1
|
Behnke G, Gray TR, Arndt C. Brain homogenate stability for stimulant drugs. J Anal Toxicol 2024; 48:514-518. [PMID: 38937871 DOI: 10.1093/jat/bkae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024] Open
Abstract
Brain can be a useful specimen for toxicology testing as it is a protected and isolated organ with lower metabolic activity than other tissues, but there is currently no published data supporting the stability of stimulant drugs in prepared brain homogenates. Brain homogenates were evaluated to determine the stability of the following stimulant drugs: amphetamine, benzoylecgonine, bupropion, cocaethylene, cocaine, ephedrine, methylenedioxyamphetamine, methylenedioxymethamphetamine, methamphetamine, and phentermine. Four different homogenates were prepared at a 1:4 dilution with deionized water and fortified at 500 ng/mL of: cocaine without sodium fluoride, cocaine with 1% sodium fluoride, stimulant drugs other than cocaine without sodium fluoride, and stimulant drugs other than cocaine with 1% sodium fluoride. The fortified homogenates were aliquoted into 13 × 100-mm screw cap tubes and stored at room temperature (∼20°C), refrigerated (2-8°C), or frozen (<-5°C) and analyzed in triplicate on Days 0, 1, 3, 7, 14, 30, 60, and 90. Analytes were considered stable as long as the difference in analyte/internal standard response ratio from Day 0 was less than 20% and the peaks met qualitative acceptance criteria. All analytes were stable for up to 90 days when stored frozen with or without sodium fluoride and had variable stability at all other evaluated conditions.
Collapse
Affiliation(s)
- Grayce Behnke
- Forensic Toxicology Laboratory, Harris County Institute of Forensic Sciences, 1861 Old Spanish Trail, Houston, TX 77954, United States
| | - Teresa R Gray
- Forensic Toxicology Laboratory, Harris County Institute of Forensic Sciences, 1861 Old Spanish Trail, Houston, TX 77954, United States
| | - Crystal Arndt
- Forensic Toxicology Laboratory, Harris County Institute of Forensic Sciences, 1861 Old Spanish Trail, Houston, TX 77954, United States
| |
Collapse
|
2
|
Periyasamy P, Thangaraj A, Kannan M, Oladapo A, Buch S. The Epigenetic Role of miR-124 in HIV-1 Tat- and Cocaine-Mediated Microglial Activation. Int J Mol Sci 2022; 23:ijms232315017. [PMID: 36499350 PMCID: PMC9738975 DOI: 10.3390/ijms232315017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
HIV-1 and drug abuse have been indissolubly allied as entwined epidemics. It is well-known that drug abuse can hasten the progression of HIV-1 and its consequences, especially in the brain, causing neuroinflammation. This study reports the combined effects of HIV-1 Transactivator of Transcription (Tat) protein and cocaine on miR-124 promoter DNA methylation and its role in microglial activation and neuroinflammation. The exposure of mouse primary microglial cells to HIV-1 Tat (25 ng/mL) and/or cocaine (10 μM) resulted in the significantly decreased expression of primary (pri)-miR-124-1, pri-miR-124-2, and mature miR-124 with a concomitant upregulation in DNMT1 expression as well as global DNA methylation. Our bisulfite-converted genomic DNA sequencing also revealed significant promoter DNA methylation in the pri-miR-124-1 and pri-miR-124-2 in HIV-1 Tat- and cocaine-exposed mouse primary microglial cells. We also found the increased expression of proinflammatory cytokines such as IL1β, IL6 and TNF in the mouse primary microglia exposed to HIV-1 Tat and cocaine correlated with microglial activation. Overall, our findings demonstrate that the exposure of mouse primary microglia to both HIV-1 Tat and cocaine could result in intensified microglial activation via the promoter DNA hypermethylation of miR-124, leading to the exacerbated release of proinflammatory cytokines, ultimately culminating in neuroinflammation.
Collapse
|
3
|
Lappas NT, Lappas CM. Analytical Samples. Forensic Toxicol 2022. [DOI: 10.1016/b978-0-12-819286-3.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
NLRP3 Inflammasome Blockade Reduces Cocaine-Induced Microglial Activation and Neuroinflammation. Mol Neurobiol 2021; 58:2215-2230. [PMID: 33417223 DOI: 10.1007/s12035-020-02184-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/20/2020] [Indexed: 10/22/2022]
Abstract
Cocaine use disorder is a major health crisis that is associated with increased oxidative stress and neuroinflammation. While the role of NLRP3 inflammasome in mediating neuroinflammation is well-recognized, whether cocaine induces this response remains unexplored. Based on the premise that cocaine induces both reactive oxygen species (ROS) as well as microglial activation, we hypothesized that cocaine-mediated microglial activation involves both ROS and NLRP3 signaling pathways. We examined activation of the NLRP3 pathway in microglia exposed to cocaine, followed by validation in mice administered either cocaine or saline for 7 days, with or without pretreatment with the NLRP3 inhibitor, MCC950, and in postmortem cortical brain tissues of chronic cocaine-dependent humans. We found that microglia exposed to cocaine exhibited significant induction of NLRP3 and mature IL-1β expression. Intriguingly, blockade of ROS (Tempol) attenuated cocaine-mediated priming of NLRP3 and microglial activation (CD11b). Blockade of NLRP3 by both pharmacological (MCC950) as well as gene silencing (siNLRP3) approaches underpinned the critical role of NLRP3 in cocaine-mediated activation of inflammasome and microglial activation. Pretreatment of mice with MCC950 followed by cocaine administration for 7 days mitigated cocaine-mediated upregulation of mature IL-1β and CD11b, in both the striatum and the cortical regions. Furthermore, cortical brain tissues of chronic cocaine-dependent humans also exhibited upregulated expression of the NLRP3 pathway mediators compared with non-cocaine dependent controls. Collectively, these findings suggest that cocaine activates microglia involving the NLRP3 inflammasome pathway, thereby contributing to neuroinflammation. NLRP3 can thus be considered as a potential therapeutic target for alleviating cocaine-mediated neuroinflammation.
