1
|
Øvsthus M, van Swieten MMH, Puchades MA, Tocco C, Studer M, Bjaalie JG, Leergaard TB. Spatially integrated cortico-subcortical tracing data for analyses of rodent brain topographical organization. Sci Data 2024; 11:1214. [PMID: 39532918 PMCID: PMC11557934 DOI: 10.1038/s41597-024-04060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The cerebral cortex extends axonal projections to several subcortical brain regions, including the striatum, thalamus, superior colliculus, and pontine nuclei. Experimental tract-tracing studies have shown that these subcortical projections are topographically organized, reflecting the spatial organization of sensory surfaces and body parts. Several public collections of mouse- and rat- brain tract-tracing data are available, with the Allen mouse brain connectivity atlas being most prominent. There, a large body of image data can be inspected, but it is difficult to combine data from different experiments and compare spatial distribution patterns. To enable co-visualization and comparison of topographical organization in mouse brain cortico-subcortical projections across experiments, we represent axonal labelling data as point data in a common 3D brain atlas space. We here present a collection of point-cloud data representing spatial distribution of corticostriatal, corticothalamic, corticotectal, and corticopontine projections in mice and exemplify how these spatially integrated point data can be used as references for experimental investigations of topographic organization in transgenic mice, and for cross-species comparison with corticopontine projections in rats.
Collapse
Affiliation(s)
- Martin Øvsthus
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maaike M H van Swieten
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Lupi E, Di Antonio G, Angiolelli M, Sacha M, Kayabas MA, Alboré N, Leone R, El Kanbi K, Destexhe A, Fousek J. A Whole-Brain Model of the Aging Brain During Slow Wave Sleep. eNeuro 2024; 11:ENEURO.0180-24.2024. [PMID: 39406483 PMCID: PMC11540593 DOI: 10.1523/eneuro.0180-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Age-related brain changes affect sleep and are reflected in properties of sleep slow-waves, however, the precise mechanisms behind these changes are still not completely understood. Here, we adapt a previously established whole-brain model relating structural connectivity changes to resting state dynamics, and extend it to a slow-wave sleep brain state. In particular, starting from a representative connectome at the beginning of the aging trajectory, we have gradually reduced the inter-hemispheric connections, and simulated sleep-like slow-wave activity. We show that the main empirically observed trends, namely a decrease in duration and increase in variability of the slow waves are captured by the model. Furthermore, comparing the simulated EEG activity to the source signals, we suggest that the empirically observed decrease in amplitude of the slow waves is caused by the decrease in synchrony between brain regions.
Collapse
Affiliation(s)
- Eleonora Lupi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - Gabriele Di Antonio
- Research Center "Enrico Fermi", Rome 00184, Italy
- "Roma Tre" University of Rome, Rome 00146, Italy
- Natl. Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Marianna Angiolelli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Maria Sacha
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay 91400, France
| | | | - Nicola Alboré
- Research Center "Enrico Fermi", Rome 00184, Italy
- Natl. Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, Rome 00161, Italy
- "Tor Vergata" University of Rome, Rome 00133, Italy
| | - Riccardo Leone
- Faculty of Medicine, University of Bonn, Bonn 53115, Germany
- Computational Neurology Group, Ruhr University Bochum, Bochum 44801, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn 53127, Germany
| | | | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay 91400, France
| | - Jan Fousek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
3
|
Lokossou HA, Rabuffo G, Bernard M, Bernard C, Viola A, Perles-Barbacaru TA. Impact of the day/night cycle on functional connectome in ageing male and female mice. Neuroimage 2024; 290:120576. [PMID: 38490583 DOI: 10.1016/j.neuroimage.2024.120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
To elucidate how time of day, sex, and age affect functional connectivity (FC) in mice, we aimed to examine whether the mouse functional connectome varied with the day/night cycle and whether it depended on sex and age. We explored C57Bl6/J mice (6♀ and 6♂) at mature age (5 ± 1 months) and middle-age (14 ± 1 months). Each mouse underwent Blood Oxygen-Level-Dependent (BOLD) resting-state functional MRI (rs-fMRI) on a 7T scanner at four different times of the day, two under the light condition and two under the dark condition. Data processing consisted of group independent component analysis (ICA) and region-level analysis using resting-state networks (RSNs) derived from literature. Linear mixed-effect models (LMEM) were used to assess the effects of sex, lighting condition and their interactions for each RSN obtained with group-ICA (RSNs-GICA) and six bilateral RSNs adapted from literature (RSNs-LIT). Our study highlighted new RSNs in mice related to day/night alternation in addition to other networks already reported in the literature. In mature mice, we found sex-related differences in brain activation only in one RSNs-GICA comprising the cortical, hippocampal, midbrain and cerebellar regions of the right hemisphere. In males, brain activity was significantly higher in the left hippocampus, the retrosplenial cortex, the superior colliculus, and the cerebellum regardless of lighting condition; consistent with the role of these structures in memory formation and integration, sleep, and sex-differences in memory processing. Experimental constraints limited the analysis to the impact of light/dark cycle on the RSNs for middle-aged females. We detected significant activation in the pineal gland during the dark condition, a finding in line with the nocturnal activity of this gland. For the analysis of RSNs-LIT, new variables "sexage" (sex and age combined) and "edges" (pairs of RSNs) were introduced. FC was calculated as the Pearson correlation between two RSNs. LMEM revealed no effect of sexage or lighting condition. The FC depended on the edges, but there were no interaction effects between sexage, lighting condition and edges. Interaction effects were detected between i) sex and lighting condition, with higher FC in males under the dark condition, ii) sexage and edges with higher FC in male brain regions related to vision, memory, and motor action. We conclude that time of day and sex should be taken into account when designing, analyzing, and interpreting functional imaging studies in rodents.
