1
|
Borzemska B, Cięszczyk P, Żekanowski C. The Genetic Basis of Non-Contact Soft Tissue Injuries-Are There Practical Applications of Genetic Knowledge? Cells 2024; 13:1828. [PMID: 39594578 PMCID: PMC11593177 DOI: 10.3390/cells13221828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Physical activity increases the risk of non-contact injuries, mainly affecting muscles, tendons, and ligaments. Genetic factors are recognized as contributing to susceptibility to different types of soft tissue injuries, making this broad condition a complicated multifactorial entity. Understanding genetic predisposition seems to offer the potential for personalized injury prevention and improved recovery strategies. The candidate gene analysis approach used so far, has often yielded inconclusive results. This manuscript reviews the most commonly studied genetic variants in genes involved in the musculoskeletal system's structure and recovery processes (ACTN3, ACE, CKM, MLCK, AMPD1, IGF2, IL6, TNFα, CCL2, COL1A1, COL5A1, MMP3, and TNC). Referring to the literature, it was highlighted that single-gene analyses provide limited insight. On the other hand, novel genetic testing methods identify numerous variants of uncertain physiological relevance. Distinguishing between functionally important variants, modifying variants, and the thousands of irrelevant variants requires advanced bioinformatics methods and basic multiomics research to identify the key biological pathways contributing to injury susceptibility. Tools like the Total Genotype Score (TGS) and Polygenic Risk Score (PRS) offer a more holistic view by assessing the combined effect of multiple variants. However, these methods, while useful in research, lack clinical applicability. In conclusion, it is too early to determine the clinical implications of genetic variability as a tool for improving well-established training and injury prevention methods, as the predictive power of genetic testing for injury predisposition is currently low.
Collapse
Affiliation(s)
- Beata Borzemska
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| | - Cezary Żekanowski
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| |
Collapse
|
2
|
de Almeida KY, Zempo H, Saito M, Cetolin T, dos Santos Guimarães R, Marrero AR, Aguiar AS, Kikuchi N. Influence of ACTN3 R577X Polymorphism on Blood Creatine Kinase Levels Relative to Number of Sprints in Brazilian Professional Soccer Players. Genes (Basel) 2024; 15:896. [PMID: 39062675 PMCID: PMC11276463 DOI: 10.3390/genes15070896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
This study sought to assess how post-game creatine kinase (CK) levels correlate with the number of sprints and the impact of the ACTN3 polymorphism on this response. This research constituted a descriptive/observational, retrospective cross-sectional study. DNA was extracted from blood samples for ACTN3 polymorphism genotyping. CK was measured 48 h after official matches, and the number of sprints (>19 km/h) was tracked using Global Positioning System (GPS) technology. The main cohort included 23 professional soccer players from the top tier of the Brazilian Championship. We analyzed 115 GPS + CK data sets. The replication cohort comprised 18 professional soccer players from the First Division of the Championship, had the same methodology applied, and featured a total of 90 GPS (sprints > 25.2 km/h) + CK data sets. For the main cohort, a significant positive correlation was seen between the number of sprints and the CK levels (p = 0.009). Athletes with the ACTN3 RR genotype had higher CK levels as more sprints were performed during the match (p = 0.017). However, the relationship was not found for X allele carriers (p > 0.05). For the replication cohort, there was a near-significant correlation between CK levels and the number of sprints (p = 0.05), and RR individuals showed a significant association (p = 0.01), whereas X allele carriers did not (p = 0.06). A greater number of sprints during matches is linked to higher CK levels, primarily among players with the ACTN3 RR genotype, which is potentially due to an increased presence of type II muscle fibers. These findings were replicated for both cohorts of elite Brazilian soccer players, emphasizing the importance of genetic factors in injury prevention.
Collapse
Affiliation(s)
- Kathleen Y. de Almeida
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8085, Japan; (K.Y.d.A.); (M.S.)
| | - Hirofumi Zempo
- Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo 124-8530, Japan;
| | - Mika Saito
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8085, Japan; (K.Y.d.A.); (M.S.)
| | - Tiago Cetolin
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (T.C.)
| | | | - Andrea Rita Marrero
- Graduate Program in Cell and Developmental Biology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Aderbal S. Aguiar
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (T.C.)