Collapse
|
5
|
Tong J, Meyer JH, Boileau I, Ang LC, Fletcher PJ, Furukawa Y, Kish SJ. Serotonin transporter protein in autopsied brain of chronic users of cocaine. Psychopharmacology (Berl) 2020; 237:2661-2671. [PMID: 32494974 PMCID: PMC7502513 DOI: 10.1007/s00213-020-05562-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 12/21/2022]
Abstract
RATIONALE The long-held speculation that the brain serotonin system mediates some behavioral effects of the psychostimulant cocaine is supported in part by the high affinity of cocaine for the serotonin transporter (SERT) and by reports that the serotonin transporter (SERT), estimated by SERT binding, is increased in brain of human chronic cocaine users. Excessive SERT activity and consequent synaptic serotonin deficiency might cause a behavioral (e.g., mood) abnormality in chronic users of the drug. OBJECTIVE AND METHODS Previous studies focused on changes in SERT binding, which might not necessarily reflect changes in SERT protein. Therefore, we compared levels of SERT protein, using a quantitative Western blot procedure, in autopsied brain (striatum, cerebral cortices) of chronic human cocaine users (n = 9), who all tested positive for the drug/metabolite in brain, to those in control subjects (n = 15) and, as a separate drug of abuse group, in chronic heroin users (n = 11). RESULTS We found no significant difference in protein levels of SERT or the serotonin synthesizing enzyme tryptophan hydroxylase-2 among the control and drug abuse groups. In the cocaine users, no significant correlations were observed between SERT and brain levels of cocaine plus metabolites, or with levels of serotonin or its metabolite 5-hydroxyindoleacetic acid. CONCLUSION Our postmortem data suggest that a robust increase in striatal/cerebral cortical SERT protein is not a common characteristic of chronic, human cocaine users.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada. .,Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Jeffrey H. Meyer
- Brain Health Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| | - Paul J. Fletcher
- Section of Biopsychology, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University & Post Graduate University of Juntendo, Tokyo, Japan
| | - Stephen J. Kish
- Human Brain Laboratory, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
6
|
Chivero ET, Liao K, Niu F, Tripathi A, Tian C, Buch S, Hu G. Engineered Extracellular Vesicles Loaded With miR-124 Attenuate Cocaine-Mediated Activation of Microglia. Front Cell Dev Biol 2020; 8:573. [PMID: 32850781 PMCID: PMC7409518 DOI: 10.3389/fcell.2020.00573] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022] Open
Abstract
MicroRNA-124 (miR-124), a brain-enriched microRNA, is known to regulate microglial quiescence. Psychostimulants such as cocaine have been shown to activate microglia by downregulating miR-124, leading, in turn, to neuroinflammation. We thus rationalized that restoring the levels of miR-124 could function as a potential therapeutic approach for cocaine-mediated neuroinflammation. Delivering miRNA based drugs in the brain that are effective and less invasive, however, remains a major challenge in the field. Herein we engineered extracellular vesicles (EVs) and loaded them with miR-124 for delivery in the brain. Approach involved co-transfection of mouse dendritic cells with Dicer siRNA and RVG-Lamp2b plasmid to deplete endogenous miRNAs and for targeting the CNS, respectively. Mouse primary microglia (mPm) were treated with purified engineered EVs loaded with either Cy5-miR-124 or Cy5-scrambled miRNA oligos in the presence or absence of cocaine followed by assessing EV uptake and microglial activation. In vivo studies involved pretreating mice intranasally with engineered EVs followed by cocaine injection (20 mg/kg, i.p.). mPm exposed to EV-miR-124 exhibited reduced expression of miR-124 targets - TLR4 and STAT3 as well as ERK-1/2 and Iba1. In cocaine administered mice, EV-Cy5-miR-124 delivered intranasally were detected in the CNS and significantly reduced the expression of inflammatory markers TLR4, MYD88, STAT3 and NF-kB p65 while also downregulating the microglial activation marker, Iba1. Collectively, these findings suggest that engineered EVs can deliver miR-124 into the CNS, thereby alleviating cocaine-mediated microglial activation. Manipulating EV miRNAs can thus be envisioned as an efficient means for delivery of RNA-based therapeutics to target organs.
