1
|
Li Y, Wu C, Wen X, Hu W, Diao M. LncRNA MSTRG.13,871/miR155-5p/Grip1 network involved in the post-cardiac arrest brain injury. Sci Rep 2024; 14:25108. [PMID: 39443577 PMCID: PMC11499652 DOI: 10.1038/s41598-024-75875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Post-cardiac arrest brain (PCABI) is a severe medical condition characterized by a significant risk of neurological impairment and death. Nevertheless, the specific process and essential molecules responsible for its development are not fully understood. Profiling based on competing endogenous RNAs (ceRNA) has been implicated in the onset and progression of neurological disorders, yet its role in PCABI remains unclear. In this study, we performed RNA transcriptome sequencing analysis to identify differentially expressed genes in the rat model for cardiac arrest and cardiopulmonary resuscitation (CA/CPR). A hub ceRNA regulatory network was constructed using miRWalk 2.0 and Cytohubba plug-in in Cytoscape. Subsequently, real-time quantitative reverse transcription-polymerase chain reaction and dual-luciferase activity assays validated MSTRG.13,871, miR-155-5p, and Grip1 as differentially expressed in CA/CPR group, with MSTRG.13,871 capable of targeting both miR-155-5p and Grip1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed the ceRNA network enrichment in immunoregulation mechanisms such as mitochondrion, apoptotic process, and negative regulation cell death. Our research highlights the mechanism of PCABI by revealing a critical regulatory axis involving MSTRG.13,871-miR-155-5p-Grip1 in the hippocampus CA1 region after CA/CPR in rats, proposing a feasible controlled mechanism, which may serve as a theoretical basis for designing innovative therapies.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Chenghao Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Wen
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| | - Mengyuan Diao
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
Caya-Bissonnette L, Béïque JC. Half a century legacy of long-term potentiation. Curr Biol 2024; 34:R640-R662. [PMID: 38981433 DOI: 10.1016/j.cub.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In 1973, two papers from Bliss and Lømo and from Bliss and Gardner-Medwin reported that high-frequency synaptic stimulation in the dentate gyrus of rabbits resulted in a long-lasting increase in synaptic strength. This form of synaptic plasticity, commonly referred to as long-term potentiation (LTP), was immediately considered as an attractive mechanism accounting for the ability of the brain to store information. In this historical piece looking back over the past 50 years, we discuss how these two landmark contributions directly motivated a colossal research effort and detail some of the resulting milestones that have shaped our evolving understanding of the molecular and cellular underpinnings of LTP. We highlight the main features of LTP, cover key experiments that defined its induction and expression mechanisms, and outline the evidence supporting a potential role of LTP in learning and memory. We also briefly explore some ramifications of LTP on network stability, consider current limitations of LTP as a model of associative memory, and entertain future research orientations.
