1
|
Pang VY, Yang Z, Wu SM, Pang JJ. The co-expression of the depolarizing and hyperpolarizing mechanosensitive ion channels in mammalian retinal neurons. Front Med (Lausanne) 2024; 11:1463898. [PMID: 39606631 PMCID: PMC11601153 DOI: 10.3389/fmed.2024.1463898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction The elevation of the intraocular and extraocular pressures is associated with various visual conditions, including glaucoma and traumatic retinal injury. The retina expresses mechanosensitive channels (MSCs), but the role of MSCs in retinal physiology and pathologies has been unclear. Methods Using immunocytochemistry, confocal microscopy, and patch-clamp recording techniques, we studied the co-expression of K+-permeable (K-MSCs) TRAAK and big potassium channel BK with the epithelial sodium channel ENaC and transient receptor potential channel vanilloid TPRV4 and TRPV2 favorably permeable to Ca2+ than Na+ (together named N-MSCs), and TRPV4 activity in the mouse retina. Results TRAAK immunoreactivity (IR) was mainly located in Müller cells. Photoreceptor outer segments (OSs) expressed BK and ENaCα intensively and TRAAK, TRPV2, and TRPV4 weakly. Somas and axons of retinal ganglion cells (RGCs) retrograde-identified clearly expressed ENaCα, TRPV4, and TRPV2 but lacked TRAAK and BK. Rod bipolar cells (RBCs) showed TRPV4-IR in somas and BK-IR in axonal globules. Horizontal cells were BK-negative, and some cone BCs lacked TRPV4-IR. TRPV4 agonist depolarized RGCs, enhanced spontaneous spikes and excitatory postsynaptic currents, reduced the visual signal reliability (VSR = 1-noise/signal) by ~50%, and resulted in ATP crisis, which could inactivate voltage-gated sodium channels in RGCs. Conclusion Individual neurons co-express hyperpolarizing K-MSCs with depolarizing N-MSCs to counterbalance the pressure-induced excitation, and the level of K-MSCs relative to N-MSCs (RK/N ratio) is balanced in the outer retina but low in RGCs, bringing out novel determinants for the pressure vulnerability of retinal neurons and new targets for clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024; 327:8-32. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Sridharan PS, Koh Y, Miller E, Hu D, Chakraborty S, Tripathi SJ, Kee TR, Chaubey K, Vázquez-Rosa E, Barker S, Liu H, León-Alvarado RA, Franke K, Cintrón-Pérez CJ, Dhar M, Shin MK, Flanagan ME, Castellani RJ, Gefen T, Bykova M, Dou L, Cheng F, Wilson BM, Fujioka H, Kang DE, Woo JAA, Paul BD, Qi X, Pieper AA. Acutely blocking excessive mitochondrial fission prevents chronic neurodegeneration after traumatic brain injury. Cell Rep Med 2024; 5:101715. [PMID: 39241772 PMCID: PMC11525032 DOI: 10.1016/j.xcrm.2024.101715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Progression of acute traumatic brain injury (TBI) into chronic neurodegeneration is a major health problem with no protective treatments. Here, we report that acutely elevated mitochondrial fission after TBI in mice triggers chronic neurodegeneration persisting 17 months later, equivalent to many human decades. We show that increased mitochondrial fission after mouse TBI is related to increased brain levels of mitochondrial fission 1 protein (Fis1) and that brain Fis1 is also elevated in human TBI. Pharmacologically preventing Fis1 from binding its mitochondrial partner, dynamin-related protein 1 (Drp1), for 2 weeks after TBI normalizes the balance of mitochondrial fission/fusion and prevents chronically impaired mitochondrial bioenergetics, oxidative damage, microglial activation and lipid droplet formation, blood-brain barrier deterioration, neurodegeneration, and cognitive impairment. Delaying treatment until 8 months after TBI offers no protection. Thus, time-sensitive inhibition of acutely elevated mitochondrial fission may represent a strategy to protect human TBI patients from chronic neurodegeneration.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yeojung Koh
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Emiko Miller
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Teresa R Kee
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Kalyani Chaubey
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sarah Barker
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Hui Liu
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rose A León-Alvarado
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Earlham College Neuroscience Program, Richmond, IN, USA
| | - Kathryn Franke
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Coral J Cintrón-Pérez
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matasha Dhar
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Min-Kyoo Shin
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08226, Republic of Korea
| | - Margaret E Flanagan
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Glenn Bigg's Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marina Bykova
- Department of Regulatory Biology, Cleveland State University, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lijun Dou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brigid M Wilson
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - David E Kang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA; Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Jung-A A Woo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
4
|
Parra Bravo C, Krukowski K, Barker S, Wang C, Li Y, Fan L, Vázquez-Rosa E, Shin MK, Wong MY, McCullough LD, Kitagawa RS, Choi HA, Cacace A, Sinha SC, Pieper AA, Rosi S, Chen X, Gan L. Anti-acetylated-tau immunotherapy is neuroprotective in tauopathy and brain injury. Mol Neurodegener 2024; 19:51. [PMID: 38915105 PMCID: PMC11197196 DOI: 10.1186/s13024-024-00733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Tau is aberrantly acetylated in various neurodegenerative conditions, including Alzheimer's disease, frontotemporal lobar degeneration (FTLD), and traumatic brain injury (TBI). Previously, we reported that reducing acetylated tau by pharmacologically inhibiting p300-mediated tau acetylation at lysine 174 reduces tau pathology and improves cognitive function in animal models. METHODS We investigated the therapeutic efficacy of two different antibodies that specifically target acetylated lysine 174 on tau (ac-tauK174). We treated PS19 mice, which harbor the P301S tauopathy mutation that causes FTLD, with anti-ac-tauK174 and measured effects on tau pathology, neurodegeneration, and neurobehavioral outcomes. Furthermore, PS19 mice received treatment post-TBI to evaluate the ability of the immunotherapy to prevent TBI-induced exacerbation of tauopathy phenotypes. Ac-tauK174 measurements in human plasma following TBI were also collected to establish a link between trauma and acetylated tau levels, and single nuclei RNA-sequencing of post-TBI brain tissues from treated mice provided insights into the molecular mechanisms underlying the observed treatment effects. RESULTS Anti-ac-tauK174 treatment mitigates neurobehavioral impairment and reduces tau pathology in PS19 mice. Ac-tauK174 increases significantly in human plasma 24 h after TBI, and anti-ac-tauK174 treatment of PS19 mice blocked TBI-induced neurodegeneration and preserved memory functions. Anti-ac-tauK174 treatment rescues alterations of microglial and oligodendrocyte transcriptomic states following TBI in PS19 mice. CONCLUSIONS The ability of anti-ac-tauK174 treatment to rescue neurobehavioral impairment, reduce tau pathology, and rescue glial responses demonstrates that targeting tau acetylation at K174 is a promising neuroprotective therapeutic approach to human tauopathies resulting from TBI or genetic disease.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karen Krukowski
- Department of Physical Therapy & Rehabilitation Science, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah Barker
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Yaqiao Li
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Li Fan
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Edwin Vázquez-Rosa
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
| | - Min-Kyoo Shin
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Man Ying Wong
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - H Alex Choi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Subhash C Sinha
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Susanna Rosi
- Department of Physical Therapy & Rehabilitation Science, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Xu Chen
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Department of Neurosciences, School of Medicine, University of California, San Diego, USA.
| | - Li Gan
- Brain and Mind Research Institute, Helen and Appel Alzheimer Disease Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Bailey C, Soden D, Maroon J, Selman W, Tangen C, Gunstad J, Briskin S, Miskovsky S, Miller E, Pieper AA. Elevated Autoantibodies to the GluA1 Subunit of the AMPA Receptor in Blood Indicate Risk of Cognitive Impairment in Contact Sports Athletes, Irrespective of Concussion. Neurotrauma Rep 2024; 5:552-562. [PMID: 39071979 PMCID: PMC11271151 DOI: 10.1089/neur.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
To address the need for objective tests of concussion in athletes, we conducted a prospective clinical study in National Collegiate Athletic Association athletes of the relationship between neurocognitive performance and blood levels of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor peptides and autoantibodies to GluA1. Specifically, we compared 44 contact sport athletes to 16 noncontact sport athletes, with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), as well as blood sample collection, before the start of the season and at the end of the season. Contact sport athletes exhibited significantly elevated serum GluA1 autoantibodies at the end of season, compared with preseason levels, irrespective of whether they sustained a concussion. Noncontact sport athletes showed no change in serum GluA1 autoantibodies, and neither group showed differences in GluA1 peptides. Amongst contact-sport athletes, the 'high GluA1 autoantibody group' (≥4 ng/mL) displayed impaired reaction time, a measure of cognitive impairment, while the 'low GluA1 autoantibody group' (<4 ng/mL) displayed normal reaction time. Our results reveal that contact sport athletes are at risk for developing cognitive impairment even without sustaining a diagnosed concussion and that serum GluA1 autoantibodies provide a blood-based biomarker of this risk. This could guide future studies on the differing susceptibility to cognitive impairment in contact sport athletes and facilitate efficient allocation of resources to contact sport athletes identified as having increased risk of developing cognitive impairment.
Collapse
Affiliation(s)
- Christopher Bailey
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Daniel Soden
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Joseph Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Warren Selman
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Christopher Tangen
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, Ohio, USA
| | - Susannah Briskin
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Shana Miskovsky
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Sports Medicine Concussion Center, University Hospital Cleveland Medical Center, Cleveland, Ohio, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, Ohio, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Andrew A. Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, Ohio, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Sridharan PS, Miller E, Pieper AA. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1616-1628. [PMID: 37651054 PMCID: PMC10684439 DOI: 10.1007/s13311-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer's disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Koza LA, Pena C, Russell M, Smith AC, Molnar J, Devine M, Serkova NJ, Linseman DA. Immunocal® limits gliosis in mouse models of repetitive mild-moderate traumatic brain injury. Brain Res 2023; 1808:148338. [PMID: 36966959 PMCID: PMC10258892 DOI: 10.1016/j.brainres.2023.148338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Successive traumatic brain injuries (TBIs) exacerbate neuroinflammation and oxidative stress. No therapeutics exist for populations at high risk of repetitive mild TBIs (rmTBIs). We explored the preventative therapeutic effects of Immunocal®, a cysteine-rich whey protein supplement and glutathione (GSH) precursor, following rmTBI and repetitive mild-moderate TBI (rmmTBI). Populations that suffer rmTBIs largely go undiagnosed and untreated; therefore, we first examined the potential therapeutic effect of Immunocal® long-term following rmTBI. Mice were treated with Immunocal® prior to, during, and following rmTBI induced by controlled cortical impact until analysis at 2 weeks, 2 months, and 6 months following the last rmTBI. Astrogliosis and microgliosis were measured in cortex at each time point and edema and macrophage infiltration by MRI were analyzed at 2 months post-rmTBI. Immunocal® significantly reduced astrogliosis at 2 weeks and 2 months post-rmTBI. Macrophage activation was observed at 2 months post-rmTBI but Immunocal® had no significant effect on this endpoint. We did not observe significant microgliosis or edema after rmTBI. The dosing regimen was repeated in mice subjected to rmmTBI; however, using this experimental paradigm, we examined the preventative therapeutic effects of Immunocal® at a much earlier timepoint because populations that suffer more severe rmmTBIs are more likely to receive acute diagnosis and treatment. Increases in astrogliosis, microgliosis, and serum neurofilament light (NfL), as well as reductions in the GSH:GSSG ratio, were observed 72 h post-rmmTBI. Immunocal® only significantly reduced microgliosis after rmmTBI. In summary, we report that astrogliosis persists for 2 months post-rmTBI and that inflammation, neuronal damage, and altered redox homeostasis present acutely following rmmTBI. Immunocal® significantly limited gliosis in these models; however, its neuroprotection was partially overwhelmed by repetitive injury. Treatments that modulate distinct aspects of TBI pathophysiology, used in combination with GSH precursors like Immunocal®, may show more protection in these repetitive TBI models.
