1
|
Weaver O, Gano D, Zhou Y, Kim H, Tognatta R, Yan Z, Ryu JK, Brandt C, Basu T, Grana M, Cabriga B, Alzamora MDPS, Barkovich AJ, Akassoglou K, Petersen MA. Fibrinogen inhibits sonic hedgehog signaling and impairs neonatal cerebellar development after blood-brain barrier disruption. Proc Natl Acad Sci U S A 2024; 121:e2323050121. [PMID: 39042684 PMCID: PMC11295022 DOI: 10.1073/pnas.2323050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Cerebellar injury in preterm infants with central nervous system (CNS) hemorrhage results in lasting neurological deficits and an increased risk of autism. The impact of blood-induced pathways on cerebellar development remains largely unknown, so no specific treatments have been developed to counteract the harmful effects of blood after neurovascular damage in preterm infants. Here, we show that fibrinogen, a blood-clotting protein, plays a central role in impairing neonatal cerebellar development. Longitudinal MRI of preterm infants revealed that cerebellar bleeds were the most critical factor associated with poor cerebellar growth. Using inflammatory and hemorrhagic mouse models of neonatal cerebellar injury, we found that fibrinogen increased innate immune activation and impeded neurogenesis in the developing cerebellum. Fibrinogen inhibited sonic hedgehog (SHH) signaling, the main mitogenic pathway in cerebellar granule neuron progenitors (CGNPs), and was sufficient to disrupt cerebellar growth. Genetic fibrinogen depletion attenuated neuroinflammation, promoted CGNP proliferation, and preserved normal cerebellar development after neurovascular damage. Our findings suggest that fibrinogen alters the balance of SHH signaling in the neurovascular niche and may serve as a therapeutic target to mitigate developmental brain injury after CNS hemorrhage.
Collapse
Affiliation(s)
- Olivia Weaver
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Dawn Gano
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Yungui Zhou
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Hosung Kim
- Department of Neurology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Reshmi Tognatta
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Zhaoqi Yan
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Caroline Brandt
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Trisha Basu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Martin Grana
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
| | - Belinda Cabriga
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - Maria del Pilar S. Alzamora
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| | - A. James Barkovich
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA94143
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA94158
| | - Mark A. Petersen
- Department of Pediatrics, University of California San Francisco, San Francisco, CA94158
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Center for Neurovascular Brain Immunology at Gladstone Institutes and University of California San Francisco, San Francisco, CA94158
| |
Collapse
|
2
|
Romantsik O, Moreira A, Thébaud B, Ådén U, Ley D, Bruschettini M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst Rev 2023; 2:CD013201. [PMID: 36790019 PMCID: PMC9932000 DOI: 10.1002/14651858.cd013201.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ulrika Ådén
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Cheng B, Sharma DR, Kumar A, Sheth H, Agyemang A, Aschner M, Zhang X, Ballabh P. Shh activation restores interneurons and cognitive function in newborns with intraventricular haemorrhage. Brain 2023; 146:629-644. [PMID: 35867870 PMCID: PMC10169407 DOI: 10.1093/brain/awac271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Premature infants with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH) suffer from neurobehavioural deficits as they enter childhood and adolescence. Yet the underlying mechanisms remain unclear. Impaired development and function of interneurons contribute to neuropsychiatric disorders. Therefore, we hypothesized that the occurrence of IVH would reduce interneuron neurogenesis in the medial ganglionic eminence and diminish the population of parvalbumin+ and somatostatin+ cortical interneurons. Because Sonic Hedgehog promotes the production of cortical interneurons, we also postulated that the activation of Sonic Hedgehog signalling might restore neurogenesis, cortical interneuron population, and neurobehavioural function in premature newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH and autopsy samples from human preterm infants. We compared premature newborns with and without IVH for intraneuronal progenitors, cortical interneurons, transcription factors regulating neurogenesis, single-cell transcriptome of medial ganglionic eminence and neurobehavioural functions. We treated premature rabbit kits with adenovirus expressing Sonic Hedgehog (Ad-Shh) or green fluorescence protein gene to determine the effect of Sonic Hedgehog activation on the interneuron production, cortical interneuron population and neurobehaviour. We discovered that IVH reduced the number of Nkx2.1+ and Dlx2+ progenitors in the medial ganglionic eminence of both humans and rabbits by attenuating their proliferation and inducing apoptosis. Moreover, IVH decreased the population of parvalbumin+ and somatostatin+ neurons in the frontal cortex of both preterm infants and kits relative to controls. Sonic Hedgehog expression and the downstream transcription factors, including Nkx2.1, Mash1, Lhx6 and Sox6, were also reduced in kits with IVH. Consistent with these findings, single-cell transcriptomic analyses of medial ganglionic eminence identified a distinct subpopulation of cells exhibiting perturbation in genes regulating neurogenesis, ciliogenesis, mitochondrial function and MAPK signalling in rabbits with IVH. More importantly, restoration of Sonic Hedgehog level by Ad-Shh treatment ameliorated neurogenesis, cortical interneuron population and neurobehavioural function in kits with IVH. Additionally, Sonic Hedgehog activation alleviated IVH-induced inflammation and several transcriptomic changes in the medial ganglionic eminence. Taken together, IVH reduced intraneuronal production and cortical interneuron population by downregulating Sonic Hedgehog signalling in both preterm rabbits and humans. Notably, activation of Sonic Hedgehog signalling restored interneuron neurogenesis, cortical interneurons and cognitive function in rabbit kits with IVH. These findings highlight disruption in cortical interneurons in IVH and identify a novel therapeutic strategy to restore cortical interneurons and cognitive function in infants with IVH. These studies can accelerate the development of new therapies to enhance the neurodevelopmental outcome of survivors with IVH.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Agyemang
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Ferroptosis in oligodendrocyte progenitor cells mediates white matter injury after hemorrhagic stroke. Cell Death Dis 2022; 13:259. [PMID: 35318305 PMCID: PMC8941078 DOI: 10.1038/s41419-022-04712-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2021] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) differentiate to myelin-producing mature oligodendrocytes and enwrap growing or demyelinated axons during development and post central nervous diseases. Failure of remyelination owing to cell death or undifferentiation of OPCs contributes to severe neurologic deficits and motor dysfunction. However, how to prevent the cell death of OPCs is still poorly understood, especially in hemorrhagic diseases. In the current study, we injected autologous blood into the mouse lateral ventricular to study the hemorrhage-induced OPC cell death in vivo. The integrity of the myelin sheath of the corpus callosum was disrupted post intraventricular hemorrhage (IVH) assessed by using magnetic resonance imaging, immunostaining, and transmission electron microscopy. Consistent with the severe demethylation, we observed massive cell death of oligodendrocyte lineages in the periventricular area. In addition, we found that ferroptosis is the major cell death form in Hemin-induced OPC death by using RNA-seq analysis, and the mechanism was glutathione peroxidase 4 activity reduction-resulted lipid peroxide accumulation. Furthermore, inhibition of ferroptosis rescued OPC cell death in vitro, and in vivo attenuated IVH-induced white matter injury and promoted recovery of neurological function. These data demonstrate that ferroptosis is an essential form of OPC cell death in hemorrhagic stroke, and rescuing ferroptotic OPCs could serve as a therapeutic target for stroke and related diseases.
Collapse
|
6
|
Abstract
Intraventricular hemorrhage (IVH) remains a major complication of prematurity, worldwide. The severity of IVH is variable, ranging from a tiny germinal matrix bleed to a moderate-to-large ventricular hemorrhage or periventricular hemorrhagic infarction. Survivors with IVH often suffer from hydrocephalus and white matter injury. There is no tangible treatment to prevent post-hemorrhagic cerebral palsy, cognitive deficits, or hydrocephalus in these infants. White matter injury is attributed to blood-induced damage to axons and maturing oligodendrocyte precursors, resulting in reduced myelination and axonal loss. Hydrocephalus results from obstructed CSF circulation by blood clots, increased CSF production, and reduced CSF absorption by lymphatics and arachnoid villi. Several strategies to promote neurological recovery have shown promise in animal models, including the elimination of blood and blood products, alleviating cerebral inflammation and oxidative stress, as well as promoting survival and maturation of oligodendrocyte precursors. The present review integrates novel mechanisms of brain injury in IVH and the imminent therapies to alleviate post-hemorrhagic white matter injury and hydrocephalus in the survivors with IVH.
Collapse
Affiliation(s)
| | - Praveen Ballabh
- Children's Hospital at Montefiore, Department of Pediatrics and Dominick P, Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Nezu S, Saito T, Yoshida A, Narazaki S, Shimamura Y, Furumatsu T, Ozaki T. Effect of difference in fixation methods of tendon graft and the microfracture procedure on tendon-bone junction healing. JSES Int 2021; 6:155-166. [PMID: 35141691 PMCID: PMC8811408 DOI: 10.1016/j.jseint.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/02/2022] Open
Abstract
Background There are generally two methods of fixation for tendon grafts used in ligament reconstruction: bone tunnel fixation and anchor fixation. The microfracture (Mf) procedure is a technique to induce bleeding from the bone marrow, and the bleeding may contain cells with differentiation potential. However, few studies have compared the effects of the Mf procedure with those of the fixation methods. This study aimed to evaluate the effectiveness of the Mf procedure on two tendon graft fixation methods: histological, gene expression, tendon graft thickness, and mechanical. We especially focused our investigation on junction healing of tendon grafts and bone in the two fixation methods. Methods We used 20 rabbits to evaluate tendon and bone healing in a peroneal tendon graft model. The rabbit models were divided into five groups according to the combination of peroneal tendon graft fixation method and Mf technique as follows: control group (C, n = 4), bone tunnel fixation without Mf procedure group (BT − Mf, n = 4), bone tunnel fixation with Mf procedure group (BT + Mf, n = 4), anchor fixation without Mf procedure group (A − Mf, n = 4), and anchor fixation with Mf procedure group (A + Mf, n = 4). All animals were sacrificed at 4 weeks postoperatively. The specimens underwent histological evaluation, mRNA analysis, tendon graft thickness at the tendon-bone junction, and biomechanical testing. Results Histological evaluation of the BT + Mf and A + Mf groups showed healing with fibrocartilage formation at the tendon graft-bone junction. The mRNA expression showed significant increase in type 2 collagen, Scleraxis, and SRY-box9 in the BT + Mf and A + Mf groups. In biomechanical tests, the BT + Mf and A + Mf groups showed significantly increased tensile strength compared with the BT − Mf and A − Mf groups (BT + Mf group, 21.6 ± 1.7 N; A + Mf group, 22.5 ± 2.3 N vs. BT − Mf group, 12.3 ± 2.4 N; A − Mf group, 11 ± 2.3 N). Conclusion The Mf procedure resulted in fibrocartilage formation at the tendon-bone junction in the BT and anchor fixation and improved the fixation strength at 4 weeks.