Collapse
Affiliation(s)
- Léa Caya-Bissonnette
- Graduate Program in Neuroscience, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
3
|
Chen Y, Li X, Xiong Q, Du Y, Luo M, Yi L, Pang Y, Shi X, Wang YT, Dong Z. Inhibiting NLRP3 inflammasome signaling pathway promotes neurological recovery following hypoxic-ischemic brain damage by increasing p97-mediated surface GluA1-containing AMPA receptors. J Transl Med 2023; 21:567. [PMID: 37620837 PMCID: PMC10463885 DOI: 10.1186/s12967-023-04452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3) inflammasome is believed to be a key mediator of neuroinflammation and subsequent secondary brain injury induced by ischemic stroke. However, the role and underlying mechanism of the NLRP3 inflammasome in neonates with hypoxic-ischemic encephalopathy (HIE) are still unclear. METHODS The protein expressions of the NLRP3 inflammasome including NLRP3, cysteinyl aspartate specific proteinase-1 (caspase-1) and interleukin-1β (IL-1β), the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor (AMPAR) subunit, and the ATPase valosin-containing protein (VCP/p97), were determined by Western blotting. The interaction between p97 and AMPA glutamate receptor 1 (GluA1) was determined by co-immunoprecipitation. The histopathological level of hypoxic-ischemic brain damage (HIBD) was determined by triphenyltetrazolium chloride (TTC) staining. Polymerase chain reaction (PCR) and Western blotting were used to confirm the genotype of the knockout mice. Motor functions, including myodynamia and coordination, were evaluated by using grasping and rotarod tests. Hippocampus-dependent spatial cognitive function was measured by using the Morris-water maze (MWM). RESULTS We reported that the NLRP3 inflammasome signaling pathway, such as NLRP3, caspase-1 and IL-1β, was activated in rats with HIBD and oxygen-glucose deprivation (OGD)-treated cultured primary neurons. Further studies showed that the protein level of the AMPAR GluA1 subunit on the hippocampal postsynaptic membrane was significantly decreased in rats with HIBD, and it could be restored to control levels after treatment with the specific caspase-1 inhibitor AC-YVAD-CMK. Similarly, in vitro studies showed that OGD reduced GluA1 protein levels on the plasma membrane in cultured primary neurons, whereas AC-YVAD-CMK treatment restored this reduction. Importantly, we showed that OGD treatment obviously enhanced the interaction between p97 and GluA1, while AC-YVAD-CMK treatment promoted the dissociation of p97 from the GluA1 complex and consequently facilitated the localization of GluA1 on the plasma membrane of cultured primary neurons. Finally, we reported that the deficits in motor function, learning and memory in animals with HIBD, were ameliorated by pharmacological intervention or genetic ablation of caspase-1. CONCLUSION Inhibiting the NLRP3 inflammasome signaling pathway promotes neurological recovery in animals with HIBD by increasing p97-mediated surface GluA1 expression, thereby providing new insight into HIE therapy.
Collapse
Affiliation(s)
- Yuxin Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohuan Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qian Xiong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Man Luo
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiuyu Shi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yu Tian Wang
- Department of Medicine, Brain Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
4
|
Oubraim S, Wang R, Hausknecht K, Kaczocha M, Shen RY, Haj-Dahmane S. Prenatal ethanol exposure causes anxiety-like phenotype and alters synaptic nitric oxide and endocannabinoid signaling in dorsal raphe nucleus of adult male rats. Transl Psychiatry 2022; 12:440. [PMID: 36216807 PMCID: PMC9550821 DOI: 10.1038/s41398-022-02210-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Mood disorders, including anxiety and depression caused by prenatal ethanol exposure (PE) are prevalent conditions in fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is associated with persistent dysfunctions of several neurotransmitter systems, including the serotonin (5-HT) system, which plays a major role in mood regulation and stress homeostasis. While PE is known to disrupt the development of the 5-HT system, the cellular mechanisms by which it alters the function of dorsal raphe nucleus (DRn) 5-HT neurons and their synaptic inputs remain unknown. Here, we used a second-trimester binge-drinking pattern PE (two daily gavages of 15% w/v ethanol at 3 g/kg, 5-6 h apart) during gestational days 8 - 20 and measured anxiety-like behaviors of adult male rats using the elevated plus (EPM) and zero (ZM) mazes. We also employed ex-vivo electrophysiological and pharmacological approaches to unravel the mechanisms by which PE alters the excitability and synaptic transmission onto DRn 5-HT neurons. We found that PE enhanced anxiety-like behaviors in adult male rats and induced a persistent activation of DRn 5-HT neurons. The PE-induced activation of DRn 5-HT neurons was largely mediated by potentiation of DRn glutamate synapses, which was caused by activation of the nitrergic system and impaired endocannabinoid signaling. As such, the present study reveals "push-pull" effects of PE on nitrergic and eCB signaling, respectively, which mediate the enhanced activity of DRn 5-HT neurons and could contribute to anxiety-like behaviors observed in animal model of FASD.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Ruixiang Wang
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Kathryn Hausknecht
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA.