Collapse
|
7
|
Sil S, Niu F, Tom E, Liao K, Periyasamy P, Buch S. Cocaine Mediated Neuroinflammation: Role of Dysregulated Autophagy in Pericytes. Mol Neurobiol 2019; 56:3576-3590. [PMID: 30151726 PMCID: PMC6393223 DOI: 10.1007/s12035-018-1325-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
Cocaine, a known psychostimulant, results in oxidative stress and inflammation. Recent studies from our group have shown that cocaine induces inflammation in glial cells. Our current study was aimed at investigating whether cocaine exposure could also induce inflammation in non-glial cells such as the pericytes with a focus on the endoplasmic reticulum (ER) stress/autophagy axis. Our in vitro findings demonstrated that exposure of pericytes to cocaine resulted in upregulation of the pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in both the intracellular as well as extracellular compartments, thus underpinning pericytes as yet another source of neuroinflammation. Cocaine exposure of pericytes resulted in increased formation of autophagosomes as demonstrated by a time-dependent increase of autophagy markers, with a concomitant defect in the fusion of the autophagosome with the lysosomes. Pharmacological blocking of the sigma 1 receptor underscored its role in cocaine-mediated activation of pericytes. Furthermore, it was also demonstrated that cocaine-mediated dysregulation of autophagy involved upstream activation of the ER stress pathways, with a subsequent downstream production of pro-inflammatory cytokines in pericytes. These findings were also validated in an in vivo model wherein pericytes in the isolated brain microvessels of cocaine injected mice (7 days) exhibited increased expression of both the autophagy marker-LC3 as well as the pro-inflammatory cytokine, IL-6. This is the first report describing the role of pericytes in cocaine-mediated neuroinflammation. Interventions aimed at blocking either the sigma-1 receptor or the upstream ER stress mediators could likely be envisioned as promising therapeutic targets for abrogating cocaine-mediated inflammation in pericytes.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Eric Tom
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
8
|
Tong J, Fitzmaurice PS, Moszczynska A, Rathitharan G, Ang LC, Meyer JH, Mizrahi R, Boileau I, Furukawa Y, McCluskey T, Sailasuta N, Kish SJ. Normal glutathione levels in autopsied brain of chronic users of heroin and of cocaine. Drug Alcohol Depend 2018; 190:20-28. [PMID: 29960919 PMCID: PMC6078812 DOI: 10.1016/j.drugalcdep.2018.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Animal studies suggest that exposure to either of the two widely used drugs of abuse, heroin or cocaine, causes depletion of the antioxidant, reduced glutathione, a hallmark of oxidative stress, in the brain. However, the relevance of the animal findings to the human is uncertain and clinical trials with the antioxidant GSH precursor n-acetylcysteine have produced mixed results in cocaine dependence. METHODS Our major objective was to compare glutathione levels, determined by an HPLC-coulometric procedure, in autopsied brain of chronic heroin (n = 11) and cocaine users (n = 9), who were positive for the drugs in the brain, to those of matched controls (n = 16). Six brain regions were examined, including caudate, hippocampus, thalamus and frontal, temporal and insular cortices. RESULTS In contrast to experimental animal findings, we found no statistically significant difference between mean levels of reduced or oxidized glutathione in the drug user vs. control groups. Moreover, no correlation was found between levels of drugs in the brain and those of glutathione. CONCLUSIONS Acknowledging the many generic limitations of an autopsied human brain study and the preliminary nature of the findings, our data nevertheless suggest that any oxidative stress caused by heroin or cocaine in chronic users of the drugs might not be sufficient to cause substantial loss of stores of glutathione in the human brain, at least during early withdrawal. These findings, requiring replication, might also have some relevance to future clinical trials employing glutathione supplement therapy as an anti-oxidative strategy in chronic users of the two abused drugs.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging Unit, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Gausiha Rathitharan
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada,Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| | - Jeffrey H Meyer
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health; Institute of Medical Science, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, Faculty of Medicine, University and Post Graduate University of Juntendo, Tokyo, Japan
| | - Tina McCluskey
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J. Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
9
|
Cocaine-Mediated Downregulation of miR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Mol Neurobiol 2017; 55:3196-3210. [PMID: 28478506 DOI: 10.1007/s12035-017-0584-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022]
Abstract
Cocaine is known to activate microglia both in vitro and in vivo. High expression of microglial Toll-like receptors (TLRs) and their downstream signal transducers play critical roles in determining microglial activation status. Emerging reports have also demonstrated that cocaine can enhance the strength of TLR signaling. Detailed molecular mechanisms underlying this phenomenon, however, remain elusive. In this study, we investigated the role(s) of miR-124 in regulating microglial TLR4 signaling in the context of cocaine. Herein, we found a dose- and time-dependent upregulation of KLF4 in cocaine-exposed BV-2 cells and rat primary microglial cells (rPMs). KLF4 also identified as a novel 3'-UTR target directly regulated by miR-124. In parallel, miR-124 regulated multiple TLR4 signaling molecules including TLR4, MyD88, TRAF6, and IRAK1. Repeated doses of cocaine (20 mg/kg; i.p.) administration in mice for 7 days further validated the in vitro key findings. Also, miR-124 overexpression significantly blocked the cocaine-mediated upregulation of pro-inflammatory cytokines. In contrast, miR-124 overexpression notably increased the expression of anti-inflammatory mediators in cocaine-exposed microglial cells. Intriguingly, stereotactic administration of lentivirus-miR-124 in the striatum significantly inhibited cocaine-mediated microglial activation and locomotor hyperactivity in vivo. In summary, these findings implicate the role of miR-124 in regulating TLR4 signaling, thereby indicating a new pathway responsible for cocaine-mediated microglial activation.