Collapse
Affiliation(s)
- Satoshi Nezu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Taichi Saito
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Corresponding author: Taichi Saito, MD, PhD, Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry, and Pharmaceutical Sciences, Okayama, Japan, 2-5-1, Shikatacho, Kitaku, Okayama City, 700-8558.
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Narazaki
- Department of Orthopaedic Surgery, Okayama Saiseikai General Hospital, Okayama, Okayama, Japan
| | - Yasunori Shimamura
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
PPAR-γ activation enhances myelination and neurological recovery in premature rabbits with intraventricular hemorrhage. Proc Natl Acad Sci U S A 2021; 118:2103084118. [PMID: 34462350 DOI: 10.1073/pnas.2103084118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Intraventricular hemorrhage (IVH) results in periventricular inflammation, hypomyelination of the white matter, and hydrocephalus in premature infants. No effective therapy exists to prevent these disorders. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists reduce inflammation, alleviate free radical generation, and enhance microglial phagocytosis, promoting clearance of debris and red blood cells. We hypothesized that activation of PPAR-γ would enhance myelination, reduce hydrocephalus, and promote neurological recovery in newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH; autopsy brain samples from premature infants with and without IVH were analyzed. We found that IVH augmented PPAR-γ expression in microglia of both preterm human infants and rabbit kits. The treatment with PPAR-γ agonist or PPAR-γ overexpression by adenovirus delivery further elevated PPAR-γ levels in microglia, reduced proinflammatory cytokines, increased microglial phagocytosis, and improved oligodendrocyte progenitor cell (OPC) maturation in kits with IVH. Transcriptomic analyses of OPCs identified previously unrecognized PPAR-γ-induced genes for purinergic signaling, cyclic adenosine monophosphate generation, and antioxidant production, which would reprogram these progenitors toward promoting myelination. RNA-sequencing analyses of microglia revealed PPAR-γ-triggered down-regulation of several proinflammatory genes and transcripts having roles in Parkinson's disease and amyotrophic lateral sclerosis, contributing to neurological recovery in kits with IVH. Accordingly, PPAR-γ activation enhanced myelination and neurological function in kits with IVH. This also enhanced microglial phagocytosis of red blood cells but did not reduce hydrocephalus. Treatment with PPAR-γ agonist might enhance myelination and neurological recovery in premature infants with IVH.
Collapse
|
9
|
Yang H, Ni W, Wei P, Li S, Gao X, Su J, Jiang H, Lei Y, Zhou L, Gu Y. HDAC inhibition reduces white matter injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 2021; 41:958-974. [PMID: 32703113 PMCID: PMC8054714 DOI: 10.1177/0271678x20942613] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Inhibition of histone deacetylases (HDACs) has been shown to reduce inflammation and white matter damage after various forms of brain injury via modulation of microglia/macrophage polarization. Previously we showed that the HDAC inhibitor scriptaid could attenuate white matter injury (WMI) after ICH. To access whether modulation of microglia/macrophage polarization might underlie this protection, we investigated the modulatory role of HDAC2 in microglia/macrophage polarization in response to WMI induced by intracerebral hemorrhage (ICH) and in primary microglia and oligodendrocyte co-cultures. HDAC2 activity was inhibited via conditional knockout of the Hdac2 gene in microglia or via administration of scriptaid. Conditional knockout of the Hdac2 gene in microglia and HDAC inhibition with scriptaid both improved neurological functional recovery and reduced WMI after ICH. Additionally, HDAC inhibition shifted microglia/macrophage polarization toward the M2 phenotype and reduced proinflammatory cytokine secretion after ICH in vivo. In vitro, a transwell co-culture model of microglia and oligodendrocytes also demonstrated that the HDAC inhibitor protected oligodendrocytes by modulating microglia polarization and mitigating neuroinflammation. Moreover, we found that scriptaid decreased the expression of pJAK2 and pSTAT1 in cultured microglia when stimulated with hemoglobin. Thus, HDAC inhibition ameliorated ICH-mediated neuroinflammation and WMI by modulating microglia/macrophage polarization.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Sicheng Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Jiabin Su
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Hanqiang Jiang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Yu Lei
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Yuxiang Gu
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| |
Collapse
|
10
|
White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 2021; 17:199-214. [PMID: 33504979 PMCID: PMC8880688 DOI: 10.1038/s41582-020-00447-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Intraventricular haemorrhage (IVH) continues to be a major complication of prematurity that can result in cerebral palsy and cognitive impairment in survivors. No optimal therapy exists to prevent IVH or to treat its consequences. IVH varies in severity and can present as a bleed confined to the germinal matrix, small-to-large IVH or periventricular haemorrhagic infarction. Moderate-to-severe haemorrhage dilates the ventricle and damages the periventricular white matter. This white matter injury results from a constellation of blood-induced pathological reactions, including oxidative stress, glutamate excitotoxicity, inflammation, perturbed signalling pathways and remodelling of the extracellular matrix. Potential therapies for IVH are currently undergoing investigation in preclinical models and evidence from clinical trials suggests that stem cell treatment and/or endoscopic removal of clots from the cerebral ventricles could transform the outcome of infants with IVH. This Review presents an integrated view of new insights into the mechanisms underlying white matter injury in premature infants with IVH and highlights the importance of early detection of disability and immediate intervention in optimizing the outcomes of IVH survivors.
Collapse
|
11
|
Vaes JEG, Brandt MJV, Wanders N, Benders MJNL, de Theije CGM, Gressens P, Nijboer CH. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia 2020; 69:1311-1340. [PMID: 33595855 PMCID: PMC8246971 DOI: 10.1002/glia.23939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Encephalopathy of prematurity (EoP) is a major cause of morbidity in preterm neonates, causing neurodevelopmental adversities that can lead to lifelong impairments. Preterm birth-related insults, such as cerebral oxygen fluctuations and perinatal inflammation, are believed to negatively impact brain development, leading to a range of brain abnormalities. Diffuse white matter injury is a major hallmark of EoP and characterized by widespread hypomyelination, the result of disturbances in oligodendrocyte lineage development. At present, there are no treatment options available, despite the enormous burden of EoP on patients, their families, and society. Over the years, research in the field of neonatal brain injury and other white matter pathologies has led to the identification of several promising trophic factors and cytokines that contribute to the survival and maturation of oligodendrocytes, and/or dampening neuroinflammation. In this review, we discuss the current literature on selected factors and their therapeutic potential to combat EoP, covering a wide range of in vitro, preclinical and clinical studies. Furthermore, we offer a future perspective on the translatability of these factors into clinical practice.
Collapse
Affiliation(s)
- Josine E G Vaes
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands.,Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Myrna J V Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Nikki Wanders
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| | | | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Dohare P, Kidwai A, Kaur J, Singla P, Krishna S, Klebe D, Zhang X, Hevner R, Ballabh P. GSK3β Inhibition Restores Impaired Neurogenesis in Preterm Neonates With Intraventricular Hemorrhage. Cereb Cortex 2020; 29:3482-3495. [PMID: 30192926 DOI: 10.1093/cercor/bhy217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Indexed: 01/25/2023] Open
Abstract
Intraventricular hemorrhage (IVH) is a common complication of prematurity in infants born at 23-28 weeks of gestation. Survivors exhibit impaired growth of the cerebral cortex and neurodevelopmental sequeale, but the underlying mechanism(s) are obscure. Previously, we have shown that neocortical neurogenesis continues until at least 28 gestational weeks. This renders the prematurely born infants vulnerable to impaired neurogenesis. Here, we hypothesized that neurogenesis is impaired by IVH, and that signaling through GSK3β, a critical intracellular kinase regulated by Wnt and other pathways, mediates this effect. These hypotheses were tested observationally in autopsy specimens from premature infants, and experimentally in a premature rabbit IVH model. Significantly, in premature infants with IVH, the number of neurogenic cortical progenitor cells was reduced compared with infants without IVH, indicating acutely decreased neurogenesis. This finding was corroborated in the rabbit IVH model, which further demonstrated reduction of upper layer cortical neurons after longer survival. Both the acute reduction of neurogenic progenitors, and the subsequent decrease of upper layer neurons, were rescued by treatment with AR-A014418, a specific inhibitor of GSK3β. Together, these results indicate that IVH impairs late stages of cortical neurogenesis, and suggest that treatment with GSK3β inhibitors may enhance neurodevelopment in premature infants with IVH.
Collapse
Affiliation(s)
- Preeti Dohare
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience
| | | | | | | | | | | | | | - Robert Hevner
- Department of Pathology, 9500 Gilman Dr, UCSD, La Jolla, CA, USA
| | - Praveen Ballabh
- Department of Pediatrics.,Dominick P. Purpura Department of Neuroscience.,Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
13
|
Truttmann AC, Ginet V, Puyal J. Current Evidence on Cell Death in Preterm Brain Injury in Human and Preclinical Models. Front Cell Dev Biol 2020; 8:27. [PMID: 32133356 PMCID: PMC7039819 DOI: 10.3389/fcell.2020.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Despite tremendous advances in neonatal intensive care over the past 20 years, prematurity carries a high burden of neurological morbidity lasting lifelong. The term encephalopathy of prematurity (EoP) coined by Volpe in 2009 encompasses all aspects of the now known effects of prematurity on the immature brain, including altered and disturbed development as well as specific lesional hallmarks. Understanding the way cells are damaged is crucial to design brain protective strategies, and in this purpose, preclinical models largely contribute to improve the comprehension of the cell death mechanisms. While neuronal cell death has been deeply investigated and characterized in (hypoxic–ischemic) encephalopathy of the newborn at term, little is known about the types of cell death occurring in preterm brain injury. Three main different morphological cell death types are observed in the immature brain, specifically in models of hypoxic–ischemic encephalopathy, namely, necrotic, apoptotic, and autophagic cell death. Features of all three types may be present in the same dying neuron. In preterm brain injury, description of cell death types is sparse, and cell loss primarily concerns immature oligodendrocytes and, infrequently, neurons. In the present review, we first shortly discuss the different main severe preterm brain injury conditions that have been reported to involve cell death, including periventricular leucomalacia (PVL), diffuse white matter injury (dWMI), and intraventricular hemorrhages, as well as potentially harmful iatrogenic conditions linked to premature birth (anesthesia and caffeine therapy). Then, we present an overview of current evidence concerning cell death in both clinical human tissue data and preclinical models by focusing on studies investigating the presence of cell death allowing discriminating between the types of cell death involved. We conclude that, to improve brain protective strategies, not only apoptosis but also other cell death (such as regulated necrotic and autophagic) pathways now need to be investigated together in order to consider all cell death mechanisms involved in the pathogenesis of preterm brain damage.