Collapse
Affiliation(s)
- Houéfa Armelle Lokossou
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France; Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Giovanni Rabuffo
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France
| | - Monique Bernard
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | - Christophe Bernard
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Angèle Viola
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | | |
Collapse
|
4
|
Kusch L, Diaz-Pier S, Klijn W, Sontheimer K, Bernard C, Morrison A, Jirsa V. Multiscale co-simulation design pattern for neuroscience applications. Front Neuroinform 2024; 18:1156683. [PMID: 38410682 PMCID: PMC10895016 DOI: 10.3389/fninf.2024.1156683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Integration of information across heterogeneous sources creates added scientific value. Interoperability of data, tools and models is, however, difficult to accomplish across spatial and temporal scales. Here we introduce the toolbox Parallel Co-Simulation, which enables the interoperation of simulators operating at different scales. We provide a software science co-design pattern and illustrate its functioning along a neuroscience example, in which individual regions of interest are simulated on the cellular level allowing us to study detailed mechanisms, while the remaining network is efficiently simulated on the population level. A workflow is illustrated for the use case of The Virtual Brain and NEST, in which the CA1 region of the cellular-level hippocampus of the mouse is embedded into a full brain network involving micro and macro electrode recordings. This new tool allows integrating knowledge across scales in the same simulation framework and validating them against multiscale experiments, thereby largely widening the explanatory power of computational models.
Collapse
Affiliation(s)
- Lionel Kusch
- Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, Marseilles, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wouter Klijn
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kim Sontheimer
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christophe Bernard
- Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, Marseilles, France
| | - Abigail Morrison
- Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
- Forschungszentrum Jülich GmbH, IAS-6/INM-6, JARA, Jülich, Germany
- Computer Science 3 - Software Engineering, RWTH Aachen University, Aachen, Germany
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, Marseilles, France
| |
Collapse
|
5
|
Brynildsen JK, Rajan K, Henderson MX, Bassett DS. Network models to enhance the translational impact of cross-species studies. Nat Rev Neurosci 2023; 24:575-588. [PMID: 37524935 PMCID: PMC10634203 DOI: 10.1038/s41583-023-00720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 06/17/2023] [Indexed: 08/02/2023]
Abstract
Neuroscience studies are often carried out in animal models for the purpose of understanding specific aspects of the human condition. However, the translation of findings across species remains a substantial challenge. Network science approaches can enhance the translational impact of cross-species studies by providing a means of mapping small-scale cellular processes identified in animal model studies to larger-scale inter-regional circuits observed in humans. In this Review, we highlight the contributions of network science approaches to the development of cross-species translational research in neuroscience. We lay the foundation for our discussion by exploring the objectives of cross-species translational models. We then discuss how the development of new tools that enable the acquisition of whole-brain data in animal models with cellular resolution provides unprecedented opportunity for cross-species applications of network science approaches for understanding large-scale brain networks. We describe how these tools may support the translation of findings across species and imaging modalities and highlight future opportunities. Our overarching goal is to illustrate how the application of network science tools across human and animal model studies could deepen insight into the neurobiology that underlies phenomena observed with non-invasive neuroimaging methods and could simultaneously further our ability to translate findings across species.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanaka Rajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael X Henderson
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
6
|
Schirner M, Deco G, Ritter P. Learning how network structure shapes decision-making for bio-inspired computing. Nat Commun 2023; 14:2963. [PMID: 37221168 DOI: 10.1038/s41467-023-38626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
To better understand how network structure shapes intelligent behavior, we developed a learning algorithm that we used to build personalized brain network models for 650 Human Connectome Project participants. We found that participants with higher intelligence scores took more time to solve difficult problems, and that slower solvers had higher average functional connectivity. With simulations we identified a mechanistic link between functional connectivity, intelligence, processing speed and brain synchrony for trading accuracy with speed in dependence of excitation-inhibition balance. Reduced synchrony led decision-making circuits to quickly jump to conclusions, while higher synchrony allowed for better integration of evidence and more robust working memory. Strict tests were applied to ensure reproducibility and generality of the obtained results. Here, we identify links between brain structure and function that enable to learn connectome topology from noninvasive recordings and map it to inter-individual differences in behavior, suggesting broad utility for research and clinical applications.
Collapse
Affiliation(s)
- Michael Schirner
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany.
- Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Einstein Center Digital Future, Wilhelmstraße 67, 10117, Berlin, Germany.
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, University of Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Melbourne, VIC, Australia
| | - Petra Ritter
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany.
- Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Einstein Center Digital Future, Wilhelmstraße 67, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Tesler F, Tort-Colet N, Depannemaecker D, Carlu M, Destexhe A. Mean-field based framework for forward modeling of LFP and MEG signals. Front Comput Neurosci 2022; 16:968278. [PMID: 36313811 PMCID: PMC9606720 DOI: 10.3389/fncom.2022.968278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
The use of mean-field models to describe the activity of large neuronal populations has become a very powerful tool for large-scale or whole brain simulations. However, the calculation of brain signals from mean-field models, such as the electric and magnetic fields, is still under development. Thus, the emergence of new methods for an accurate and efficient calculation of such brain signals is currently of great relevance. In this paper we propose a novel method to calculate the local field potentials (LFP) and magnetic fields from mean-field models. The calculation of LFP is done via a kernel method based on unitary LFP's (the LFP generated by a single axon) that was recently introduced for spiking-networks simulations and that we adapt here for mean-field models. The calculation of the magnetic field is based on current-dipole and volume-conductor models, where the secondary currents (due to the conducting extracellular medium) are estimated using the LFP calculated via the kernel method and the effects of medium-inhomogeneities are incorporated. We provide an example of the application of our method for the calculation of LFP and MEG under slow-waves of neuronal activity generated by a mean-field model of a network of Adaptive-Exponential Integrate-and-Fire (AdEx) neurons. We validate our method via comparison with results obtained from the corresponding spiking neuronal networks. Finally we provide an example of our method for whole brain simulations performed with The Virtual Brain (TVB), a recently developed tool for large scale simulations of the brain. Our method provides an efficient way of calculating electric and magnetic fields from mean-field models. This method exhibits a great potential for its application in large-scale or whole-brain simulations, where calculations via detailed biological models are not feasible.