Collapse
|
10
|
Abstract
Neuropsychiatric disorders caused by toxic substances pose a great diagnostic challenge due to the large variety of changes caused in the central and peripheral nervous system. The pathogenetic mechanisms at work are multifaceted and partly not solved. In human drug abusers (cannabis, opiates, cocaine, amphetamines, methamphetamine and "designer drugs"), a broad spectrum of central nervous system alterations are observed including infarction, intracerebral and subarachnoidal hemorrhage, hypoxic-ischemic leukoencephalopathy, infections, neuronal loss, specific astroglial and microglial reaction patterns, and vascular changes, including the endothelial cell as well as the basal lamina.
Collapse
Affiliation(s)
- Serge Weis
- Division of Neuropathology, Department of Pathology and Neuropathology, Kepler University Hospital and School of Medicine, Johannes Kepler University, Linz, Austria.
| | - Andreas Büttner
- Department of Forensic Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
11
|
Periyasamy P, Guo ML, Buch S. Cocaine induces astrocytosis through ER stress-mediated activation of autophagy. Autophagy 2016; 12:1310-29. [PMID: 27337297 DOI: 10.1080/15548627.2016.1183844] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cocaine is known to induce inflammation, thereby contributing in part, to the pathogenesis of neurodegeneration. A recent study from our lab has revealed a link between macroautophagy/autophagy and microglial activation. The current study was aimed at investigating whether cocaine could also mediate activation of astrocytes and, whether this process involved induction of autophagy. Our findings demonstrated that cocaine mediated the activation of astrocytes by altering the levels of autophagy markers, such as BECN1, ATG5, MAP1LC3B-II, and SQSTM1 in both human A172 astrocytoma cells and primary human astrocytes. Furthermore, cocaine treatment resulted in increased formation of endogenous MAP1LC3B puncta in human astrocytes. Additionally, astrocytes transfected with the GFP-MAP1LC3B plasmid also demonstrated cocaine-mediated upregulation of the green fluorescent MAP1LC3B puncta. Cocaine-mediated induction of autophagy involved upstream activation of ER stress proteins such as EIF2AK3, ERN1, ATF6 since blockage of autophagy using either pharmacological or gene-silencing approaches, had no effect on cocaine-mediated induction of ER stress. Using both pharmacological and gene-silencing approaches to block either ER stress or autophagy, our findings demonstrated that cocaine-induced activation of astrocytes (measured by increased levels of GFAP) involved sequential activation of ER stress and autophagy. Cocaine-mediated-increased upregulation of GFAP correlated with increased expression of proinflammatory mediators such as TNF, IL1B, and IL6. In conclusion, these findings reveal an association between ER stress-mediated autophagy and astrogliosis in cocaine-treated astrocytes. Intervention of ER stress and/or autophagy signaling would thus be promising therapeutic targets for abrogating cocaine-mediated neuroinflammation.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Ming-Lei Guo
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Shilpa Buch
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
12
|
|
13
|
Yang L, Yao H, Chen X, Cai Y, Callen S, Buch S. Role of Sigma Receptor in Cocaine-Mediated Induction of Glial Fibrillary Acidic Protein: Implications for HAND. Mol Neurobiol 2015; 53:1329-1342. [PMID: 25631712 DOI: 10.1007/s12035-015-9094-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/12/2015] [Indexed: 12/01/2022]
Abstract
Cocaine abuse has been shown to accelerate the progression of human immunodeficiency virus (HIV)-1-associated neurological disorders (HANDs) partially through increasing neuroinflammatory response mediated by activated astrocytes; however, the detailed molecular mechanism of cocaine-mediated astrocyte activation is unclear. In the current study, we demonstrated increased astrogliosis in the cortical regions of brains from HIV(+) cocaine abusers compared with the HIV(+) group without cocaine abuse. We next sought to explore whether cocaine exposure could result in increased expression of glial fibrillary acidic protein (GFAP), a filament protein critical for astrocyte activation. Exposure of cocaine to astrocytes resulted in rapid translocation of sigma receptor to the plasma membrane with subsequent activation of downstream signaling pathways. Using a pharmacological approach, we provide evidence that cocaine-mediated upregulation of GFAP expression involved activation of mitogen-activated protein kinase (MAPK) signaling with subsequent downstream activation of the early growth response gene 1 (Egr-1). Egr-1 activation, in turn, caused transcriptional regulation of GFAP. Corroboration of these findings in vivo demonstrated increased expression of GFAP in the cortical region of mice treated with cocaine compared with the saline injected controls. A thorough understanding of how cocaine mediates astrogliosis could have implications for the development of therapeutic interventions aimed at HIV-infected cocaine abusers.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xufeng Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu Cai