Collapse
Affiliation(s)
- Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Vanessa Ginet
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
14
|
Inhibitors of Myelination and Remyelination, Bone Morphogenetic Proteins, are Upregulated in Human Neurological Disease. Neurochem Res 2020; 45:656-662. [PMID: 32030597 DOI: 10.1007/s11064-020-02980-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
During demyelinating disease such as multiple sclerosis and stroke, myelin is destroyed and along with it, the oligodendrocytes that synthesize the myelin. Thus, recovery is limited due to both interruptions in neuronal transmission as well as lack of support for neurons. Although oligodendrocyte progenitor cells remain abundant in the central nervous system, they rarely mature and form new functional myelin in the diseased CNS. In cell culture and in experimental models of demyelinating disease, inhibitory signaling factors decrease myelination and remyelination. One of the most potent of these are the bone morphogenetic proteins (BMPs), a family of proteins that strongly inhibits oligodendrocyte progenitor differentiation and myelination in culture. BMPs are highly expressed in the dorsal CNS during pre-natal development and serve to regulate dorsal ventral patterning. Their expression decreases after birth but is significantly increased in rodent demyelination models such as experimental autoimmune encephalomyelitis, cuprizone ingestion and spinal cord injury. However, until recently, evidence for BMP upregulation in human disease has been scarce. This review discusses new human studies showing that in multiple sclerosis and other demyelinating diseases, BMPs are expressed by immune cells invading the CNS as well as resident CNS cell types, mostly astrocytes and microglia. Expression of endogenous BMP antagonists is also regulated. Identification of BMPs in the CNS is correlated with areas of demyelination and inflammation. These studies further support BMP as a potential therapeutic target.
Collapse
|
15
|
Aberrant Oligodendrogenesis in Down Syndrome: Shift in Gliogenesis? Cells 2019; 8:cells8121591. [PMID: 31817891 PMCID: PMC6953000 DOI: 10.3390/cells8121591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022] Open
Abstract
Down syndrome (DS), or trisomy 21, is the most prevalent chromosomal anomaly accounting for cognitive impairment and intellectual disability (ID). Neuropathological changes of DS brains are characterized by a reduction in the number of neurons and oligodendrocytes, accompanied by hypomyelination and astrogliosis. Recent studies mainly focused on neuronal development in DS, but underestimated the role of glial cells as pathogenic players. Aberrant or impaired differentiation within the oligodendroglial lineage and altered white matter functionality are thought to contribute to central nervous system (CNS) malformations. Given that white matter, comprised of oligodendrocytes and their myelin sheaths, is vital for higher brain function, gathering knowledge about pathways and modulators challenging oligodendrogenesis and cell lineages within DS is essential. This review article discusses to what degree DS-related effects on oligodendroglial cells have been described and presents collected evidence regarding induced cell-fate switches, thereby resulting in an enhanced generation of astrocytes. Moreover, alterations in white matter formation observed in mouse and human post-mortem brains are described. Finally, the rationale for a better understanding of pathways and modulators responsible for the glial cell imbalance as a possible source for future therapeutic interventions is given based on current experience on pro-oligodendroglial treatment approaches developed for demyelinating diseases, such as multiple sclerosis.
Collapse
|
16
|
TGFB1-Mediated Gliosis in Multiple Sclerosis Spinal Cords Is Favored by the Regionalized Expression of HOXA5 and the Age-Dependent Decline in Androgen Receptor Ligands. Int J Mol Sci 2019; 20:ijms20235934. [PMID: 31779094 PMCID: PMC6928867 DOI: 10.3390/ijms20235934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
In multiple sclerosis (MS) patients with a progressive form of the disease, spinal cord (SC) functions slowly deteriorate beyond age 40. We previously showed that in the SC of these patients, large areas of incomplete demyelination extend distance away from plaque borders and are characterized by a unique progliotic TGFB1 (Transforming Growth Factor Beta 1) genomic signature. Here, we attempted to determine whether region- and age-specific physiological parameters could promote the progression of SC periplaques in MS patients beyond age 40. An analysis of transcriptomics databases showed that, under physiological conditions, a set of 10 homeobox (HOX) genes are highly significantly overexpressed in the human SC as compared to distinct brain regions. Among these HOX genes, a survey of the human proteome showed that only HOXA5 encodes a protein which interacts with a member of the TGF-beta signaling pathway, namely SMAD1 (SMAD family member 1). Moreover, HOXA5 was previously found to promote the TGF-beta pathway. Interestingly, SMAD1 is also a protein partner of the androgen receptor (AR) and an unsupervised analysis of gene ontology terms indicates that the AR pathway antagonizes the TGF-beta/SMAD pathway. Retrieval of promoter analysis data further confirmed that AR negatively regulates the transcription of several members of the TGF-beta/SMAD pathway. On this basis, we propose that in progressive MS patients, the physiological SC overexpression of HOXA5 combined with the age-dependent decline in AR ligands may favor the slow progression of TGFB1-mediated gliosis. Potential therapeutic implications are discussed.
Collapse
|
17
|
Abstract
Background Bone morphogenetic protein-2/4 (BMP2/4) has been recognized as promoters of astrocyte activity. Substantial evidence suggests that BMP2/4 may be elevated and plays a critical role in astrocyte activation upon spinal cord injury. Although neuropathic pain is similarly associated with astrocyte activation, the participation of BMP2/4 in this regard still remains unclear. Methods A rat model of neuropathic pain achieved by spinal nerve ligation at L5 was used to evaluate the expression of glial fibrillary acidic protein and BMP2/4 in the spinal cord in days 1, 4, 7, 10, and 14. Next, normal rats received intrathecal exogenous BMP2/4 and the antagonist Noggin to assess the effect of BMP2/4 on astrocyte activation. In both experiments, von Frey filaments were used to evaluate the changes in paw withdrawal threshold. In addition, Western blotting and immunofluorescence were performed to assess the expression of glial fibrillary acidic protein, BMP2/4, p-Smad 1/5/8, and phospho-signal transducer and activator of transcription-3 (p-STAT3) in the spinal cord. Results Firstly, spinal nerve ligation caused a significant increase in the expression of BMP4, while BMP2 levels remained unchanged. Secondly, exogenous BMP4 but not BMP2 induced a significant decrease in paw withdrawal threshold, along with the upregulation of glial fibrillary acidic protein. Moreover, exogenous BMP4 stimulated both p-Smad 1/5/8 and p-STAT3, while BMP2 only upregulated p-Smad 1/5/8. Finally, exogenous Noggin alleviated the decrease in paw withdrawal threshold induced by BMP4 and reduced astrocyte activation, as well as p-STAT3 upregulation. Conclusions Our results indicate only BMP4—and not BMP2—intervened in allodynia in rats by eliciting glial activation probably through both p-Smad 1/5/8 and p-STAT3 signaling.
Collapse
Affiliation(s)
- Lin Yang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, China
| | - Shuxin Liu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, China
| | - Yaping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Province Center for Clinical Anesthesia and Anesthesiology, Research Institute of Central South University, Changsha, China
| |
Collapse
|
18
|
Romantsik O, Bruschettini M, Moreira A, Thébaud B, Ley D. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Cochrane Database Syst Rev 2019; 9:CD013201. [PMID: 31549743 PMCID: PMC6757514 DOI: 10.1002/14651858.cd013201.pub2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) remains a substantial issue in neonatal intensive care units worldwide. Current therapies to prevent or treat GMH-IVH are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, and/or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. OBJECTIVES To determine the benefits and harms of stem cell-based interventions for prevention or treatment of germinal matrix-intraventricular haemorrhage (GM-IVH) in preterm infants. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2019, Issue 1), in the Cochrane Library; MEDLINE via PubMed (1966 to 7 January 2019); Embase (1980 to 7 January 2019); and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to 7 January 2019). We also searched clinical trials databases, conference proceedings, and reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA We attempted to identify randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing (1) stem cell-based interventions versus control; (2) mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; (3) stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or (4) MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH. DATA COLLECTION AND ANALYSIS For each of the included trials, two review authors independently planned to extract data (e.g. number of participants, birth weight, gestational age, type and source of MSCs, other stem cell-based interventions) and assess the risk of bias (e.g. adequacy of randomisation, blinding, completeness of follow-up). Primary outcomes considered in this review are all-cause neonatal mortality, major neurodevelopmental disability, GM-IVH, and extension of pre-existing non-severe GM-IVH. We planned to use the GRADE approach to assess the quality of evidence. MAIN RESULTS Our search strategy yielded 769 references. We did not find any completed studies for inclusion. One randomised controlled trial is currently registered and ongoing. Five phase 1 trials are described in the excluded studies. AUTHORS' CONCLUSIONS Currently no evidence is available to show the benefits or harms of stem cell-based interventions for treatment or prevention of GM-IVH in preterm infants.