- University at Buffalo Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 1021 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
5
|
Wong NF, Xu-Friedman MA. Induction of Activity-Dependent Plasticity at Auditory Nerve Synapses. J Neurosci 2022; 42:6211-6220. [PMID: 35790402 PMCID: PMC9374128 DOI: 10.1523/jneurosci.0666-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
Exposure to nontraumatic noise in vivo drives long-lasting changes in auditory nerve synapses, which may influence hearing, but the induction mechanisms are not known. We mimicked activity in acute slices of the cochlear nucleus from mice of both sexes by treating them with high potassium, after which voltage-clamp recordings from bushy cells indicated that auditory nerve synapses had reduced EPSC amplitude, quantal size, and vesicle release probability (P r). The effects of high potassium were prevented by blockers of nitric oxide (NO) synthase and protein kinase A. Treatment with the NO donor, PAPA-NONOate, also decreased P r, suggesting NO plays a central role in inducing synaptic changes. To identify the source of NO, we activated auditory nerve fibers specifically using optogenetics. Strobing for 2 h led to decreased EPSC amplitude and P r, which was prevented by antagonists against ionotropic glutamate receptors and NO synthase. This suggests that the activation of AMPA and NMDA receptors in postsynaptic targets of auditory nerve fibers drives release of NO, which acts retrogradely to cause long-term changes in synaptic function in auditory nerve synapses. This may provide insight into preventing or treating disorders caused by noise exposure.SIGNIFICANCE STATEMENT Auditory nerve fibers undergo long-lasting changes in synaptic properties in response to noise exposure in vivo, which may contribute to changes in hearing. Here, we investigated the cellular mechanisms underlying induction of synaptic changes using high potassium and optogenetic stimulation in vitro and identified important signaling pathways using pharmacology. Our results suggest that auditory nerve activity drives postsynaptic depolarization through AMPA and NMDA receptors, leading to the release of nitric oxide, which acts retrogradely to regulate presynaptic neurotransmitter release. These experiments revealed that auditory nerve synapses are unexpectedly sensitive to activity and can show dramatic, long-lasting changes in a few hours that could affect hearing.
Collapse
Affiliation(s)
- Nicole F Wong
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
6
|
Oubraim S, Wang R, Hausknecht KA, Shen RY, Haj-Dahmane S. Tonic Endocannabinoid Signaling Gates Synaptic Plasticity in Dorsal Raphe Nucleus Serotonin Neurons Through Peroxisome Proliferator-Activated Receptors. Front Pharmacol 2021; 12:691219. [PMID: 34262460 PMCID: PMC8273699 DOI: 10.3389/fphar.2021.691219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Endocannabinoids (eCBs), which include 2-arachidonoylglycerol (2-AG) and anandamide (AEA) are lipid signaling molecules involved in the regulation of an array of behavioral and physiological functions. Released by postsynaptic neurons, eCBs mediate both phasic and tonic signaling at central synapses. While the roles of phasic eCB signaling in modulating synaptic functions and plasticity are well characterized, very little is known regarding the physiological roles and mechanisms regulating tonic eCB signaling at central synapses. In this study, we show that both 2-AG and AEA are constitutively released in the dorsal raphe nucleus (DRN), where they exert tonic control of glutamatergic synaptic transmission onto serotonin (5-HT) neurons. The magnitude of this tonic eCB signaling is tightly regulated by the overall activity of neuronal network. Thus, short term in vitro neuronal silencing or blockade of excitatory synaptic transmission abolishes tonic eCB signaling in the DRn. Importantly, in addition to controlling basal synaptic transmission, this study reveals that tonic 2-AG, but not AEA signaling, modulates synaptic plasticity. Indeed, short-term increase in tonic 2-AG signaling impairs spike-timing dependent potentiation (tLTP) of glutamate synapses. This tonic 2-AG-mediated homeostatic control of DRN glutamate synapses is not signaled by canonical cannabinoid receptors, but by intracellular peroxisome proliferator-activated receptor gamma (PPARγ). Further examination reveals that 2-AG mediated activation of PPARγ blocks tLTP by inhibiting nitric oxide (NO), soluble guanylate cyclase, and protein kinase G (NO/sGC/PKG) signaling pathway. Collectively, these results unravel novel mechanisms by which tonic 2-AG signaling integrates network activities and controls the synaptic plasticity in the brain.
