMIN000044477; Jun 09, 2021).
Collapse
Affiliation(s)
- Shigeru Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Niigata, Japan
| | - Riku Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryosuke Kiyono
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Niigata, Japan
| | - Kaoru Yahata
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Niigata, Japan
| | - Koki Yasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazunori Nosaka
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, 950-3198, Niigata, Japan. .,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
32
|
Khuu S, Fernandez JW, Handsfield GG. A Coupled Mechanobiological Model of Muscle Regeneration In Cerebral Palsy. Front Bioeng Biotechnol 2021; 9:689714. [PMID: 34513808 PMCID: PMC8429491 DOI: 10.3389/fbioe.2021.689714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 01/05/2023] Open
Abstract
Cerebral palsy is a neuromusculoskeletal disorder associated with muscle weakness, altered muscle architecture, and progressive musculoskeletal symptoms that worsen with age. Pathological changes at the level of the whole muscle have been shown; however, it is unclear why this progression of muscle impairment occurs at the cellular level. The process of muscle regeneration is complex, and the interactions between cells in the muscle milieu should be considered in the context of cerebral palsy. In this work, we built a coupled mechanobiological model of muscle damage and regeneration to explore the process of muscle regeneration in typical and cerebral palsy conditions, and whether a reduced number of satellite cells in the cerebral palsy muscle environment could cause the muscle regeneration cycle to lead to progressive degeneration of muscle. The coupled model consisted of a finite element model of a muscle fiber bundle undergoing eccentric contraction, and an agent-based model of muscle regeneration incorporating satellite cells, inflammatory cells, muscle fibers, extracellular matrix, fibroblasts, and secreted cytokines. Our coupled model simulated damage from eccentric contraction followed by 28 days of regeneration within the muscle. We simulated cyclic damage and regeneration for both cerebral palsy and typically developing muscle milieus. Here we show the nonlinear effects of altered satellite cell numbers on muscle regeneration, where muscle repair is relatively insensitive to satellite cell concentration above a threshold, but relatively sensitive below that threshold. With the coupled model, we show that the fiber bundle geometry undergoes atrophy and fibrosis with too few satellite cells and excess extracellular matrix, representative of the progression of cerebral palsy in muscle. This work uses in silico modeling to demonstrate how muscle degeneration in cerebral palsy may arise from the process of cellular regeneration and a reduced number of satellite cells.
Collapse
Affiliation(s)
- Stephanie Khuu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Justin W. Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
33
|
Effect of eccentric and concentric squat exercise on quadriceps thickness and lower extremity performance in healthy young males. ACTA GYMNICA 2021. [DOI: 10.5507/ag.2021.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Iversen VM, Norum M, Schoenfeld BJ, Fimland MS. No Time to Lift? Designing Time-Efficient Training Programs for Strength and Hypertrophy: A Narrative Review. Sports Med 2021; 51:2079-2095. [PMID: 34125411 PMCID: PMC8449772 DOI: 10.1007/s40279-021-01490-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 02/02/2023]
Abstract
Abstract Lack of time is among the more commonly reported barriers for abstention from exercise programs. The aim of this review was to determine how strength training can be most effectively carried out in a time-efficient manner by critically evaluating research on acute training variables, advanced training techniques, and the need for warm-up and stretching. When programming strength training for optimum time-efficiency we recommend prioritizing bilateral, multi-joint exercises that include full dynamic movements (i.e. both eccentric and concentric muscle actions), and to perform a minimum of one leg pressing exercise (e.g. squats), one upper-body pulling exercise (e.g. pull-up) and one upper-body pushing exercise (e.g. bench press). Exercises can be performed with machines and/or free weights based on training goals, availability, and personal preferences. Weekly training volume is more important than training frequency and we recommend performing a minimum of 4 weekly sets per muscle group using a 6–15 RM loading range (15–40 repetitions can be used if training is performed to volitional failure). Advanced training techniques, such as supersets, drop sets and rest-pause training roughly halves training time compared to traditional training, while maintaining training volume. However, these methods are probably better at inducing hypertrophy than muscular strength, and more research is needed on longitudinal training effects. Finally, we advise restricting the warm-up to exercise-specific warm-ups, and only prioritize stretching if the goal of training is to increase flexibility. This review shows how acute training variables can be manipulated, and how specific training techniques can be used to optimize the training response: time ratio in regard to improvements in strength and hypertrophy. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Vegard M Iversen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway. .,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Martin Norum
- Independent Researcher, Norum Helse AS, Oslo, Norway
| | | | - Marius S Fimland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Unicare Helsefort Rehabilitation Centre, Rissa, Norway
| |
Collapse
|
35
|