Collapse
Affiliation(s)
- Olga Romantsik
- Lund University, Skåne University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
| | - Matteo Bruschettini
- Lund University, Skåne University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
- Skåne University HospitalCochrane SwedenWigerthuset, Remissgatan 4, first floorroom 11‐221LundSweden22185
| | - Alvaro Moreira
- University of Texas Health Science Center at San AntonioPediatrics, Division of NeonatologySan AntonioTexasUSA
| | - Bernard Thébaud
- Children's Hospital of Eastern OntarioDepartment of PediatricsOttawaONCanada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell ResearchOttawaCanada
- University of OttawaDepartment of Cellular and Molecular MedicineOttawaCanada
| | - David Ley
- Lund University, Skane University HospitalDepartment of Clinical Sciences Lund, PaediatricsLundSweden
| | | |
Collapse
|
19
|
Vinukonda G, Liao Y, Hu F, Ivanova L, Purohit D, Finkel DA, Giri P, Bapatla L, Shah S, Zia MT, Hussein K, Cairo MS, La Gamma EF. Human Cord Blood-Derived Unrestricted Somatic Stem Cell Infusion Improves Neurobehavioral Outcome in a Rabbit Model of Intraventricular Hemorrhage. Stem Cells Transl Med 2019; 8:1157-1169. [PMID: 31322326 PMCID: PMC6811700 DOI: 10.1002/sctm.19-0082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Intraventricular hemorrhage (IVH) is a severe complication of preterm birth, which leads to hydrocephalus, cerebral palsy, and mental retardation. There are no available therapies to cure IVH, and standard treatment is supportive care. Unrestricted somatic stem cells (USSCs) from human cord blood have reparative effects in animal models of brain and spinal cord injuries. USSCs were administered to premature rabbit pups with IVH and their effects on white matter integrity and neurobehavioral performance were evaluated. USSCs were injected either via intracerebroventricular (ICV) or via intravenous (IV) routes in 3 days premature (term 32d) rabbit pups, 24 hours after glycerol‐induced IVH. The pups were sacrificed at postnatal days 3, 7, and 14 and effects were compared to glycerol‐treated but unaffected or nontreated control. Using in vivo live bioluminescence imaging and immunohistochemical analysis, injected cells were found in the injured parenchyma on day 3 when using the IV route compared to ICV where cells were found adjacent to the ventricle wall forming aggregates; we did not observe any adverse events from either route of administration. The injected USSCs were functionally associated with attenuated microglial infiltration, less apoptotic cell death, fewer reactive astrocytes, and diminished levels of key inflammatory cytokines (TNFα and IL1β). In addition, we observed better preservation of myelin fibers, increased myelin gene expression, and altered reactive astrocyte distribution in treated animals, and this was associated with improved locomotor function. Overall, our findings support the possibility that USSCs exert anti‐inflammatory effects in the injured brain mitigating many detrimental consequences associated with IVH. stem cells translational medicine2019;8:1157–1169
Collapse
Affiliation(s)
- Govindaiah Vinukonda
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Furong Hu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Larisa Ivanova
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Deepti Purohit
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Dina A Finkel
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Priyadarshani Giri
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | | | - Shetal Shah
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Muhammed T Zia
- The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Karen Hussein
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA.,Department of Medicine, Pathology, Microbiology & Immunology, Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Edmund F La Gamma
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA.,The Regional Neonatal Center at Maria Fareri Children's Hospital of Westchester Medical Center, Valhalla, New York, USA.,Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
20
|
Romantsik O, Bruschettini M, Moreira A, Thébaud B, Ley D. Stem cell-based interventions for the prevention and treatment of germinal matrix-intraventricular haemorrhage in preterm infants. Hippokratia 2018. [DOI: 10.1002/14651858.cd013201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Romantsik
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| | - Matteo Bruschettini
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
- Skåne University Hospital; Cochrane Sweden; Wigerthuset, Remissgatan 4, first floor room 11-221 Lund Sweden 22185
| | - Alvaro Moreira
- University of Texas Health Science Center at San Antonio; Pediatrics, Division of Neonatology; San Antonio Texas USA
| | - Bernard Thébaud
- Children's Hospital of Eastern Ontario; Department of Pediatrics; Ottawa ON Canada
- Ottawa Hospital Research Institute, Sprott Center for Stem Cell Research; Ottawa Canada
- University of Ottawa; Department of Cellular and Molecular Medicine; Ottawa Canada
| | - David Ley
- Lund University, Skåne University Hospital; Department of Paediatrics; Lund Sweden
| |
Collapse
|
21
|
Ulanska-Poutanen J, Mieczkowski J, Zhao C, Konarzewska K, Kaza B, Pohl HB, Bugajski L, Kaminska B, Franklin RJ, Zawadzka M. Injury-induced perivascular niche supports alternative differentiation of adult rodent CNS progenitor cells. eLife 2018; 7:30325. [PMID: 30222103 PMCID: PMC6141235 DOI: 10.7554/elife.30325] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2017] [Accepted: 09/03/2018] [Indexed: 01/06/2023] Open
Abstract
Following CNS demyelination, oligodendrocyte progenitor cells (OPCs) are able to differentiate into either remyelinating oligodendrocytes (OLs) or remyelinating Schwann cells (SCs). However, the signals that determine which type of remyelinating cell is generated and the underlying mechanisms involved have not been identified. Here, we show that distinctive microenvironments created in discrete niches within demyelinated white matter determine fate decisions of adult OPCs. By comparative transcriptome profiling we demonstrate that an ectopic, injury-induced perivascular niche is enriched with secreted ligands of the BMP and Wnt signalling pathways, produced by activated OPCs and endothelium, whereas reactive astrocyte within non-vascular area express the dual BMP/Wnt antagonist Sostdc1. The balance of BMP/Wnt signalling network is instructive for OPCs to undertake fate decision shortly after their activation: disruption of the OPCs homeostasis during demyelination results in BMP4 upregulation, which, in the absence of Socstdc1, favours SCs differentiation.
Collapse
Affiliation(s)
- Justyna Ulanska-Poutanen
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Chao Zhao
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Katarzyna Konarzewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hartmut Bf Pohl
- Department of Biology, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Lukasz Bugajski
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robin Jm Franklin
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Malgorzata Zawadzka
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Dohare P, Cheng B, Ahmed E, Yadala V, Singla P, Thomas S, Kayton R, Ungvari Z, Ballabh P. Glycogen synthase kinase-3β inhibition enhances myelination in preterm newborns with intraventricular hemorrhage, but not recombinant Wnt3A. Neurobiol Dis 2018; 118:22-39. [PMID: 29940337 DOI: 10.1016/j.nbd.2018.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2018] [Revised: 05/26/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022] Open
Abstract
Intraventricular hemorrhage (IVH) in preterm infants results in reduced proliferation and maturation of oligodendrocyte progenitor cells (OPCs), and survivors exhibit reduced myelination and neurological deficits. Wnt signaling regulates OPC maturation and myelination in a context dependent manner. Herein, we hypothesized that the occurrence of IVH would downregulate Wnt signaling, and that activating Wnt signaling by GSK-3β inhibition or Wnt3A recombinant human protein (rh-Wnt3A) treatment might promote maturation of OPCs, myelination of the white matter, and neurological recovery in premature rabbits with IVH. These hypotheses were tested in autopsy samples from preterm infants and in a rabbit model of IVH. Induction of IVH reduced expressions of activated β-catenin, TCF-4, and Axin2 transcription factors in preterm newborns. Both AR-A014418 (ARA) and Wnt-3A treatment activated Wnt signaling. GSK-3β inhibition by intramuscular ARA treatment accelerated maturation of OPCs, myelination, and neurological recovery in preterm rabbits with IVH compared to vehicle controls. In contrast, intracerebroventricular rh-Wnt3A treatment failed to enhance myelination and neurological function in rabbits with IVH. ARA treatment reduced microglia infiltration and IL1β expression in rabbits with IVH relative to controls, whereas Wnt3A treatment elevated TNFα, IL1β, and IL6 expression without affecting microglia density. GSK-3β inhibition downregulated, while rh-Wnt3A treatment upregulated Notch signaling; and none of the two treatments affected the Sonic-Hedgehog pathway. The administration of ARA or rh-Wnt3A did not affect gliosis. The data suggest that GSK-3β inhibition promoted myelination by suppressing inflammation and Notch signaling; and Wnt3A treatment failed to enhance myelination because of its pro-inflammatory activity and synergy with Notch signaling. GSK-3β inhibitors might improve the neurological outcome of preterm infants with IVH.
Collapse
Affiliation(s)
- Preeti Dohare
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bokun Cheng
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ehsan Ahmed
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vivek Yadala
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pranav Singla
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sunisha Thomas
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert Kayton
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Oklahoma University, OK, USA
| | - Praveen Ballabh
- Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
23
|
The Potentials and Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm Infant. Stem Cells Int 2018; 2018:9652897. [PMID: 29765429 PMCID: PMC5911321 DOI: 10.1155/2018/9652897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2017] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Preponderance of proinflammatory signals is a characteristic feature of all acute and resulting long-term morbidities of the preterm infant. The proinflammatory actions are best characterized for bronchopulmonary dysplasia (BPD) which is the chronic lung disease of the preterm infant with lifelong restrictions of pulmonary function and severe consequences for psychomotor development and quality of life. Besides BPD, the immature brain, eye, and gut are also exposed to inflammatory injuries provoked by infection, mechanical ventilation, and oxygen toxicity. Despite the tremendous progress in the understanding of disease pathologies, therapeutic interventions with proven efficiency remain restricted to a few drug therapies with restricted therapeutic benefit, partially considerable side effects, and missing option of applicability to the inflamed brain. The therapeutic potential of mesenchymal stromal cells (MSCs)—also known as mesenchymal stem cells—has attracted much attention during the recent years due to their anti-inflammatory activities and their secretion of growth and development-promoting factors. Based on a molecular understanding, this review summarizes the positive actions of exogenous umbilical cord-derived MSCs on the immature lung and brain and the therapeutic potential of reprogramming resident MSCs. The pathomechanistic understanding of MSC actions from the animal model is complemented by the promising results from the first phase I clinical trials testing allogenic MSC transplantation from umbilical cord blood. Despite all the enthusiasm towards this new therapeutic option, the caveats and outstanding issues have to be critically evaluated before a broad introduction of MSC-based therapies.