Collapse
Affiliation(s)
- Lilia A Koza
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Claudia Pena
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Madison Russell
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Alec C Smith
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Jacob Molnar
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Maeve Devine
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States
| | - Natalie J Serkova
- University of Colorado Cancer Center, Department of Radiology, Aurora, CO 80045, United States
| | - Daniel A Linseman
- University of Denver, Department of Biological Sciences, Denver, CO 80208, United States; University of Denver, Knoebel Institute for Healthy Aging, Denver, CO 80208, United States.
| |
Collapse
|
8
|
Chornyy S, Borovicka JA, Patel D, Shin MK, Vázquez-Rosa E, Miller E, Wilson B, Pieper AA, Dana H. Longitudinal in vivo monitoring of axonal degeneration after brain injury. CELL REPORTS METHODS 2023; 3:100481. [PMID: 37323578 PMCID: PMC10261926 DOI: 10.1016/j.crmeth.2023.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023]
Abstract
Traumatic brain injury (TBI)-induced axonal degeneration leads to acute and chronic neuropsychiatric impairment, neuronal death, and accelerated neurodegenerative diseases of aging, including Alzheimer's and Parkinson's diseases. In laboratory models, axonal degeneration is traditionally studied through comprehensive postmortem histological evaluation of axonal integrity at multiple time points. This requires large numbers of animals to power for statistical significance. Here, we developed a method to longitudinally monitor axonal functional activity before and after injury in vivo in the same animal over an extended period. Specifically, after expressing an axonal-targeting genetically encoded calcium indicator in the mouse dorsolateral geniculate nucleus, we recorded axonal activity patterns in the visual cortex in response to visual stimulation. In vivo aberrant axonal activity patterns after TBI were detectable from 3 days after injury and persisted chronically. This method generates longitudinal same-animal data that substantially reduces the number of required animals for preclinical studies of axonal degeneration.
Collapse
Affiliation(s)
- Sergiy Chornyy
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Julie A. Borovicka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Davina Patel
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08226, Republic of Korea
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Brigid Wilson
- Department of Infectious Diseases and HIV Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Hod Dana
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Barker S, Paul BD, Pieper AA. Increased Risk of Aging-Related Neurodegenerative Disease after Traumatic Brain Injury. Biomedicines 2023; 11:1154. [PMID: 37189772 PMCID: PMC10135798 DOI: 10.3390/biomedicines11041154] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Traumatic brain injury (TBI) survivors frequently suffer from chronically progressive complications, including significantly increased risk of developing aging-related neurodegenerative disease. As advances in neurocritical care increase the number of TBI survivors, the impact and awareness of this problem are growing. The mechanisms by which TBI increases the risk of developing aging-related neurodegenerative disease, however, are not completely understood. As a result, there are no protective treatments for patients. Here, we review the current literature surrounding the epidemiology and potential mechanistic relationships between brain injury and aging-related neurodegenerative disease. In addition to increasing the risk for developing all forms of dementia, the most prominent aging-related neurodegenerative conditions that are accelerated by TBI are amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson's disease (PD), and Alzheimer's disease (AD), with ALS and FTD being the least well-established. Mechanistic links between TBI and all forms of dementia that are reviewed include oxidative stress, dysregulated proteostasis, and neuroinflammation. Disease-specific mechanistic links with TBI that are reviewed include TAR DNA binding protein 43 and motor cortex lesions in ALS and FTD; alpha-synuclein, dopaminergic cell death, and synergistic toxin exposure in PD; and brain insulin resistance, amyloid beta pathology, and tau pathology in AD. While compelling mechanistic links have been identified, significantly expanded investigation in the field is needed to develop therapies to protect TBI survivors from the increased risk of aging-related neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah Barker
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer’s Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Michalovicz LT, Kelly KA, Craddock TJA, O’Callaghan JP. A Projectile Concussive Impact Model Produces Neuroinflammation in Both Mild and Moderate-Severe Traumatic Brain Injury. Brain Sci 2023; 13:623. [PMID: 37190590 PMCID: PMC10136957 DOI: 10.3390/brainsci13040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability and is experienced by nearly 3 million people annually as a result of falls, vehicular accidents, or from being struck by or against an object. While TBIs can range in severity, the majority of injuries are considered to be mild. However, TBI of any severity has the potential to have long-lasting neurological effects, including headaches, cognitive/memory impairments, mood dysfunction, and fatigue as a result of neural damage and neuroinflammation. Here, we modified a projectile concussive impact (PCI) model of TBI to deliver a closed-head impact with variable severity dependent on the material of the ball-bearing projectile. Adult male Sprague Dawley rats were evaluated for neurobehavioral, neuroinflammatory, and neural damage endpoints both acutely and longer-term (up to 72 h) post-TBI following impact with either an aluminum or stainless-steel projectile. Animals that received TBI using the stainless-steel projectile exhibited outcomes strongly correlated to moderate-severe TBI, such as prolonged unconsciousness, impaired neurobehavior, increased risk for hematoma and death, as well as significant neuronal degeneration and neuroinflammation throughout the cortex, hippocampus, thalamus, and cerebellum. In contrast, rats that received TBI with the aluminum projectile exhibited characteristics more congruous with mild TBI, such as a trend for longer periods of unconsciousness in the absence of neurobehavioral deficits, a lack of neurodegeneration, and mild neuroinflammation. Moreover, alignment of cytokine mRNA expression from the cortex of these rats with a computational model of neuron-glia interaction found that the moderate-severe TBI produced by the stainless-steel projectile strongly associated with the neuroinflammatory state, while the mild TBI existed in a state between normal and inflammatory neuron-glia interactions. Thus, these modified PCI protocols are capable of producing TBIs that model the clinical and experimental manifestations associated with both moderate-severe and mild TBI producing relevant models for the evaluation of the potential underlying roles of neuroinflammation and other chronic pathophysiology in the long-term outcomes associated with TBI.
Collapse
Affiliation(s)
- Lindsay T. Michalovicz
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| | - Kimberly A. Kelly
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| | - Travis J. A. Craddock
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Clinical Immunology, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Psychology & Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Computer Science, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - James P. O’Callaghan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26508, USA
| |
Collapse
|
11
|
Harris G, Rickard JJS, Butt G, Kelleher L, Blanch RJ, Cooper J, Oppenheimer PG. Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. IEEE Rev Biomed Eng 2023; 16:530-559. [PMID: 35320105 PMCID: PMC9888755 DOI: 10.1109/rbme.2022.3161352] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide. There is currently no effective diagnostic tool for TBI, and yet, early-intervention is known to considerably shorten hospital stays, improve outcomes, fasten neurological recovery and lower mortality rates, highlighting the unmet need for techniques capable of rapid and accurate point-of-care diagnostics, implemented in the earliest stages. This review focuses on the latest advances in the main neuropathophysiological responses and the achievements and shortfalls of TBI diagnostic methods. Validated and emerging TBI-indicative biomarkers are outlined and linked to ocular neuro-disorders. Methods detecting structural and chemical ocular responses to TBI are categorised along with prospective chemical and physical sensing techniques. Particular attention is drawn to the potential of Raman spectroscopy as a non-invasive sensing of neurological molecular signatures in the ocular projections of the brain, laying the platform for the first tangible path towards alternative point-of-care diagnostic technologies for TBI.
Collapse
Affiliation(s)
- Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Jonathan James Stanley Rickard
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Department of Physics, Cavendish LaboratoryUniversity of CambridgeCB3 0HECambridgeU.K.
| | - Gibran Butt
- Ophthalmology DepartmentUniversity Hospitals Birmingham NHS Foundation TrustB15 2THBirminghamU.K.
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Richard James Blanch
- Department of Military Surgery and TraumaRoyal Centre for Defence MedicineB15 2THBirminghamU.K.
- Neuroscience and Ophthalmology, Department of Ophthalmology, University Hospitals Birmingham NHS Foundation TrustcBirminghamU.K.
| | - Jonathan Cooper
- School of Biomedical EngineeringUniversity of GlasgowG12 8LTGlasgowU.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Healthcare Technologies Institute, Institute of Translational MedicineB15 2THBirminghamU.K.
| |
Collapse
|
12
|
Traumatic axonopathy in spinal tracts after impact acceleration head injury: Ultrastructural observations and evidence of SARM1-dependent axonal degeneration. Exp Neurol 2023; 359:114252. [PMID: 36244414 DOI: 10.1016/j.expneurol.2022.114252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Traumatic axonal injury (TAI) and the associated axonopathy are common consequences of traumatic brain injury (TBI) and contribute to significant neurological morbidity. It has been previously suggested that TAI activates a highly conserved program of axonal self-destruction known as Wallerian degeneration (WD). In the present study, we utilize our well-established impact acceleration model of TBI (IA-TBI) to characterize the pathology of injured myelinated axons in the white matter tracks traversing the ventral, lateral, and dorsal spinal columns in the mouse and assess the effect of Sterile Alpha and TIR Motif Containing 1 (Sarm1) gene knockout on acute and subacute axonal degeneration and myelin pathology. In silver-stained preparations, we found that IA-TBI results in white matter pathology as well as terminal field degeneration across the rostrocaudal axis of the spinal cord. At the ultrastructural level, we found that traumatic axonopathy is associated with diverse types of axonal and myelin pathology, ranging from focal axoskeletal perturbations and focal disruption of the myelin sheath to axonal fragmentation. Several morphological features such as neurofilament compaction, accumulation of organelles and inclusions, axoskeletal flocculation, myelin degeneration and formation of ovoids are similar to profiles encountered in classical examples of WD. Other profiles such as excess myelin figures and inner tongue evaginations are more typical of chronic neuropathies. Stereological analysis of pathological axonal and myelin profiles in the ventral, lateral, and dorsal columns of the lower cervical cord (C6) segments from wild type and Sarm1 KO mice at 3 and 7 days post IA-TBI (n = 32) revealed an up to 90% reduction in the density of pathological profiles in Sarm1 KO mice after IA-TBI. Protection was evident across all white matter tracts assessed, but showed some variability. Finally, Sarm1 deletion ameliorated the activation of microglia associated with TAI. Our findings demonstrate the presence of severe traumatic axonopathy in multiple ascending and descending long tracts after IA-TBI with features consistent with some chronic axonopathies and models of WD and the across-tract protective effect of Sarm1 deletion.