Collapse
Affiliation(s)
- Saida Oubraim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Ruixiang Wang
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Kathryn A Hausknecht
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Neuroscience Program, University at Buffalo, Buffalo, NY, United States
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States.,Neuroscience Program, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
7
|
Parrilla-Carrero J, Eid M, Li H, Chao YS, Jhou TC. Synaptic Adaptations at the Rostromedial Tegmental Nucleus Underlie Individual Differences in Cocaine Avoidance Behavior. J Neurosci 2021; 41:4620-4630. [PMID: 33753546 PMCID: PMC8260244 DOI: 10.1523/jneurosci.1847-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/07/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Although cocaine is powerfully rewarding, not all individuals are equally prone to abusing this drug. We postulate that these differences arise in part because some individuals exhibit stronger aversive responses to cocaine that protect them from cocaine seeking. Indeed, using conditioned place preference (CPP) and a runway operant cocaine self-administration task, we demonstrate that avoidance responses to cocaine vary greatly between individual high cocaine-avoider and low cocaine-avoider rats. These behavioral differences correlated with cocaine-induced activation of the rostromedial tegmental nucleus (RMTg), measured using both in vivo firing and c-fos, whereas slice electrophysiological recordings from ventral tegmental area (VTA)-projecting RMTg neurons showed that relative to low avoiders, high avoiders exhibited greater intrinsic excitability, greater transmission via calcium-permeable AMPA receptors (CP-AMPARs), and higher presynaptic glutamate release. In behaving animals, blocking CP-AMPARs in the RMTg with NASPM reduced cocaine avoidance. Hence, cocaine addiction vulnerability may be linked to multiple coordinated synaptic differences in VTA-projecting RMTg neurons.SIGNIFICANCE STATEMENT Although cocaine is highly addictive, not all individuals exposed to cocaine progress to chronic use for reasons that remain unclear. We find that cocaine's aversive effects, although less widely studied than its rewarding effects, show more individual variability, are predictive of subsequent propensity to seek cocaine, and are driven by variations in RMTg in response to cocaine that arise from distinct alterations in intrinsic excitability and glutamate transmission onto VTA-projecting RMTg neurons.
Collapse
Affiliation(s)
- Jeffrey Parrilla-Carrero
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Maya Eid
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hao Li
- Salk Institute for Biological Studies, La Jolla, California 92037
| | - Ying S Chao
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Thomas C Jhou
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
8
|
Kopp-Scheinpflug C, Forsythe ID. Nitric Oxide Signaling in the Auditory Pathway. Front Neural Circuits 2021; 15:759342. [PMID: 34712124 PMCID: PMC8546346 DOI: 10.3389/fncir.2021.759342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO) is of fundamental importance in regulating immune, cardiovascular, reproductive, neuromuscular, and nervous system function. It is rapidly synthesized and cannot be confined, it is highly reactive, so its lifetime is measured in seconds. These distinctive properties (contrasting with classical neurotransmitters and neuromodulators) give rise to the concept of NO as a "volume transmitter," where it is generated from an active source, diffuses to interact with proteins and receptors within a sphere of influence or volume, but limited in distance and time by its short half-life. In the auditory system, the neuronal NO-synthetizing enzyme, nNOS, is highly expressed and tightly coupled to postsynaptic calcium influx at excitatory synapses. This provides a powerful activity-dependent control of postsynaptic intrinsic excitability via cGMP generation, protein kinase G activation and modulation of voltage-gated conductances. NO may also regulate vesicle mobility via retrograde signaling. This Mini Review focuses on the auditory system, but highlights general mechanisms by which NO mediates neuronal intrinsic plasticity and synaptic transmission. The dependence of NO generation on synaptic and sound-evoked activity has important local modulatory actions and NO serves as a "volume transmitter" in the auditory brainstem. It also has potentially destructive consequences during intense activity or on spill-over from other NO sources during pathological conditions, when aberrant signaling may interfere with the precisely timed and tonotopically organized auditory system.