Collapse
|
24
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor (TGF)-β family of ligands and exert most of their effects through the canonical effectors Smad1, 5, and 8. Appropriate regulation of BMP signaling is critical for the development and homeostasis of numerous human organ systems. Aberrations in BMP pathways or their regulation are increasingly associated with diverse human pathologies, and there is an urgent and growing need to develop effective approaches to modulate BMP signaling in the clinic. In this review, we provide a wide perspective on diseases and/or conditions associated with dysregulated BMP signal transduction, outline the current strategies available to modulate BMP pathways, highlight emerging second-generation technologies, and postulate prospective avenues for future investigation.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, Indiana 46222
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
25
|
B-1a lymphocytes promote oligodendrogenesis during brain development. Nat Neurosci 2018; 21:506-516. [PMID: 29507409 DOI: 10.1038/s41593-018-0106-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2017] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
Abstract
During brain development, the immune system mediates neurogenesis, gliogenesis and synapse formation. However, it remains unclear whether peripheral lymphocytes contribute to brain development. Here we identified the subtypes of lymphocytes that are present in neonatal mouse brains and investigated their functions. We found that B-1a cells, a subtype of B cells, were abundant in the neonatal mouse brain and infiltrated into the brain in a CXCL13-CXCR5-dependent manner. B-1a cells promoted the proliferation of oligodendrocyte-precursor cells (OPCs) in vitro, and depletion of B-1a cells from developing brains resulted in a reduction of numbers of OPCs and mature oligodendrocytes. Furthermore, neutralizing Fcα/μR, the receptor for the Fc region of IgM secreted by B-1a cells, inhibited OPC proliferation and reduced the proportion of myelinated axons in neonatal mouse brains. Our results demonstrate that B-1a cells infiltrate into the brain and contribute to oligodendrogenesis and myelination by promoting OPC proliferation via IgM-Fcα/μR signaling.
Collapse
|
26
|
Shin JA, Kim YA, Kim HW, Kim HS, Lee KE, Kang JL, Park EM. Iron released from reactive microglia by noggin improves myelin repair in the ischemic brain. Neuropharmacology 2018; 133:202-215. [PMID: 29407213 DOI: 10.1016/j.neuropharm.2018.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2017] [Revised: 01/21/2018] [Accepted: 01/25/2018] [Indexed: 12/31/2022]
Abstract
We previously reported that the bone morphogenetic protein (BMP) antagonist, noggin, improved the repair process with an increase in the reactive microglia/macrophage population in the ischemic brain. Since BMP plays a role in intracellular iron homeostasis via the hepcidin/ferroportin axis, and iron is required for myelination, this study was aimed to determine whether noggin affected iron status and remyelination in the brain following ischemic stroke. We further examined the effect of blocking the BMP/hepcidin pathway on reactive microglia (BV2) and myelination of oligodendroglial cells (MO3.13) to define the link between microglial iron status and myelin formation. Following the noggin infusion into the ischemic brain of mice, the induction of hepcidin and ferritin protein levels decreased, and the number of myelinated axons and myelin thickness increased at 8 weeks after ischemic stroke. Noggin repressed the increase in hepcidin and ferritin levels in BV2 exposed to lipopolysaccharide (LPS) and oxygen/glucose deprivation and reperfusion (OGD/R). When MO3.13 were exposed to the conditioned media from noggin-treated BV2 (noggin CM) during reperfusion, OGD/R-induced MO3.13 cell death was reduced. Under normal conditions, noggin CM induced myelin production with an increase in ferritin levels in MO3.13, which was reversed by the iron chelator, deferoxamine. These results indicated that noggin altered the iron status in reactive microglia from the iron-storing to the iron-releasing phenotype, which contributed to myelin synthesis by providing iron. We suggest that the BMP/hepcidin pathway can be a target for the regulation of the iron status in microglia to enhance remyelination in the ischemic brain.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Yul A Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Hye Won Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Hee-Sun Kim
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Kyung-Eun Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Jihee Lee Kang
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea.
| |
Collapse
|
27
|
Chang J, Dettman RW, Dizon MLV. Bone morphogenetic protein signaling: a promising target for white matter protection in perinatal brain injury. Neural Regen Res 2018; 13:1183-1184. [PMID: 30028321 PMCID: PMC6065247 DOI: 10.4103/1673-5374.235025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jill Chang
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Maria L V Dizon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
28
|
Disruption of Interneuron Neurogenesis in Premature Newborns and Reversal with Estrogen Treatment. J Neurosci 2017; 38:1100-1113. [PMID: 29246927 DOI: 10.1523/jneurosci.1875-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
Many Preterm-born children suffer from neurobehavioral disorders. Premature birth terminates the hypoxic in utero environment and supply of maternal hormones. As the production of interneurons continues until the end of pregnancy, we hypothesized that premature birth would disrupt interneuron production and that restoration of the hypoxic milieu or estrogen treatment might reverse interneuron generation. To test these hypotheses, we compared interneuronal progenitors in the medial ganglionic eminences (MGEs), lateral ganglionic eminences (LGEs), and caudal ganglionic eminences (CGEs) between preterm-born [born on embryonic day (E) 29; examined on postnatal day (D) 3 and D7] and term-born (born on E32; examined on D0 and D4) rabbits at equivalent postconceptional ages. We found that both total and cycling Nkx2.1+, Dlx2+, and Sox2+ cells were more abundant in the MGEs of preterm rabbits at D3 compared with term rabbits at D0, but not in D7 preterm relative to D4 term pups. Total Nkx2.1+ progenitors were also more numerous in the LGEs of preterm pups at D3 compared with term rabbits at D0. Dlx2+ cells in CGEs were comparable between preterm and term pups. Simulation of hypoxia by dimethyloxalylglycine treatment did not affect the number of interneuronal progenitors. However, estrogen treatment reduced the density of total and proliferating Nkx2.1+ and Dlx2+ cells in the MGEs and enhanced Ascl1 transcription factor. Estrogen treatment also reduced Ki67, c-Myc, and phosphorylation of retinoblastoma protein, suggesting inhibition of the G1-to-S phase transition. Hence, preterm birth disrupts interneuron neurogenesis in the MGE and estrogen treatment reverses interneuron neurogenesis in preterm newborns by cell-cycle inhibition and elevation of Ascl1. We speculate that estrogen replacement might partially restore neurogenesis in human premature infants.SIGNIFICANCE STATEMENT Prematurity results in developmental delays and neurobehavioral disorders, which might be ascribed to disturbances in the development of cortical interneurons. Here, we show that preterm birth disrupts interneuron neurogenesis in the medial ganglionic eminence (MGE) and, more importantly, that estrogen treatment reverses this perturbation in the population of interneuron progenitors in the MGE. The estrogen seems to restore neurogenesis by inhibiting the cell cycle and elevating Ascl1 expression. As preterm birth causes plasma estrogen level to drop 100-fold, the estrogen replacement in preterm infants is physiological. We speculate that estrogen replacement might ameliorate disruption in production of interneurons in human premature infants.
Collapse
|
29
|
Sabo JK, Heine V, Silbereis JC, Schirmer L, Levison SW, Rowitch DH. Olig1 is required for noggin-induced neonatal myelin repair. Ann Neurol 2017; 81:560-571. [PMID: 28253550 DOI: 10.1002/ana.24907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2016] [Revised: 02/06/2017] [Accepted: 02/26/2017] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neonatal white matter injury (NWMI) is a lesion found in preterm infants that can lead to cerebral palsy. Although antagonists of bone morphogenetic protein (BMP) signaling, such as Noggin, promote oligodendrocyte precursor cell (OPC) production after hypoxic-ischemic (HI) injury, the downstream functional targets are poorly understood. The basic helix-loop-helix protein, oligodendrocyte transcription factor 1 (Olig1), promotes oligodendrocyte (OL) development and is essential during remyelination in adult mice. Here, we investigated whether Olig1 function is required downstream of BMP antagonism for response to injury in the neonatal brain. METHODS We used wild-type and Olig1-null mice subjected to neonatal stroke and postnatal neural progenitor cultures, and we analyzed Olig1 expression in human postmortem samples from neonates that suffered HI encephalopathy (HIE). RESULTS Olig1-null neonatal mice showed significant hypomyelination after moderate neonatal stroke. Surprisingly, damaged white matter tracts in Olig1-null mice lacked Olig2+ OPCs, and instead proliferating neuronal precursors and GABAergic interneurons were present. We demonstrate that Noggin-induced OPC production requires Olig1 function. In postnatal neural progenitors, Noggin governs production of OLs versus interneurons through Olig1-mediated repression of Dlx1/2 transcription factors. Additionally, we observed that Olig1 and the BMP signaling effector, phosphorylated SMADs (Sma- and Mad-related proteins) 1, 5, and 8, were elevated in the subventricular zone of human infants with HIE compared to controls. INTERPRETATION These findings indicate that Olig1 has a critical function in regulation of postnatal neural progenitor cell production in response to Noggin. Ann Neurol 2017;81:560-571.
Collapse
Affiliation(s)
- Jennifer K Sabo
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - Vivi Heine
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
| | - John C Silbereis
- Department of Neuroscience, University of California San Francisco, San Francisco, CA
| | - Lucas Schirmer
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steven W Levison
- Department of Neurology and Neuroscience, New Jersey Medical School, Rutgers University-New Jersey Medical School, Newark, NJ
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA
- Department of Paediatrics, Wellcome Trust-MRC Stem Cell Institute, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
30
|
Pandey R, Rai V, Mishra J, Mandrah K, Kumar Roy S, Bandyopadhyay S. From the Cover: Arsenic Induces Hippocampal Neuronal Apoptosis and Cognitive Impairments via an Up-Regulated BMP2/Smad-Dependent Reduced BDNF/TrkB Signaling in Rats. Toxicol Sci 2017; 159:137-158. [DOI: 10.1093/toxsci/kfx124] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
|
31
|
Intravenous injection of umbilical cord-derived mesenchymal stromal cells attenuates reactive gliosis and hypomyelination in a neonatal intraventricular hemorrhage model. Neuroscience 2017; 355:175-187. [PMID: 28504197 DOI: 10.1016/j.neuroscience.2017.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
Intraventricular hemorrhage (IVH) is a frequent complication of preterm newborns, resulting in cerebral palsy and cognitive handicap as well as hypoxic ischemic encephalopathy and periventricular leukomalacia. In this study, we investigated the restorative effect on neonatal IVH by umbilical cord-derived mesenchymal stromal cells (UC-MSCs) cultured in serum-free medium (RM medium) for clinical application. UC-MSCs were cultured with αMEM medium supplemented with FBS or RM. A neonatal IVH mouse model at postnatal day 5 was generated by intraventricular injection of autologous blood, and mice were intravenously administered 1×105 UC-MSCs two days after IVH. Brain magnetic resonance imaging was performed at postnatal day 15, 22 and neurological behavioral measurements were performed at postnatal day 23, accompanied by histopathological analysis and cytokine bead assays in serum after IVH with or without UC-MSCs. Both UC-MSCs cultured with αMEM and RM met the criteria of MSCs and improved behavioral outcome of IVH mice. Moreover the RM group exhibited significant behavioral improvement compared to the control group. Histopathological analysis revealed UC-MSCs cultured with RM significantly attenuated periventricular reactive gliosis, hypomyelination, and periventricular cell death observed after IVH. Furthermore, human brain-derived neurotrophic factor and hepatocyte growth factor were elevated in the serum, cerebrospinal fluid and brain tissue of neonatal IVH model mice 24h after UC-MSCs administration. These results suggest UC-MSCs attenuate neonatal IVH by protecting gliosis and apoptosis of the injured brain, and intravenous injection of UC-MSCs cultured in RM may be feasible for neonatal IVH in clinic.