Collapse
|
13
|
Harper MM, Gramlich OW, Elwood BW, Boehme NA, Dutca LM, Kuehn MH. Immune responses in mice after blast-mediated traumatic brain injury TBI autonomously contribute to retinal ganglion cell dysfunction and death. Exp Eye Res 2022; 225:109272. [PMID: 36209837 DOI: 10.1016/j.exer.2022.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to examine the role of the immune system and its influence on chronic retinal ganglion cell (RGC) dysfunction following blast-mediated traumatic brain injury (bTBI). METHODS C57BL/6J and B6.129S7-Rag1tm1Mom/J (Rag-/-) mice were exposed to one blast injury of 140 kPa. A separate cohort of C57BL/6J mice was exposed to sham-blast. Four weeks following bTBI mice were euthanized, and splenocytes were collected. Adoptive transfer (AT) of splenocytes into naïve C57BL/6J recipient mice was accomplished via tail vein injection. Three groups of mice were analyzed: those receiving AT of splenocytes from C57BL/6J mice exposed to blast (AT-TBI), those receiving AT of splenocytes from C57BL/6J mice exposed to sham (AT-Sham), and those receiving AT of splenocytes from Rag-/- mice exposed to blast (AT-Rag-/-). The visual function of recipient mice was analyzed with the pattern electroretinogram (PERG), and the optomotor response (OMR). The structure of the retina was evaluated using optical coherence tomography (OCT), and histologically using BRN3A-antibody staining. RESULTS Analysis of the PERG showed a decreased amplitude two months post-AT that persisted for the duration of the study in AT-TBI mice. We also observed a significant decrease in the retinal thickness of AT-TBI mice two months post-AT compared to sham, but not at four or six months post-AT. The OMR response was significantly decreased in AT-TBI mice 5- and 6-months post-AT. BRN3A staining showed a loss of RGCs in AT-TBI and AT-Rag-/- mice. CONCLUSION These results suggest that the immune system contributes to chronic RGC dysfunction following bTBI.
Collapse
Affiliation(s)
- Matthew M Harper
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Departments of Biology, And Pharmacology, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA.
| | - Oliver W Gramlich
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Benjamin W Elwood
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Nickolas A Boehme
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Laura M Dutca
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Markus H Kuehn
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
14
|
|
15
|
Hahnefeld L, Vogel A, Gurke R, Geisslinger G, Schäfer MKE, Tegeder I. Phosphatidylethanolamine Deficiency and Triglyceride Overload in Perilesional Cortex Contribute to Non-Goal-Directed Hyperactivity after Traumatic Brain Injury in Mice. Biomedicines 2022; 10:biomedicines10040914. [PMID: 35453664 PMCID: PMC9033131 DOI: 10.3390/biomedicines10040914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) is often complicated by long-lasting disabilities, including headache, fatigue, insomnia, hyperactivity, and cognitive deficits. In a previous study in mice, we showed that persistent non-goal-directed hyperactivity is a characteristic post-TBI behavior that was associated with low levels of endocannabinoids in the perilesional cortex. We now analyzed lipidome patterns in the brain and plasma in TBI versus sham mice in association with key behavioral parameters and endocannabinoids. Lipidome profiles in the plasma and subcortical ipsilateral and contralateral brain were astonishingly equal in sham and TBI mice, but the ipsilateral perilesional cortex revealed a strong increase in neutral lipids represented by 30 species of triacylglycerols (TGs) of different chain lengths and saturation. The accumulation of TG was localized predominantly to perilesional border cells as revealed by Oil Red O staining. In addition, hexosylceramides (HexCer) and phosphatidylethanolamines (PE and ether-linked PE-O) were reduced. They are precursors of gangliosides and endocannabinoids, respectively. High TG, low HexCer, and low PE/PE-O showed a linear association with non-goal-directed nighttime hyperactivity but not with the loss of avoidance memory. The analyses suggest that TG overload and HexCer and PE deficiencies contributed to behavioral dimensions of post-TBI psychopathology.
Collapse
Affiliation(s)
- Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Alexandra Vogel
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University, 60590 Frankfurt, Germany; (L.H.); (A.V.); (R.G.); (G.G.)
- Correspondence:
| |
Collapse
|
16
|
Moss KR, Johnson AE, Bopp TS, Yu ATY, Perry K, Chung T, Höke A. SARM1 knockout does not rescue neuromuscular phenotypes in a Charcot-Marie-Tooth disease Type 1A mouse model. J Peripher Nerv Syst 2022; 27:58-66. [PMID: 35137510 PMCID: PMC8940700 DOI: 10.1111/jns.12483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
Abstract
Charcot-Marie-Tooth disease Type 1A (CMT1A) is caused by duplication of the PMP22 gene and is the most common inherited peripheral neuropathy. Although CMT1A is a dysmyelinating peripheral neuropathy, secondary axon degeneration has been suggested to drive functional deficits in patients. Given that SARM1 knockout is a potent inhibitor of the programmed axon degeneration pathway, we asked whether SARM1 knockout rescues neuromuscular phenotypes in CMT1A model (C3-PMP) mice. CMT1A mice were bred with SARM1 knockout mice to generate CMT1A/SARM1-/- mice. A series of behavioral assays were employed to evaluate motor and sensorimotor function. Electrophysiological and histological studies of the tibial branch of the sciatic nerve were performed. Additionally, gastrocnemius and soleus muscle morphology were evaluated histologically. Although clear behavioral and electrophysiological deficits were observed in CMT1A model mice, genetic deletion of SARM1 conferred no significant improvement. Nerve morphometry revealed predominantly myelin deficits in CMT1A model mice and SARM1 knockout yielded no improvement in all nerve morphometry measures. Similarly, muscle morphometry deficits in CMT1A model mice were not improved by SARM1 knockout. Our findings demonstrate that programmed axon degeneration pathway inhibition does not provide therapeutic benefit in C3-PMP CMT1A model mice. Our results indicate that the clinical phenotypes observed in CMT1A mice are likely caused primarily by prolonged dysmyelination, motivate further investigation into mechanisms of dysmyelination in these mice and necessitate the development of improved CMT1A rodent models that recapitulate the secondary axon degeneration observed in patients.
Collapse
Affiliation(s)
- Kathryn R. Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Anna E. Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Taylor S. Bopp
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD
| | - Andrew T-Y. Yu
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ken Perry
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD
| | - Tae Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD,Corresponding Author: Ahmet Höke MD, PhD, Johns Hopkins School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205, Tel: 410-955-2227, Fax: 410-502-5459,
| |
Collapse
|
17
|
Schroeder R, Sridharan P, Nguyen L, Loren A, Williams NS, Kettimuthu KP, Cintrón-Pérez CJ, Vázquez-Rosa E, Pieper AA, Stevens HE. Maternal P7C3-A20 Treatment Protects Offspring from Neuropsychiatric Sequelae of Prenatal Stress. Antioxid Redox Signal 2021; 35:511-530. [PMID: 33501899 PMCID: PMC8388250 DOI: 10.1089/ars.2020.8227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Impaired embryonic cortical interneuron development from prenatal stress is linked to adult neuropsychiatric impairment, stemming in part from excessive generation of reactive oxygen species in the developing embryo. Unfortunately, there are no preventive medicines that mitigate the risk of prenatal stress to the embryo, as the underlying pathophysiologic mechanisms are poorly understood. Our goal was to interrogate the molecular basis of prenatal stress-mediated damage to the embryonic brain to identify a neuroprotective strategy. Results: Chronic prenatal stress in mice dysregulated nicotinamide adenine dinucleotide (NAD+) synthesis enzymes and cortical interneuron development in the embryonic brain, leading to axonal degeneration in the hippocampus, cognitive deficits, and depression-like behavior in adulthood. Offspring were protected from these deleterious effects by concurrent maternal administration of the NAD+-modulating agent P7C3-A20, which crossed the placenta to access the embryonic brain. Prenatal stress also produced axonal degeneration in the adult corpus callosum, which was not prevented by maternal P7C3-A20. Innovation: Prenatal stress dysregulates gene expression of NAD+-synthesis machinery and GABAergic interneuron development in the embryonic brain, which is associated with adult cognitive impairment and depression-like behavior. We establish a maternally directed treatment that protects offspring from these effects of prenatal stress. Conclusion: NAD+-synthesis machinery and GABAergic interneuron development are critical to proper embryonic brain development underlying postnatal neuropsychiatric functioning, and these systems are highly susceptible to prenatal stress. Pharmacologic stabilization of NAD+ in the stressed embryonic brain may provide a neuroprotective strategy that preserves normal embryonic development and protects offspring from neuropsychiatric impairment. Antioxid. Redox Signal. 35, 511-530.
Collapse
Affiliation(s)
- Rachel Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Preethy Sridharan
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lynn Nguyen
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alexandra Loren
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kavitha P Kettimuthu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA.,Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
18
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Hussain SF, Raza Z, Cash ATG, Zampieri T, Mazzoli RA, Kardon RH, Gomes RSM. Traumatic brain injury and sight loss in military and veteran populations- a review. Mil Med Res 2021; 8:42. [PMID: 34315537 PMCID: PMC8317328 DOI: 10.1186/s40779-021-00334-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023] Open
Abstract
War and combat exposure pose great risks to the vision system. More recently, vision related deficiencies and impairments have become common with the increased use of powerful explosive devices and the subsequent rise in incidence of traumatic brain injury (TBI). Studies have looked at the effects of injury severity, aetiology of injury and the stage at which visual problems become apparent. There was little discrepancy found between the frequencies or types of visual dysfunctions across blast and non-blast related groups, however complete sight loss appeared to occur only in those who had a blast-related injury. Generally, the more severe the injury, the greater the likelihood of specific visual disturbances occurring, and a study found total sight loss to only occur in cases with greater severity. Diagnosis of mild TBI (mTBI) is challenging. Being able to identify a potential TBI via visual symptoms may offer a new avenue for diagnosis.
Collapse
Affiliation(s)
- Syeda F. Hussain
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
| | - Zara Raza
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
| | - Andrew T. G. Cash
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
| | - Thomas Zampieri
- Blinded Veterans Association, 1101 King Street, Suite 300, Alexandria, Virginia 22314 USA
| | - Robert A. Mazzoli
- Department of Ophthalmology, Madigan Army Medical Center, 9040 Jackson Avenue, Tacoma, Washington, 98431 USA
| | - Randy H. Kardon
- Iowa City VA Health Care System and Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa 52246 USA
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa 52242 USA
| | - Renata S. M. Gomes
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
- Northern Hub for Veterans and Military Families Research, Department of Nursing, Midwifery and Health, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE7 7XA UK
| |
Collapse
|
20
|
Harper MM, Boehme N, Dutca LM, Anderson MG. The Retinal Ganglion Cell Response to Blast-Mediated Traumatic Brain Injury Is Genetic Background Dependent. Invest Ophthalmol Vis Sci 2021; 62:13. [PMID: 34106210 PMCID: PMC8196410 DOI: 10.1167/iovs.62.7.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to examine the influence of genetic background on the retinal ganglion cell (RGC) response to blast-mediated traumatic brain injury (TBI) in Jackson Diversity Outbred (J:DO), C57BL/6J and BALB/cByJ mice. Methods Mice were subject to one blast injury of 137 kPa. RGC structure was analyzed by optical coherence tomography (OCT), function by the pattern electroretinogram (PERG), and histologically using BRN3A antibody staining. Results Comparison of the change in each group from baseline for OCT and PERG was performed. There was a significant difference in the J:DOΔOCT compared to C57BL/6J mice (P = 0.004), but not compared to BALB/cByJ (P = 0.21). There was a significant difference in the variance of the ΔOCT in J:DO compared to both C57BL/6J and BALB/cByJ mice. The baseline PERG amplitude was 20.33 ± 9.32 µV, which decreased an average of −4.14 ± 12.46 µV following TBI. Baseline RGC complex + RNFL thickness was 70.92 ± 4.52 µm, which decreased an average of −1.43 ± 2.88 µm following blast exposure. There was not a significant difference in the ΔPERG between J:DO and C57BL/6J (P = 0.13), although the variances of the groups were significantly different. Blast exposure in J:DO mice results in a density change of 558.6 ± 440.5 BRN3A-positive RGCs/mm2 (mean ± SD). Conclusions The changes in retinal outcomes had greater variance in outbred mice than what has been reported, and largely replicated herein, for inbred mice. These results demonstrate that the RGC response to blast injury is highly dependent upon genetic background.