Collapse
Affiliation(s)
- Conny Kopp-Scheinpflug
- Neurobiology Laboratory, Division of Neurobiology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ian D Forsythe
- Auditory Neurophysiology Laboratory, Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus. J Neurosci 2020; 40:2471-2484. [PMID: 32051325 DOI: 10.1523/jneurosci.2573-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/22/2020] [Accepted: 02/02/2020] [Indexed: 11/21/2022] Open
Abstract
The AMPA receptor (AMPAR) subunit GluA3 has been suggested to shape synaptic transmission and activity-dependent plasticity in endbulb-bushy cell synapses (endbulb synapses) in the anteroventral cochlear nucleus, yet the specific roles of GluA3 in the synaptic transmission at endbulb synapses remains unexplored. Here, we compared WT and GluA3 KO mice of both sexes and identified several important roles of GluA3 in the maturation of synaptic transmission and short-term plasticity in endbulb synapses. We show that GluA3 largely determines the ultrafast kinetics of endbulb synapses glutamatergic currents by promoting the insertion of postsynaptic AMPARs that contain fast desensitizing flop subunits. In addition, GluA3 is also required for the normal function, structure, and development of the presynaptic terminal which leads to altered short term-depression in GluA3 KO mice. The presence of GluA3 reduces and slows synaptic depression, which is achieved by lowering the probability of vesicle release, promoting efficient vesicle replenishment, and increasing the readily releasable pool of synaptic vesicles. Surprisingly, GluA3 also makes the speed of synaptic depression rate-invariant. We propose that the slower and rate-invariant speed of depression allows an initial response window that still contains presynaptic firing rate information before the synapse is depressed. Because this response window is rate-invariant, GluA3 extends the range of presynaptic firing rates over which rate information in bushy cells can be preserved. This novel role of GluA3 may be important to allowing the postsynaptic targets of spherical bushy cells in mice use rate information for encoding sound intensity and sound localization.SIGNIFICANCE STATEMENT We report novel roles of the glutamate receptor subunit GluA3 in synaptic transmission in synapses between auditory nerve fibers and spherical bushy cells (BCs) in the cochlear nucleus. We show that GluA3 contributes to the generation of ultrafast glutamatergic currents at these synapses, which is important to preserve temporal information about the sound. Furthermore, we demonstrate that GluA3 contributes to the normal function and development of the presynaptic terminal, whose properties shape short-term plasticity. GluA3 slows and attenuates synaptic depression, and makes it less dependent on the presynaptic firing rates. This may help BCs to transfer information about the high rates of activity that occur at the synapse in vivo to postsynaptic targets that use rate information for sound localization.