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Rohrig TP, Hicks CA. Brain Tissue: A Viable Postmortem Toxicological Specimen. J Anal Toxicol 2014; 39:137-9. [DOI: 10.1093/jat/bku139] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Gene expression profiling reveals distinct cocaine-responsive genes in human fetal CNS cell types. J Addict Med 2012; 3:218-26. [PMID: 20948987 DOI: 10.1097/adm.0b013e318199d863] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Prenatal exposure to cocaine causes cytoarchitectural alterations in the developing neocortex. Previously, we reported that cocaine inhibits neural progenitor cell proliferation through oxidative endoplasmic reticulum stress and consequent down-regulation of cyclin A, whereas cyclin A expression was increased in astrocytes. In the present study, cell type-specific responses to cocaine were further explored. METHODS Gene expression profiles were examined in five types of cells obtained from the human fetal cerebral cortex at 20 weeks gestation. Cells were treated with 100 µM cocaine in vitro for 24 hr, followed by gene expression analysis using a human neural/stem cell/drug abuse-focused cDNA array, with verification by quantitative real-time RT-PCR. RESULTS Cocaine influenced transcription of distinct categories of genes in a cell type-specific manner. Cocaine down-regulated cytoskeleton-related genes including ezrin, γ2 actin, α3d tubulin and α8 tubulin in neural and/or A2B5+ progenitor cells. In contrast, cocaine modulated immune and cell death-related genes in microglia and astrocytes. In microglia, cocaine up-regulated the immunoregulatory and pro-apoptotic genes IL-1β and BAX. In astrocytes, cocaine down-regulated the immune response gene glucocorticoid receptor and up-regulated the anti-apoptotic genes 14-3-3 ε and HVEM. Therefore, cell types comprising the developing neocortex show differential responses to cocaine. CONCLUSIONS These data suggest that cocaine causes cytoskeletal abnormalities leading to disturbances in neural differentiation and migration in progenitor cells, while altering immune and apoptotic responses in glia. Understanding the mechanisms of cocaine's effects on human CNS cells may help in the development of therapeutic strategies to prevent or ameliorate cocaine-induced impairments in fetal brain development.
Collapse
|
16
|
Álvaro-Bartolomé M, La Harpe R, Callado L, Meana J, García-Sevilla J. Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats. Neuroscience 2011; 196:1-15. [DOI: 10.1016/j.neuroscience.2011.08.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 01/08/2023]
|
17
|
|
18
|
Cocaine-mediated induction of platelet-derived growth factor: implication for increased vascular permeability. Blood 2010; 117:2538-47. [PMID: 21148086 DOI: 10.1182/blood-2010-10-313593] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neuroinflammation associated with advanced HIV-1 infection is often exacerbated in cocaine-abusing, HIV-infected patients. The underlying mechanisms could, in part, be attributed to the increased impairment of blood brain barrier integrity in the presence of cocaine. Platelet-derived growth factor (PDGF) has been implicated in several pathologic conditions, specifically attributable to its potent mitogenic effects. Its modulation by drug abuse, however, has received very little attention. In the present study, we demonstrated cocaine-mediated induction of PDGF-BB in human brain microvascular endothelial cells through the binding to its cognate σ receptor. Furthermore, this effect was mediated, with subsequent activation of mitogen-activated protein kinases and Egr-1 pathways, culminating ultimately into increased expression of PDGF-BB. Cocaine exposure resulted in increased permeability of the endothelial barrier, and this effect was abrogated in mice exposed to PDGF-BB neutralizing antibody, thus underscoring its role as a vascular permeant. In vivo relevance of these findings was further corroborated in cocaine-treated mice that were administered neutralizing antibody specific for PDGF-BB as well as in Egr-1(-/-) mice. Understanding the regulation of PDGF-BB expression may provide insights into the development of potential therapeutic targets for neuroinflammation associated with HIV infection and drug abuse.
Collapse
|
19
|
Dinis-Oliveira RJ, Carvalho F, Duarte JA, Remião F, Marques A, Santos A, Magalhães T. Collection of biological samples in forensic toxicology. Toxicol Mech Methods 2010; 20:363-414. [PMID: 20615091 DOI: 10.3109/15376516.2010.497976] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Forensic toxicology is the study and practice of the application of toxicology to the purposes of the law. The relevance of any finding is determined, in the first instance, by the nature and integrity of the specimen(s) submitted for analysis. This means that there are several specific challenges to select and collect specimens for ante-mortem and post-mortem toxicology investigation. Post-mortem specimens may be numerous and can endow some special difficulties compared to clinical specimens, namely those resulting from autolytic and putrefactive changes. Storage stability is also an important issue to be considered during the pre-analytic phase, since its consideration should facilitate the assessment of sample quality and the analytical result obtained from that sample. The knowledge on degradation mechanisms and methods to increase storage stability may enable the forensic toxicologist to circumvent possible difficulties. Therefore, advantages and limitations of specimen preservation procedures are thoroughfully discussed in this review. Presently, harmonized protocols for sampling in suspected intoxications would have obvious utility. In the present article an overview is given on sampling procedures for routinely collected specimens as well as on alternative specimens that may provide additional information on the route and timing of exposure to a specific xenobiotic. Last, but not least, a discussion on possible bias that can influence the interpretation of toxicological results is provided. This comprehensive review article is intented as a significant help for forensic toxicologists to accomplish their frequently overwhelming mission.