Montalvo S, Gruber LD, Gonzalez MP, Dietze-Hermosa MS, Dorgo S. Effects of Augmented Eccentric Load Bench Press Training on One Repetition Maximum Performance and Electromyographic Activity in Trained Powerlifters. J Strength Cond Res 2021; 35:1512-1519. [PMID: 34027918 DOI: 10.1519/jsc.0000000000004030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Montalvo, S, Gruber, LD, Gonzalez, MP, Dietze-Hermosa, MS, and Dorgo, S. Effects of augmented eccentric load bench press training on one repetition maximum performance and electromyographic activity in trained powerlifters. J Strength Cond Res 35(6): 1512-1519, 2021-Augmented eccentric load (AEL) training has been shown to elicit greater lower-body muscular strength increases and faster performance improvements compared with traditional strength training. However, it is unknown whether AEL training could provide similar improvements in upper-body muscular strength. Therefore, this study investigated the effects of a 4-week AEL training program on bench press one repetition maximum (1RM) strength, bar kinetics and kinematics, and surface electromyography (EMG) activity. Eight competitive powerlifters completed 5 training sessions consisting of 7 sets of a single repetition with up to 5 minutes rest between sets. Each session was completed at a predetermined AEL percentage consisting of 90% 1RM for concentric and supramaximal loads ranging from 105 to 125% 1RM during the eccentric phase with the use of eccentric hooks. After 4 weeks of AEL training, 1RM performance significantly increased from pretest to posttest (116.62 ± 27.48-124.28 ± 26.96 kg, p = 0.001). In addition, EMG amplitude of the pectoralis major decreased during the 125% AEL session to 59.86 ± 15.36% of pretest 1RM EMG values (p = 0.049, effect sizes [ESs] = 0.69). Furthermore, peak power of 1RM increased by 36.67% from pretest to posttest (p = 0.036, ES = 0.58). These study findings suggest that incorporating AEL bench press training into a 4-week training cycle may be a novel strategy to improve 1RM performance in competitive powerlifters in a short period.
Collapse
Affiliation(s)
- Samuel Montalvo
- Department of Kinesiology, Fitness Research Facility, The University of Texas at El Paso, El Paso, Texas
| | | | | | | | | |
Collapse
|
36
|
Strasser B, Pesta D, Rittweger J, Burtscher J, Burtscher M. Nutrition for Older Athletes: Focus on Sex-Differences. Nutrients 2021; 13:nu13051409. [PMID: 33922108 PMCID: PMC8143537 DOI: 10.3390/nu13051409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Regular physical exercise and a healthy diet are major determinants of a healthy lifespan. Although aging is associated with declining endurance performance and muscle function, these components can favorably be modified by regular physical activity and especially by exercise training at all ages in both sexes. In addition, age-related changes in body composition and metabolism, which affect even highly trained masters athletes, can in part be compensated for by higher exercise metabolic efficiency in active individuals. Accordingly, masters athletes are often considered as a role model for healthy aging and their physical capacities are an impressive example of what is possible in aging individuals. In the present review, we first discuss physiological changes, performance and trainability of older athletes with a focus on sex differences. Second, we describe the most important hormonal alterations occurring during aging pertaining regulation of appetite, glucose homeostasis and energy expenditure and the modulatory role of exercise training. The third part highlights nutritional aspects that may support health and physical performance for older athletes. Key nutrition-related concerns include the need for adequate energy and protein intake for preventing low bone and muscle mass and a higher demand for specific nutrients (e.g., vitamin D and probiotics) that may reduce the infection burden in masters athletes. Fourth, we present important research findings on the association between exercise, nutrition and the microbiota, which represents a rapidly developing field in sports nutrition.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria
- Correspondence: ; Tel.: +43-(0)1-798-40-98
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
- Centre for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), D-50931 Cologne, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), D-85764 Neuherberg, Germany
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), D-51147 Cologne, Germany; (D.P.); (J.R.)
| | - Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, A-6020 Innsbruck, Austria;
| |
Collapse
|
37
|
Nunes JP, Kassiano W, Costa BDV, Mayhew JL, Ribeiro AS, Cyrino ES. Equating Resistance-Training Volume Between Programs Focused on Muscle Hypertrophy. Sports Med 2021; 51:1171-1178. [PMID: 33826122 DOI: 10.1007/s40279-021-01449-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Calculating resistance-training volume in programs focused on muscle hypertrophy is an attempt to quantify the external workload carried out, then to estimate the dose of stimulus imposed on targeted muscles. The volume is usually expressed in some variables that directly affected the total training work, such as the number of sets, repetitions, and volume-load. These variables are used to try to quantify the training work easily, for the subsequent organization and prescription of training programs. One of the main uses of measures of volume quantification is seen in studies in which the purpose is to compare the effects of different training protocols on muscle growth in a volume-equated format. However, it seems that not all measures of volume are always appropriate for equating training protocols. In the current paper, it is discussed what training volume is and the potentials and shortcomings of each one of the most common ways to equate it between groups depending on the independent variable to be compared (e.g., weekly frequency, intensity of load, and advanced techniques).