Collapse
Affiliation(s)
- Federico Tesler
- CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Saclay, France
| | | | | | | | | |
Collapse
|
8
|
D'Angelo E, Jirsa V. The quest for multiscale brain modeling. Trends Neurosci 2022; 45:777-790. [PMID: 35906100 DOI: 10.1016/j.tins.2022.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 06/21/2022] [Indexed: 01/07/2023]
Abstract
Addressing the multiscale organization of the brain, which is fundamental to the dynamic repertoire of the organ, remains challenging. In principle, it should be possible to model neurons and synapses in detail and then connect them into large neuronal assemblies to explain the relationship between microscopic phenomena, large-scale brain functions, and behavior. It is more difficult to infer neuronal functions from ensemble measurements such as those currently obtained with brain activity recordings. In this article we consider theories and strategies for combining bottom-up models, generated from principles of neuronal biophysics, with top-down models based on ensemble representations of network activity and on functional principles. These integrative approaches are hoped to provide effective multiscale simulations in virtual brains and neurorobots, and pave the way to future applications in medicine and information technologies.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, and Brain Connectivity Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino Foundation, Pavia, Italy.
| | - Viktor Jirsa
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1106, Centre National de la Recherche Scientifique (CNRS), and University of Aix-Marseille, Marseille, France
| |
Collapse
|
9
|
Petkoski S, Jirsa VK. Normalizing the brain connectome for communication through synchronization. Netw Neurosci 2022; 6:722-744. [PMID: 36607179 PMCID: PMC9810372 DOI: 10.1162/netn_a_00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
Networks in neuroscience determine how brain function unfolds, and their perturbations lead to psychiatric disorders and brain disease. Brain networks are characterized by their connectomes, which comprise the totality of all connections, and are commonly described by graph theory. This approach is deeply rooted in a particle view of information processing, based on the quantification of informational bits such as firing rates. Oscillations and brain rhythms demand, however, a wave perspective of information processing based on synchronization. We extend traditional graph theory to a dual, particle-wave, perspective, integrate time delays due to finite transmission speeds, and derive a normalization of the connectome. When applied to the database of the Human Connectome Project, it explains the emergence of frequency-specific network cores including the visual and default mode networks. These findings are robust across human subjects (N = 100) and are a fundamental network property within the wave picture. The normalized connectome comprises the particle view in the limit of infinite transmission speeds and opens the applicability of graph theory to a wide range of novel network phenomena, including physiological and pathological brain rhythms. These two perspectives are orthogonal, but not incommensurable, when understood within the novel, here-proposed, generalized framework of structural connectivity.
Collapse
Affiliation(s)
- Spase Petkoski
- Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Viktor K. Jirsa
- Aix-Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
10
|
Siu PH, Müller E, Zerbi V, Aquino K, Fulcher BD. Extracting Dynamical Understanding From Neural-Mass Models of Mouse Cortex. Front Comput Neurosci 2022; 16:847336. [PMID: 35547660 PMCID: PMC9081874 DOI: 10.3389/fncom.2022.847336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate. In this work, we develop a neural-mass model of the mouse cortex and show how bifurcation diagrams, which capture local dynamical responses to inputs and their variation across brain regions, can be used to understand the resulting whole-brain dynamics. We show that strong fits to resting-state functional magnetic resonance imaging (fMRI) data can be found in surprisingly simple dynamical regimes-including where all brain regions are confined to a stable fixed point-in which regions are able to respond strongly to variations in their inputs, consistent with direct structural connections providing a strong constraint on functional connectivity in the anesthetized mouse. We also use bifurcation diagrams to show how perturbations to local excitatory and inhibitory coupling strengths across the cortex, constrained by cell-density data, provide spatially dependent constraints on resulting cortical activity, and support a greater diversity of coincident dynamical regimes. Our work illustrates methods for visualizing and interpreting model performance in terms of underlying dynamical mechanisms, an approach that is crucial for building explanatory and physiologically grounded models of the dynamical principles that underpin large-scale brain activity.
Collapse
Affiliation(s)
- Pok Him Siu
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Eli Müller
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Valerio Zerbi
- Neural Control of Movement Lab, D-HEST, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
11
|
Brain simulation as a cloud service: The Virtual Brain on EBRAINS. Neuroimage 2022; 251:118973. [DOI: 10.1016/j.neuroimage.2022.118973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
|
12
|
Griffiths JD, Bastiaens SP, Kaboodvand N. Whole-Brain Modelling: Past, Present, and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:313-355. [DOI: 10.1007/978-3-030-89439-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
13
|
Okuno T, Woodward A. Vector Auto-Regressive Deep Neural Network: A Data-Driven Deep Learning-Based Directed Functional Connectivity Estimation Toolbox. Front Neurosci 2021; 15:764796. [PMID: 34899167 PMCID: PMC8651499 DOI: 10.3389/fnins.2021.764796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
An important goal in neuroscience is to elucidate the causal relationships between the brain's different regions. This can help reveal the brain's functional circuitry and diagnose lesions. Currently there are a lack of approaches to functional connectome estimation that leverage the state-of-the-art in deep learning architectures and training methodologies. Therefore, we propose a new framework based on a vector auto-regressive deep neural network (VARDNN) architecture. Our approach consists of a set of nodes, each with a deep neural network structure. These nodes can be mapped to any spatial sub-division based on the data to be analyzed, such as anatomical brain regions from which representative neural signals can be obtained. VARDNN learns to reproduce experimental time series data using modern deep learning training techniques. Based on this, we developed two novel directed functional connectivity (dFC) measures, namely VARDNN-DI and VARDNN-GC. We evaluated our measures against a number of existing functional connectome estimation measures, such as partial correlation and multivariate Granger causality combined with large dimensionality counter-measure techniques. Our measures outperformed them across various types of ground truth data, especially as the number of nodes increased. We applied VARDNN to fMRI data to compare the dFC between 41 healthy control vs. 32 Alzheimer's disease subjects. Our VARDNN-DI measure detected lesioned regions consistent with previous studies and separated the two groups well in a subject-wise evaluation framework. Summarily, the VARDNN framework has powerful capabilities for whole brain dFC estimation. We have implemented VARDNN as an open-source toolbox that can be freely downloaded for researchers who wish to carry out functional connectome analysis on their own data.