Collapse
|
32
|
Park WS, Ahn SY, Sung SI, Ahn JY, Chang YS. Mesenchymal Stem Cells: The Magic Cure for Intraventricular Hemorrhage? Cell Transplant 2016; 26:439-448. [PMID: 27938484 DOI: 10.3727/096368916x694193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Severe intraventricular hemorrhage (IVH) remains a major cause of mortality and long-term neurologic morbidities in premature infants, despite recent advances in neonatal intensive care medicine. Several preclinical studies have demonstrated the beneficial effects of mesenchymal stem cell (MSC) transplantation in attenuating brain injuries resulting from severe IVH. Because there currently exists no effective intervention for severe IVH, the therapeutic potential of MSC transplantation in this intractable and devastating disease is creating excitement in this field. This review summarizes recent progress in stem cell research for treating neonatal brain injury due to severe IVH, with a particular focus on preclinical data concerning important issues, such as mechanism of protective action and determining optimal source, route, timing, and dose of MSC transplantation, and on the translation of these preclinical study results to a clinical trial.
Collapse
|
33
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
34
|
Wheeler NA, Fuss B. Extracellular cues influencing oligodendrocyte differentiation and (re)myelination. Exp Neurol 2016; 283:512-30. [PMID: 27016069 PMCID: PMC5010977 DOI: 10.1016/j.expneurol.2016.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2015] [Revised: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
There is an increasing number of neurologic disorders found to be associated with loss and/or dysfunction of the CNS myelin sheath, ranging from the classic demyelinating disease, multiple sclerosis, through CNS injury, to neuropsychiatric diseases. The disabling burden of these diseases has sparked a growing interest in gaining a better understanding of the molecular mechanisms regulating the differentiation of the myelinating cells of the CNS, oligodendrocytes (OLGs), and the process of (re)myelination. In this context, the importance of the extracellular milieu is becoming increasingly recognized. Under pathological conditions, changes in inhibitory as well as permissive/promotional cues are thought to lead to an overall extracellular environment that is obstructive for the regeneration of the myelin sheath. Given the general view that remyelination is, even though limited in human, a natural response to demyelination, targeting pathologically 'dysregulated' extracellular cues and their downstream pathways is regarded as a promising approach toward the enhancement of remyelination by endogenous (or if necessary transplanted) OLG progenitor cells. In this review, we will introduce the extracellular cues that have been implicated in the modulation of (re)myelination. These cues can be soluble, part of the extracellular matrix (ECM) or mediators of cell-cell interactions. Their inhibitory and permissive/promotional roles with regard to remyelination as well as their potential for therapeutic intervention will be discussed.
Collapse
Affiliation(s)
- Natalie A Wheeler
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
35
|
Vinukonda G, Hu F, Mehdizadeh R, Dohare P, Kidwai A, Juneja A, Naran V, Kierstead M, Chawla R, Kayton R, Ballabh P. Epidermal growth factor preserves myelin and promotes astrogliosis after intraventricular hemorrhage. Glia 2016; 64:1987-2004. [PMID: 27472419 DOI: 10.1002/glia.23037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022]
Abstract
Intraventricular hemorrhage (IVH) leads to reduced myelination and astrogliosis of the white matter in premature infants. No therapeutic strategy exists to minimize white matter injury in survivors with IVH. Epidermal growth factor (EGF) enhances myelination, astrogliosis, and neurologic recovery in animal models of white matter injury. Here, we hypothesized that recombinant human (rh) EGF treatment would enhance oligodendrocyte precursor cell (OPC) maturation, myelination, and neurological recovery in preterm rabbits with IVH. In addition, rhEGF would promote astrogliosis by inducing astroglial progenitor proliferation and GFAP transcription. We tested these hypotheses in a preterm rabbit model of IVH and evaluated autopsy samples from human preterm infants. We found that EGF and EGFR expression were more abundant in the ganglionic eminence relative to the cortical plate and white matter of human infants and that the development of IVH reduced EGF levels, but not EGFR expression. Accordingly, rhEGF treatment promoted proliferation and maturation of OPCs, preserved myelin in the white matter, and enhanced neurological recovery in rabbits with IVH. rhEGF treatment inhibited Notch signaling, which conceivably contributed to OPC maturation. rhEGF treatment contributed to astrogliosis by increasing astroglial proliferation and upregulating GFAP as well as Sox9 expression. Hence, IVH results in a decline in EGF expression; and rhEGF treatment preserves myelin, restores neurological recovery, and exacerbates astrogliosis by inducing proliferation of astrocytes and enhancing transcription of GFAP and Sox9 in pups with IVH. rhEGF treatment might improve the neurological outcome of premature infants with IVH. GLIA 2016;64:1987-2004.
Collapse
Affiliation(s)
- Govindaiah Vinukonda
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Furong Hu
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Rana Mehdizadeh
- Department of Cell Biology and Anatomy, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Preeti Dohare
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Ali Kidwai
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Ankit Juneja
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Vineet Naran
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Maria Kierstead
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Rachit Chawla
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York
| | - Robert Kayton
- Department of Anatomical Pathology, Oregon Health and Science University, Portland, Oregon
| | - Praveen Ballabh
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York. .,Department of Cell Biology and Anatomy, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, New York.
| |
Collapse
|
36
|
AMPA-Kainate Receptor Inhibition Promotes Neurologic Recovery in Premature Rabbits with Intraventricular Hemorrhage. J Neurosci 2016; 36:3363-77. [PMID: 26985043 DOI: 10.1523/jneurosci.4329-15.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Intraventricular hemorrhage (IVH) in preterm infants leads to cerebral inflammation, reduced myelination of the white matter, and neurological deficits. No therapeutic strategy exists against the IVH-induced white matter injury. AMPA-kainate receptor induced excitotoxicity contributes to oligodendrocyte precursor cell (OPC) damage and hypomyelination in both neonatal and adult models of brain injury. Here, we hypothesized that IVH damages white matter via AMPA receptor activation, and that AMPA-kainate receptor inhibition suppresses inflammation and restores OPC maturation, myelination, and neurologic recovery in preterm newborns with IVH. We tested these hypotheses in a rabbit model of glycerol-induced IVH and evaluated the expression of AMPA receptors in autopsy samples from human preterm infants. GluR1-GluR4 expressions were comparable between preterm humans and rabbits with and without IVH. However, GluR1 and GluR2 levels were significantly lower in the embryonic white matter and germinal matrix relative to the neocortex in both infants with and without IVH. Pharmacological blockade of AMPA-kainate receptors with systemic NBQX, or selective AMPA receptor inhibition by intramuscular perampanel restored myelination and neurologic recovery in rabbits with IVH. NBQX administration also reduced the population of apoptotic OPCs, levels of several cytokines (TNFα, IL-β, IL-6, LIF), and the density of Iba1(+) microglia in pups with IVH. Additionally, NBQX treatment inhibited STAT-3 phosphorylation, but not astrogliosis or transcription factors regulating gliosis. Our data suggest that AMPA-kainate receptor inhibition alleviates OPC loss and IVH-induced inflammation and restores myelination and neurologic recovery in preterm rabbits with IVH. Therapeutic use of FDA-approved perampanel treatment might enhance neurologic outcome in premature infants with IVH. SIGNIFICANCE STATEMENT Intraventricular hemorrhage (IVH) is a major complication of prematurity and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The development of IVH leads to inflammation of the periventricular white matter, apoptosis and arrested maturation of oligodendrocyte precursor cells, and hypomyelination. Here, we show that AMPA-kainate receptor inhibition by NBQX suppresses inflammation, attenuates apoptosis of oligodendrocyte precursor cells, and promotes myelination as well as clinical recovery in preterm rabbits with IVH. Importantly, AMPA-specific inhibition by the FDA-approved perampanel, which unlike NBQX has a low side-effect profile, also enhances myelination and neurological recovery in rabbits with IVH. Hence, the present study highlights the role of AMPA-kainate receptor in IVH-induced white matter injury and identifies a novel strategy of neuroprotection, which might improve the neurological outcome for premature infants with IVH.
Collapse
|
37
|
Cho YE, Latour LL, Kim H, Turtzo LC, Olivera A, Livingston WS, Wang D, Martin C, Lai C, Cashion A, Gill J. Older Age Results in Differential Gene Expression after Mild Traumatic Brain Injury and Is Linked to Imaging Differences at Acute Follow-up. Front Aging Neurosci 2016; 8:168. [PMID: 27468266 PMCID: PMC4942460 DOI: 10.3389/fnagi.2016.00168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022] Open
Abstract
Older age consistently relates to a lesser ability to fully recover from a traumatic brain injury (TBI); however, there is limited data to explicate the nature of age-related risks. This study was undertaken to determine the relationship of age on gene-activity following a TBI, and how this biomarker relates to changes in neuroimaging findings. A young group (between the ages of 19 and 35 years), and an old group (between the ages of 60 and 89 years) were compared on global gene-activity within 48 h following a TBI, and then at follow-up within 1-week. At each time-point, gene expression profiles, and imaging findings from both magnetic resonance imaging (MRI) and computed tomography were obtained and compared. The young group was found to have greater gene expression of inflammatory regulatory genes at 48 h and 1-week in genes such as basic leucine zipper transcription factor 2 (BACH2), leucine-rich repeat neuronal 3 (LRRN3), and lymphoid enhancer-binding factor 1 (LEF1) compared to the old group. In the old group, there was increased activity in genes within S100 family, including calcium binding protein P (S100P) and S100 calcium binding protein A8 (S100A8), which previous studies have linked to poor recovery from TBI. The old group also had reduced activity of the noggin (NOG) gene, which is a member of the transforming growth factor-β superfamily and is linked to neurorecovery and neuroregeneration compared to the young group. We link these gene expression findings that were validated to neuroimaging, reporting that in the old group with a MRI finding of TBI-related damage, there was a lesser likelihood to then have a negative MRI finding at follow-up compared to the young group. Together, these data indicate that age impacts gene activity following a TBI, and suggest that this differential activity related to immune regulation and neurorecovery contributes to a lesser likelihood of neuronal recovery in older patients as indicated through neuroimaging.