Collapse
Affiliation(s)
- João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory. Physical Education and Sport Center, Londrina State University, Londrina, Brazil.
| | - Witalo Kassiano
- Metabolism, Nutrition, and Exercise Laboratory. Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Bruna D V Costa
- Metabolism, Nutrition, and Exercise Laboratory. Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Jerry L Mayhew
- Exercise Science Program, Truman State University, Kirksville, USA
| | - Alex S Ribeiro
- Metabolism, Nutrition, and Exercise Laboratory. Physical Education and Sport Center, Londrina State University, Londrina, Brazil.,Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil
| | - Edilson S Cyrino
- Metabolism, Nutrition, and Exercise Laboratory. Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| |
Collapse
|
38
|
Gavanda S, Isenmann E. Evidenz von Trainingsempfehlungen für ein Hypertrophietraining. B&G BEWEGUNGSTHERAPIE UND GESUNDHEITSSPORT 2021. [DOI: 10.1055/a-1382-2776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ZusammenfassungDer Abbau der Skelettmuskulatur steigt mit zunehmendem Alter und wird in der heutigen Gesellschaft aufgrund geringerer körperlicher Aktivität zusätzlich beschleunigt. Die Skelettmuskulatur ist vor allem für die Übertragung von Kräften und somit für unsere alltäglichen Bewegungen verantwortlich. Mit der Reduzierung der Muskelmasse wird die Durchführung von Alltagsbewegungen kontinuierlich erschwert, und die Lebensqualität kann dadurch deutlich sinken. Mit Kraft- bzw. Hypertrophietraining kann jedoch einer Muskelatrophie entgegengewirkt werden, indem Abbauprozesse verlangsamt werden und die Skelettmuskulatur wieder aufgebaut wird. Trainingsempfehlungen für ein Hypertrophietraining variieren jedoch erheblich. Dieser Artikel soll vor allem den aktuellen Forschungstand zusammenfassen und praxisrelevante Empfehlungen aussprechen.Der entscheidendste Aspekt beim Hypertrophietraining scheint lediglich das Setzen von regelmäßigen progressiven und erschöpfenden Belastungsreizen zu sein, die mindestens einen Wirkungsmechanismus aktivieren, der für hypertrophe Effekte verantwortlich ist. Vor allem die Variation der mechano-biologischen Deskriptoren (Trainingswiderstand, Anzahl Wiederholungen und Sätze, Pause etc.) könnte helfen, langfristig effektive Reize zu gestalten. Dabei kann nahezu auf unbegrenzte Kombinationsmöglichkeiten zurückgegriffen werden, welche jedoch dem Leistungsniveau und der Belastbarkeit der trainierenden Person sowie der Umsetzbarkeit im Alltag angepasst werden müssen. Nach dem Motto „viele Wege führen nach Rom“ gibt es dabei nicht nur eine konkrete Lösung bei der Planung und Durchführung eines Hypertrophietrainings. Es ist eher von essenzieller Bedeutung, dass kontinuierliche Belastungsreize in unterschiedlichen Variationen durchgeführt werden, um einen Hypertrophieeffekt zu erzeugen und folglich dem Abbau der Skelettmuskulatur entgegenzuwirken.
Collapse
Affiliation(s)
- Simon Gavanda
- IST Hochschule für Management, Fachbereich Fitness & Gesundheit
| | - Eduard Isenmann
- IST Hochschule für Management, Fachbereich Fitness & Gesundheit
- Deutsche Sporthochschule Köln, Institut für Kreislaufforschung und Sportmedizin, Abteilung Molekulare und zelluläre Sportmedizin
| |
Collapse
|
39
|
Effects of Different In-Season Strength Training Methods on Strength Gains and Water Polo Performance. Int J Sports Physiol Perform 2021; 16:591-600. [PMID: 33508780 DOI: 10.1123/ijspp.2020-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE This study aimed to compare the effects of 5 different 18-week in-season strength training programs on strength gains and specific water polo performance. METHODS A total of 56 young male water polo players were randomly assigned to the following 5 training groups: dry-land strength training, in-water-specific strength training, combined (dry-land and in-water) strength training, ballistic training, and eccentric-overload training. Physical performance was assessed before (Pre) and after (Post) the training period using the following battery of tests: in-water boost and countermovement jump, muscle strength in bench-press and full-squat, throwing speed (ThS), in-water agility, and 20-m maximal sprint swim. RESULTS Significant group × time interactions were observed for countermovement jump and in-water boost. Eccentric-overload training showed significantly higher gains in ThS and bench-press and full-squat strength than the rest of the training groups. In addition, all training groups (except in-water-specific strength training) induced significant improvements (P ≤ .05) in countermovement jump, in-water boost, and bench-press and full-squat strength. All training groups significantly increased (P ≤ .001) ThS. Moreover, all training groups improved (P ≤ .05) in-water agility (except dry-land strength training) and swimming sprint performance (except in-water-specific strength training and ballistic training). CONCLUSION The findings indicate that the 18-week in-season strength training programs induced improvements in strength and specific water polo skills. The eccentric-overload training resulted in greater improvements in muscle strength (in both upper and lower body) and ThS than the other training methods examined in the study.