Collapse
|
10
|
Ivanova VO, Balaban PM, Bal NV. Modulation of AMPA Receptors by Nitric Oxide in Nerve Cells. Int J Mol Sci 2020; 21:ijms21030981. [PMID: 32024149 PMCID: PMC7038066 DOI: 10.3390/ijms21030981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is a gaseous molecule with a large number of functions in living tissue. In the brain, NO participates in numerous intracellular mechanisms, including synaptic plasticity and cell homeostasis. NO elicits synaptic changes both through various multi-chain cascades and through direct nitrosylation of targeted proteins. Along with the N-methyl-d-aspartate (NMDA) glutamate receptors, one of the key components in synaptic functioning are α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors—the main target for long-term modifications of synaptic effectivity. AMPA receptors have been shown to participate in most of the functions important for neuronal activity, including memory formation. Interactions of NO and AMPA receptors were observed in important phenomena, such as glutamatergic excitotoxicity in retinal cells, synaptic plasticity, and neuropathologies. This review focuses on existing findings that concern pathways by which NO interacts with AMPA receptors, influences properties of different subunits of AMPA receptors, and regulates the receptors’ surface expression.
Collapse
|
11
|
Zhang H, Yang X, Li X, Cheng Y, Zhang H, Chang L, Sun M, Zhang Z, Wang Z, Niu Q, Wang T. Oxidative and nitrosative stress in the neurotoxicity of polybrominated diphenyl ether-153: possible mechanism and potential targeted intervention. CHEMOSPHERE 2020; 238:124602. [PMID: 31545211 DOI: 10.1016/j.chemosphere.2019.124602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been known to exhibit neurotoxicity in rats; however, the underlying mechanism remains unknown and there is no available intervention. In this study, we aimed to investigate the role of oxidative and nitrosative stress in the neurotoxicity in the cerebral cortex and primary neurons in rats following the BDE-153 treatment. Compared to the untreated group, BDE-153 treatment significantly induced the neurotoxic effects in rats, as manifested by the increased lactate dehydrogenase (LDH) activities and cell apoptosis rates, and the decreased neurotrophic factor contents and cholinergic enzyme activities in rats' cerebral cortices and primary neurons. When compared to the untreated group, the oxidative and nitrosative stress had occurred in the cerebral cortex or primary neurons in rats following the BDE-153 treatment, as manifested by the increments in levels of reactive oxygenspecies (ROS), malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) mRNA and protein expressions, along with the decline in levels of superoxide dismutase (SOD) activity, glutathione (GSH) content, and peroxiredoxin I (Prx I) and Prx II mRNA and protein expressions. In addition, the ROS scavenger N-acetyl-l-cysteine (NAC) or NO scavenger NG-Nitro-l-arginine (L-NNA) significantly rescued the LDH leakage and cell survival, reversed the neurotrophin contents and cholinergic enzymes, mainly via regaining balance between oxidation/nitrosation and antioxidation. Overall, our findings suggested that oxidative and nitrosative stresses are involved in the neurotoxicity induced by BDE-153, and that the antioxidation is a potential targeted intervention.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaorong Yang
- National Key Disciplines, Key Laboratory for Cellular Physiology of Ministry of Education, Department of Neurobiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, Taiyuan Iron and Steel Company, Taiyuan, 030003, Shanxi, China
| | - Yan Cheng
- Department of Nuclear Medicine, First Affiliated Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huajun Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lijun Chang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Min Sun
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zemin Wang
- Department of Environmental Health, Indiana University School of Public Health, Bloomington, IN, 47408, USA
| | - Qiao Niu
- Department of Occupational Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Tong Wang
- Department of Health Statistics, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
12
|
Prouty EW, Chandler DJ, Gao WJ, Waterhouse BD. Selective vulnerability of dorsal raphe-medial prefrontal cortex projection neurons to corticosterone-induced hypofunction. Eur J Neurosci 2019; 50:1712-1726. [PMID: 30687960 DOI: 10.1111/ejn.14355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 01/11/2023]
Abstract