Collapse
Affiliation(s)
- Takuto Okuno
- Connectome Analysis Unit, RIKEN Center for Brain Science, Wako, Japan
| | | |
Collapse
|
14
|
Rabuffo G, Fousek J, Bernard C, Jirsa V. Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest. eNeuro 2021; 8:ENEURO.0283-21.2021. [PMID: 34583933 PMCID: PMC8555887 DOI: 10.1523/eneuro.0283-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/20/2023] Open
Abstract
At rest, mammalian brains display remarkable spatiotemporal complexity, evolving through recurrent functional connectivity (FC) states on a slow timescale of the order of tens of seconds. While the phenomenology of the resting state dynamics is valuable in distinguishing healthy and pathologic brains, little is known about its underlying mechanisms. Here, we identify neuronal cascades as a potential mechanism. Using full-brain network modeling, we show that neuronal populations, coupled via a detailed structural connectome, give rise to large-scale cascades of firing rate fluctuations evolving at the same time scale of resting-state networks (RSNs). The ignition and subsequent propagation of cascades depend on the brain state and connectivity of each region. The largest cascades produce bursts of blood oxygen level-dependent (BOLD) co-fluctuations at pairs of regions across the brain, which shape the simulated RSN dynamics. We experimentally confirm these theoretical predictions. We demonstrate the existence and stability of intermittent epochs of FC comprising BOLD co-activation (CA) bursts in mice and human functional magnetic resonance imaging (fMRI). We then provide evidence for the existence and leading role of the neuronal cascades in humans with simultaneous EEG/fMRI recordings. These results show that neuronal cascades are a major determinant of spontaneous fluctuations in brain dynamics at rest.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| | - Jan Fousek
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| | - Christophe Bernard
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| | - Viktor Jirsa
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| |
Collapse
|
15
|
Depannemaecker D, Destexhe A, Jirsa V, Bernard C. Modeling seizures: From single neurons to networks. Seizure 2021; 90:4-8. [PMID: 34219016 DOI: 10.1016/j.seizure.2021.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/26/2022] Open
Abstract
Dynamical system tools offer a complementary approach to detailed biophysical seizure modeling, with a high potential for clinical applications. This review describes the theoretical framework that provides a basis for theorizing certain properties of seizures and for their classification according to their dynamical properties at onset and offset. We describe various modeling approaches spanning different scales, from single neurons to large-scale networks. This narrative review provides an accessible overview of this field, including non-exhaustive examples of key recent works.
Collapse
Affiliation(s)
- Damien Depannemaecker
- Paris-Saclay University, French National Centre for Scientific Research (CNRS), Institute of Neuroscience (NeuroPSI), 91198 Gif sur Yvette, France.
| | - Alain Destexhe
- Paris-Saclay University, French National Centre for Scientific Research (CNRS), Institute of Neuroscience (NeuroPSI), 91198 Gif sur Yvette, France.
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Institut des Neurosciences des Systèmes, Marseille, France.
| | - Christophe Bernard
- Aix Marseille Univ, INSERM, INS, Institut des Neurosciences des Systèmes, Marseille, France.
| |
Collapse
|
16
|
Timonidis N, Tiesinga PHE. Progress towards a cellularly resolved mouse mesoconnectome is empowered by data fusion and new neuroanatomy techniques. Neurosci Biobehav Rev 2021; 128:569-591. [PMID: 34119523 DOI: 10.1016/j.neubiorev.2021.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Over the past decade there has been a rapid improvement in techniques for obtaining large-scale cellular level data related to the mouse brain connectome. However, a detailed mapping of cell-type-specific projection patterns is lacking, which would, for instance, allow us to study the role of circuit motifs in cognitive processes. In this work, we review advanced neuroanatomical and data fusion techniques within the context of a proposed Multimodal Connectomic Integration Framework for augmenting the cellularly resolved mouse mesoconnectome. First, we emphasize the importance of registering data modalities to a common reference atlas. We then review a number of novel experimental techniques that can provide data for characterizing cell-types in the mouse brain. Furthermore, we examine a number of data integration strategies, which involve fine-grained cell-type classification, spatial inference of cell densities, latent variable models for the mesoconnectome and multi-modal factorisation. Finally, we discuss a number of use cases which depend on connectome augmentation techniques, such as model simulations of functional connectivity and generating mechanistic hypotheses for animal disease models.
Collapse
Affiliation(s)
- Nestor Timonidis
- Neuroinformatics department, Donders Centre for Neuroscience, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Paul H E Tiesinga
- Neuroinformatics department, Donders Centre for Neuroscience, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
17
|
Kringelbach ML, Deco G. Brain States and Transitions: Insights from Computational Neuroscience. Cell Rep 2021; 32:108128. [PMID: 32905760 DOI: 10.1016/j.celrep.2020.108128] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2020] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
Within the field of computational neuroscience there are great expectations of finding new ways to rebalance the complex dynamic system of the human brain through controlled pharmacological or electromagnetic perturbation. Yet many obstacles remain between the ability to accurately predict how and where best to perturb to force a transition from one brain state to another. The foremost challenge is a commonly agreed definition of a given brain state. Recent progress in computational neuroscience has made it possible to robustly define brain states and force transitions between them. Here, we review the state of the art and propose a framework for determining the functional hierarchical organization describing any given brain state. We describe the latest advances in creating sophisticated whole-brain computational models with interacting neuronal and neurotransmitter systems that can be studied fully in silico to predict and design novel pharmacological and electromagnetic interventions to rebalance them in disease.