Collapse
|
40
|
Pearson J, Wadhi T, Barakat C, Aube D, Schoenfeld BJ, Andersen JC, Barroso R, Ugrinowitsch C, De Souza EO. Does Varying Repetition Tempo in a Single-Joint Lower Body Exercise Augment Muscle Size and Strength in Resistance-Trained Men? J Strength Cond Res 2021; 36:2162-2168. [PMID: 34351728 DOI: 10.1519/jsc.0000000000003953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pearson, J, Wadhi, T, Barakat, C, Aube, D, Schoenfeld, BJ, Andersen, JC, Barroso, R, Ugrinowitsch, C, and De Souza, EO. Does varying repetition tempo in a single-joint lower body exercise augment muscle size and strength in resistance-trained men? J Strength Cond Res XX(X): 000-000, 2021-This study compared the effects of FAST and SLOW eccentric repetition tempo in a single exercise volume-matched intervention on muscle thickness (MT) and strength in resistance-trained men. Using a within-subject design, 13 subjects had each leg randomly assigned to SLOW (1-0-3) or FAST (1-0-1) repetition tempo. Subjects underwent an 8-week strength-training (ST) intervention performed twice weekly. Unilateral leg-extension one repetition-maximum (1RM) and anterior thigh MT at the proximal (MTP) and distal (MTD) portions were assessed via ultrasound imaging at baseline and after 8 weeks of RT. Rating of perceived exertion (RPE) assessments of the training sessions (i.e., 16 per leg) were averaged for further analysis. Both legs similarly increased MTP (estimated differences: FAST: 0.24 cm, 3.6%; SLOW: 0.20 cm, 3.1%). However, for MTD, analysis of covariance analysis showed a leg effect (p = 0.02) in which absolute pre-to-post change was greater in FAST compared with SLOW (estimated differences: FAST 0.23 cm, 5.5%; SLOW: 0.13 cm, 2.2%). For 1RM, both legs similarly increased maximum strength (estimated differences: FAST: 9.1 kg, 17.0%; SLOW: 10.4 kg, 22.1%, p <= 0.0001). The SLOW group had a higher RPE than FAST (8.59 vs. 7.98, p = 0.002). Despite differences in RPE, our results indicate that both repetition tempos produced similar muscular adaptations. However, they also suggest that the FAST tempo may provide a small hypertrophic advantage at the distal quadriceps. From a practical standpoint, strength and conditioning professionals may implement a FAST tempo at least in one single-joint exercise during an 8-week training period to enhance regional hypertrophic adaptations in trained individuals.
Collapse
Affiliation(s)
- Jeremy Pearson
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida
| | - Tanuj Wadhi
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida
| | - Christopher Barakat
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida
| | - Daniel Aube
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida
| | | | - Jody C Andersen
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida
| | - Renato Barroso
- School of Physical Education, University of Campinas, Campinas, Brazil
| | - Carlos Ugrinowitsch
- Laboratory of Adaptations to Strength Training, School of Physical Education and Sport, University of Sao Paulo, SP, Brazil
| | - Eduardo O De Souza
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida
| |
Collapse
|
41
|
Peñailillo L, Aedo C, Cartagena M, Contreras A, Reyes A, Ramirez-Campillo R, Earp JE, Zbinden-Foncea H. Effects of Eccentric Cycling Performed at Long vs. Short Muscle Lengths on Heart Rate, Rate Perceived Effort, and Muscle Damage Markers. J Strength Cond Res 2020; 34:2895-2902. [DOI: 10.1519/jsc.0000000000002732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
González-Hernández JM, Jiménez-Reyes P, Cerón JJ, Tvarijonaviciute A, Llorente-Canterano FJ, Martínez-Aranda LM, García-Ramos A. Response of Muscle Damage Markers to an Accentuated Eccentric Training Protocol: Do Serum and Saliva Measurements Agree? J Strength Cond Res 2020; 36:2132-2138. [PMID: 32796419 DOI: 10.1519/jsc.0000000000003777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
González-Hernández, JM, Jiménez-Reyes, P, Cerón, JJ, Tvarijonaviciute, A, Llorente-Canterano, FJ, Martínez-Aranda, LM, and García-Ramos, A. Response of muscle damage markers to an accentuated eccentric training protocol: do serum and saliva measurements agree? J Strength Cond Res XX(X): 000-000, 2020-This study aimed (a) to examine the acute and delayed responses of 3 muscle damage biomarkers: creatine kinase (CK), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) to an accentuated eccentric training protocol in serum, and (b) to explore the changes of these biomarkers in saliva and compare them with serum. Sixteen resistance-trained university students (10 men [age = 26.6 ± 4.8 years, full squat one repetition maximum [1RM] = 103.4 ± 14.4 kg] and 6 women [age = 22.7 ± 1.4 years, full squat estimated 1RM = 68.3 ± 10.5 kg]) completed an accentuated eccentric strength training protocol with the full squat exercise consisting of 8 sets of 10 repetitions against the 120% estimated 1RM load with 5 minutes of interset rest. The activity of muscle damage biomarkers (CK, AST, and LDH) was measured in serum and saliva before training (Pre), 24 hours after training (Post24), and 96 hours after training (Post96). In serum, lower values of the 3 muscle damage markers were observed at Pre compared to Post24 and Post96, whereas no significant differences were observed between Post24 and Post96 for any analyte. In saliva, there was a significant increase in men at Post96 compared with Pre in CK. The correlations between the measurements in serum and saliva ranged from trivial to small (r = -0.034 to 0.212). These results suggest that the measurement of muscle damage markers in serum and saliva do not provide the same information in the conditions of our study.