Collapse
Affiliation(s)
- Matthew M Harper
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Department of Veterans Affairs, Iowa City, IA, United States
| | - Nickolas Boehme
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Department of Veterans Affairs, Iowa City, IA, United States
| | - Laura M Dutca
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Department of Veterans Affairs, Iowa City, IA, United States
| | - Michael G Anderson
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Department of Veterans Affairs, Iowa City, IA, United States.,The Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
21
|
Axonopathy precedes cell death in ocular damage mediated by blast exposure. Sci Rep 2021; 11:11774. [PMID: 34083587 PMCID: PMC8175471 DOI: 10.1038/s41598-021-90412-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injuries (TBI) of varied types are common across all populations and can cause visual problems. For military personnel in combat settings, injuries from blast exposures (bTBI) are prevalent and arise from a myriad of different situations. To model these diverse conditions, we are one of several groups modeling bTBI using mice in varying ways. Here, we report a refined analysis of retinal ganglion cell (RGC) damage in male C57BL/6J mice exposed to a blast-wave in an enclosed chamber. Ganglion cell layer thickness, RGC density (BRN3A and RBPMS immunoreactivity), cellular density of ganglion cell layer (hematoxylin and eosin staining), and axon numbers (paraphenylenediamine staining) were quantified at timepoints ranging from 1 to 17-weeks. RNA sequencing was performed at 1-week and 5-weeks post-injury. Earliest indices of damage, evident by 1-week post-injury, are a loss of RGC marker expression, damage to RGC axons, and increase in glial markers expression. Blast exposure caused a loss of RGC somas and axons—with greatest loss occurring by 5-weeks post-injury. While indices of glial involvement are prominent early, they quickly subside as RGCs are lost. The finding that axonopathy precedes soma loss resembles pathology observed in mouse models of glaucoma, suggesting similar mechanisms.
Collapse
|
22
|
Bodnar CN, Watson JB, Higgins EK, Quan N, Bachstetter AD. Inflammatory Regulation of CNS Barriers After Traumatic Brain Injury: A Tale Directed by Interleukin-1. Front Immunol 2021; 12:688254. [PMID: 34093593 PMCID: PMC8176952 DOI: 10.3389/fimmu.2021.688254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain's health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during the secondary injury cascade, a further array of molecular and biochemical changes occurs at the barriers. These changes are focused on rebuilding and remodeling, as well as movement of immune cells and waste into and out of the brain. Secondary injury cascades further damage the CNS barriers. Inflammation is central to healthy remodeling of CNS barriers. However, inflammation, as a secondary pathology, also plays a role in the chronic disruption of the barriers' functions after TBI. The goal of this paper is to review the different barriers of the brain, including (1) the blood-brain barrier, (2) the blood-cerebrospinal fluid barrier, (3) the meningeal barrier, (4) the blood-retina barrier, and (5) the brain-lesion border. We then detail the changes at these barriers due to both primary and secondary injury following TBI and indicate areas open for future research and discoveries. Finally, we describe the unique function of the pro-inflammatory cytokine interleukin-1 as a central actor in the inflammatory regulation of CNS barrier function and dysfunction after a TBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - James B. Watson
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
23
|
Different forms of traumatic brain injuries cause different tactile hypersensitivity profiles. Pain 2021; 162:1163-1175. [PMID: 33027220 DOI: 10.1097/j.pain.0000000000002103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT Chronic complications of traumatic brain injury represent one of the greatest financial burdens and sources of suffering in the society today. A substantial number of these patients suffer from posttraumatic headache (PTH), which is typically associated with tactile allodynia. Unfortunately, this phenomenon has been understudied, in large part because of the lack of well-characterized laboratory animal models. We have addressed this gap in the field by characterizing the tactile sensory profile of 2 nonpenetrating models of PTH. We show that multimodal traumatic brain injury, administered by a jet-flow overpressure chamber that delivers a severe compressive impulse accompanied by a variable shock front and acceleration-deceleration insult, produces long-term tactile hypersensitivity and widespread sensitization. These are phenotypes reminiscent of PTH in patients, in both cephalic and extracephalic regions. By contrast, closed head injury induces only transient cephalic tactile hypersensitivity, with no extracephalic consequences. Both models show a more severe phenotype with repetitive daily injury for 3 days, compared with either 1 or 3 successive injuries in a single day, providing new insight into patterns of injury that may place patients at a greater risk of developing PTH. After recovery from transient cephalic tactile hypersensitivity, mice subjected to closed head injury demonstrate persistent hypersensitivity to established migraine triggers, including calcitonin gene-related peptide and sodium nitroprusside, a nitric oxide donor. Our results offer the field new tools for studying PTH and preclinical support for a pathophysiologic role of calcitonin gene-related peptide in this condition.
Collapse
|
24
|
Evans LP, Boehme N, Wu S, Burghardt EL, Akurathi A, Todd BP, Newell EA, Ferguson PJ, Mahajan VB, Dutca LM, Harper MM, Bassuk AG. Sex Does Not Influence Visual Outcomes After Blast-Mediated Traumatic Brain Injury but IL-1 Pathway Mutations Confer Partial Rescue. Invest Ophthalmol Vis Sci 2021; 61:7. [PMID: 33030508 PMCID: PMC7582458 DOI: 10.1167/iovs.61.12.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose In a mouse model of blast-mediated traumatic brain injury (bTBI), interleukin-1 (IL-1)-pathway components were tested as potential therapeutic targets for bTBI-mediated retinal ganglion cell (RGC) dysfunction. Sex was also evaluated as a variable for RGC outcomes post-bTBI. Methods Male and female mice with null mutations in genes encoding IL-1α, IL-1β, or IL-1RI were compared to C57BL/6J wild-type (WT) mice after exposure to three 20-psi blast waves given at an interblast interval of 1 hour or to mice receiving sham injury. To determine if genetic blockade of IL-1α, IL-1β, or IL-1RI could prevent damage to RGCs, the function and structure of these cells were evaluated by pattern electroretinogram and optical coherence tomography, respectively, 5 weeks following blast or sham exposure. RGC survival was also quantitatively assessed via immunohistochemical staining of BRN3A at the completion of the study. Results Our results showed that male and female WT mice had a similar response to blast-induced retinal injury. Generally, constitutive deletion of IL-1α, IL-1β, or IL-1RI did not provide full protection from the effects of bTBI on visual outcomes; however, injured WT mice had significantly worse visual outcomes compared to the injured genetic knockout mice. Conclusions Sex does not affect RGC outcomes after bTBI. The genetic studies suggest that deletion of these IL-1 pathway components confers some protection, but global deletion from birth did not result in a complete rescue.
Collapse
Affiliation(s)
- Lucy P Evans
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
| | - Nickolas Boehme
- Iowa City VA Health Care System Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Shu Wu
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Elliot L Burghardt
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States.,Department of Biostatistics, University of Iowa, Iowa City, Iowa, United States
| | - Abhigna Akurathi
- Iowa City VA Health Care System Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Brittany P Todd
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
| | - Elizabeth A Newell
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Polly J Ferguson
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Laura M Dutca
- Iowa City VA Health Care System Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Matthew M Harper
- Iowa City VA Health Care System Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
25
|
Evans LP, Roghair AM, Gilkes NJ, Bassuk AG. Visual Outcomes in Experimental Rodent Models of Blast-Mediated Traumatic Brain Injury. Front Mol Neurosci 2021; 14:659576. [PMID: 33935648 PMCID: PMC8081965 DOI: 10.3389/fnmol.2021.659576] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
Blast-mediated traumatic brain injuries (bTBI) cause long-lasting physical, cognitive, and psychological disorders, including persistent visual impairment. No known therapies are currently utilized in humans to lessen the lingering and often serious symptoms. With TBI mortality decreasing due to advancements in medical and protective technologies, there is growing interest in understanding the pathology of visual dysfunction after bTBI. However, this is complicated by numerous variables, e.g., injury location, severity, and head and body shielding. This review summarizes the visual outcomes observed by various, current experimental rodent models of bTBI, and identifies data showing that bTBI activates inflammatory and apoptotic signaling leading to visual dysfunction. Pharmacologic treatments blocking inflammation and cell death pathways reported to alleviate visual deficits in post-bTBI animal models are discussed. Notably, techniques for assessing bTBI outcomes across exposure paradigms differed widely, so we urge future studies to compare multiple models of blast injury, to allow data to be directly compared.
Collapse
Affiliation(s)
- Lucy P. Evans
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
| | - Ariel M. Roghair
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Noah J. Gilkes
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
26
|
Shin MK, Vázquez-Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón-Pérez CJ, Barker S, Miller E, Franke K, Noterman MF, Seth D, Allen RS, Motz CT, Rao SR, Skelton LA, Pardue MT, Fliesler SJ, Wang C, Tracy TE, Gan L, Liebl DJ, Savarraj JPJ, Torres GL, Ahnstedt H, McCullough LD, Kitagawa RS, Choi HA, Zhang P, Hou Y, Chiang CW, Li L, Ortiz F, Kilgore JA, Williams NS, Whitehair VC, Gefen T, Flanagan ME, Stamler JS, Jain MK, Kraus A, Cheng F, Reynolds JD, Pieper AA. Reducing acetylated tau is neuroprotective in brain injury. Cell 2021; 184:2715-2732.e23. [PMID: 33852912 PMCID: PMC8491234 DOI: 10.1016/j.cell.2021.03.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.