Collapse
Affiliation(s)
- Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC 3800, Australia.
| |
Collapse
|
18
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
19
|
Spiegler A, Abadchi JK, Mohajerani M, Jirsa VK. In silico exploration of mouse brain dynamics by focal stimulation reflects the organization of functional networks and sensory processing. Netw Neurosci 2021; 4:807-851. [PMID: 33615092 PMCID: PMC7888484 DOI: 10.1162/netn_a_00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2019] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Resting-state functional networks such as the default mode network (DMN) dominate spontaneous brain dynamics. To date, the mechanisms linking brain structure and brain dynamics and functions in cognition, perception, and action remain unknown, mainly due to the uncontrolled and erratic nature of the resting state. Here we used a stimulation paradigm to probe the brain’s resting behavior, providing insights on state-space stability and multiplicity of network trajectories after stimulation. We performed explorations on a mouse model to map spatiotemporal brain dynamics as a function of the stimulation site. We demonstrated the emergence of known functional networks in brain responses. Several responses heavily relied on the DMN and were suggestive of the DMN playing a mechanistic role between functional networks. We probed the simulated brain responses to the stimulation of regions along the information processing chains of sensory systems from periphery up to primary sensory cortices. Moreover, we compared simulated dynamics against in vivo brain responses to optogenetic stimulation. Our results underwrite the importance of anatomical connectivity in the functional organization of brain networks and demonstrate how functionally differentiated information processing chains arise from the same system. We demonstrate how functionally differentiated information processing chains arise from the same anatomical network. The main result of the in-silico mouse brain simulations is the emergence of specific functional networks based on structural data from the mouse brain. When the brain is stimulated, for example, by sensory inputs or direct electrical stimulation, the brain initially responds with activities in specific regions. The brain’s anatomical connectivity constrains the subsequent pattern formation. We built a high-resolution mouse brain network model. The model structure originated from experimental data. We systematically explored the mouse model and investigated the simulated brain dynamics after stimulation. Known functional networks emerged in the simulated brain responses. The default mode network occurred in almost all characteristic response patterns. Simulated brain response dynamics and in-vivo response dynamics of the mouse brain to optogenetic stimulation showed similarities even without parameter tuning. Anatomical connectivity and dynamics shape the functional organization of brain networks.
Collapse
Affiliation(s)
- Andreas Spiegler
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Javad Karimi Abadchi
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada
| | - Majid Mohajerani
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada
| | - Viktor K Jirsa
- Institut de Neurosciences des Systèmes, UMR Inserm 1106, Aix-Marseille Université, Faculté de Médecine, Marseille, France
| |
Collapse
|
20
|
Lazar AA, Liu T, Turkcan MK, Zhou Y. Accelerating with FlyBrainLab the discovery of the functional logic of the Drosophila brain in the connectomic and synaptomic era. eLife 2021; 10:e62362. [PMID: 33616035 PMCID: PMC8016480 DOI: 10.7554/elife.62362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2020] [Accepted: 02/21/2021] [Indexed: 11/25/2022] Open
Abstract
In recent years, a wealth of Drosophila neuroscience data have become available including cell type and connectome/synaptome datasets for both the larva and adult fly. To facilitate integration across data modalities and to accelerate the understanding of the functional logic of the fruit fly brain, we have developed FlyBrainLab, a unique open-source computing platform that integrates 3D exploration and visualization of diverse datasets with interactive exploration of the functional logic of modeled executable brain circuits. FlyBrainLab's User Interface, Utilities Libraries and Circuit Libraries bring together neuroanatomical, neurogenetic and electrophysiological datasets with computational models of different researchers for validation and comparison within the same platform. Seeking to transcend the limitations of the connectome/synaptome, FlyBrainLab also provides libraries for molecular transduction arising in sensory coding in vision/olfaction. Together with sensory neuron activity data, these libraries serve as entry points for the exploration, analysis, comparison, and evaluation of circuit functions of the fruit fly brain.
Collapse
Affiliation(s)
- Aurel A Lazar
- Department of Electrical Engineering, Columbia UniversityNew YorkUnited States
| | - Tingkai Liu
- Department of Electrical Engineering, Columbia UniversityNew YorkUnited States
| | | | - Yiyin Zhou
- Department of Electrical Engineering, Columbia UniversityNew YorkUnited States
| |
Collapse
|
21
|
Anderson KR, Harris JA, Ng L, Prins P, Memar S, Ljungquist B, Fürth D, Williams RW, Ascoli GA, Dumitriu D. Highlights from the Era of Open Source Web-Based Tools. J Neurosci 2021; 41:927-936. [PMID: 33472826 PMCID: PMC7880282 DOI: 10.1523/jneurosci.1657-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022] Open
Abstract
High digital connectivity and a focus on reproducibility are contributing to an open science revolution in neuroscience. Repositories and platforms have emerged across the whole spectrum of subdisciplines, paving the way for a paradigm shift in the way we share, analyze, and reuse vast amounts of data collected across many laboratories. Here, we describe how open access web-based tools are changing the landscape and culture of neuroscience, highlighting six free resources that span subdisciplines from behavior to whole-brain mapping, circuits, neurons, and gene variants.
Collapse
Affiliation(s)
- Kristin R Anderson
- Departments of Pediatrics and Psychiatry, Columbia University, New York, New York 10032
- Division of Developmental Psychobiology, New York State Psychiatric Institute, New York, New York 10032
- The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York 10032
- Columbia Population Research Center, Columbia University, New York, New York 10027
- Zuckerman Institute, Columbia University, New York, New York 10027
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Sara Memar
- Robarts Research Institute, BrainsCAN, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study; and Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study; and Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030
| | - Dani Dumitriu
- Departments of Pediatrics and Psychiatry, Columbia University, New York, New York 10032
- Division of Developmental Psychobiology, New York State Psychiatric Institute, New York, New York 10032
- The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York 10032
- Columbia Population Research Center, Columbia University, New York, New York 10027
- Zuckerman Institute, Columbia University, New York, New York 10027
| |
Collapse
|
22
|
Sokolov AA, Zeidman P, Razi A, Erb M, Ryvlin P, Pavlova MA, Friston KJ. Asymmetric high-order anatomical brain connectivity sculpts effective connectivity. Netw Neurosci 2020; 4:871-890. [PMID: 33615094 PMCID: PMC7888488 DOI: 10.1162/netn_a_00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Bridging the gap between symmetric, direct white matter brain connectivity and neural dynamics that are often asymmetric and polysynaptic may offer insights into brain architecture, but this remains an unresolved challenge in neuroscience. Here, we used the graph Laplacian matrix to simulate symmetric and asymmetric high-order diffusion processes akin to particles spreading through white matter pathways. The simulated indirect structural connectivity outperformed direct as well as absent anatomical information in sculpting effective connectivity, a measure of causal and directed brain dynamics. Crucially, an asymmetric diffusion process determined by the sensitivity of the network nodes to their afferents best predicted effective connectivity. The outcome is consistent with brain regions adapting to maintain their sensitivity to inputs within a dynamic range. Asymmetric network communication models offer a promising perspective for understanding the relationship between structural and functional brain connectomes, both in normalcy and neuropsychiatric conditions.