Collapse
Affiliation(s)
- Jorge M González-Hernández
- Neuromove Research Group, Faculty of Sport, Catholic University of San Antonio (UCAM), Murcia, Spain.,Faculty of Health Science, Universidad Europea de Canarias, Tenerife, Spain
| | | | - José J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, University of Murcia, Murcia, Spain
| | | | - Luis M Martínez-Aranda
- Neuromove Research Group, Faculty of Sport, Catholic University of San Antonio (UCAM), Murcia, Spain
| | - Amador García-Ramos
- Departament of Sport Sciences and Physical Conditioning, Faculty of Education, CIEDE, Catholic University of Most Holy Concepción, Concepción, Chile
| |
Collapse
|
43
|
Latey PJ, Eisenhuth J, McKay MJ, Hiller CE, Sureshkumar P, Nightingale EJ, Burns J. Feasibility of the Archercise biofeedback device to strengthen foot musculature. J Foot Ankle Res 2020; 13:43. [PMID: 32660591 PMCID: PMC7359285 DOI: 10.1186/s13047-020-00394-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/19/2020] [Indexed: 11/10/2022] Open
Abstract
Background Foot muscle weakness can produce foot deformity, pain and disability. Toe flexor and foot arch exercises focused on intrinsic foot muscle strength and functional control may mitigate the progression of foot deformity and disability. Ensuring correct exercise technique is challenging due to the specificity of muscle activation required to complete some foot exercises. Biofeedback has been used to improve adherence, muscle activity and movement patterns. We investigated the feasibility of using a novel medical device, known as “Archercise”, to provide real-time biofeedback of correct arch movement via pressure change in an inflatable bladder, and foot location adherence via sensors embedded in a footplate during four-foot exercises. Methods Thirty adults (63% female, aged 23–68 years) performed four-foot exercises twice on the Archercise sensor footplate alone and then with biofeedback. One-way repeated measures ANOVA with pairwise comparisons were computed to assess the consistency of the exercise protocol between trial 1 and trial 2 (prior to biofeedback), and the effectiveness of the Archercise biofeedback device between trial 2 and trial 3 (with biofeedback). Outcome measures were: Arch movement exercises of arch elevation and lowering speed, controlled arch elevation, controlled arch lowering, endurance of arch elevation; Foot location adherence was determined by percentage of time the great toe, fifth toe and heel contacted footplate sensors during testing and were analysed with paired sample t-tests. Participant survey comments on the use of Archercise with biofeedback were reported thematically. Results Seventeen (89%) arch movement and foot location variables were collected consistently with Archercise during the foot exercises. Archercise with biofeedback improved foot location adherence for all exercises (p = 0.003–0.008), coefficient of determination for controlled arch elevation (p < 0.0001) and endurance area ratio (p = 0.001). Twenty-nine (97%) participants reported Archercise with biofeedback, helped correct exercise performance. Conclusions Archercise is a feasible biofeedback device to assist healthy participants without foot pathologies perform foot doming exercises. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR): 12616001559404. Registered 11 November 2016, http://www.ANZCTR.org.au/ACTRN12616001559404p.aspx
Collapse
Affiliation(s)
- Penelope J Latey
- The University of Sydney, School of Health Sciences, Faculty of Medicine and Health, Lidcombe, New South Wales, 2141, Australia.