Collapse
Affiliation(s)
- R J Dinis-Oliveira
- Institute of Legal Medicine, Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
20
|
García-Repetto R, Giménez MP, Martinez MC, Soria ML. A fatally mistaken fruit juice drink: an unordinary way of cocaine intoxication. J Forensic Leg Med 2010; 17:434-6. [PMID: 21056879 DOI: 10.1016/j.jflm.2010.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/30/2010] [Accepted: 08/19/2010] [Indexed: 11/28/2022]
Abstract
Cocaine is one of the drugs of abuse more frequently consumed in Spain. Furthermore, Spain due to its geographical position is used by trafficker's organizations as the port of entrance of cocaine in the European Union. We present here a case of a fatal intoxication caused by a mistake in the cocaine distribution net in our country. Cocaine was concealed in a tropical juice only sold by the Internet.
Collapse
Affiliation(s)
- R García-Repetto
- National Institute of Toxicology and Forensic Sciences, Department of Seville, Avda. Dr. Fedriani s/n 41015 Seville, Spain
| | | | | | | |
Collapse
|
21
|
Cocaine potentiates astrocyte toxicity mediated by human immunodeficiency virus (HIV-1) protein gp120. PLoS One 2010; 5:e13427. [PMID: 20976166 PMCID: PMC2955538 DOI: 10.1371/journal.pone.0013427] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/24/2010] [Indexed: 01/18/2023] Open
Abstract
It is becoming widely accepted that psychoactive drugs, often abused by HIV-I infected individuals, can significantly alter the progression of neuropathological changes observed in HIV-associated neurodegenerative diseases (HAND). The underlying mechanisms mediating these effects however, remain poorly understood. In the current study, we explored whether the psychostimulant drug cocaine could exacerbate toxicity mediated by gp120 in rat primary astrocytes. Exposure to both cocaine and gp120 resulted in increased cell toxicity compared to cells treated with either factor alone. The combinatorial toxicity of cocaine and gp120 was accompanied by an increase in caspase-3 activation. In addition, increased apoptosis of astrocytes in the presence of both the agents was associated with a concomitant increase in the production of intracellular reactive oxygen species and loss of mitochondrial membrane potential. Signaling pathways including c-jun N-teminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinases (MAPK), and nuclear factor (NF-κB) were identified to be major players in cocaine and gp120-mediated apoptosis of astrocytes. Our results demonstrated that cocaine-mediated potentiation of gp120 toxicity involved regulation of oxidative stress, mitochondrial membrane potential and MAPK signaling pathways.
Collapse
|
22
|
Reich RF, Cudzilo K, Levisky JA, Yost RA. Quantitative MALDI-MS(n) analysis of cocaine in the autopsied brain of a human cocaine user employing a wide isolation window and internal standards. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:564-571. [PMID: 20097576 DOI: 10.1016/j.jasms.2009.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 05/28/2023]
Abstract
Detection of drugs in tissue typically requires extensive sample preparation in which the tissue is first homogenized, followed by drug extraction, before the extracts are finally analyzed by LC/MS. Directly analyzing drugs in intact tissue would eliminate any complications introduced by sample pretreatment. A matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS(n)) method as been developed for the quantification of cocaine present in postmortem brain tissue of a chronic human cocaine user. It is shown that tandem mass spectrometry (MS(2) and MS(3) increase selectivity, which is critical for differentiating analyte ions from background ions such as matrix clusters and endogenous compounds found in brain tissue. It is also shown that the use of internal standards corrects for signal variability during quantitative MALDI, which can be caused by inhomogeneous crystal formation, inconsistent sample preparation, and laser shot-to-shot variability. The MALDI-MS(n) method developed allows for a single MS(3) experiment that uses a wide isolation window to isolate both analyte and internal standard target ions. This method is shown to provide improved precision [approximately 10-20 times reduction in percent relative standard deviation (%RSD)] for quantitative analysis compared to using two alternating MS(3) experiments that separately isolate the target analyte and internal standard ions.
Collapse
Affiliation(s)
- Richard F Reich
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | |
Collapse
|
23
|
Shakleya DM, Huestis MA. Simultaneous quantification of nicotine, opioids, cocaine, and metabolites in human fetal postmortem brain by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2009; 393:1957-65. [PMID: 19229524 PMCID: PMC3178103 DOI: 10.1007/s00216-009-2661-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 11/30/2022]
Abstract
A validated method for simultaneous LCMSMS quantification of nicotine, cocaine, 6-acetylmorphine (6AM), codeine, and metabolites in 100 mg fetal human brain was developed and validated. After homogenization and solid-phase extraction, analytes were resolved on a Hydro-RP analytical column with gradient elution. Empirically determined linearity was from 5-5,000 pg/mg for cocaine and benzoylecgonine (BE), 25-5,000 pg/mg for cotinine, ecgonine methyl ester (EME) and 6AM, 50-5000 pg/mg for trans-3-hydroxycotinine (OH-cotinine) and codeine, and 250-5,000 pg/mg for nicotine. Potential endogenous and exogenous interferences were resolved. Intra- and inter-assay analytical recoveries were > or = 92%, intra- and inter-day and total assay imprecision were < or = 14% RSD and extraction efficiencies were > or = 67.2% with < or = 83% matrix effect. Method applicability was demonstrated with a postmortem fetal brain containing 40 pg/mg cotinine, 65 pg/mg OH-cotinine, 13 pg/mg cocaine, 34 pg/mg EME, and 525 pg/mg BE. This validated method is useful for determination of nicotine, opioid, and cocaine biomarkers in brain.