Collapse
Affiliation(s)
- Arseny A. Sokolov
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
- Department of Neurology, University Neurorehabilitation, University Hospital Inselspital, University of Bern, Bern, Switzerland
- Service de Neurologie and Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Neuroscape Center, Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Adeel Razi
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
- Monash Institute of Cognitive and Clinical Neurosciences & Monash Biomedical Imaging, Monash University, Clayton, Australia
- Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tübingen Medical School, Tübingen, Germany
| | - Philippe Ryvlin
- Service de Neurologie and Neuroscape@NeuroTech Platform, Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marina A. Pavlova
- Department of Psychiatry and Psychotherapy, University of Tübingen Medical School, Tübingen, Germany
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
23
|
Allegra Mascaro AL, Falotico E, Petkoski S, Pasquini M, Vannucci L, Tort-Colet N, Conti E, Resta F, Spalletti C, Ramalingasetty ST, von Arnim A, Formento E, Angelidis E, Blixhavn CH, Leergaard TB, Caleo M, Destexhe A, Ijspeert A, Micera S, Laschi C, Jirsa V, Gewaltig MO, Pavone FS. Experimental and Computational Study on Motor Control and Recovery After Stroke: Toward a Constructive Loop Between Experimental and Virtual Embodied Neuroscience. Front Syst Neurosci 2020; 14:31. [PMID: 32733210 PMCID: PMC7359878 DOI: 10.3389/fnsys.2020.00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2019] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
Being able to replicate real experiments with computational simulations is a unique opportunity to refine and validate models with experimental data and redesign the experiments based on simulations. However, since it is technically demanding to model all components of an experiment, traditional approaches to modeling reduce the experimental setups as much as possible. In this study, our goal is to replicate all the relevant features of an experiment on motor control and motor rehabilitation after stroke. To this aim, we propose an approach that allows continuous integration of new experimental data into a computational modeling framework. First, results show that we could reproduce experimental object displacement with high accuracy via the simulated embodiment in the virtual world by feeding a spinal cord model with experimental registration of the cortical activity. Second, by using computational models of multiple granularities, our preliminary results show the possibility of simulating several features of the brain after stroke, from the local alteration in neuronal activity to long-range connectivity remodeling. Finally, strategies are proposed to merge the two pipelines. We further suggest that additional models could be integrated into the framework thanks to the versatility of the proposed approach, thus allowing many researchers to achieve continuously improved experimental design.
Collapse
Affiliation(s)
- Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa, Italy.,European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Egidio Falotico
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Spase Petkoski
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
| | - Maria Pasquini
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Lorenzo Vannucci
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Núria Tort-Colet
- Paris-Saclay University, Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | | | | | | | - Emanuele Formento
- Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Emmanouil Angelidis
- Fortiss GmbH, Munich, Germany.,Chair of Robotics, Artificial Intelligence and Embedded Systems, Department of Informatics, Technical University of Munich, Munich, Germany
| | | | | | - Matteo Caleo
- Neuroscience Institute, National Research Council, Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alain Destexhe
- Paris-Saclay University, Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Cecilia Laschi
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Viktor Jirsa
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
| | - Marc-Oliver Gewaltig
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| |
Collapse
|
24
|
Abstract
Whole brain dynamics intuitively depend upon the internal wiring of the brain; but to which extent the individual structural connectome constrains the corresponding functional connectome is unknown, even though its importance is uncontested. After acquiring structural data from individual mice, we virtualized their brain networks and simulated in silico functional MRI data. Theoretical results were validated against empirical awake functional MRI data obtained from the same mice. We demonstrate that individual structural connectomes predict the functional organization of individual brains. Using a virtual mouse brain derived from the Allen Mouse Brain Connectivity Atlas, we further show that the dominant predictors of individual structure-function relations are the asymmetry and the weights of the structural links. Model predictions were validated experimentally using tracer injections, identifying which missing connections (not measurable with diffusion MRI) are important for whole brain dynamics in the mouse. Individual variations thus define a specific structural fingerprint with direct impact upon the functional organization of individual brains, a key feature for personalized medicine.
Collapse
|
25
|
Buccelli S, Bornat Y, Colombi I, Ambroise M, Martines L, Pasquale V, Bisio M, Tessadori J, Nowak P, Grassia F, Averna A, Tedesco M, Bonifazi P, Difato F, Massobrio P, Levi T, Chiappalone M. A Neuromorphic Prosthesis to Restore Communication in Neuronal Networks. iScience 2019; 19:402-414. [PMID: 31421595 PMCID: PMC6706626 DOI: 10.1016/j.isci.2019.07.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Recent advances in bioelectronics and neural engineering allowed the development of brain machine interfaces and neuroprostheses, capable of facilitating or recovering functionality in people with neurological disability. To realize energy-efficient and real-time capable devices, neuromorphic computing systems are envisaged as the core of next-generation systems for brain repair. We demonstrate here a real-time hardware neuromorphic prosthesis to restore bidirectional interactions between two neuronal populations, even when one is damaged or missing. We used in vitro modular cell cultures to mimic the mutual interaction between neuronal assemblies and created a focal lesion to functionally disconnect the two populations. Then, we employed our neuromorphic prosthesis for bidirectional bridging to artificially reconnect two disconnected neuronal modules and for hybrid bidirectional bridging to replace the activity of one module with a real-time hardware neuromorphic Spiking Neural Network. Our neuroprosthetic system opens avenues for the exploitation of neuromorphic-based devices in bioelectrical therapeutics for health care.