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8085, Japan; (K.Y.d.A.); (M.S.)
| |
Collapse
|
3
|
Bulgay C, Cepicka L, Dalip M, Yıldırım S, Ceylan Hİ, Yılmaz ÖÖ, Ulucan K, Badicu G, Cerit M. The relationships between ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance characteristics in professional soccer players. BMC Sports Sci Med Rehabil 2023; 15:121. [PMID: 37749582 PMCID: PMC10518950 DOI: 10.1186/s13102-023-00733-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Current research on athletic performance focuses on genetic variants that contribute significantly to individuals' performance. ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms are variants frequently associated with athletic performance among different populations. However, there is limited research examining the pre-and post-test results of some variants of athletic performance in soccer players. Therefore, the presented research is to examine the relationships between the ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance improvement rates in adaptations to six weeks of training in elite soccer players using some athletic performance tests. METHODOLOGY Twenty-two soccer players between the ages of 18 and 35 voluntarily participated in the study. All participants were actively engaged in a rigorous six-day-a-week training program during the pre-season preparation period. Preceding and following the training program, a battery of diverse athletic performance tests was administered to the participants. Moreover, Genomic DNA was extracted from oral epithelial cells using the Invitrogen DNA isolation kit (Invitrogen, USA), following the manufacturer's protocol. Genotyping was conducted using real-time PCR. To assess the pre- and post-test performance differences of soccer players, the Wilcoxon Signed Rank test was employed. RESULTS Upon analyzing the results of the soccer players based on the ACTN3 genotype variable, it was observed that there were no statistically significant differences in the SJ (Squat Jump), 30m sprint, CMJ (Counter Movement Jump), and DJ (Drop Jump) performance tests (p > 0.05). However, a statistically significant difference was identified in the YOYO IRT 2 (Yo-Yo Intermittent Recovery Test Level 2) and 1RM (One Repetition Maximum) test outcomes (YOYO IRT 2: CC, CT, and TT, p = 0.028, 0.028, 0.008, 0.000, respectively; 1RM: CC, CT, and TT, p = 0.010, 0.34, 0.001, respectively). Regarding the PPARA-α genotype variable, the statistical analysis revealed no significant differences in the SJ, 30m sprint, CMJ, and DJ performance tests (p > 0.05). Nevertheless, a statistically significant difference was observed in the YOYO IRT 2 and 1RM test results (YOYO IRT 2: CC, CG p = 0.001, 0.020; 1RM: CC, p = 0.000) CONCLUSIONS: The current study demonstrated significant enhancements in only YOYO INT 2 and 1RM test outcomes across nearly all gene variants following the six-day-a-week training program. Other performance tests, such as the 30m sprint, SJ, CMJ, and DJ tests did not exhibit statistically significant differences. These findings contribute novel insights into the molecular processes involving PPARA-α rs4253778 and ACTN3 rs1815739 that underpin enhancements in endurance (YOYO INT 2) and maximal strength (1RM) aspects of athletic performance. However, to comprehensively elucidate the mechanisms responsible for the association between these polymorphisms and athletic performance, further investigations are warranted. It is thought that the use of field and genetic analyses together to support each other will be an important detail for athletes to reach high performance.
Collapse
Affiliation(s)
- Celal Bulgay
- Sports Science Faculty, Bingol University, Bingöl, 12000 Türkiye
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, Pilsen, 30100 Czech Republic
| | - Metin Dalip
- Faculty of Physical Culture and Health, University in Tetovo, Tetova, 1200 Republic of North Macedonia
| | - Selin Yıldırım
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| | - Halil İ. Ceylan
- Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, 25240 Türkiye
| | - Özlem Ö. Yılmaz
- Institute of Health Sciences Marmara University, İstanbul, 34722 Türkiye
| | - Korkut Ulucan
- Department of Medical Biology and Genetics, Marmara University, İstanbul, 34722 Türkiye
| | - Georgian Badicu
- Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, Brasov, 500068 Romania
| | - Mesut Cerit
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| |
Collapse
|
4
|
Influence of Alpha-Actinin-3 R577X Polymorphism on Muscle Damage and the Inflammatory Response after an Acute Strength Training Session. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5447100. [PMID: 36567902 PMCID: PMC9788900 DOI: 10.1155/2022/5447100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022]
Abstract