Glucocorticoid hormones and serotonin (5-HT) are strongly associated with the development and treatment of depression, respectively. Glucocorticoids regulate the function of serotonergic neurons in the dorsal raphe nucleus (DR), which are the major source of 5-HT to the forebrain. DR 5-HT neurons are electrophysiologically heterogeneous, though whether this phenotypic variation aligns with specific brain functions or neuropsychiatric disease states is largely unknown. The goal of this work was to determine if chronic exogenous glucocorticoid administration differentially affects the electrophysiological profile of DR neurons implicated in the regulation of emotion versus visual sensation by comparing properties of cells projecting to medial prefrontal cortex (mPFC) versus lateral geniculate nucleus (LGN). Following retrograde tracer injection into mPFC or LGN, male Sprague-Dawley rats received daily injections of corticosterone (CORT) for 21 days, after which whole-cell patch clamp recordings were made from retrogradely labeled DR neurons. CORT-treatment significantly increased the action potential half-width of LGN-projecting DR neurons, but did not significantly affect the firing frequency or excitatory postsynaptic currents of these cells. CORT-treatment significantly reduced the input resistance, evoked firing frequency, and spontaneous excitatory postsynaptic current frequency of mPFC-projecting DR neurons, indicating a concurrent reduction of both intrinsic excitability and excitatory drive. Our results suggest that the serotonergic regulation of cognitive and emotional networks in the mPFC may be more sensitive to the effects of glucocorticoid excess than visual sensory circuits in the LGN and that reduced 5-HT transmission in the mPFC may underlie the association between glucocorticoid excess and depression.
Collapse
Affiliation(s)
- Eric W Prouty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Daniel J Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Barry D Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| |
Collapse
|
13
|
Garthwaite J. NO as a multimodal transmitter in the brain: discovery and current status. Br J Pharmacol 2019; 176:197-211. [PMID: 30399649 PMCID: PMC6295412 DOI: 10.1111/bph.14532] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
NO operates throughout the brain as an intercellular messenger, initiating its varied physiological effects by activating specialized GC-coupled receptors, resulting in the formation of cGMP. In line with the widespread expression of this pathway, NO participates in numerous different brain functions. This review gives an account of the discovery of NO as a signalling molecule in the brain, experiments that originated in the search for a mysterious cGMP-stimulating factor released from central neurones when their NMDA receptors were stimulated, and summarizes the subsequent key steps that helped establish its status as a central transmitter. Currently, various modes of operation are viewed to underlie its diverse behaviour, ranging from very local signalling between synaptic partners (in the orthograde or retrograde directions) to a volume-type transmission whereby NO synthesized by multiple synchronous sources summate spatially and temporally to influence intermingled neuronal or non-neuronal cells, irrespective of anatomical connectivity. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| |
Collapse
|
14
|
Wang R, Hausknecht K, Shen RY, Haj-Dahmane S. Potentiation of Glutamatergic Synaptic Transmission Onto Dorsal Raphe Serotonergic Neurons in the Valproic Acid Model of Autism. Front Pharmacol 2018; 9:1185. [PMID: 30459605 PMCID: PMC6232663 DOI: 10.3389/fphar.2018.01185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/28/2018] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social and communicative impairments and increased repetitive behaviors. These symptoms are often comorbid with increased anxiety. Prenatal exposure to valproic acid (VPA), an anti-seizure and mood stabilizer medication, is a major environmental risk factor of ASD. Given the important role of the serotonergic (5-HT) system in anxiety, we examined the impact of prenatal VPA exposure on the function of dorsal raphe nucleus (DRn) 5-HT neurons. We found that male rats prenatally exposed to VPA exhibited increased anxiety-like behaviors revealed by a decreased time spent on the open arms of the elevated plus maze. Prenatal VPA exposed rats also exhibited a stereotypic behavior as indicated by excessive self-grooming in a novel environment. These behavioral phenotypes were associated with increased electrical activity of putative DRn 5-HT neurons recorded in vitro. Examination of underlying mechanisms revealed that prenatal VPA exposure increased excitation/inhibition ratio in synapses onto these neurons. The effect was mainly mediated by enhanced glutamate but not GABA release. We found reduced paired-pulse ratio (PPR) of evoked excitatory postsynaptic currents (EPSCs) and increased frequency but not amplitude of miniature EPSCs in VPA exposed rats. On the other hand, presynaptic GABA release did not change in VPA exposed rats, as the PPR of evoked inhibitory postsynaptic currents was unaltered. Furthermore, the spike-timing-dependent long-term potentiation at the glutamatergic synapses was occluded, indicating glutamatergic synaptic transmission is maximized. Lastly, VPA exposure did not alter the intrinsic membrane properties of DRn 5-HT neurons. Taken together, these results indicate that prenatal VPA exposure profoundly enhances glutamatergic synaptic transmission in the DRn and increases spontaneous firing in DRn 5-HT neurons, which could lead to increased serotonergic tone and underlie the increased anxiety and stereotypy after prenatal VPA exposure.