| | - John Eisenhuth
- The University of Sydney, School of Health Sciences, Faculty of Medicine and Health, Lidcombe, New South Wales, 2141, Australia
| | - Marnee J McKay
- The University of Sydney, School of Health Sciences, Faculty of Medicine and Health, Lidcombe, New South Wales, 2141, Australia
| | - Claire E Hiller
- The University of Sydney, School of Health Sciences, Faculty of Medicine and Health, Lidcombe, New South Wales, 2141, Australia
| | - Premala Sureshkumar
- The University of Sydney, Concord Clinical School, Concord, New South Wales, 2139, Australia
| | - Elizabeth J Nightingale
- The University of Sydney, School of Health Sciences, Faculty of Medicine and Health, Lidcombe, New South Wales, 2141, Australia
| | - Joshua Burns
- The University of Sydney, School of Health Sciences, Faculty of Medicine and Health, Lidcombe, New South Wales, 2141, Australia.,Children's Hospital at Westmead, New South Wales, 2145, Australia
| |
Collapse
|
44
|
Deane CS, Ames RM, Phillips BE, Weedon MN, Willis CRG, Boereboom C, Abdulla H, Bukhari SSI, Lund JN, Williams JP, Wilkinson DJ, Smith K, Gallagher IJ, Kadi F, Szewczyk NJ, Atherton PJ, Etheridge T. The acute transcriptional response to resistance exercise: impact of age and contraction mode. Aging (Albany NY) 2020; 11:2111-2126. [PMID: 30996129 PMCID: PMC6503873 DOI: 10.18632/aging.101904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
Abstract
Optimization of resistance exercise (RE) remains a hotbed of research for muscle building and maintenance. However, the interactions between the contractile components of RE (i.e. concentric (CON) and eccentric (ECC)) and age, are poorly defined. We used transcriptomics to compare age-related molecular responses to acute CON and ECC exercise. Eight young (21±1 y) and eight older (70±1 y) exercise-naïve male volunteers had vastus lateralis biopsies collected at baseline and 5 h post unilateral CON and contralateral ECC exercise. RNA was subjected to next-generation sequencing and differentially expressed (DE) genes tested for pathway enrichment using Gene Ontology (GO). The young transcriptional response to CON and ECC was highly similar and older adults displayed moderate contraction-specific profiles, with no GO enrichment. Age-specific responses to ECC revealed 104 DE genes unique to young, and 170 DE genes in older muscle, with no GO enrichment. Following CON, 15 DE genes were young muscle-specific, whereas older muscle uniquely expressed 147 up-regulated genes enriched for cell adhesion and blood vessel development, and 28 down-regulated genes involved in mitochondrial respiration, amino acid and lipid metabolism. Thus, older age is associated with contraction-specific regulation often without clear functional relevance, perhaps reflecting a degree of stochastic age-related dysregulation.
Collapse
Affiliation(s)
- Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Ryan M Ames
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Bethan E Phillips
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK
| | - Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Catherine Boereboom
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Haitham Abdulla
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Syed S I Bukhari
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Jonathan N Lund
- Department of Surgery, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - John P Williams
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Daniel J Wilkinson
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Kenneth Smith
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Iain J Gallagher
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Örebro 70182, Sweden
| | - Nathaniel J Szewczyk
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Philip J Atherton
- MRC-ARUK Centre of Research Excellence and National Institute of Health Research, Biomedical Research Centre, Postgraduate Entry Medical School, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, UK
| |
Collapse
|
45
|
Skeletal muscle hypertrophy: molecular and applied aspects of exercise physiology. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2020. [DOI: 10.1007/s12662-020-00652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Minari ALA, Avila F, Oyama LM, Thomatieli-Santos RV. Skeletal muscles induce recruitment of Ly6C + macrophage subtypes and release inflammatory cytokines 3 days after downhill exercise. Am J Physiol Regul Integr Comp Physiol 2019; 317:R597-R605. [PMID: 31411900 DOI: 10.1152/ajpregu.00163.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Macrophages are one of the most versatile cells of the immune system that can express distinct subtypes and functions depending on the physiological challenge. After skeletal muscle damage, inflammatory macrophage subtypes aid muscles to regenerate and are implicated in physical training adaption. Based on this information, this study aimed to evaluate two classic mice macrophage subtypes and determine whether some inflammatory cytokines might be involved in the muscle adaption process after exercise. For this purpose, mice were exposed to an intermittent experimental protocol of downhill exercise (18 bouts of running, each bout 5 min with a 2-min rest interval, slope -16°) and were euthanized before [control (CTRL)] and 1, 2 (D2), and 3 (D3) days after exercise. After euthanasia, the triceps brachii was harvested and submitted to protein extraction, immunostaining, and mononuclear digestion procedures. The muscle size, macrophage accumulation, and cytokines were determined. We observed an increase in the Ly6C+ macrophage subtype (P ≤ 0.05) in D2 and D3 compared with CTRL, as well as a significant inverse correlation coefficient (-0.52; P ≤ 0.05) between Ly6C+ and Ly6C- macrophage subtypes. Moreover, we also observed elevation in several cytokines (IL-1β, IFN-γ, TNF-α, IL-6, and IL-13) at D3, although not IL-4, which tended to decrease at this time point (P = 0.06). Downhill exercises preferentially recruited Ly6C+ macrophages with important proinflammatory cytokine elevation at D3. Moreover, despite the elevation of several cytokines involved with myogenesis, an increase in IL-6 and IL-13, which potentially involve muscle adaption training after acute exercise, was also observed.