The objective of this study was to verify the influence of the ACTN3 R577X polymorphism on muscle damage and the inflammatory response after an acute strength training (ST) session. Twenty-seven healthy male individuals (age: 25 ± 4.3 years) participated in the study, including 18 RR/RX and 9 XX individuals. The participants were divided into two groups (RR/RX and XX groups) and subjected to an acute ST session, which consisted of a series of leg press, leg extension machine, and seated leg curl machine. The volunteers were instructed to perform the greatest volume of work until concentric muscle failure. Each volunteer's performance was analyzed as the load and total volume of training, and the blood concentrations of C-C motif chemokine ligand 2 (CCL2), interleukin-8 (IL-8), creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin, testosterone, and cortisol were measured before the ST session and 30 min and 24 h postsession. The ACTN3 R577X polymorphism effect was observed, with increased concentrations of CCL2 (p < 0.01), IL-8 (p < 0.01), and LDH (p < 0.001) in XX individuals. There was an increase in the concentration of CK in the RR/RX group compared to XX at 24 h after training (p > 0.01). The testosterone/cortisol ratio increased more markedly in the XX group (p < 0.001). Regarding performance, the RR/RX group presented higher load and total volume values in the training exercises when compared to the XX group (p < 0.05). However, the XX group presented higher values of delayed onset muscle soreness (DOMS) than the RR/RX group (p < 0.05). The influence of ACTN3 R577X polymorphism on muscle damage and the inflammatory response was observed after an acute ST session, indicating that the RR/RX genotype shows more muscle damage and a catabolic profile due to a better performance in this activity, while the XX genotype shows more DOMS.
Collapse
|
5
|
Venckunas T, Degens H. Genetic polymorphisms of muscular fitness in young healthy men. PLoS One 2022; 17:e0275179. [PMID: 36166425 PMCID: PMC9514622 DOI: 10.1371/journal.pone.0275179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
The effects of genetic polymorphisms on muscle structure and function remain elusive. The present study tested for possible associations of 16 polymorphisms (across ten candidate genes) with fittness and skeletal muscle phenotypes in 17- to 37-year-old healthy Caucasian male endurance (n = 86), power/strength (n = 75) and team athletes (n = 60), and non-athletes (n = 218). Skeletal muscle function was measured with eight performance tests covering multiple aspects of muscular fitness. Along with body mass and height, the upper arm and limb girths, and maximal oxygen uptake were measured. Genotyping was conducted on DNA extracted from blood. Of the 16 polymorphisms studied, nine (spanning seven candidate genes and four gene families/signalling pathways) were independently associated with at least one skeletal muscle fitness measure (size or function, or both) measure and explained up to 4.1% of its variation. Five of the studied polymorphisms (activin- and adreno-receptors, as well as myosine light chain kinase 1) in a group of one to three combined with body height, age and/or group explained up to 20.4% of the variation of muscle function. ACVR1B (rs2854464) contributed 2.0–3.6% to explain up to 14.6% of limb proximal girths. The G allele (genotypes AG and GG) of the ACVR1B (rs2854464) polymorphism was significantly overrepresented among team (60.4%) and power (62.0%) athletes compared to controls (52.3%) and endurance athletes (39.2%), and G allele was also most consistently/frequently associated with muscle size and power. Overall, the investigated polymorphisms determined up to 4.1% of the variability of muscular fitness in healthy young humans.
Collapse
Affiliation(s)
- Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- * E-mail:
| | - Hans Degens
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
- Department of Life Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
6
|
Akbar S, Soh KG, Jazaily Mohd Nasiruddin N, Bashir M, Cao S, Soh KL. Effects of neuromuscular training on athletes physical fitness in sports: A systematic review. Front Physiol 2022; 13:939042. [PMID: 36213248 PMCID: PMC9540396 DOI: 10.3389/fphys.2022.939042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This review study aimed to assess the impact of neuromuscular training (NT) on athletes' physical fitness in sports. Methods: Three independent reviewers conducted a literature search in various databases: EBSCOHOST, PubMed, WOS, Mendeley, Scopus, ProQuest, Science Direct, additional references, and Google Scholar. The methodological quality was examined using Lubans' predetermined methods, and data that included trials were excluded. Results: This review included 18 well-conducted systematic studies from 144 relevant publications. These studies were reviewed and have been given a score of 6. Medium-risk studies were scored 3 or 4, while low-risk studies were scored 5 or 6. None of the studies had a high-risk bias. The NT intervention revealed that balance (n = 10) was the main characteristic of physical fitness that was evaluated, followed by agility (n = 6), muscular strength (n = 4), speed (n = 5), endurance and muscular power (n = 2). Subsequently, most studies used an intervention such as plyometric and strength training exercises to improve agility, balance, and muscular strength among athletes. Conclusion: This review implicated that (NT) focuses on exercises that enhance motor skills which aid athletes in moving their bodies according to their situational needs. The athletes' slower and faster directions influence their agility, muscular strength, and balance, essential for player performance. It is recommended for future research to investigate the effects of neuromuscular training (length of 12-weeks, frequency of 3 days per week and 90-min duration) on physical fitness components (coordination, reaction-time, flexibility, cardiovascular fitness, cardiorespiratory fitness and body composition) that are essential for all ages of male and female athletes in all sports.