Collapse
Affiliation(s)
- Diaa M. Shakleya
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, Biomedical Research Center, 251 Bayview Boulevard Suite 5A721, Baltimore, MD 21224, USA
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, Biomedical Research Center, 251 Bayview Boulevard Suite 5A721, Baltimore, MD 21224, USA
| |
Collapse
|
24
|
Frankel PS, Alburges ME, Bush L, Hanson GR, Kish SJ. Striatal and ventral pallidum dynorphin concentrations are markedly increased in human chronic cocaine users. Neuropharmacology 2008; 55:41-6. [PMID: 18538358 DOI: 10.1016/j.neuropharm.2008.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/11/2008] [Accepted: 04/14/2008] [Indexed: 11/18/2022]
Abstract
Interest in development of therapeutics targeting brain neuropeptide systems for treatment of cocaine addiction (e.g., kappa opioid agonists) is based on animal data showing interactions between the neuropeptides, brain dopamine, and cocaine. In this autopsied brain study, our major objective was to establish by radioimmunoassay whether levels of dynorphin and other neuropeptides (e.g., metenkephalin, neurotensin and substance P) are increased in the dopamine-rich caudate, putamen, and nucleus accumbens of human chronic cocaine users (n=12) vs. matched control subjects (n=17) as predicted by animal findings. Changes were limited to markedly increased dynorphin immunoreactivity in caudate (+92%), decreased caudate neurotensin (-49%), and a trend for increased dynorphin (+75%) in putamen. In other examined subcortical/cerebral cortical areas dynorphin levels were normal with the striking exception of the ventral pallidum (+346%), whereas cerebral cortical metenkephalin levels were generally decreased and neurotensin variably changed. Our finding that, in contradistinction to animal data, the other striatal neuropeptides were not increased in human cocaine users could be explained by differences in pattern and contingency between human drug users and the animal models. However, the human dynorphin observations parallel well animal findings and suggest that the dynorphin system is upregulated, manifested as elevated neuropeptide levels, after chronic drug exposure in striatum and ventral pallidum. Our postmortem brain data suggest involvement of striatal dynorphin systems in human cocaine users and should add to the interest in the testing of new dynorphin-related therapeutics for the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Paul S Frankel
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|
25
|
Bertol E, Trignano C, Di Milia MG, Di Padua M, Mari F. Cocaine-related deaths: an enigma still under investigation. Forensic Sci Int 2007; 176:121-3. [PMID: 17764862 DOI: 10.1016/j.forsciint.2007.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/24/2022]
Abstract
In recent years there has been an increase interest in cocaine-related death reflecting the rising trend in cocaine use in Europe. Nevertheless it is still now very difficult to attribute a death to cocaine. We can affirm that cocaine can be responsible for the cause of death only when there is a reasonably complete understanding of the circumstances or facts surrounding the death. Isolated blood cocaine levels are not enough to assess lethality, and should be always considered and evaluated in relation to concentrations of cocaine and benzoylecgonine concentrations in body tissue compartments, especially in brain and blood. We have reanalyzed all of our cocaine-related cases from 1990 to 2005, applying the methodology used by Spielher and Reed over 30 years ago. Our aim was to try to validate this model and verify its applicability and effectiveness after 20 years.
Collapse
Affiliation(s)
- Elisabetta Bertol
- Forensic Toxicology Division, Department of Anatomy, Histology and Legal Medicine, University of Florence, Italy.
| | | | | | | | | |
Collapse
|
26
|
Lowe RH, Barnes AJ, Lehrmann E, Freed WJ, Kleinman JE, Hyde TM, Herman MM, Huestis MA. A validated positive chemical ionization GC/MS method for the identification and quantification of amphetamine, opiates, cocaine, and metabolites in human postmortem brain. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:175-84. [PMID: 16382483 DOI: 10.1002/jms.975] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A sensitive and specific method for the simultaneous detection and quantification of amphetamine, opiates, and cocaine and metabolites in human postmortem brain was developed and validated. Analytes of interest included amphetamine, morphine, codeine, 6-acetylmorphine, cocaine, benzoylecgonine, ecgonine methyl ester, ecgonine ethyl ester, cocaethylene, and anhydroecgonine methyl ester. The method employed ultrasonic homogenization of brain tissue in pH 4.0 sodium acetate buffer and solid phase extraction. Extracts were derivatized with N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide and N,O-bis(trimethylsilyl) trifluoroacetamide. Separation and quantification were accomplished on a bench-top positive chemical ionization capillary gas chromatograph/mass spectrometer with selected ion monitoring. Eight deuterated analogs were used as internal standards. Limits of quantification were 50 ng/g of brain. Calibration curves were linear to 1000 ng/g for anhydroecgonine methyl ester and 6-acetylmorphine, and to 2000 ng/g for all other analytes. Accuracy across the linear range of the assay ranged from 90.2 to 112.2%, and precision, as percent relative standard deviation, was less than 16.6%. Quantification of drug concentrations in brain is a useful research tool in neurobiology and in forensic and postmortem toxicology, identifying the type, relative magnitude, and recency of abused drug exposure. This method will be employed to quantify drug concentrations in human postmortem brain in support of basic and clinical research on the physiologic, biochemical, and behavioral effects of drugs in humans.