Collapse
Affiliation(s)
- Stefano Buccelli
- Rehab Technologies IIT-INAIL Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child science (DINOGMI), University of Genova, L.go P. Daneo 3, 16132 Genova, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Yannick Bornat
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Ilaria Colombi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child science (DINOGMI), University of Genova, L.go P. Daneo 3, 16132 Genova, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Matthieu Ambroise
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Laura Martines
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| | - Valentina Pasquale
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marta Bisio
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Neurosciences, University of Padova, Via Nicolò Giustiniani 5, 35128 Padova, Italy
| | - Jacopo Tessadori
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Przemysław Nowak
- Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy; Institute of Information Technology, Lodz University of Technology, ul. Wolczanska 215, 90-924 Lodz, Poland
| | - Filippo Grassia
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, 351 Cours de la Libération, 33405 Talence Cedex, France; University of Picardie Jules Verne, Laboratory of Innovative Technologies (LTI, EA 3899), Avenue des Facultés, Le Bailly, 80025 Amiens, France
| | - Alberto Averna
- Rehab Technologies IIT-INAIL Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child science (DINOGMI), University of Genova, L.go P. Daneo 3, 16132 Genova, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| | - Paolo Bonifazi
- School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel; Computational Neuroimaging Laboratory, Biocruces Health Research Institute, Hospital Universitario Cruces, Baracaldo, Vizcaya 48903, Spain; Ikerbasque: The Basque Foundation for Science, Bilbao, Bizkaia 48013, Spain
| | - Francesco Difato
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova, Via all'Opera Pia 13, 16145 Genova, Italy
| | - Timothée Levi
- Laboratoire de l'Intégration du Matériau au Système (IMS), University of Bordeaux, Bordeaux INP, CNRS UMR 5218, 351 Cours de la Libération, 33405 Talence Cedex, France; LIMMS CNRS-IIS, The University of Tokyo, 153-8505 Tokyo, Japan.
| | - Michela Chiappalone
- Rehab Technologies IIT-INAIL Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
26
|
Background EEG Connectivity Captures the Time-Course of Epileptogenesis in a Mouse Model of Epilepsy. eNeuro 2019; 6:ENEURO.0059-19.2019. [PMID: 31346002 PMCID: PMC6709215 DOI: 10.1523/eneuro.0059-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2019] [Revised: 05/12/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022] Open
Abstract
Large-scale brain networks are increasingly recognized as important for the generation of seizures in epilepsy. However, how a network evolves from a healthy state through the process of epileptogenesis remains unclear. To address this question, here, we study longitudinal epicranial background EEG recordings (30 electrodes, EEG free from epileptiform activity) of a mouse model of mesial temporal lobe epilepsy. We analyze functional connectivity networks and observe that over the time course of epileptogenesis the networks become increasingly asymmetric. Furthermore, computational modelling reveals that a set of nodes, located outside of the region of initial insult, emerges as particularly important for the network dynamics. These findings are consistent with experimental observations, thus demonstrating that ictogenic mechanisms can be revealed on the EEG, that computational models can be used to monitor unfolding epileptogenesis and that both the primary focus and epileptic network play a role in epileptogenesis.
Collapse
|
27
|
Shen K, Bezgin G, Schirner M, Ritter P, Everling S, McIntosh AR. A macaque connectome for large-scale network simulations in TheVirtualBrain. Sci Data 2019; 6:123. [PMID: 31316116 PMCID: PMC6637142 DOI: 10.1038/s41597-019-0129-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2018] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
Models of large-scale brain networks that are informed by the underlying anatomical connectivity contribute to our understanding of the mapping between the structure of the brain and its dynamical function. Connectome-based modelling is a promising approach to a more comprehensive understanding of brain function across spatial and temporal scales, but it must be constrained by multi-scale empirical data from animal models. Here we describe the construction of a macaque (Macaca mulatta and Macaca fascicularis) connectome for whole-cortex simulations in TheVirtualBrain, an open-source simulation platform. We take advantage of available axonal tract-tracing datasets and enhance the existing connectome data using diffusion-based tractography in macaques. We illustrate the utility of the connectome as an extension of TheVirtualBrain by simulating resting-state BOLD-fMRI data and fitting it to empirical resting-state data.
Collapse
Affiliation(s)
- Kelly Shen
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.
| | - Gleb Bezgin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michael Schirner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Petra Ritter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Synchronization dependent on spatial structures of a mesoscopic whole-brain network. PLoS Comput Biol 2019; 15:e1006978. [PMID: 31013267 PMCID: PMC6499430 DOI: 10.1371/journal.pcbi.1006978] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2018] [Revised: 05/03/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
Complex structural connectivity of the mammalian brain is believed to underlie the versatility of neural computations. Many previous studies have investigated properties of small subsystems or coarse connectivity among large brain regions that are often binarized and lack spatial information. Yet little is known about spatial embedding of the detailed whole-brain connectivity and its functional implications. We focus on closing this gap by analyzing how spatially-constrained neural connectivity shapes synchronization of the brain dynamics based on a system of coupled phase oscillators on a mammalian whole-brain network at the mesoscopic level. This was made possible by the recent development of the Allen Mouse Brain Connectivity Atlas constructed from viral tracing experiments together with a new mapping algorithm. We investigated whether the network can be compactly represented based on the spatial dependence of the network topology. We found that the connectivity has a significant spatial dependence, with spatially close brain regions strongly connected and distal regions weakly connected, following a power law. However, there are a number of residuals above the power-law fit, indicating connections between brain regions that are stronger than predicted by the power-law relationship. By measuring the sensitivity of the network order parameter, we show how these strong connections dispersed across multiple spatial scales of the network promote rapid transitions between partial synchronization and more global synchronization as the global coupling coefficient changes. We further demonstrate the significance of the locations of the residual connections, suggesting a possible link between the network complexity and the brain’s exceptional ability to swiftly switch computational states depending on stimulus and behavioral context. In a previous study, a data-driven large-scale model of mouse brain connectivity was constructed. This mouse brain connectivity model is estimated by a simplified model which only takes in account anatomy and distance dependence of connection strength which is best fit by a power law. The distance dependence model captures the connection strengths of the mouse whole-brain network well. But can it capture the dynamics? In this study, we show that a small number of connections which are missed by the simple spatial model lead to significant differences in dynamics. The presence of a small number of strong connections over longer distances increases sensitivity of synchronization to perturbations. Unlike the data-driven network, the network without these long-range connections, as well as the network in which these long range connections are shuffled, lose global synchronization while maintaining localized synchrony, underlining the significance of the exact topology of these distal connections in the data-driven brain network.