Collapse
Affiliation(s)
- Ruixiang Wang
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kathryn Hausknecht
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Roh-Yu Shen
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Pharmacology and Toxicology, The Jacob School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Neuroscience Program, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Samir Haj-Dahmane
- Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Pharmacology and Toxicology, The Jacob School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Neuroscience Program, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
15
|
Foncelle A, Mendes A, Jędrzejewska-Szmek J, Valtcheva S, Berry H, Blackwell KT, Venance L. Modulation of Spike-Timing Dependent Plasticity: Towards the Inclusion of a Third Factor in Computational Models. Front Comput Neurosci 2018; 12:49. [PMID: 30018546 PMCID: PMC6037788 DOI: 10.3389/fncom.2018.00049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
In spike-timing dependent plasticity (STDP) change in synaptic strength depends on the timing of pre- vs. postsynaptic spiking activity. Since STDP is in compliance with Hebb's postulate, it is considered one of the major mechanisms of memory storage and recall. STDP comprises a system of two coincidence detectors with N-methyl-D-aspartate receptor (NMDAR) activation often posited as one of the main components. Numerous studies have unveiled a third component of this coincidence detection system, namely neuromodulation and glia activity shaping STDP. Even though dopaminergic control of STDP has most often been reported, acetylcholine, noradrenaline, nitric oxide (NO), brain-derived neurotrophic factor (BDNF) or gamma-aminobutyric acid (GABA) also has been shown to effectively modulate STDP. Furthermore, it has been demonstrated that astrocytes, via the release or uptake of glutamate, gate STDP expression. At the most fundamental level, the timing properties of STDP are expected to depend on the spatiotemporal dynamics of the underlying signaling pathways. However in most cases, due to technical limitations experiments grant only indirect access to these pathways. Computational models carefully constrained by experiments, allow for a better qualitative understanding of the molecular basis of STDP and its regulation by neuromodulators. Recently, computational models of calcium dynamics and signaling pathway molecules have started to explore STDP emergence in ex and in vivo-like conditions. These models are expected to reproduce better at least part of the complex modulation of STDP as an emergent property of the underlying molecular pathways. Elucidation of the mechanisms underlying STDP modulation and its consequences on network dynamics is of critical importance and will allow better understanding of the major mechanisms of memory storage and recall both in health and disease.
Collapse
Affiliation(s)
- Alexandre Foncelle
- INRIA, Villeurbanne, France
- LIRIS UMR 5205 CNRS-INSA, University of Lyon, Villeurbanne, France
| | - Alexandre Mendes
- Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology (CIRB), College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
- University Pierre et Marie Curie, ED 158, Paris, France
| | | | - Silvana Valtcheva
- Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology (CIRB), College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
- University Pierre et Marie Curie, ED 158, Paris, France
| | - Hugues Berry
- INRIA, Villeurbanne, France
- LIRIS UMR 5205 CNRS-INSA, University of Lyon, Villeurbanne, France
| | - Kim T. Blackwell
- The Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| | - Laurent Venance
- Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology (CIRB), College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
- University Pierre et Marie Curie, ED 158, Paris, France
| |
Collapse
|