Collapse
Affiliation(s)
- Ross H Lowe
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Conducting toxicology on post-mortem specimens provides a number of very significant challenges to the scientist. The range of additional specimens include tissues such as decomposing blood and other tissues, hair, muscle, fat, lung, and even larvae feeding on the host require special techniques to isolate a foreign substance and allow detection without interference from the matrix. A number of drugs of abuse are unstable in the post-mortem environment that requires careful consideration when trying to interpret their significance. Heroin, morphine glucuronides, cocaine and the benzodiazepines are particularly prone to degradation. Moreover, redistributive process can significantly alter the concentration of drugs, particularly those with a higher tissue concentration than the surrounding blood. The designer amphetamines, methadone and other potent opioids will increase their concentration in blood post-mortem. These processes together with the development of tolerance means that no concentration of a drug of abuse can be interpreted in isolation without a thorough examination of the relevant circumstances and after the conduct of a post-mortem to eliminate or corroborate relevant factors that could impact on the drug concentration and the possible effect of a substance on the body. This article reviews particular toxicological issues associated with the more common drugs of abuse such as the amphetamines, cannabinoids, cocaine, opioids and the benzodiazepines.
Collapse
Affiliation(s)
- Olaf H Drummer
- Department of Forensic Medicine, Victorian Institute of Forensic Medicine, Monash University, 57-83 Kavanagh Street, Southbank, 3006 Melbourne, Australia.
| |
Collapse
|
28
|
Siegal D, Erickson J, Varoqui H, Ang L, Kalasinsky KS, Peretti FJ, Aiken SS, Wickham DJ, Kish SJ. Brain vesicular acetylcholine transporter in human users of drugs of abuse. Synapse 2004; 52:223-32. [PMID: 15103689 DOI: 10.1002/syn.20020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Limited animal data suggest that the dopaminergic neurotoxin methamphetamine is not toxic to brain (striatal) cholinergic neurons. However, we previously reported that activity of choline acetyltransferase (ChAT), the cholinergic marker synthetic enzyme, can be very low in brain of some human high-dose methamphetamine users. We measured, by quantitative immunoblotting, concentrations of a second cholinergic marker, the vesicular acetylcholine transporter (VAChT), considered to be a "stable" marker of cholinergic neurons, in autopsied brain (caudate, hippocampus) of chronic users of methamphetamine and, for comparison, in brain of users of cocaine, heroin, and matched controls. Western blot analyses showed normal levels of VAChT immunoreactivity in hippocampus of all drug user groups, whereas in the dopamine-rich caudate VAChT levels were selectively elevated (+48%) in the methamphetamine group, including the three high-dose methamphetamine users who had severely reduced ChAT activity. To the extent that cholinergic neuron integrity can be inferred from VAChT concentration, our data suggest that methamphetamine does not cause loss of striatal cholinergic neurons, but might damage/downregulate brain ChAT in some high-dose users. However, the finding of increased VAChT levels suggests that brain VAChT concentration might be subject to up- and downregulation as part of a compensatory process to maintain homeostasis of neuronal cholinergic activity. This possibility should be taken into account when utilizing VAChT as a neuroimaging outcome marker for cholinergic neuron number in human studies.
Collapse
Affiliation(s)
- Deborah Siegal
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Büttner A, Weis S. Central Nervous System Alterations in Drug Abuse. FORENSIC PATHOLOGY REVIEWS 2004. [DOI: 10.1007/978-1-59259-786-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Bencharit S, Morton CL, Xue Y, Potter PM, Redinbo MR. Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme. Nat Struct Mol Biol 2003; 10:349-56. [PMID: 12679808 DOI: 10.1038/nsb919] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 03/14/2003] [Indexed: 11/09/2022]
Abstract
We present the first crystal structures of a human protein bound to analogs of cocaine and heroin. Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that catalyzes the hydrolysis of heroin and cocaine, and the detoxification of organophosphate chemical weapons, such as sarin, soman and tabun. Crystal structures of the hCE1 glycoprotein in complex with the cocaine analog homatropine and the heroin analog naloxone provide explicit details about narcotic metabolism in humans. The hCE1 active site contains both specific and promiscuous compartments, which enable the enzyme to act on structurally distinct chemicals. A selective surface ligand-binding site regulates the trimer-hexamer equilibrium of hCE1 and allows each hCE1 monomer to bind two narcotic molecules simultaneously. The bioscavenger properties of hCE1 can likely be used to treat both narcotic overdose and chemical weapon exposure.
Collapse
Affiliation(s)
- Sompop Bencharit
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
31
|
Leikin JB, Watson WA. Post-mortem toxicology: what the dead can and cannot tell us. JOURNAL OF TOXICOLOGY. CLINICAL TOXICOLOGY 2003; 41:47-56. [PMID: 12645967 DOI: 10.1081/clt-120018270] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evaluation of postmortem laboratory assays of drugs needs to be performed in a systematic manner. The condition of the body, drug characteristics, matrix and site analysis are factors which need to be considered in the proper interpretation of an autopsy specimen result.
Collapse
Affiliation(s)
- Jerrold B Leikin
- Evanston Northwestern Healthcare OMEGA, Glenbrook Hospital, Glenview, Illinois, 60025, USA.
| | | |
Collapse
|