Collapse
Affiliation(s)
- Young-Eun Cho
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Lawrence L Latour
- National Institute of Neurological Disorders, National Institutes of Health, Bethesda MD, USA
| | - Hyungsuk Kim
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - L Christine Turtzo
- National Institute of Neurological Disorders, National Institutes of Health, Bethesda MD, USA
| | - Anlys Olivera
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Whitney S Livingston
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Dan Wang
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Christiana Martin
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Chen Lai
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Ann Cashion
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| | - Jessica Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
38
|
Hyaluronidase and Hyaluronan Oligosaccharides Promote Neurological Recovery after Intraventricular Hemorrhage. J Neurosci 2016; 36:872-89. [PMID: 26791217 DOI: 10.1523/jneurosci.3297-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Intraventricular hemorrhage (IVH) in premature infants results in inflammation, arrested oligodendrocyte progenitor cell (OPC) maturation, and reduced myelination of the white matter. Hyaluronan (HA) inhibits OPC maturation and complexes with the heavy chain (HC) of glycoprotein inter-α-inhibitor to form pathological HA (HC-HA complex), which exacerbates inflammation. Therefore, we hypothesized that IVH would result in accumulation of HA, and that either degradation of HA by hyaluronidase treatment or elimination of HCs from pathological HA by HA oligosaccharide administration would restore OPC maturation, myelination, and neurological function in survivors with IVH. To test these hypotheses, we used the preterm rabbit model of glycerol-induced IVH and analyzed autopsy samples from premature infants. We found that total HA levels were comparable in both preterm rabbit pups and human infants with and without IVH, but HA receptors--CD44, TLR2, TLR4--were elevated in the forebrain of both humans and rabbits with IVH. Hyaluronidase treatment of rabbits with IVH reduced CD44 and TLR4 expression, proinflammatory cytokine levels, and microglia infiltration. It also promoted OPC maturation, myelination, and neurological recovery. HC-HA and tumor necrosis factor-stimulated gene-6 were elevated in newborns with IVH; and depletion of HC-HA levels by HA oligosaccharide treatment reduced inflammation and enhanced myelination and neurological recovery in rabbits with IVH. Hence, hyaluronidase or HA oligosaccharide treatment represses inflammation, promotes OPC maturation, and restores myelination and neurological function in rabbits with IVH. These therapeutic strategies might improve the neurological outcome of premature infants with IVH. Significance statement: Approximately 12,000 premature infants develop IVH every year in the United States, and a large number of survivors with IVH develop cerebral palsy and cognitive deficits. The onset of IVH induces inflammation of the periventricular white matter, which results in arrested maturation of OPCs and myelination failure. HA is a major component of the extracellular matrix of the brain, which regulates inflammation through CD44 and TLR2/4 receptors. Here, we show two mechanism-based strategies that effectively enhanced myelination and neurological recovery in preterm rabbit model of IVH. First, degrading HA by hyaluronidase treatment reduced CD44 and TLR4 expression, proinflammatory cytokines, and microglial infiltration, as well as promoted oligodendrocyte maturation and myelination. Second, intraventricular injection of HA oligosaccharide reduced inflammation and enhanced myelination, conceivably by depleting HC-HA levels.
Collapse
|
39
|
Cole AE, Murray SS, Xiao J. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury. Stem Cells Int 2016; 2016:9260592. [PMID: 27293450 PMCID: PMC4884839 DOI: 10.1155/2016/9260592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2015] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 01/17/2023] Open
Abstract
Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research.
Collapse
Affiliation(s)
- Alistair E. Cole
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon S. Murray
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
40
|
Hashimoto M, Koda M, Furuya T, Murata A, Yamazaki M, Takahashi K. Intrathecal Noggin administration in rats temporally ameliorates mechanical allodynia induced by a chronic constriction injury. eNeurologicalSci 2016; 4:4-9. [PMID: 29430541 PMCID: PMC5803104 DOI: 10.1016/j.ensci.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2015] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 11/30/2022] Open
Abstract
Chronic intractable neuropathic pain after central or peripheral nervous system injury remains refractory to therapeutic intervention. Using microarray and RT-qPCR methods, we found that Noggin mRNA is downregulated in the lumbar enlargement 2 weeks after chronic constriction injury (CCI) in rats. Eight-week-old female Sprague Dawley rats were used for the CCI model. Two weeks after CCI, rats underwent a laminectomy at L5 under halothane anesthesia, and a silicone tube connected to an osmotic minipump was inserted intrathecally for 14 days. Rats were administered Noggin ranging from 10 ng/ml to 10 μg/ml. Phosphate buffered saline (PBS) was used as a control. The time course of mechanical allodynia was assessed for 5 weeks using von Frey filaments. An ANOVA showed that rats administered Noggin at 2 μg/ml had significantly less mechanical allodynia compared with controls. We next compared the effect of intrathecal administration (14 days) of Noggin (2 μg/ml), bone morphogenetic protein 4 (BMP4; 2 μg/ml), or BMP4 (μg/ml) + Noggin (μg/ml) with controls. Only Noggin administration significantly reduced mechanical allodynia in the CCI model. Fluorescence immunohistochemistry indicated that Noggin administration decreased astrocyte accumulation in the dorsal horn compared with PBS after administration for one week. BMP4-driven conversion of oligodendrocyte progenitor cells (OPCs) to type 2 astrocytes is inhibited by Noggin Hampton et al. (2007) . We speculated that Noggin administration inhibits the conversion of OPCs to astrocytes, and decreases glial fibrillar acidic protein expression. This histological condition could decrease neuropathic pain. Noggin mRNA is significantly down-regulated two weeks after CCI in rats. The mechanical allodynia was decreased in Noggin administration at seven days. Noggin administration influenced GFAP expression and reduced mechanical allodynia.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- Department of Orthopaedic Surgery, Seikeikai Chiba Medical Center, 1-7-1, Minami-Cho, Chuo-Ku, Chiba 2600842, Japan
| | - Masao Koda
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Japan
| | - Takeo Furuya
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Japan
| | - Atsushi Murata
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Tsukuba University Graduate School of Medicine, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Chiba University Graduate School of Medicine, Japan
| |
Collapse
|
41
|
Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor β family proteins during corticogenesis. J Neurosci 2015; 34:14973-83. [PMID: 25378163 DOI: 10.1523/jneurosci.1156-14.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
During embryonic development oligodendrocyte precursor cells (OPCs) are generated first in the ventral forebrain and migrate dorsally to occupy the cortex. The molecular cues that guide this migratory route are currently completely unknown. Here, we show that bone morphogenetic protein-4 (Bmp4), Bmp7, and Tgfβ1 produced by the meninges and pericytes repelled ventral OPCs into the cortex at mouse embryonic stages. Ectopic activation of Bmp or Tgfβ1 signaling before the entrance of OPCs into the cortex hindered OPC migration into the cortical areas. OPCs without Smad4 signaling molecules also failed to migrate into the cortex efficiently and formed heterotopia in ventral areas. OPC migration into the cortex was also dramatically reduced by conditional inhibition of Tgfβ1 or Bmp expression from mesenchymal cells. The data suggest that mesenchymal Tgfβ family proteins promote migration of ventral OPCs into the cortex during corticogenesis.
Collapse
|
42
|
|
43
|
Ballabh P, LaGamma EF. Strategies for working with a preterm rabbit model of glycerol-induced intraventricular hemorrhage: strengths and limitations. Pediatr Res 2014; 76:495-6. [PMID: 25105256 DOI: 10.1038/pr.2014.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Praveen Ballabh
- Department of Pediatrics, Cell Biology and Anatomy, New York Medical College-Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York
| | - Edmund F LaGamma
- Department of Pediatrics, Biochemistry and Molecular Biology, New York Medical College-Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, New York
| |
Collapse
|
44
|
Zia MTK, Vinukonda G, Vose LR, Bhimavarapu BBR, Iacobas S, Pandey NK, Beall AM, Dohare P, LaGamma EF, Iacobas DA, Ballabh P. Postnatal glucocorticoid-induced hypomyelination, gliosis, and neurologic deficits are dose-dependent, preparation-specific, and reversible. Exp Neurol 2014; 263:200-13. [PMID: 25263581 DOI: 10.1016/j.expneurol.2014.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2014] [Revised: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 01/12/2023]
Abstract
Postnatal glucocorticoids (GCs) are widely used in the prevention of chronic lung disease in premature infants. Their pharmacologic use is associated with neurodevelopmental delay and cerebral palsy. However, the effect of GC dose and preparation (dexamethasone versus betamethasone) on short and long-term neurological outcomes remains undetermined, and the mechanisms of GC-induced brain injury are unclear. We hypothesized that postnatal GC would induce hypomyelination and motor impairment in a preparation- and dose-specific manner, and that GC receptor (GR) inhibition might restore myelination and neurological function in GC-treated animals. Additionally, GC-induced hypomyelination and neurological deficit might be transient. To test our hypotheses, we treated prematurely delivered rabbit pups with high (0.5mg/kg/day) or low (0.2mg/kg/day) doses of dexamethasone or betamethasone. Myelin basic protein (MBP), oligodendrocyte proliferation and maturation, astrocytes, transcriptomic profile, and neurobehavioral functions were evaluated. We found that high-dose GC treatment, but not low-dose, reduced MBP expression and impaired motor function at postnatal day 14. High-dose dexamethasone induced astrogliosis, betamethasone did not. Mifepristone, a GR antagonist, reversed dexamethasone-induced myelination, but not astrogliosis. Both GCs inhibited oligodendrocyte proliferation and maturation. Moreover, high-dose dexamethasone altered genes associated with myelination, cell-cycle, GR, and mitogen-activated protein kinase. Importantly, GC-induced hypomyelination, gliosis, and motor-deficit, observed at day 14, completely recovered by day 21. Hence, high-dose, but not low-dose, postnatal GC causes reversible reductions in myelination and motor functions. GC treatment induces hypomyelination by GR-dependent genomic mechanisms, but astrogliosis by non-genomic mechanisms. GC-induced motor impairment and neurodevelopmental delay might be transient and recover spontaneously in premature infants.