Collapse
Affiliation(s)
- Saddam Akbar
- Department of Sports Studies, Faculty of Educational Studies, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Kim Geok Soh
- Department of Sports Studies, Faculty of Educational Studies, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | | | - Marrium Bashir
- Department of Sports Studies, Faculty of Educational Studies, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Shudian Cao
- Department of Sports Studies, Faculty of Education Studies, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Kim Lam Soh
- Department of Nursing, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
7
|
de Lima LCR, Bueno Junior CR, de Oliveira Assumpção C, de Menezes Bassan N, Barreto RV, Cardozo AC, Greco CC, Denadai BS. The Impact of ACTN3 Gene Polymorphisms on Susceptibility to Exercise-Induced Muscle Damage and Changes in Running Economy Following Downhill Running. Front Physiol 2021; 12:769971. [PMID: 34867477 PMCID: PMC8634444 DOI: 10.3389/fphys.2021.769971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate if ACTN3 gene polymorphism impacts the susceptibility to exercise-induced muscle damage (EIMD) and changes in running economy (RE) following downhill running. Thirty-five healthy men were allocated to the two groups based on their ACTN3 gene variants: RR and X allele carriers. Neuromuscular function [knee extensor isometric peak torque (IPT), rate of torque development (RTD), and countermovement, and squat jump height], indirect markers of EIMD [muscle soreness, mid-thigh circumference, knee joint range of motion, and serum creatine kinase (CK) activity], and RE (oxygen uptake, minute ventilation, blood lactate concentration, and perceived exertion) for 5-min of running at a speed equivalent to 80% of individual maximal oxygen uptake speed were assessed before, immediately after, and 1-4 days after a 30-min downhill run (-15%). Neuromuscular function was compromised (P < 0.05) following downhill running with no differences between the groups, except for IPT, which was more affected in the RR individuals compared with the X allele carriers immediately (-24.9 ± 6.9% vs. -16.3 ± 6.5%, respectively) and 4 days (-16.6 ± 14.9% vs. -4.2 ± 9.5%, respectively) post-downhill running. EIMD manifested similarly for both the groups except for serum CK activity, which was greater for RR (398 ± 120 and 452 ± 126 U L-1 at 2 and 4 days following downhill running, respectively) compared with the X allele carriers (273 ± 121 and 352 ± 114 U L-1 at the same time points). RE was compromised following downhill running (16.7 ± 8.3% and 11 ± 7.5% increases in oxygen uptake immediately following downhill running for the RR and X allele carriers, respectively) with no difference between the groups. We conclude that although RR individuals appear to be more susceptible to EIMD following downhill running, this does not extend to the changes in RE.
Collapse
Affiliation(s)
- Leonardo Coelho Rabello de Lima
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil.,Faculty of Biological and Health Sciences, School of Physical Education, Centro Universitário da Fundação Hermínio Ometto, Araras, Brazil.,School of Physical Education, Campus Liceu Salesiano, Centro Universitário Salesiano de São Paulo, Campinas, Brazil
| | | | - Claudio de Oliveira Assumpção
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil.,Physical Education and Sports Institute, Federal University of Ceará, Fortaleza, Brazil
| | - Natália de Menezes Bassan
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Renan Vieira Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Adalgiso Coscrato Cardozo
- Biomechanics Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Camila Coelho Greco
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Benedito Sérgio Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
8
|
Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team. Genes (Basel) 2021; 12:genes12050769. [PMID: 34069995 PMCID: PMC8157848 DOI: 10.3390/genes12050769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
There are recent data suggesting an association between the R577X polymorphism (rs1815739) in the gene encoding α-actinin-3 (ACTN3) and the risk of musculoskeletal injuries. The purpose of this study was to analyze the association of rs1815739 with risk of, and recovery time from non-contact soft-tissue muscle injuries in professional soccer players. Forty-six (22 male and 24 female) players from a top-level professional soccer team were assessed during five consecutive seasons: the genotype distribution was: RR, 41.3%; RX, 47.8%; and XX, 10.9%. There was a trend towards a higher risk of muscle injury associated with the XX genotype (p = 0.092, with no injury-free XX player during the 5-year study period) and a significant genotype effect for the time needed to return to play (p = 0.044, with the highest value shown for the XX genotype, i.e., 36 ± 26 days, vs. 20 ± 10 and 17 ± 12 days for RR and RX, respectively). In conclusion, the XX genotype might be associated not only with a higher risk of non-contact muscle injuries, but also of recovery time from these conditions. However, more research in larger cohorts is needed to confirm this preliminary hypothesis.