Collapse
|
29
|
Abstract
Network theory provides an intuitively appealing framework for studying relationships among interconnected brain mechanisms and their relevance to behaviour. As the space of its applications grows, so does the diversity of meanings of the term network model. This diversity can cause confusion, complicate efforts to assess model validity and efficacy, and hamper interdisciplinary collaboration. In this Review, we examine the field of network neuroscience, focusing on organizing principles that can help overcome these challenges. First, we describe the fundamental goals in constructing network models. Second, we review the most common forms of network models, which can be described parsimoniously along the following three primary dimensions: from data representations to first-principles theory; from biophysical realism to functional phenomenology; and from elementary descriptions to coarse-grained approximations. Third, we draw on biology, philosophy and other disciplines to establish validation principles for these models. We close with a discussion of opportunities to bridge model types and point to exciting frontiers for future pursuits.
Collapse
Affiliation(s)
- Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Perry Zurn
- Department of Philosophy, American University, Washington, DC, USA
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Chizhov AV, Zefirov AV, Amakhin DV, Smirnova EY, Zaitsev AV. Minimal model of interictal and ictal discharges "Epileptor-2". PLoS Comput Biol 2018; 14:e1006186. [PMID: 29851959 PMCID: PMC6005638 DOI: 10.1371/journal.pcbi.1006186] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2017] [Revised: 06/18/2018] [Accepted: 05/09/2018] [Indexed: 12/01/2022] Open
Abstract
Seizures occur in a recurrent manner with intermittent states of interictal and ictal discharges (IIDs and IDs). The transitions to and from IDs are determined by a set of processes, including synaptic interaction and ionic dynamics. Although mathematical models of separate types of epileptic discharges have been developed, modeling the transitions between states remains a challenge. A simple generic mathematical model of seizure dynamics (Epileptor) has recently been proposed by Jirsa et al. (2014); however, it is formulated in terms of abstract variables. In this paper, a minimal population-type model of IIDs and IDs is proposed that is as simple to use as the Epileptor, but the suggested model attributes physical meaning to the variables. The model is expressed in ordinary differential equations for extracellular potassium and intracellular sodium concentrations, membrane potential, and short-term synaptic depression variables. A quadratic integrate-and-fire model driven by the population input current is used to reproduce spike trains in a representative neuron. In simulations, potassium accumulation governs the transition from the silent state to the state of an ID. Each ID is composed of clustered IID-like events. The sodium accumulates during discharge and activates the sodium-potassium pump, which terminates the ID by restoring the potassium gradient and thus polarizing the neuronal membranes. The whole-cell and cell-attached recordings of a 4-AP-based in vitro model of epilepsy confirmed the primary model assumptions and predictions. The mathematical analysis revealed that the IID-like events are large-amplitude stochastic oscillations, which in the case of ID generation are controlled by slow oscillations of ionic concentrations. The IDs originate in the conditions of elevated potassium concentrations in a bath solution via a saddle-node-on-invariant-circle-like bifurcation for a non-smooth dynamical system. By providing a minimal biophysical description of ionic dynamics and network interactions, the model may serve as a hierarchical base from a simple to more complex modeling of seizures. In pathological conditions of epilepsy, the functioning of the neural network crucially depends on the ionic concentrations inside and outside neurons. A number of factors that affect neuronal activity is large. That is why the development of a minimal model that reproduces typical seizures could structure further experimental and analytical studies of the pathological mechanisms. Here, on a base of known biophysical models, we present a simple population-type model that includes only four principal variables, the extracellular potassium concentration, the intracellular sodium concentration, the membrane potential and the synaptic resource diminishing due to short-term synaptic depression. A simple modeled neuron is used as an observer of the population activity. We validate the model assumptions with in vitro experiments. Our model reproduces ictal and interictal events, where the latter result in bursts of spikes in single neurons, and the former represent the cluster of spike bursts. Mathematical analysis reveals that the bursts are spontaneous large-amplitude oscillations, which may cluster after a saddle-node on invariant circle bifurcation in the pro-epileptic conditions. Our consideration has significant bearing in understanding pathological neuronal network dynamics.
Collapse
Affiliation(s)
- Anton V. Chizhov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia
- * E-mail:
| | - Artyom V. Zefirov
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia
| | - Dmitry V. Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena Yu. Smirnova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
- Computational Physics Laboratory, Ioffe Institute, Saint Petersburg, Russia
| | - Aleksey V. Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
31
|
Bansal K, Nakuci J, Muldoon SF. Personalized brain network models for assessing structure-function relationships. Curr Opin Neurobiol 2018; 52:42-47. [PMID: 29704749 DOI: 10.1016/j.conb.2018.04.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022]
Abstract
Many recent efforts in computational modeling of macro-scale brain dynamics have begun to take a data-driven approach by incorporating structural and/or functional information derived from subject data. Here, we discuss recent work using personalized brain network models to study structure-function relationships in human brains. We describe the steps necessary to build such models and show how this computational approach can provide previously unobtainable information through the ability to perform virtual experiments. Finally, we present examples of how personalized brain network models can be used to gain insight into the effects of local stimulation and improve surgical outcomes in epilepsy.
Collapse
Affiliation(s)
- Kanika Bansal
- Mathematics Department, University at Buffalo - SUNY, Buffalo, NY 14260, USA; Human Sciences, US Army Research Laboratory, Aberdeen Proving Grounds, MD 21005, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Johan Nakuci
- Neuroscience Program, University at Buffalo - SUNY, Buffalo, NY 14260, USA
| | - Sarah Feldt Muldoon
- Mathematics Department, University at Buffalo - SUNY, Buffalo, NY 14260, USA; Neuroscience Program, University at Buffalo - SUNY, Buffalo, NY 14260, USA; CDSE Program, University at Buffalo - SUNY, Buffalo, NY 14260, USA.
| |
Collapse
|