Collapse
Affiliation(s)
- Muhammad T K Zia
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Pediatrics, Hudson Valley Hospital, Cortlandt Manor, NY, USA
| | - Govindaiah Vinukonda
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Linnea R Vose
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Bala B R Bhimavarapu
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Sanda Iacobas
- Department of Pathology, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Nishi K Pandey
- Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Ann Marie Beall
- Department of Pharmacy, Hudson Valley Hospital, Cortlandt Manor, NY, USA
| | - Preeti Dohare
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Edmund F LaGamma
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Molecular Biology and Biochemistry, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Dumitru A Iacobas
- Department of Pathology, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA
| | - Praveen Ballabh
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA; Department of Cell Biology and Anatomy, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center-New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
45
|
Lowe MTJ, Faull RLM, Christie DL, Waldvogel HJ. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol 2014; 523:699-725. [PMID: 25159005 DOI: 10.1002/cne.23667] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022]
Abstract
Creatine is a molecule that supports energy metabolism in cells. It is carried across the plasma membrane by the creatine transporter. There has been recent interest in creatine for its neuroprotective effects in neurodegenerative diseases and its potential as a therapeutic agent. This study represents the first systematic investigation of the distribution of the creatine transporter in the human brain. We have used immunohistochemical techniques to map out its location and the intensity of staining. The transporter was found to be strongly expressed, especially in the large projection neurons of the brain and spinal cord. These include the pyramidal neurons in the cerebral cortex, Purkinje cells in the cerebellar cortex, and motor neurons of the somatic motor and visceromotor cranial nerve nuclei and the ventral horn of the spinal cord. Many other neurons in the brain also had some degree of creatine transporter immunoreactivity. By contrast, the medium spiny neurons of the striatum and the catecholaminergic neurons of the substantia nigra and locus coeruleus, which are implicated in neurodegenerative diseases, showed a very low to almost absent level of immunoreactivity for the transporter. We propose that the distribution may reflect the energy consumption by different cell types and that the extent of creatine transporter expression is proportional to the cell's energy requirements. Furthermore, the distribution indicates that supplemented creatine would be widely taken up by brain cells, although possibly less by those cells that degenerate in Huntington's and Parkinson's diseases.
Collapse
Affiliation(s)
- Matthew T J Lowe
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | | | | | | |
Collapse
|
46
|
Shin JA, Lim SM, Jeong SI, Kang JL, Park EM. Noggin improves ischemic brain tissue repair and promotes alternative activation of microglia in mice. Brain Behav Immun 2014; 40:143-54. [PMID: 24704569 DOI: 10.1016/j.bbi.2014.03.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/04/2013] [Revised: 03/08/2014] [Accepted: 03/20/2014] [Indexed: 12/23/2022] Open
Abstract
We previously reported that bone morphogenetic proteins (BMPs) and their endogenous antagonist noggin are expressed in the brain weeks after an ischemic insult. Here, to define their roles in ischemic brain tissue repair and remodeling, we infused recombinant BMP7 or noggin into the ipsilateral ventricle of mice for 2weeks starting 2weeks after transient middle cerebral artery occlusion (MCAO). Four weeks after MCAO, we measured ischemic brain volume, functional recovery, and molecules related to neurogenesis and angiogenesis such as synaptophysin, GAP-43, and VEGF. Noggin-treated mice but not BMP7-treated mice showed preserved ipsilateral brain volume and reduced neurological deficits compared with artificial cerebrospinal fluids (aCSF)-treated mice. Noggin treatment also decreased glial scar thickness, increased levels of GAP-43 and VEGF protein, and increased the number of Iba1-positive activated microglia in the ipsilateral brain. Furthermore, noggin treatment decreased M1 markers (IL-1β, TNF-α, IL-12, CCL2 and CD86) and increased M2 markers (IL-1ra, IL-10, arginase 1, CD206 and Ym1) of activated microglia, suggesting a shift from M1 to M2 phenotypes. These results suggest that noggin improves functional recovery from ischemic stroke and enhances alternatively activated microglia, thereby promoting tissue repair and remodeling.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Soo Mee Lim
- Department of Radiology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sae Im Jeong
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Ahn SY, Chang YS, Park WS. Mesenchymal stem cells transplantation for neuroprotection in preterm infants with severe intraventricular hemorrhage. KOREAN JOURNAL OF PEDIATRICS 2014; 57:251-6. [PMID: 25076969 PMCID: PMC4115065 DOI: 10.3345/kjp.2014.57.6.251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/16/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
Severe intraventricular hemorrhaging (IVH) in premature infants and subsequent posthemorrhagic hydrocephalus (PHH) causes significant mortality and life-long neurological complications, including seizures, cerebral palsy, and developmental retardation. However, there are currently no effective therapies for neonatal IVH. The pathogenesis of PHH has been mainly explained by inflammation within the subarachnoid spaces due to the hemolysis of extravasated blood after IVH. Obliterative arachnoiditis, induced by inflammatory responses, impairs cerebrospinal fluid (CSF) resorption and subsequently leads to the development of PHH with ensuing brain damage. Increasing evidence has demonstrated potent immunomodulating abilities of mesenchymal stem cells (MSCs) in various brain injury models. Recent reports of MSC transplantation in an IVH model of newborn rats demonstrated that intraventricular transplantation of MSCs downregulated the inflammatory cytokines in CSF and attenuated progressive PHH. In addition, MSC transplantation mitigated the brain damages that ensue after IVH and PHH, including reactive gliosis, cell death, delayed myelination, and impaired behavioral functions. These findings suggest that MSCs are promising therapeutic agents for neuroprotection in preterm infants with severe IVH.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
48
|
El Waly B, Macchi M, Cayre M, Durbec P. Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 2014; 8:145. [PMID: 24971048 PMCID: PMC4054666 DOI: 10.3389/fnins.2014.00145] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair.
Collapse
Affiliation(s)
- Bilal El Waly
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Magali Macchi
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Myriam Cayre
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Pascale Durbec
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| |
Collapse
|
49
|
Zhu YT, Han B, Li F, Chen SY, Tighe S, Zhang S, Tseng SCG. Knockdown of both p120 catenin and Kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-noncanonical BMP-NFκB pathway. Invest Ophthalmol Vis Sci 2014; 55:1509-18. [PMID: 24474278 DOI: 10.1167/iovs.13-13633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To determine the signaling pathway involved in expanding contact-inhibited human corneal endothelial cells (HCECs) using p120 and Kaiso small interfering RNAs (siRNAs). METHODS Expansion of HCEC monolayers on collagen IV in SHEM using p120 siRNA was optimized regarding various dosage, frequency, and starting date before being added Kaiso siRNA or various inhibitors of Rho, ROCK, NFκB, and TAK1. Phase contrast micrographs were used for monitoring cell shape, monolayer size, and cell density. Immunostaining was used to determine cytolocalization of BrdU, p120, pNFkB, F-actin, α-catenin, β-catenin, LEF1, Na+/K+-ATPase, N-cadherin, ZO-1, and S100A4. Western blotting was used to determine the protein level of RhoA and RhoA-guanosine-5'-triphosphate (GTP). RESULTS The HCEC monolayer size in diameter was expanded from 2.1 ± 0.4 mm to 4.3 ± 0.3 mm (P < 0.05) by increasing p120 siRNA from 40 nM to 100 nM starting at day 7, to 5.0 ± 0.4 mm (P < 0.05) by adding 100 nM Kaiso siRNA, to 6.8 ± 0.3 mm by using one-fourth corneoscleral rim (P < 0.05), and to 8.1 ± 0.5 mm by using one-half corneoscleral rim (P < 0.05). Such proliferative effect required activation of RhoA-ROCK-noncanonical bone morphogenic protein (BMP) signaling and nuclear translocation of phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (pNFκB). After withdrawal of siRNAs for 1 week, the resultant HCEC monolayer maintained a hexagonal shape, the average cell density of 2254 ± 87 mm(2) (n = 3), and normal expression patterns of F-actin, α-catenin, β-catenin, N-cadherin, ZO-1, and Na+/K+-ATPase without S100A4 and alpha-smooth muscle actin (α-SMA). CONCLUSIONS The optimized knockdown with p120 and Kaiso siRNAs further expands the size of HCEC monolayers without endothelial mesenchymal transition (EMT) via selective activation of p120/Kaiso signaling that requires the RhoA-ROCK-noncanonical BMP-NFkB signaling.
Collapse
Affiliation(s)
- Ying-Ting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
50
|
Heinonen AM, Rahman M, Dogbevia G, Jakobi H, Wölfl S, Sprengel R, Schwaninger M. Neuroprotection by rAAV-mediated gene transfer of bone morphogenic protein 7. BMC Neurosci 2014; 15:38. [PMID: 24618040 PMCID: PMC3975265 DOI: 10.1186/1471-2202-15-38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2013] [Accepted: 03/05/2014] [Indexed: 01/15/2023] Open
Abstract
Background Bone morphogenic proteins (BMPs) promote the survival of neurons, suggesting a therapeutic application of BMPs in the treatment of acute and chronic neurodegenerative disorders. However, the application of recombinant BMPs in vivo is limited by their short half-life. To provide a continuous supply for functionally active BMPs, we expressed BMP7, BMP2 and the BMP inhibitor Noggin under the control of rAAV vectors in vivo. For visual control of rAAV-mediated BMP (v-BMP) expression we fused the secreted morphogenic polypeptides and the fluorescent reporter protein Venus via the ‘ribosomal skip’ promoting 2A peptide-bridge. Results In primary cortical neurons, the rAAV-expressed morphogenic polypeptides were efficiently released from the 2A-Venus fusion precursors, were secreted, correctly processed and functionally active as shown by their effects on Smad phosphorylation in HeLa cells and in primary neurons, by the protection of v-BMP7-transduced primary cortical neurons against oxidative stress, and by the activation of BMP responsive GFP in v-BMP2 transduced reporter mice. In the stroke model of middle cerebral artery occlusion rAAV-transduced v-BMP7 reduced the infarct size in mice. Conclusion Polycistronic rAAV vectors encoding secreted polypeptides and 2A-linked reporter proteins are potential novel therapeutic tools for the treatment of neurological and neurodegenerative diseases. Using this technique we documented that rAAV delivery of BMP7 reduced ischemic cell death in mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Rolf Sprengel
- Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany.
| | | |
Collapse
|