Collapse
Affiliation(s)
- Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yeojung Koh
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Matasha Dhar
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kalyani Chaubey
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Barker
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kathryn Franke
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Maria F Noterman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Divya Seth
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Cara T Motz
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Lara A Skelton
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, US
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, and the Neuroscience Graduate Program, SUNY-University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Daniel J Liebl
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jude P J Savarraj
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Glenda L Torres
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hilda Ahnstedt
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - H Alex Choi
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pengyue Zhang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chien-Wei Chiang
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Francisco Ortiz
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jessica A Kilgore
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victoria C Whitehair
- MetroHealth Rehabilitation Institute, The MetroHealth System, Cleveland, OH; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, School of Medicine, Cleveland, OH USA
| | - Tamar Gefen
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Jonathan S Stamler
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mukesh K Jain
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - James D Reynolds
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Departments of Anesthesiology & Perioperative Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
27
|
Bradshaw DV, Kim Y, Fu A, Marion CM, Radomski KL, McCabe JT, Armstrong RC. Repetitive Blast Exposure Produces White Matter Axon Damage without Subsequent Myelin Remodeling: In Vivo Analysis of Brain Injury Using Fluorescent Reporter Mice. Neurotrauma Rep 2021; 2:180-192. [PMID: 34013219 PMCID: PMC8127063 DOI: 10.1089/neur.2020.0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential effects of blast exposure on the brain health of military personnel have raised concerns and led to increased surveillance of blast exposures. Neuroimaging studies have reported white matter abnormalities in brains of service members with a history of blast exposure. However, blast effects on white matter microstructure remain poorly understood. As a novel approach to screen for white matter effects, transgenic mice that express fluorescent reporters to sensitively detect axon damage and myelin remodeling were exposed to simulated repetitive blasts (once/day on 5 consecutive days). Axons were visualized using Thy1-YFP-16 reporter mice that express yellow fluorescent protein (YFP) in a broad spectrum of neurons. Swelling along damaged axons forms varicosities that fill with YFP. The frequency and size of axonal varicosities were significantly increased in the corpus callosum (CC) and cingulum at 3 days after the final blast exposure, versus in sham procedures. CC immunolabeling for reactive astrocyte and microglial markers was also significantly increased. NG2CreER;mTmG mice were given tamoxifen (TMX) on days 2 and 3 after the final blast to induce fluorescent labeling of newly synthesized myelin membranes, indicating plasticity and/or repair. Myelin synthesis was not altered in the CC over the intervening 4 or 8 weeks after repetitive blast exposure. These experiments show the advantages of transgenic reporter mice for analysis of white matter injury that detects subtle, diffuse axon damage and the dynamic nature of myelin sheaths. These results show that repetitive low-level blast exposures produce infrequent but significant axon damage along with neuroinflammation in white matter.
Collapse
Affiliation(s)
- Donald V Bradshaw
- Graduate Program in Neuroscience, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Yeonho Kim
- Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amanda Fu
- Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Christina M Marion
- Graduate Program in Neuroscience, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Kryslaine L Radomski
- Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Joseph T McCabe
- Graduate Program in Neuroscience, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Regina C Armstrong
- Graduate Program in Neuroscience, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Center for Neuroscience and Regenerative Medicine, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Shin MK, Vázquez-Rosa E, Cintrón-Pérez CJ, Riegel WA, Harper MM, Ritzel D, Pieper AA. Characterization of the Jet-Flow Overpressure Model of Traumatic Brain Injury in Mice. Neurotrauma Rep 2021; 2:1-13. [PMID: 33748810 PMCID: PMC7962691 DOI: 10.1089/neur.2020.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The jet-flow overpressure chamber (OPC) has been previously reported as a model of blast-mediated traumatic brain injury (bTBI). However, rigorous characterization of the features of this injury apparatus shows that it fails to recapitulate exposure to an isolated blast wave. Through combined experimental and computational modeling analysis of gas-dynamic flow conditions, we show here that the jet-flow OPC produces a collimated high-speed jet flow with extreme dynamic pressure that delivers a severe compressive impulse. Variable rupture dynamics of the diaphragm through which the jet flow originates also generate a weak and infrequent shock front. In addition, there is a component of acceleration-deceleration injury to the head as it is agitated in the headrest. Although not a faithful model of free-field blast exposure, the jet-flow OPC produces a complex multi-modal model of TBI that can be useful in laboratory investigation of putative TBI therapies and fundamental neurophysiological processes after brain injury.
Collapse
Affiliation(s)
- Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| | - William A Riegel
- Stumptown Research and Development, LLC, Black Mountain, North Carolina, USA
| | - Matthew M Harper
- Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, USA.,Departments of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - David Ritzel
- Dyn-FX Consulting, Ltd., Amherstburg, Ontario, Canada
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA
| |
Collapse
|
29
|
APOE4 genetic polymorphism results in impaired recovery in a repeated mild traumatic brain injury model and treatment with Bryostatin-1 improves outcomes. Sci Rep 2020; 10:19919. [PMID: 33199792 PMCID: PMC7670450 DOI: 10.1038/s41598-020-76849-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022] Open
Abstract
After traumatic brain injury (TBI), some people have worse recovery than others. Single nucleotide polymorphisms (SNPs) in Apolipoprotein E (APOE) are known to increase risk for developing Alzheimer’s disease, however there is controversy from human and rodent studies as to whether ApoE4 is a risk factor for worse outcomes after brain trauma. To resolve these conflicting studies we have explored the effect of the human APOE4 gene in a reproducible mouse model that mimics common human injuries. We have investigated cellular and behavioral outcomes in genetically engineered human APOE targeted replacement (TR) mice following repeated mild TBI (rmTBI) using a lateral fluid percussion injury model. Relative to injured APOE3 TR mice, injured APOE4 TR mice had more inflammation, neurodegeneration, apoptosis, p-tau, and activated microglia and less total brain-derived neurotrophic factor (BDNF) in the cortex and/or hippocampus at 1 and/or 21 days post-injury. We utilized a novel personalized approach to treating APOE4 susceptible mice by administering Bryostatin-1, which improved cellular as well as motor and cognitive behavior outcomes at 1 DPI in the APOE4 injured mice. This study demonstrates that APOE4 is a risk factor for poor outcomes after rmTBI and highlights how personalized therapeutics can be a powerful treatment option.
Collapse
|
30
|
P7C3-A20 treatment one year after TBI in mice repairs the blood-brain barrier, arrests chronic neurodegeneration, and restores cognition. Proc Natl Acad Sci U S A 2020; 117:27667-27675. [PMID: 33087571 PMCID: PMC7959512 DOI: 10.1073/pnas.2010430117] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic neurodegeneration, a major cause of the long-term disabilities that afflict survivors of traumatic brain injury (TBI), is linked to an increased risk for late-life neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, vascular dementia, and chronic traumatic encephalopathy. Here, we report on the restoration of blood–brain barrier (BBB) structure and function by P7C3-A20 when administered 12 mo after TBI. This pharmacotherapy was associated with cessation of chronic neurodegeneration and recovery of normal cognitive function, benefits that persisted long after treatment cessation. Pharmacologic renewal of BBB integrity may thus provide a new treatment option for patients who have suffered a remote TBI, or other neurological conditions associated with BBB deterioration. Chronic neurodegeneration in survivors of traumatic brain injury (TBI) is a major cause of morbidity, with no effective therapies to mitigate this progressive and debilitating form of nerve cell death. Here, we report that pharmacologic restoration of the blood–brain barrier (BBB), 12 mo after murine TBI, is associated with arrested axonal neurodegeneration and cognitive recovery, benefits that persisted for months after treatment cessation. Recovery was achieved by 30 d of once-daily administration of P7C3-A20, a compound that stabilizes cellular energy levels. Four months after P7C3-A20, electron microscopy revealed full repair of TBI-induced breaks in cortical and hippocampal BBB endothelium. Immunohistochemical staining identified additional benefits of P7C3-A20, including restoration of normal BBB endothelium length, increased brain capillary pericyte density, increased expression of BBB tight junction proteins, reduced brain infiltration of immunoglobulin, and attenuated neuroinflammation. These changes were accompanied by cessation of TBI-induced chronic axonal degeneration. Specificity for P7C3-A20 action on the endothelium was confirmed by protection of cultured human brain microvascular endothelial cells from hydrogen peroxide-induced cell death, as well as preservation of BBB integrity in mice after exposure to toxic levels of lipopolysaccharide. P7C3-A20 also protected mice from BBB degradation after acute TBI. Collectively, our results provide insights into the pathophysiologic mechanisms behind chronic neurodegeneration after TBI, along with a putative treatment strategy. Because TBI increases the risks of other forms of neurodegeneration involving BBB deterioration (e.g., Alzheimer’s disease, Parkinson’s disease, vascular dementia, chronic traumatic encephalopathy), P7C3-A20 may have widespread clinical utility in the setting of neurodegenerative conditions.
Collapse
|
31
|
Aravind A, Ravula AR, Chandra N, Pfister BJ. Behavioral Deficits in Animal Models of Blast Traumatic Brain Injury. Front Neurol 2020; 11:990. [PMID: 33013653 PMCID: PMC7500138 DOI: 10.3389/fneur.2020.00990] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/29/2020] [Indexed: 01/30/2023] Open
Abstract
Blast exposure has been identified to be the most common cause for traumatic brain injury (TBI) in soldiers. Over the years, rodent models to mimic blast exposures and the behavioral outcomes observed in veterans have been developed extensively. However, blast tube design and varying experimental parameters lead to inconsistencies in the behavioral outcomes reported across research laboratories. This review aims to curate the behavioral outcomes reported in rodent models of blast TBI using shockwave tubes or open field detonations between the years 2008–2019 and highlight the important experimental parameters that affect behavioral outcome. Further, we discuss the role of various design parameters of the blast tube that can affect the nature of blast exposure experienced by the rodents. Finally, we assess the most common behavioral tests done to measure cognitive, motor, anxiety, auditory, and fear conditioning deficits in blast TBI (bTBI) and discuss the advantages and disadvantages of these tests.
Collapse
Affiliation(s)
- Aswati Aravind
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Arun Reddy Ravula
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Bryan J Pfister
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
32
|
McNamara EH, Grillakis AA, Tucker LB, McCabe JT. The closed-head impact model of engineered rotational acceleration (CHIMERA) as an application for traumatic brain injury pre-clinical research: A status report. Exp Neurol 2020; 333:113409. [PMID: 32692987 DOI: 10.1016/j.expneurol.2020.113409] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Closed-head traumatic brain injury (TBI) is a worldwide concern with increasing prevalence and cost to society. Rotational acceleration is a primary mechanism in TBI that results from tissue strains that give rise to diffuse axonal injury. The Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) was recently introduced as a method for the study of impact acceleration effects in pre-clinical TBI research. This review provides a survey of the published literature implementing the CHIMERA device and describes pathological, imaging, neurophysiological, and behavioral findings. Findings show CHIMERA inflicts damage in white matter tracts as a key area of injury. Behaviorally, repeated studies have shown motor deficits and more chronic cognitive effects after CHIMERA injury. Good progress with model application has been accomplished by investigators attending to what is required for model validation. However, the majority of CHIMERA studies only utilize adult male mice. To further establish this model, more work with female animals and various age groups need to be performed, as well as studies to further establish and standardize methodologies for validation of the models for clinical relevance. Common data elements to standardize the reporting methodology for the CHIMERA literature are suggested.