Collapse
Affiliation(s)
| | - Felipe Avila
- Department of Physiology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Lila Missae Oyama
- Department of Physiology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | |
Collapse
|
47
|
McNeill C, Beaven CM, McMaster DT, Gill N. Eccentric Training Interventions and Team Sport Athletes. J Funct Morphol Kinesiol 2019; 4:jfmk4040067. [PMID: 33467382 PMCID: PMC7739426 DOI: 10.3390/jfmk4040067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/16/2022] Open
Abstract
Eccentric resistance training has been shown to improve performance outcomes in a range of populations, making it a popular choice for practitioners. Evidence suggests that neuromuscular adaptations resulting from eccentric overload (EO) and accentuated eccentric loading (AEL) methods could benefit athletic populations competing in team sports. The purpose of this review was to determine the effects of eccentric resistance training on performance qualities in trained male team sport athletes. A systematic review was conducted using electronic databases PubMed, SPORTDiscus and Web of Science in May 2019. The literature search resulted in 1402 initial articles, with 14 included in the final analysis. Variables related to strength, speed, power and change of direction ability were extracted and effect sizes were calculated with a correction for small sample size. Trivial, moderate and large effect sizes were reported for strength (-0.17 to 1.67), speed (-0.08 to 1.06), power (0.27 to 1.63) and change of direction (0.48 to 1.46) outcomes. Eccentric resistance training appears to be an effective stimulus for developing neuromuscular qualities in trained male team sport athletes. However, the range of effect sizes, testing protocols and training interventions suggest that more research is needed to better implement this type of training in athletic populations.
Collapse
Affiliation(s)
- Conor McNeill
- Te Huataki Waiora School of Health, Adams Centre, The University of Waikato, 3116 Tauranga, New Zealand (D.T.M.); (N.G.)
- Correspondence:
| | - C. Martyn Beaven
- Te Huataki Waiora School of Health, Adams Centre, The University of Waikato, 3116 Tauranga, New Zealand (D.T.M.); (N.G.)
| | - Daniel T. McMaster
- Te Huataki Waiora School of Health, Adams Centre, The University of Waikato, 3116 Tauranga, New Zealand (D.T.M.); (N.G.)
- New Zealand Rugby Union, 6011 Wellington, New Zealand
| | - Nicholas Gill
- Te Huataki Waiora School of Health, Adams Centre, The University of Waikato, 3116 Tauranga, New Zealand (D.T.M.); (N.G.)
- New Zealand Rugby Union, 6011 Wellington, New Zealand
| |
Collapse
|
48
|
Lauver JD, Cayot TE, Rotarius TR, Scheuermann BW. Acute Neuromuscular and Microvascular Responses to Concentric and Eccentric Exercises With Blood Flow Restriction. J Strength Cond Res 2019; 34:2725-2733. [PMID: 31524780 DOI: 10.1519/jsc.0000000000003372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lauver, JD, Cayot, TE, Rotarius, TR, and Scheuermann, BW. Acute neuromuscular and microvascular responses to concentric and eccentric exercises with blood flow restriction. J Strength Cond Res 34(10): 2725-2733, 2020-The purpose of this study was to investigate the effects of the addition of blood flow restriction (BFR) during concentric and eccentric exercises on muscle excitation and microvascular oxygenation status. Subjects (N = 17) were randomly assigned to either a concentric (CON, CON + BFR) or eccentric (ECC, ECC + BFR) group, with one leg assigned to BFR and the other to non-BFR. Surface electromyography and near-infrared spectroscopy were used to measure muscle excitation and microvascular deoxygenation (deoxy-[Hb + Mb]) and [total hemoglobin concentration] during each condition, respectively. On separate days, subjects completed 4 sets (30, 15, 15, 15) of knee extension exercise at 30% maximal torque, and 1 minute of rest was provided between the sets. Greater excitation of the vastus medialis was observed during CON + BFR (54.4 ± 13.3% maximal voluntary isometric contraction [MVIC]) and ECC + BFR (53.0 ± 18.0% MVIC) compared with CON (42.0 ± 10.8% MVIC) and ECC (46.8 ± 9.6% MVIC). Change in deoxy-[Hb + Mb] was greater during CON + BFR (10.0 ± 10.4 μM) than during CON (4.1 ± 4.0 μM; p < 0.001). ECC + BFR (7.8 ± 6.7 μM) was significantly greater than ECC (3.5 ± 4.7 μM; p = 0.001). Total hemoglobin concentration was greater for ECC + BFR (7.9 ± 4.4 μM) compared with ECC (5.5 ± 3.5 μM). The addition of BFR to eccentric and concentric exercises resulted in a significant increase in metabolic stress and muscle excitation compared with non-BFR exercise. These findings suggest that although BFR may increase the hypertrophic stimulus during both modes of contraction, BFR during concentric contractions may result in a greater stimulus.