Collapse
|
9
|
Peinado AB, Alfaro-Magallanes VM, Romero-Parra N, Barba-Moreno L, Rael B, Maestre-Cascales C, Rojo-Tirado MA, Castro EA, Benito PJ, Ortega-Santos CP, Santiago E, Butragueño J, García-de-Alcaraz A, Rojo JJ, Calderón FJ, García-Bataller A, Cupeiro R. Methodological Approach of the Iron and Muscular Damage: Female Metabolism and Menstrual Cycle during Exercise Project (IronFEMME Study). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020735. [PMID: 33561085 PMCID: PMC7831010 DOI: 10.3390/ijerph18020735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Abstract Background: The increase in exercise levels in the last few years among professional and recreational female athletes has led to an increased scientific interest about sports health and performance in the female athlete population. The purpose of the IronFEMME Study described in this protocol article is to determine the influence of different hormonal profiles on iron metabolism in response to endurance exercise, and the main markers of muscle damage in response to resistance exercise; both in eumenorrheic, oral contraceptive (OC) users and postmenopausal well-trained women. Methods: This project is an observational controlled randomized counterbalanced study. One hundered and four (104) active and healthy women were selected to participate in the IronFEMME Study, 57 of which were eumenorrheic, 31 OC users and 16 postmenopausal. The project consisted of two sections carried out at the same time: iron metabolism (study I) and muscle damage (study II). For the study I, the exercise protocol consisted of an interval running test (eight bouts of 3 min at 85% of the maximal aerobic speed), whereas the study II protocol was an eccentric-based resistance exercise protocol (10 sets of 10 repetitions of plate-loaded barbell parallel back squats at 60% of their one repetition maximum (1RM) with 2 min of recovery between sets). In both studies, eumenorrheic participants were evaluated at three specific moments of the menstrual cycle: early-follicular phase, late-follicular phase and mid-luteal phase; OC users performed the trial at two moments: withdrawal phase and active pill phase. Lastly, postmenopausal women were only tested once, since their hormonal status does not fluctuate. The three-step method was used to verify the menstrual cycle phase: calendar counting, blood test confirmation, and urine-based ovulation kits. Blood samples were obtained to measure sex hormones, iron metabolism parameters, and muscle damage related markers. Discussion: IronFEMME Study has been designed to increase the knowledge regarding the influence of sex hormones on some aspects of the exercise-related female physiology. Iron metabolism and exercise-induced muscle damage will be studied considering the different reproductive status present throughout well-trained females’ lifespan. Trial registration The study was registered at Clinicaltrials.gov NCT04458662 on 2 July 2020.
Collapse
Affiliation(s)
- Ana B. Peinado
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Victor M. Alfaro-Magallanes
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Nuria Romero-Parra
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Laura Barba-Moreno
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Beatriz Rael
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Cristina Maestre-Cascales
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Miguel A. Rojo-Tirado
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Eliane A. Castro
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, 2850 Concepción, Chile
| | - Pedro J. Benito
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | - Javier Butragueño
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
| | - Antonio García-de-Alcaraz
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Faculty of Educational Sciences, Universidad de Almería, 04120 Almería, Spain
| | - Jesús J. Rojo
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Francisco J. Calderón
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alberto García-Bataller
- Department of Sports, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Rocío Cupeiro
- LFE Research Group, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (V.M.A.-M.); (N.R.-P.); (L.B.-M.); (B.R.); (C.M.-C.); (M.A.R.-T.); (E.A.C.); (P.J.B.); (J.B.); (A.G.-d.-A.); (J.J.R.); (F.J.C.); (R.C.)
- Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, Herbert AJ, Kelly AL. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: a systematic review and meta-analysis. J Sports Sci 2021; 39:200-211. [PMID: 32856541 DOI: 10.1080/02640414.2020.1812195] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to assess the association of ACTN3 R577X and ACE I/D polymorphisms with athlete status in football and determine which allele and/or genotypes are most likely to influence this phenotype via a meta-analysis. A comprehensive search identified 17 ACTN3 and 19 ACE studies. Significant associations were shown between the presence of the ACTN3 R allele and professional footballer status (OR = 1.35, 95% CI: 1.18-1.53) and the ACE D allele and youth footballers (OR = 1.18, 95% CI: 1.01-1.38). More specifically, the ACTN3 RR genotype (OR = 1.48, 95% CI: 1.23-1.77) and ACE DD genotype (OR = 1.29, 95% CI: 1.02-1.63) exhibited the strongest associations, respectively. These findings may be explained by the association of the ACTN3 RR genotype and ACE DD genotype with power-orientated phenotypes and the relative contribution of power-orientated phenotypes to success in football. As such, the results of this review provide further evidence that individual genetic variation may contribute towards athlete status and can differentiate athletes of different competitive playing statuses in a homogenous team-sport cohort. Moreover, the ACTN3 R577X and ACE I/D polymorphisms are likely (albeit relatively minor) contributing factors that influence athlete status in football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University , Nottingham, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth , Bournemouth, UK
| | - Thomas R Roos
- The International Academy of Sports Science and Technology (AISTS), University of Lausanne , Lausanne, Switzerland
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| |
Collapse
|
11
|
Massidda M, Miyamoto-Mikami E, Kumagai H, Ikeda H, Shimasaki Y, Yoshimura M, Cugia P, Piras F, Scorcu M, Kikuchi N, Calò CM, Fuku N. Association between the ACE I/D polymorphism and muscle injuries in Italian and Japanese elite football players. J Sports Sci 2020; 38:2423-2429. [DOI: 10.1080/02640414.2020.1787683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Myosotis Massidda
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Italian Sports Medicine Federation, Rome, Italy
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hayato Ikeda
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Yu Shimasaki
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Masafumi Yoshimura
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Paolo Cugia
- Italian Sports Medicine Federation, Rome, Italy
- Cagliari Calcio Spa, Cagliari, Italy
| | - Francesco Piras
- Italian Sports Medicine Federation, Rome, Italy
- Cagliari Calcio Spa, Cagliari, Italy
| | - Marco Scorcu
- Italian Sports Medicine Federation, Rome, Italy
- Cagliari Calcio Spa, Cagliari, Italy
| | - Naoki Kikuchi
- Department of Training Science, Nippon Sport Science University, Tokyo, Japan
| | - Carla Maria Calò
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| |
Collapse
|
12
|
ACTN3 single nucleotide polymorphism is associated with non-contact musculoskeletal soft-tissue injury incidence in elite professional football players. Knee Surg Sports Traumatol Arthrosc 2019; 27:4055-4061. [PMID: 30721342 DOI: 10.1007/s00167-019-05381-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Muscle injuries are common in professional football, even though prevention protocols are being implemented. Genetics constitutes a novel field for studying intrinsic injury risks and performance. Since previous studies involving single nucleotide polymorphisms (SNPs) have shown that SNPs influence muscle injury rate, injury severity and recovery time, the aim was to study the association the SNP of ACTN3 has with those parameters in professional football players. METHODS The medical staff team recorded non-contact musculoskeletal soft-tissue injuries in 43 professional football players in 7 different seasons (2007-2012 and 2015-2016). Injury rate, injury severity and injury recovery times were established. Players were genotyped by extracting DNA from a blood sample and using a polymerase chain reaction. RESULTS Injury rate was associated with the SNP of ACTN3 (p = 0.003). The 577R allele was more frequent in subjects than in a normal population by showing presence in 93% of the subjects and suggesting that it could influence football performance. No statistically significant differences in injury severity and recovery time were associated with the SNP of ACTN3. CONCLUSIONS Genetics is gaining in importance when assessing injury risk and performance in professional football. ACTN3 can be regarded as a biomarker of injury susceptibility in this discipline. Identifying those players with the highest injury susceptibility through genetics could lead football teams to individualise workloads and prevention protocols. LEVEL OF EVIDENCE III.
Collapse
|