Collapse
Affiliation(s)
- Eileen H McNamara
- Neuroscience Graduate Program, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA
| | - Antigone A Grillakis
- Neuroscience Graduate Program, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA
| | - Laura B Tucker
- Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA
| | - Joseph T McCabe
- Neuroscience Graduate Program, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA; Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20817-4799, USA.
| |
Collapse
|
33
|
Krauss R, Bosanac T, Devraj R, Engber T, Hughes RO. Axons Matter: The Promise of Treating Neurodegenerative Disorders by Targeting SARM1-Mediated Axonal Degeneration. Trends Pharmacol Sci 2020; 41:281-293. [DOI: 10.1016/j.tips.2020.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
|
34
|
Abstract
Microglia dynamically interact with neurons influencing the development, structure, and function of neuronal networks. Recent studies suggest microglia may also influence neuronal activity by physically interacting with axonal domains responsible for action potential initiation and propagation. However, the nature of these microglial process interactions is not well understood. Microglial-axonal contacts are present early in development and persist through adulthood, implicating microglial interactions in the regulation of axonal integrity in both the developing and mature central nervous system. Moreover, changes in microglial-axonal contact have been described in disease states such as multiple sclerosis (MS) and traumatic brain injury (TBI). Depending on the disease state, there are increased associations with specific axonal segments. In MS, there is enhanced contact with the axon initial segment and node of Ranvier, while, in TBI, microglia alter interactions with axons at the site of injury, as well as at the axon initial segment. In this article, we review the interactions of microglial processes with axonal segments, analyzing their associations with various axonal domains and how these interactions may differ between MS and TBI. Furthermore, we discuss potential functional consequences and molecular mechanisms of these interactions and how these may differ among various types of microglial-axonal interactions.
Collapse
Affiliation(s)
- Savannah D Benusa
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
35
|
Evans LP, Woll AW, Wu S, Todd BP, Hehr N, Hedberg-Buenz A, Anderson MG, Newell EA, Ferguson PJ, Mahajan VB, Harper MM, Bassuk AG. Modulation of Post-Traumatic Immune Response Using the IL-1 Receptor Antagonist Anakinra for Improved Visual Outcomes. J Neurotrauma 2020; 37:1463-1480. [PMID: 32056479 PMCID: PMC7249480 DOI: 10.1089/neu.2019.6725] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to characterize acute changes in inflammatory pathways in the mouse eye after blast-mediated traumatic brain injury (bTBI) and to determine whether modulation of these pathways could protect the structure and function of retinal ganglion cells (RGC). The bTBI was induced in C57BL/6J male mice by exposure to three 20 psi blast waves directed toward the head with the body shielded, with an inter-blast interval of one hour. Acute cytokine expression in retinal tissue was measured through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) four hours post-blast. Increased retinal expression of interleukin (lL)-1β, IL-1α, IL-6, and tumor necrosis factor (TNF)α was observed in bTBI mice exposed to blast when compared with shams, which was associated with activation of microglia and macroglia reactivity, assessed via immunohistochemistry with ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein, respectively, one week post-blast. Blockade of the IL-1 pathway was accomplished using anakinra, an IL-1RI antagonist, administered intra-peritoneally for one week before injury and continuing for three weeks post-injury. Retinal function and RGC layer thickness were evaluated four weeks post-injury using pattern electroretinogram (PERG) and optical coherence tomography (OCT), respectively. After bTBI, anakinra treatment resulted in a preservation of RGC function and RGC structure when compared with saline treated bTBI mice. Optic nerve integrity analysis demonstrated a trend of decreased damage suggesting that IL-1 blockade also prevents axonal damage after blast. Blast exposure results in increased retinal inflammation including upregulation of pro-inflammatory cytokines and activation of resident microglia and macroglia. This may explain partially the RGC loss we observed in this model, as blockade of the acute inflammatory response after injury with the IL-1R1 antagonist anakinra resulted in preservation of RGC function and RGC layer thickness.
Collapse
Affiliation(s)
- Lucy P Evans
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA
| | - Addison W Woll
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA
| | - Shu Wu
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Brittany P Todd
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Nicole Hehr
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Adam Hedberg-Buenz
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics, and University of Iowa, Iowa City, Iowa, USA
| | - Michael G Anderson
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, USA.,Department of Molecular Physiology and Biophysics, and University of Iowa, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | | | - Polly J Ferguson
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Matthew M Harper
- The Iowa City Department of Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, USA.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
36
|
Harper MM, Rudd D, Meyer KJ, Kanthasamy AG, Anantharam V, Pieper AA, Vázquez-Rosa E, Shin MK, Chaubey K, Koh Y, Evans LP, Bassuk AG, Anderson MG, Dutca L, Kudva IT, John M. Identification of chronic brain protein changes and protein targets of serum auto-antibodies after blast-mediated traumatic brain injury. Heliyon 2020; 6:e03374. [PMID: 32099918 PMCID: PMC7029173 DOI: 10.1016/j.heliyon.2020.e03374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to needing acute emergency management, blast-mediated traumatic brain injury (TBI) is also a chronic disorder with delayed-onset symptoms that manifest and progress over time. While the immediate consequences of acute blast injuries are readily apparent, chronic sequelae are harder to recognize. Indeed, the identification of individuals with mild-TBI or TBI-induced symptoms is greatly impaired in large part due to the lack of objective and robust biomarkers. The purpose of this study was to address these need by identifying candidates for serum-based biomarkers of blast TBI, and also to identify unique or differentially regulated protein expression in the thalamus in C57BL/6J mice exposed to blast using high throughput qualitative screens of protein expression. To identify thalamic proteins differentially or uniquely associated with blast exposure, we utilized an antibody-based affinity-capture strategy (referred to as "proteomics-based analysis of depletomes"; PAD) to deplete thalamic lysates from blast-treated mice of endogenous thalamic proteins also found in control mice. Analysis of this "depletome" detected 75 unique proteins, many with associations to the myelin sheath. To identify blast-associated proteins eliciting production of circulating autoantibodies, serum antibodies of blast-treated mice were immobilized, and their immunogens subsequently identified by proteomic analysis of proteins specifically captured following incubation with thalamic lysates (a variant of a strategy referred to as "proteomics-based expression library screening"; PELS). This analysis identified 46 blast-associated immunogenic proteins, including 6 shared in common with the PAD analysis (ALDOA, PHKB, HBA-A1, DPYSL2, SYN1, and CKB). These proteins and their autoantibodies are appropriate for further consideration as biomarkers of blast-mediated TBI.
Collapse
Affiliation(s)
- Matthew M. Harper
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
- The University of Iowa Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Danielle Rudd
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
| | - Kacie J. Meyer
- The University of Iowa Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | | | | | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Kalyani Chaubey
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Yeojung Koh
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Lucy P. Evans
- The University of Iowa Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Neurology, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Alexander G. Bassuk
- The University of Iowa Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Michael G. Anderson
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
- The University of Iowa Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Laura Dutca
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | | |
Collapse
|
37
|
Harper MM, Hedberg-Buenz A, Herlein J, Abrahamson EE, Anderson MG, Kuehn MH, Kardon RH, Poolman P, Ikonomovic MD. Blast-Mediated Traumatic Brain Injury Exacerbates Retinal Damage and Amyloidosis in the APPswePSENd19e Mouse Model of Alzheimer's Disease. Invest Ophthalmol Vis Sci 2019; 60:2716-2725. [PMID: 31247112 PMCID: PMC6735799 DOI: 10.1167/iovs.18-26353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Traumatic brain injury (TBI) is a risk factor for developing chronic neurodegenerative conditions including Alzheimer's disease (AD). The purpose of this study was to examine chronic effects of blast TBI on retinal ganglion cells (RGC), optic nerve, and brain amyloid load in a mouse model of AD amyloidosis. Methods Transgenic (TG) double-mutant APPswePSENd19e (APP/PS1) mice and nontransgenic (Non-TG) littermates were exposed to a single blast TBI (20 psi) at age 2 to 3 months. RGC cell structure and function was evaluated 2 months later (average age at endpoint = 4.5 months) using pattern electroretinogram (PERG), optical coherence tomography (OCT), and the chromatic pupil light reflex (cPLR), followed by histologic analysis of retina, optic nerve, and brain amyloid pathology. Results APP/PS1 mice exposed to blast TBI (TG-Blast) had significantly lower PERG and cPLR responses 2 months after injury compared to preblast values and compared to sham groups of APP/PS1 (TG-Sham) and nontransgenic (Non-TG-Sham) mice as well as nontransgenic blast-exposed mice (Non-TG-Blast). The TG-Blast group also had significantly thinner RGC complex and more optic nerve damage compared to all groups. No amyloid-β (Aβ) deposits were detected in retinas of APP/PS1 mice; however, increased amyloid precursor protein (APP)/Aβ-immunoreactivity was seen in TG-Blast compared to TG-Sham mice, particularly near blood vessels. TG-Blast and TG-Sham groups exhibited high variability in pathology severity, with a strong, but not statistically significant, trend for greater cerebral cortical Aβ plaque load in the TG-Blast compared to TG-Sham group. Conclusions When combined with a genetic susceptibility for developing amyloidosis of AD, blast TBI exposure leads to earlier RGC and optic nerve damage associated with modest but detectable increase in cerebral cortical Aβ pathology. These findings suggest that genetic risk factors for AD may increase the sensitivity of the retina to blast-mediated damage.
Collapse
Affiliation(s)
- Matthew M Harper
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Adam Hedberg-Buenz
- The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States
| | - Judith Herlein
- The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania, United States
| | - Michael G Anderson
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, United States
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Randy H Kardon
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Pieter Poolman
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States.,The Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.,Geriatric Research Education and Clinical Center, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania, United States.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
38
|
Desai A, Chen H, Kim HY. Multiple Mild Traumatic Brain Injuries Lead to Visual Dysfunction in a Mouse Model. J Neurotrauma 2019; 37:286-294. [PMID: 31530220 DOI: 10.1089/neu.2019.6602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Visual dysfunction is a common occurrence after traumatic brain injury (TBI). We investigated in this study effects of single or multiple mild TBI on visual function in mice using a closed head injury model that permits unconstrained head movement after impact. Adult mice were briefly anesthetized with isoflurane and given one or three mild TBI with the closed head injury by mechanically engineered rotational acceleration (CHIMERA) device with an interinjury interval of 24 h. Mice were then tested in the Morris water maze, visual cliff, and open field tests from day 19 to day 32 and for visual evoked potential at 5 weeks after the last injury and euthanized. Mice with multiple TBI showed impaired performance in the visible platform water maze test and had increased errors in the visual cliff test. Further, there was a graded difference in visual evoked potential, with the single injury mice showing modest reduction in N1 amplitude whereas the multiple injuries produced significant reduction compared to sham and single injury groups. The optic tract of the injured mice showed increases in glial cell immunostaining. The increase in glial fibrillary acid protein immunostaining reached statistical significance for both injured groups whereas the ionized calcium binding adaptor molecule 1 immunostaining was only significantly increased in the optic tract of repeatedly injured mice. These results indicate that multiple injuries using CHIMERA may result in visual deficits, which can affect certain behavioral performances. The change in vision may be a useful marker when monitoring repeated TBI outcome and screening for protective agents from TBI.