Collapse
Affiliation(s)
- Jakob D Lauver
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | - Trent E Cayot
- Department of Kinesiology, Health, and Sport Sciences, University of Indianapolis, Indianapolis, Indiana
| | - Timothy R Rotarius
- Department of Exercise Science and Athletic Training, Adrian College, Adrian, Michigan; and
| | - Barry W Scheuermann
- School of Exercise and Rehabilitation Sciences, The University of Toledo, Toledo, Ohio
| |
Collapse
|
49
|
Influence of Sampling Conditions, Salivary Flow, and Total Protein Content in Uric Acid Measurements in Saliva. Antioxidants (Basel) 2019; 8:antiox8090389. [PMID: 31514287 PMCID: PMC6769926 DOI: 10.3390/antiox8090389] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 01/04/2023] Open
Abstract
Uric acid (UA) is the most abundant antioxidant compound in saliva and one of the most sensitive biomarkers for detecting changes in the oxidative status of the organism. The aim of this study was to evaluate the effect of: (i) different methods of saliva sampling and (ii) the correction by salivary flow or total protein on UA concentrations in saliva. Paired saliva (collected by two different methods, passive drooling and using Salivette cotton rolls) and serum samples were obtained from 12 healthy men after the performance of two resistance training exercises of different level of effort that can produce different concentrations in UA in saliva. There were no significant differences between values of uric acid in saliva using Salivette and passive drool. Correlations between UA in serum and saliva and increases in UA in saliva after exercise were detected when saliva samples were obtained by passive drool and Salivette and were not corrected by salivary flow or total protein concentration. Therefore for UA measurements in saliva it would not be recommended to normalize the results by salivary flow or protein concentration. This study highlights the importance of choosing an adequate sampling method selection as well as the expression of results when analytes are measured in saliva.
Collapse
|
50
|
Lundberg TR, García-Gutiérrez MT, Mandić M, Lilja M, Fernandez-Gonzalo R. Regional and muscle-specific adaptations in knee extensor hypertrophy using flywheel versus conventional weight-stack resistance exercise. Appl Physiol Nutr Metab 2019; 44:827-833. [DOI: 10.1139/apnm-2018-0774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study compared the effects of the most frequently employed protocols of flywheel (FW) versus weight-stack (WS) resistance exercise (RE) on regional and muscle-specific adaptations of the knee extensors. Sixteen men (n = 8) and women (n = 8) performed 8 weeks (2–3 days/week) of knee extension RE employing FW technology on 1 leg (4 × 7 repetitions), while the contralateral leg performed regular WS training (4 × 8–12 repetitions). Maximal strength (1-repetition maximum (1RM) in WS) and peak FW power were determined before and after training for both legs. Partial muscle volume of vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), and rectus femoris (RF) were measured using magnetic resonance imaging. Additionally, quadriceps cross-sectional area was assessed at a proximal and a distal site. There were no differences (P > 0.05) between FW versus WS in muscle hypertrophy of the quadriceps femoris (8% vs. 9%), VL (10% vs. 11%), VM (6% vs. 8%), VI (5% vs. 5%), or RF (17% vs. 17%). Muscle hypertrophy tended (P = 0.09) to be greater at the distal compared with the proximal site, but there was no interaction with exercise method. Increases in 1RM and FW peak power were similar across legs, yet the increase in 1RM was greater in men (31%) than in women (20%). These findings suggest that FW and WS training induces comparable muscle-specific hypertrophy of the knee extensors. Given that these robust muscular adaptations were brought about with markedly fewer repetitions in the FW compared with WS, it seems FW training can be recommended as a particularly time-efficient exercise paradigm.
Collapse
Affiliation(s)
- Tommy R. Lundberg
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Huddinge C1 88 14186 Stockholm, Sweden
| | - Maria T. García-Gutiérrez
- Laboratory of Physiology, European University Miguel de Cervantes, 47012 Valladolid, Spain
- Alberta Giménez Higher Education Center, University of Comillas, Costa de Saragossa 16, 07013 Palma de Mallorca, Spain
| | - Mirko Mandić
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Huddinge C1 88 14186 Stockholm, Sweden
| | - Mats Lilja
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Huddinge C1 88 14186 Stockholm, Sweden
| | - Rodrigo Fernandez-Gonzalo
- Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, Huddinge C1 88 14186 Stockholm, Sweden
| |
Collapse
|