Collapse
Affiliation(s)
- Abhishek Desai
- Laboratory of Molecular Signaling, NIAAA, NIH, Rockville, Maryland
| | - Huazhen Chen
- Laboratory of Molecular Signaling, NIAAA, NIH, Rockville, Maryland.,Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of Health Sciences, Bethesda, Maryland
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, NIAAA, NIH, Rockville, Maryland
| |
Collapse
|
39
|
Giarratana AO, Teng S, Reddi S, Zheng C, Adler D, Thakker-Varia S, Alder J. BDNF Val66Met Genetic Polymorphism Results in Poor Recovery Following Repeated Mild Traumatic Brain Injury in a Mouse Model and Treatment With AAV-BDNF Improves Outcomes. Front Neurol 2019; 10:1175. [PMID: 31787925 PMCID: PMC6854037 DOI: 10.3389/fneur.2019.01175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 01/23/2023] Open
Abstract
Clinicians have long noticed that some Traumatic Brain Injury (TBI) patients have worse symptoms and take a longer time to recover than others, for reasons unexplained by known factors. Identifying what makes some individuals more susceptible is critical to understanding the underlying mechanisms through which TBI causes deleterious effects. We have sought to determine the effect of a single nucleotide polymorphism (SNP) in Brain-derived neurotrophic factor (BDNF) at amino acid 66 (rs6265) on recovery after TBI. There is controversy from human studies as to whether the BDNF Val66Val or Val66Met allele is the risk factor for worse outcomes after brain trauma. We therefore investigated cellular and behavioral outcomes in genetically engineered mice following repeated mild TBI (rmTBI) using a lateral fluid percussion (LFP) injury model. We found that relative to injured Val66Val carriers, injured Val66Met carriers had a larger inflammation volume and increased levels of neurodegeneration, apoptosis, p-tau, activated microglia, and gliosis in the cortex and/or hippocampus at 1 and/or 21 days post-injury (DPI). We therefore concluded that the Val66Met genetic polymorphism is a risk factor for poor outcomes after rmTBI. In order to determine the mechanism for these differences, we investigated levels of the apoptotic-inducing pro BDNF and survival-inducing mature BDNF isoforms and found that Met carriers had less total BDNF in the cortex and a higher pro/mature ratio of BDNF in the hippocampus. We then developed a personalized approach to treating genetically susceptible individuals by overexpressing wildtype BDNF in injured Val66Met mice using an AAV-BDNF virus. This intervention improved cellular, motor, and cognitive behavior outcomes at 21 DPI and increased levels of mature BDNF and phosphorylation of mature BDNF's receptor trkB. This study lays the groundwork for further investigation into the genetics that play a role in the extent of injury after rmTBI and highlights how personalized therapeutics may be targeted for recovery in susceptible individuals.
Collapse
Affiliation(s)
- Anna O Giarratana
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Sahithi Reddi
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Cynthia Zheng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Derek Adler
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| |
Collapse
|
40
|
Sugar as a therapeutic target for the cognitive restoration following traumatic brain injury. Curr Opin Neurol 2019; 32:815-821. [PMID: 31609736 DOI: 10.1097/wco.0000000000000752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW This review aims to discuss examples of changes in glucose (sugar) metabolism after traumatic brain injury (TBI). It will attempt to provide an understanding of what changes in glucose metabolism mean for the injured brain. It will further identify potential therapeutic target(s) emanating from our growing understanding of glucose pathways and their roles in TBI. RECENT FINDINGS Although a significant fraction of glucose is utilized for the energy production in the brain, a small fraction is utilized in other, often ignored pathways. Recent studies have unraveled unexpected biological effects of glucose through these pathways, including redox regulation, genetic and epigenetic regulation, glycation of proteins, nucleotide synthesis and amino acid synthesis. SUMMARY A number of regulatory players in minor glucose metabolic pathways, such as folate and chondroitin sulfate proteoglycans, have recently been identified as potential targets to restore cognitive functions. Targeting of these players should be combined with the supplementation of alternative energy substrates to achieve the maximal cognitive restoration after TBI. This multimodal therapeutic strategy deserves testing in various models of TBI. VIDEO ABSTRACT Supplemental digital video content 1: Video that demonstrates an effective therapeutic strategy for the cognitive restoration after TBI. http://links.lww.com/CONR/A46.
Collapse
|
41
|
Marion CM, McDaniel DP, Armstrong RC. Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury. Exp Neurol 2019; 321:113040. [PMID: 31445042 DOI: 10.1016/j.expneurol.2019.113040] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) often damages axons in white matter tracts and causes corpus callosum (CC) atrophy in chronic TBI patients. Injured axons encounter irreversible damage if transected, or alternatively may maintain continuity and subsequently either recover or degenerate. Secondary mechanisms can cause further axon damage, myelin pathology, and neuroinflammation. Molecular mechanisms regulating the progression of white matter pathology indicate potential therapeutic targets. SARM1 is essential for execution of the conserved axon death pathway. We examined white matter pathology following mild TBI with CC traumatic axonal injury in mice with Sarm1 gene deletion (Sarm1-/-). High resolution ultrastructural analysis at 3 days post-TBI revealed dramatically reduced axon damage in Sarm1-/- mice, as compared to Sarm1+/+ wild-type controls. Sarm1 deletion produced larger axons with thinner myelin, and attenuated TBI induced demyelination, i.e. myelin loss along apparently intact axons. At 6 weeks post-TBI, Sarm1-/- mice had less demyelination and thinner myelin than Sarm1+/+ mice, but axonal protection was no longer observed. We next used Thy1-YFP crosses to assess Sarm1 involvement in white matter neurodegeneration and neuroinflammation at 8 weeks post-TBI, when significant CC atrophy indicates chronic pathology. Thy1-YFP expression demonstrated continued CC axon damage yet absence of overt cortical pathology. Importantly, significant CC atrophy in Thy1-YFP/Sarm1+/+ mice was associated with reduced neurofilament immunolabeling of axons. Both effects were attenuated in Thy1-YFP/Sarm1-/- mice. Surprisingly, Thy1-YFP/Sarm1-/- mice had increased CC astrogliosis. This study demonstrates that Sarm1 inactivation reduces demyelination, and white matter atrophy after TBI, while the post-injury stage impacts when axon protection is effective.
Collapse
Affiliation(s)
- Christina M Marion
- Center for Neuroscience and Regenerative Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dennis P McDaniel
- Biomedical Instrumentation Center, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina C Armstrong
- Center for Neuroscience and Regenerative Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Program in Neuroscience, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
42
|
Deng-Bryant Y, Leung LY, Madathil S, Flerlage J, Yang F, Yang W, Gilsdorf J, Shear D. Chronic Cognitive Deficits and Associated Histopathology Following Closed-Head Concussive Injury in Rats. Front Neurol 2019; 10:699. [PMID: 31312174 PMCID: PMC6614177 DOI: 10.3389/fneur.2019.00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Close-head concussive injury, as one of the most common forms of traumatic brain injury (TBI), has been shown to induce cognitive deficits that are long lasting. A concussive impact model was previously established in our lab that produces clinically relevant signs of concussion and induced acute pathological changes in rats. To evaluate the long-term effects of repeated concussions in this model, we utilized a comprehensive Morris water maze (MWM) paradigm for cognitive assessments at 1 and 6 months following repeated concussive impacts in rats. As such, adult Sprague-Dawley rats received either anesthesia (sham) or repeated concussive impacts (4 consecutive impacts at 1 h interval). At 1 month post-injury, results of the spatial learning task showed that the average latencies to locate the hidden "escape" platform were significantly longer in the injured rats over the last 2 days of the MWM testing compared to sham controls (p < 0.05). In the memory retention task, rats subjected to repeated concussive impacts also spent significantly less time in the platform zone searching for the missing platform during the probe trial (p < 0.05). On the working memory task, the injured rats showed a trend toward worse performance, but this failed to reach statistical significance compared to sham controls (p = 0.07). At 6 months post-injury, no differences were detected between the injured group and sham controls in either the spatial learning or probe trials. However, rats with repeated concussive impacts exhibited significantly worsened working memory performance compared to sham controls (p < 0.05). In addition, histopathological assessments for axonal neurodegeneration using silver stain showed that repeated concussive impacts induced significantly more axonal degeneration in the corpus callosum compared to sham controls (p < 0.05) at 1 month post-injury, whereas such difference was not observed at 6 months post-injury. Overall, the results show that repeated concussive impacts in our model produced significant cognitive deficits in both spatial learning abilities and in working memory abilities in a time-dependent fashion that may be indicative of progressive pathology and warrant further investigation.
Collapse
Affiliation(s)
- Ying Deng-Bryant
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Sindhu Madathil
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jesse Flerlage
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Fangzhou Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Weihong Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW The current review analyzes recent findings that suggest that axon degeneration is a druggable process in the treatment of neurodegenerative disorders and a subset of traumas. RECENT FINDINGS Emerging evidence reveals that axon degeneration is an active and regulated process in the early progression of some neurodegenerative diseases and acute traumas, which is orchestrated through a combination of axon-intrinsic and somatically derived signaling events. The identification of these pathways has presented appealing drug targets whose specificity for the nervous system and phenotypes in mouse models offers significant clinical opportunity. SUMMARY As the biology of axon degeneration becomes clear, so too has the realization that the pathways driving axon degeneration overlap in part with those that drive neuronal apoptosis and, importantly, axon regeneration. Axon-specific disorders like those seen in CIPN, where injury signaling to the nucleus is not a prominent feature, have been shown to benefit from disruption of Sarm1. In injury and disease contexts, where involvement of somatic events is prominent, inhibition of the MAP Kinase DLK exhibits promise for neuroprotection. Here, however, interfering with somatic signaling may preclude the ability of an axon or a circuit to regenerate or functionally adapt following acute injuries.
Collapse
|
44
|
Sapar ML, Han C. Die in pieces: How Drosophila sheds light on neurite degeneration and clearance. J Genet Genomics 2019; 46:187-199. [PMID: 31080046 PMCID: PMC6541534 DOI: 10.1016/j.jgg.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
Dendrites and axons are delicate neuronal membrane extensions that undergo degeneration after physical injuries. In neurodegenerative diseases, they often degenerate prior to neuronal death. Understanding the mechanisms of neurite degeneration has been an intense focus of neurobiology research in the last two decades. As a result, many discoveries have been made in the molecular pathways that lead to neurite degeneration and the cell-cell interactions responsible for the subsequent clearance of neuronal debris. Drosophila melanogaster has served as a prime in vivo model system for identifying and characterizing the key molecular players in neurite degeneration, thanks to its genetic tractability and easy access to its nervous system. The knowledge learned in the fly provided targets and fuel for studies in other model systems that have further enhanced our understanding of neurodegeneration. In this review, we will introduce the experimental systems developed in Drosophila to investigate injury-induced neurite degeneration, and then discuss the biological pathways that drive degeneration. We will also cover what is known about the mechanisms of how phagocytes recognize and clear degenerating neurites, and how recent findings in this area enhance our understanding of neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Maria L Sapar
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
45
|
Vázquez-Rosa E, Watson MR, Sahn JJ, Hodges TR, Schroeder RE, Cintrón-Pérez CJ, Shin MK, Yin TC, Emery JL, Martin SF, Liebl DJ, Pieper AA. Neuroprotective Efficacy of a Sigma 2 Receptor/TMEM97 Modulator (DKR-1677) after Traumatic Brain Injury. ACS Chem Neurosci 2019; 10:1595-1602. [PMID: 30421909 DOI: 10.1021/acschemneuro.8b00543] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Compounds targeting the sigma 2 receptor, which we recently cloned and showed to be identical with transmembrane protein 97 (σ2R/TMEM97), are broadly applicable therapeutic agents currently in clinical trials for imaging in breast cancer and for treatment of Alzheimer's disease and schizophrenia. These promising applications coupled with our previous observation that the σ2R/TMEM97 modulator SAS-0132 has neuroprotective attributes and improves cognition in wild-type mice suggests that modulating σ2R/TMEM97 may also have therapeutic benefits in other neurodegenerative conditions such as traumatic brain injury (TBI). Herein, we report that DKR-1677, a novel derivative of SAS-0132 with increased affinity and selectivity for σ2R/Tmem97 ( Ki = 5.1 nM), is neuroprotective after blast-induced and controlled cortical impact (CCI) TBI in mice. Specifically, we discovered that treatment with DKR-1677 decreases axonal degeneration after blast-induced TBI and enhances survival of cortical neurons and oligodendrocytes after CCI injury. Furthermore, treatment with DKR-1677 preserves cognition in the Morris water maze after blast TBI. Our results support an increasingly broad role for σ2R/Tmem97 modulation in neuroprotection and suggest a new approach for treating patients suffering from TBI.
Collapse
Affiliation(s)
- Edwin Vázquez-Rosa
- Department of Psychiatry and Department of Free Radical, Radiation Biology Program, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
- Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Harrington Discovery Institute, University Hospital, Case Medical Center, Louis Stokes Cleveland VAMC, Cleveland, Ohio 44106, United States
| | - Michael R. Watson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - James J. Sahn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Timothy R. Hodges
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rachel E. Schroeder
- Department of Psychiatry and Department of Free Radical, Radiation Biology Program, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
| | - Coral J. Cintrón-Pérez
- Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Harrington Discovery Institute, University Hospital, Case Medical Center, Louis Stokes Cleveland VAMC, Cleveland, Ohio 44106, United States
| | - Min-Kyoo Shin
- Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Harrington Discovery Institute, University Hospital, Case Medical Center, Louis Stokes Cleveland VAMC, Cleveland, Ohio 44106, United States
| | - Terry C. Yin
- Department of Psychiatry and Department of Free Radical, Radiation Biology Program, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
| | - Josie L. Emery
- Department of Psychiatry and Department of Free Radical, Radiation Biology Program, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
| | - Stephen F. Martin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel J. Liebl
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Andrew A. Pieper
- Department of Psychiatry and Department of Free Radical, Radiation Biology Program, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, United States
- Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Harrington Discovery Institute, University Hospital, Case Medical Center, Louis Stokes Cleveland VAMC, Cleveland, Ohio 44106, United States
| |
Collapse
|
46
|
Pieper AA, McKnight SL. Benefits of Enhancing Nicotinamide Adenine Dinucleotide Levels in Damaged or Diseased Nerve Cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:207-217. [PMID: 30787047 DOI: 10.1101/sqb.2018.83.037622] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three unbiased lines of research have commonly pointed to the benefits of enhanced levels of nicotinamide adenine dinucleotide (NAD+) to diseased or damaged neurons. Mice carrying a triplication of the gene encoding the culminating enzyme in NAD+ salvage from nicotinamide, NMNAT, are protected from a variety of insults to axons. Protection from Wallerian degeneration of axons is also observed in flies and mice bearing inactivating mutations in the SARM1 gene. Functional studies of the SARM1 gene product have revealed the presence of an enzymatic activity directed toward the hydrolysis of NAD+ Finally, an unbiased drug screen performed in living mice led to the discovery of a neuroprotective chemical designated P7C3. Biochemical studies of the P7C3 chemical show that it can enhance recovery of NAD+ from nicotinamide by activating NAMPT, the first enzyme in the salvage pathway. In combination, these three unrelated research endeavors offer evidence of the benefits of enhanced NAD+ levels to damaged neurons.
Collapse
Affiliation(s)
- Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio 44106, USA
| | - Steven L McKnight
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
47
|
Zhou Y, Wen LL, Wang HD, Zhou XM, Fang J, Zhu JH, Ding K. Blast-Induced Traumatic Brain Injury Triggered by Moderate Intensity Shock Wave Using a Modified Experimental Model of Injury in Mice. Chin Med J (Engl) 2019; 131:2447-2460. [PMID: 30334530 PMCID: PMC6202591 DOI: 10.4103/0366-6999.243558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background The increasing frequency of explosive injuries has increased interest in blast-induced traumatic brain injury (bTBI). Various shock tube models have been used to study bTBI. Mild-to-moderate explosions are often overlooked because of the slow onset or mildness of the symptoms. However, heavy gas cylinders and large volume chambers in the model may increase the complexity and danger. This study sought to design a modified model to explore the effect of moderate explosion on brain injury in mice. Methods Pathology scoring system (PSS) was used to distinguish the graded intensity by the modified model. A total of 160 mice were randomly divided into control, sham, and bTBI groups with different time points. The clinical features, imaging features, neurobehavior, and neuropathology were detected after moderate explosion. One-way analysis of variance followed by Fisher's least significant difference posttest or Dunnett's t 3-test was performed for data analyses. Results PSS of mild, moderate, and severe explosion was 13.4 ± 2.2, 32.6 ± 2.7 (t = 13.92, P < 0.001; vs. mild group), and 56.6 ± 2.8 (t = 31.37, P < 0.001; vs. mild group), respectively. After moderate explosion, mice showed varied symptoms of malaise, anorexia, incontinence, apnea, or seizure. After bTBI, brain edema reached the highest peak at day 3 (82.5% ± 2.1% vs. 73.8% ± 0.6%, t = 7.76, P < 0.001), while the most serious neurological outcomes occurred at day 1 (Y-maze: 8.25 ± 2.36 vs. 20.00 ± 4.55, t = -4.59, P = 0.048; 29.58% ± 2.84% vs. 49.09% ± 11.63%, t = -3.08, P = 0.008; neurologic severity score: 2.50 ± 0.58 vs. 0.00 ± 0.00, t = 8.65, P = 0.016). We also found that apoptotic neurons (52.76% ± 1.99% vs. 1.30% ± 0.11%, t = 57.20, P < 0.001) and gliosis (2.98 ± 0.24 vs. 1.00 ± 0.00, t = 14.42, P = 0.021) in the frontal were significantly higher at day 3 post-bTBI than sham bTBI. Conclusions We provide a reliable, reproducible bTBI model in mice that can produce a graded explosive waveform similar to the free-field shock wave in a controlled laboratory environment. Moderate explosion can trigger mild-to-moderate blast damage of the brain.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Li-Li Wen
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Han-Dong Wang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Jiang Fang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Jian-Hong Zhu
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing 210002, China
| |
Collapse
|
48
|
Geisler S, Huang SX, Strickland A, Doan RA, Summers DW, Mao X, Park J, DiAntonio A, Milbrandt J. Gene therapy targeting SARM1 blocks pathological axon degeneration in mice. J Exp Med 2019; 216:294-303. [PMID: 30642945 PMCID: PMC6363435 DOI: 10.1084/jem.20181040] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/22/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Axonal degeneration (AxD) following nerve injury, chemotherapy, and in several neurological disorders is an active process driven by SARM1, an injury-activated NADase. Axons of SARM1-null mice exhibit greatly delayed AxD after transection and in models of neurological disease, suggesting that inhibiting SARM1 is a promising strategy to reduce pathological AxD. Unfortunately, no drugs exist to target SARM1. We, therefore, developed SARM1 dominant-negatives that potently block AxD in cellular models of axotomy and neuropathy. To assess efficacy in vivo, we used adeno-associated virus-mediated expression of the most potent SARM1 dominant-negative and nerve transection as a model of severe AxD. While axons of vehicle-treated mice degenerate rapidly, axons of mice expressing SARM1 dominant-negative can remain intact for >10 d after transection, similar to the protection observed in SARM1-null mice. We thus developed a novel in vivo gene therapeutic to block pathological axon degeneration by inhibiting SARM1, an approach that may be applied clinically to treat manifold neurodegenerative diseases characterized by axon loss.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO.,Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Shay X Huang
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Ryan A Doan
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Daniel W Summers
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Xianrong Mao
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jiwoong Park
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO .,Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO .,Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
49
|
Blaya MO, Wasserman JM, Pieper AA, Sick TJ, Bramlett HM, Dietrich WD. Neurotherapeutic capacity of P7C3 agents for the treatment of Traumatic Brain Injury. Neuropharmacology 2018; 145:268-282. [PMID: 30236963 DOI: 10.1016/j.neuropharm.2018.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) is a significant public health problem around the world. A promising area of research is the characterization of small, drug-like molecules that have potent clinical properties. One pharmacotherapeutic agent in particular, an aminopropyl carbazole called P7C3, was discovered using an in vivo screen to identify new agents that augmented the net magnitude of adult hippocampal neurogenesis. P7C3 greatly enhanced neurogenesis by virtue of increasing survival rates of immature neurons. The potent neuroprotective efficacy of P7C3 is likely due to enhanced nicotinamide phosphoribosyltransferase (NAMPT) activity, which supports critical cellular processes. The scaffold of P7C3 was found to have favorable pharmacokinetic properties, good bioavailability, and was nontoxic. Preclinical studies have shown that administration of the P7C3-series of neuroprotective compounds after TBI can rescue and reverse detrimental cellular events leading to improved functional recovery. In several TBI models and across multiple species, P7C3 and its analogues have produced significant neuroprotection, axonal preservation, robust increases in the net magnitude of adult neurogenesis, protection from injury-induced LTP deficits, and improvement in neurological functioning. This review will elucidate the exciting and diverse therapeutic findings of P7C3 administration in the presence of a complex and multifactorial set of cellular and molecular challenges brought forth by experimental TBI. The clinical potential and broad therapeutic applicability of P7C3 warrants much needed investigation into whether these remedial effects can be replicated in the clinic. P7C3 may serve as an important step forward in the design, understanding, and implementation of pharmacotherapies for treating patients with TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Meghan O Blaya
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Joseph M Wasserman
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH, 44106, USA
| | - Thomas J Sick
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Helen M Bramlett
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
50
|
Sasaki Y. Metabolic aspects of neuronal degeneration: From a NAD + point of view. Neurosci Res 2018; 139:9-20. [PMID: 30006197 DOI: 10.1016/j.neures.2018.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022]
Abstract
Cellular metabolism maintains the life of cells, allowing energy production required for building cellular constituents and maintaining homeostasis under constantly changing external environments. Neuronal cells maintain their structure and function for the entire life of organisms and the loss of neurons, with limited neurogenesis in adults, directly causes loss of complexity in the neuronal networks. The nervous system organizes the neurons by placing cell bodies containing nuclei of similar types of neurons in discrete regions. Accordingly, axons must travel great distances to connect different types of neurons and peripheral organs. The enormous surface area of neurons makes them high-energy demanding to keep their membrane potential. Distal axon survival is dependent on axonal transport that is another energy demanding process. All of these factors make metabolic stress a potential risk factor for neuronal death and neuronal degeneration often associated with metabolic diseases. This review discusses recent findings on metabolic dysregulations under neuronal degeneration and pathways protecting neurons in these conditions.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University in St. Louis, Couch Biomedical Research Building, 4515 McKinley Ave., Saint Louis, MO, 63110, United States
| |
Collapse
|